1// SPDX-License-Identifier: MIT
2/*
3 * Copyright © 2022-2023 Intel Corporation
4 */
5
6#include "i915_drv.h"
7#include "i915_reg.h"
8#include "intel_de.h"
9#include "intel_display_types.h"
10#include "intel_vblank.h"
11#include "intel_vrr.h"
12
13/*
14 * This timing diagram depicts the video signal in and
15 * around the vertical blanking period.
16 *
17 * Assumptions about the fictitious mode used in this example:
18 *  vblank_start >= 3
19 *  vsync_start = vblank_start + 1
20 *  vsync_end = vblank_start + 2
21 *  vtotal = vblank_start + 3
22 *
23 *           start of vblank:
24 *           latch double buffered registers
25 *           increment frame counter (ctg+)
26 *           generate start of vblank interrupt (gen4+)
27 *           |
28 *           |          frame start:
29 *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
30 *           |          may be shifted forward 1-3 extra lines via TRANSCONF
31 *           |          |
32 *           |          |  start of vsync:
33 *           |          |  generate vsync interrupt
34 *           |          |  |
35 * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
36 *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
37 * ----va---> <-----------------vb--------------------> <--------va-------------
38 *       |          |       <----vs----->                     |
39 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
40 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
41 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
42 *       |          |                                         |
43 *       last visible pixel                                   first visible pixel
44 *                  |                                         increment frame counter (gen3/4)
45 *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
46 *
47 * x  = horizontal active
48 * _  = horizontal blanking
49 * hs = horizontal sync
50 * va = vertical active
51 * vb = vertical blanking
52 * vs = vertical sync
53 * vbs = vblank_start (number)
54 *
55 * Summary:
56 * - most events happen at the start of horizontal sync
57 * - frame start happens at the start of horizontal blank, 1-4 lines
58 *   (depending on TRANSCONF settings) after the start of vblank
59 * - gen3/4 pixel and frame counter are synchronized with the start
60 *   of horizontal active on the first line of vertical active
61 */
62
63/*
64 * Called from drm generic code, passed a 'crtc', which we use as a pipe index.
65 */
66u32 i915_get_vblank_counter(struct drm_crtc *crtc)
67{
68	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
69	struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
70	const struct drm_display_mode *mode = &vblank->hwmode;
71	enum pipe pipe = to_intel_crtc(crtc)->pipe;
72	u32 pixel, vbl_start, hsync_start, htotal;
73	u64 frame;
74
75	/*
76	 * On i965gm TV output the frame counter only works up to
77	 * the point when we enable the TV encoder. After that the
78	 * frame counter ceases to work and reads zero. We need a
79	 * vblank wait before enabling the TV encoder and so we
80	 * have to enable vblank interrupts while the frame counter
81	 * is still in a working state. However the core vblank code
82	 * does not like us returning non-zero frame counter values
83	 * when we've told it that we don't have a working frame
84	 * counter. Thus we must stop non-zero values leaking out.
85	 */
86	if (!vblank->max_vblank_count)
87		return 0;
88
89	htotal = mode->crtc_htotal;
90	hsync_start = mode->crtc_hsync_start;
91	vbl_start = mode->crtc_vblank_start;
92	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
93		vbl_start = DIV_ROUND_UP(vbl_start, 2);
94
95	/* Convert to pixel count */
96	vbl_start *= htotal;
97
98	/* Start of vblank event occurs at start of hsync */
99	vbl_start -= htotal - hsync_start;
100
101	/*
102	 * High & low register fields aren't synchronized, so make sure
103	 * we get a low value that's stable across two reads of the high
104	 * register.
105	 */
106	frame = intel_de_read64_2x32(dev_priv, PIPEFRAMEPIXEL(pipe), PIPEFRAME(pipe));
107
108	pixel = frame & PIPE_PIXEL_MASK;
109	frame = (frame >> PIPE_FRAME_LOW_SHIFT) & 0xffffff;
110
111	/*
112	 * The frame counter increments at beginning of active.
113	 * Cook up a vblank counter by also checking the pixel
114	 * counter against vblank start.
115	 */
116	return (frame + (pixel >= vbl_start)) & 0xffffff;
117}
118
119u32 g4x_get_vblank_counter(struct drm_crtc *crtc)
120{
121	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
122	struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
123	enum pipe pipe = to_intel_crtc(crtc)->pipe;
124
125	if (!vblank->max_vblank_count)
126		return 0;
127
128	return intel_de_read(dev_priv, PIPE_FRMCOUNT_G4X(pipe));
129}
130
131static u32 intel_crtc_scanlines_since_frame_timestamp(struct intel_crtc *crtc)
132{
133	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
134	struct drm_vblank_crtc *vblank =
135		&crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
136	const struct drm_display_mode *mode = &vblank->hwmode;
137	u32 htotal = mode->crtc_htotal;
138	u32 clock = mode->crtc_clock;
139	u32 scan_prev_time, scan_curr_time, scan_post_time;
140
141	/*
142	 * To avoid the race condition where we might cross into the
143	 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
144	 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
145	 * during the same frame.
146	 */
147	do {
148		/*
149		 * This field provides read back of the display
150		 * pipe frame time stamp. The time stamp value
151		 * is sampled at every start of vertical blank.
152		 */
153		scan_prev_time = intel_de_read_fw(dev_priv,
154						  PIPE_FRMTMSTMP(crtc->pipe));
155
156		/*
157		 * The TIMESTAMP_CTR register has the current
158		 * time stamp value.
159		 */
160		scan_curr_time = intel_de_read_fw(dev_priv, IVB_TIMESTAMP_CTR);
161
162		scan_post_time = intel_de_read_fw(dev_priv,
163						  PIPE_FRMTMSTMP(crtc->pipe));
164	} while (scan_post_time != scan_prev_time);
165
166	return div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
167				   clock), 1000 * htotal);
168}
169
170/*
171 * On certain encoders on certain platforms, pipe
172 * scanline register will not work to get the scanline,
173 * since the timings are driven from the PORT or issues
174 * with scanline register updates.
175 * This function will use Framestamp and current
176 * timestamp registers to calculate the scanline.
177 */
178static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
179{
180	struct drm_vblank_crtc *vblank =
181		&crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
182	const struct drm_display_mode *mode = &vblank->hwmode;
183	u32 vblank_start = mode->crtc_vblank_start;
184	u32 vtotal = mode->crtc_vtotal;
185	u32 scanline;
186
187	scanline = intel_crtc_scanlines_since_frame_timestamp(crtc);
188	scanline = min(scanline, vtotal - 1);
189	scanline = (scanline + vblank_start) % vtotal;
190
191	return scanline;
192}
193
194/*
195 * intel_de_read_fw(), only for fast reads of display block, no need for
196 * forcewake etc.
197 */
198static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
199{
200	struct drm_device *dev = crtc->base.dev;
201	struct drm_i915_private *dev_priv = to_i915(dev);
202	const struct drm_display_mode *mode;
203	struct drm_vblank_crtc *vblank;
204	enum pipe pipe = crtc->pipe;
205	int position, vtotal;
206
207	if (!crtc->active)
208		return 0;
209
210	vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
211	mode = &vblank->hwmode;
212
213	if (crtc->mode_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
214		return __intel_get_crtc_scanline_from_timestamp(crtc);
215
216	vtotal = mode->crtc_vtotal;
217	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
218		vtotal /= 2;
219
220	position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & PIPEDSL_LINE_MASK;
221
222	/*
223	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
224	 * read it just before the start of vblank.  So try it again
225	 * so we don't accidentally end up spanning a vblank frame
226	 * increment, causing the pipe_update_end() code to squak at us.
227	 *
228	 * The nature of this problem means we can't simply check the ISR
229	 * bit and return the vblank start value; nor can we use the scanline
230	 * debug register in the transcoder as it appears to have the same
231	 * problem.  We may need to extend this to include other platforms,
232	 * but so far testing only shows the problem on HSW.
233	 */
234	if (HAS_DDI(dev_priv) && !position) {
235		int i, temp;
236
237		for (i = 0; i < 100; i++) {
238			udelay(1);
239			temp = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & PIPEDSL_LINE_MASK;
240			if (temp != position) {
241				position = temp;
242				break;
243			}
244		}
245	}
246
247	/*
248	 * See update_scanline_offset() for the details on the
249	 * scanline_offset adjustment.
250	 */
251	return (position + crtc->scanline_offset) % vtotal;
252}
253
254static bool i915_get_crtc_scanoutpos(struct drm_crtc *_crtc,
255				     bool in_vblank_irq,
256				     int *vpos, int *hpos,
257				     ktime_t *stime, ktime_t *etime,
258				     const struct drm_display_mode *mode)
259{
260	struct drm_device *dev = _crtc->dev;
261	struct drm_i915_private *dev_priv = to_i915(dev);
262	struct intel_crtc *crtc = to_intel_crtc(_crtc);
263	enum pipe pipe = crtc->pipe;
264	int position;
265	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
266	unsigned long irqflags;
267	bool use_scanline_counter = DISPLAY_VER(dev_priv) >= 5 ||
268		IS_G4X(dev_priv) || DISPLAY_VER(dev_priv) == 2 ||
269		crtc->mode_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER;
270
271	if (drm_WARN_ON(&dev_priv->drm, !mode->crtc_clock)) {
272		drm_dbg(&dev_priv->drm,
273			"trying to get scanoutpos for disabled pipe %c\n",
274			pipe_name(pipe));
275		return false;
276	}
277
278	htotal = mode->crtc_htotal;
279	hsync_start = mode->crtc_hsync_start;
280	vtotal = mode->crtc_vtotal;
281	vbl_start = mode->crtc_vblank_start;
282	vbl_end = mode->crtc_vblank_end;
283
284	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
285		vbl_start = DIV_ROUND_UP(vbl_start, 2);
286		vbl_end /= 2;
287		vtotal /= 2;
288	}
289
290	/*
291	 * Lock uncore.lock, as we will do multiple timing critical raw
292	 * register reads, potentially with preemption disabled, so the
293	 * following code must not block on uncore.lock.
294	 */
295	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
296
297	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
298
299	/* Get optional system timestamp before query. */
300	if (stime)
301		*stime = ktime_get();
302
303	if (crtc->mode_flags & I915_MODE_FLAG_VRR) {
304		int scanlines = intel_crtc_scanlines_since_frame_timestamp(crtc);
305
306		position = __intel_get_crtc_scanline(crtc);
307
308		/*
309		 * Already exiting vblank? If so, shift our position
310		 * so it looks like we're already apporaching the full
311		 * vblank end. This should make the generated timestamp
312		 * more or less match when the active portion will start.
313		 */
314		if (position >= vbl_start && scanlines < position)
315			position = min(crtc->vmax_vblank_start + scanlines, vtotal - 1);
316	} else if (use_scanline_counter) {
317		/* No obvious pixelcount register. Only query vertical
318		 * scanout position from Display scan line register.
319		 */
320		position = __intel_get_crtc_scanline(crtc);
321	} else {
322		/*
323		 * Have access to pixelcount since start of frame.
324		 * We can split this into vertical and horizontal
325		 * scanout position.
326		 */
327		position = (intel_de_read_fw(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
328
329		/* convert to pixel counts */
330		vbl_start *= htotal;
331		vbl_end *= htotal;
332		vtotal *= htotal;
333
334		/*
335		 * In interlaced modes, the pixel counter counts all pixels,
336		 * so one field will have htotal more pixels. In order to avoid
337		 * the reported position from jumping backwards when the pixel
338		 * counter is beyond the length of the shorter field, just
339		 * clamp the position the length of the shorter field. This
340		 * matches how the scanline counter based position works since
341		 * the scanline counter doesn't count the two half lines.
342		 */
343		position = min(position, vtotal - 1);
344
345		/*
346		 * Start of vblank interrupt is triggered at start of hsync,
347		 * just prior to the first active line of vblank. However we
348		 * consider lines to start at the leading edge of horizontal
349		 * active. So, should we get here before we've crossed into
350		 * the horizontal active of the first line in vblank, we would
351		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
352		 * always add htotal-hsync_start to the current pixel position.
353		 */
354		position = (position + htotal - hsync_start) % vtotal;
355	}
356
357	/* Get optional system timestamp after query. */
358	if (etime)
359		*etime = ktime_get();
360
361	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
362
363	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
364
365	/*
366	 * While in vblank, position will be negative
367	 * counting up towards 0 at vbl_end. And outside
368	 * vblank, position will be positive counting
369	 * up since vbl_end.
370	 */
371	if (position >= vbl_start)
372		position -= vbl_end;
373	else
374		position += vtotal - vbl_end;
375
376	if (use_scanline_counter) {
377		*vpos = position;
378		*hpos = 0;
379	} else {
380		*vpos = position / htotal;
381		*hpos = position - (*vpos * htotal);
382	}
383
384	return true;
385}
386
387bool intel_crtc_get_vblank_timestamp(struct drm_crtc *crtc, int *max_error,
388				     ktime_t *vblank_time, bool in_vblank_irq)
389{
390	return drm_crtc_vblank_helper_get_vblank_timestamp_internal(
391		crtc, max_error, vblank_time, in_vblank_irq,
392		i915_get_crtc_scanoutpos);
393}
394
395int intel_get_crtc_scanline(struct intel_crtc *crtc)
396{
397	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
398	unsigned long irqflags;
399	int position;
400
401	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
402	position = __intel_get_crtc_scanline(crtc);
403	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
404
405	return position;
406}
407
408static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv,
409				    enum pipe pipe)
410{
411	i915_reg_t reg = PIPEDSL(pipe);
412	u32 line1, line2;
413
414	line1 = intel_de_read(dev_priv, reg) & PIPEDSL_LINE_MASK;
415	msleep(5);
416	line2 = intel_de_read(dev_priv, reg) & PIPEDSL_LINE_MASK;
417
418	return line1 != line2;
419}
420
421static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state)
422{
423	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
424	enum pipe pipe = crtc->pipe;
425
426	/* Wait for the display line to settle/start moving */
427	if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100))
428		drm_err(&dev_priv->drm,
429			"pipe %c scanline %s wait timed out\n",
430			pipe_name(pipe), str_on_off(state));
431}
432
433void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc)
434{
435	wait_for_pipe_scanline_moving(crtc, false);
436}
437
438void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc)
439{
440	wait_for_pipe_scanline_moving(crtc, true);
441}
442
443static int intel_crtc_scanline_offset(const struct intel_crtc_state *crtc_state)
444{
445	struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
446	const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
447
448	/*
449	 * The scanline counter increments at the leading edge of hsync.
450	 *
451	 * On most platforms it starts counting from vtotal-1 on the
452	 * first active line. That means the scanline counter value is
453	 * always one less than what we would expect. Ie. just after
454	 * start of vblank, which also occurs at start of hsync (on the
455	 * last active line), the scanline counter will read vblank_start-1.
456	 *
457	 * On gen2 the scanline counter starts counting from 1 instead
458	 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
459	 * to keep the value positive), instead of adding one.
460	 *
461	 * On HSW+ the behaviour of the scanline counter depends on the output
462	 * type. For DP ports it behaves like most other platforms, but on HDMI
463	 * there's an extra 1 line difference. So we need to add two instead of
464	 * one to the value.
465	 *
466	 * On VLV/CHV DSI the scanline counter would appear to increment
467	 * approx. 1/3 of a scanline before start of vblank. Unfortunately
468	 * that means we can't tell whether we're in vblank or not while
469	 * we're on that particular line. We must still set scanline_offset
470	 * to 1 so that the vblank timestamps come out correct when we query
471	 * the scanline counter from within the vblank interrupt handler.
472	 * However if queried just before the start of vblank we'll get an
473	 * answer that's slightly in the future.
474	 */
475	if (DISPLAY_VER(i915) == 2) {
476		int vtotal;
477
478		vtotal = adjusted_mode->crtc_vtotal;
479		if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
480			vtotal /= 2;
481
482		return vtotal - 1;
483	} else if (HAS_DDI(i915) && intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
484		return 2;
485	} else {
486		return 1;
487	}
488}
489
490void intel_crtc_update_active_timings(const struct intel_crtc_state *crtc_state,
491				      bool vrr_enable)
492{
493	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
494	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
495	u8 mode_flags = crtc_state->mode_flags;
496	struct drm_display_mode adjusted_mode;
497	int vmax_vblank_start = 0;
498	unsigned long irqflags;
499
500	drm_mode_init(&adjusted_mode, &crtc_state->hw.adjusted_mode);
501
502	if (vrr_enable) {
503		drm_WARN_ON(&i915->drm, (mode_flags & I915_MODE_FLAG_VRR) == 0);
504
505		adjusted_mode.crtc_vtotal = crtc_state->vrr.vmax;
506		adjusted_mode.crtc_vblank_end = crtc_state->vrr.vmax;
507		adjusted_mode.crtc_vblank_start = intel_vrr_vmin_vblank_start(crtc_state);
508		vmax_vblank_start = intel_vrr_vmax_vblank_start(crtc_state);
509	} else {
510		mode_flags &= ~I915_MODE_FLAG_VRR;
511	}
512
513	/*
514	 * Belts and suspenders locking to guarantee everyone sees 100%
515	 * consistent state during fastset seamless refresh rate changes.
516	 *
517	 * vblank_time_lock takes care of all drm_vblank.c stuff, and
518	 * uncore.lock takes care of __intel_get_crtc_scanline() which
519	 * may get called elsewhere as well.
520	 *
521	 * TODO maybe just protect everything (including
522	 * __intel_get_crtc_scanline()) with vblank_time_lock?
523	 * Need to audit everything to make sure it's safe.
524	 */
525	spin_lock_irqsave(&i915->drm.vblank_time_lock, irqflags);
526	spin_lock(&i915->uncore.lock);
527
528	drm_calc_timestamping_constants(&crtc->base, &adjusted_mode);
529
530	crtc->vmax_vblank_start = vmax_vblank_start;
531
532	crtc->mode_flags = mode_flags;
533
534	crtc->scanline_offset = intel_crtc_scanline_offset(crtc_state);
535
536	spin_unlock(&i915->uncore.lock);
537	spin_unlock_irqrestore(&i915->drm.vblank_time_lock, irqflags);
538}
539