1// SPDX-License-Identifier: MIT
2/*
3 * Copyright © 2020 Intel Corporation
4 */
5
6#include <linux/kernel.h>
7#include <linux/string_helpers.h>
8
9#include "i915_reg.h"
10#include "intel_crtc.h"
11#include "intel_cx0_phy.h"
12#include "intel_de.h"
13#include "intel_display.h"
14#include "intel_display_types.h"
15#include "intel_dpio_phy.h"
16#include "intel_dpll.h"
17#include "intel_lvds.h"
18#include "intel_panel.h"
19#include "intel_pps.h"
20#include "intel_snps_phy.h"
21#include "vlv_sideband.h"
22
23struct intel_dpll_funcs {
24	int (*crtc_compute_clock)(struct intel_atomic_state *state,
25				  struct intel_crtc *crtc);
26	int (*crtc_get_shared_dpll)(struct intel_atomic_state *state,
27				    struct intel_crtc *crtc);
28};
29
30struct intel_limit {
31	struct {
32		int min, max;
33	} dot, vco, n, m, m1, m2, p, p1;
34
35	struct {
36		int dot_limit;
37		int p2_slow, p2_fast;
38	} p2;
39};
40static const struct intel_limit intel_limits_i8xx_dac = {
41	.dot = { .min = 25000, .max = 350000 },
42	.vco = { .min = 908000, .max = 1512000 },
43	.n = { .min = 2, .max = 16 },
44	.m = { .min = 96, .max = 140 },
45	.m1 = { .min = 18, .max = 26 },
46	.m2 = { .min = 6, .max = 16 },
47	.p = { .min = 4, .max = 128 },
48	.p1 = { .min = 2, .max = 33 },
49	.p2 = { .dot_limit = 165000,
50		.p2_slow = 4, .p2_fast = 2 },
51};
52
53static const struct intel_limit intel_limits_i8xx_dvo = {
54	.dot = { .min = 25000, .max = 350000 },
55	.vco = { .min = 908000, .max = 1512000 },
56	.n = { .min = 2, .max = 16 },
57	.m = { .min = 96, .max = 140 },
58	.m1 = { .min = 18, .max = 26 },
59	.m2 = { .min = 6, .max = 16 },
60	.p = { .min = 4, .max = 128 },
61	.p1 = { .min = 2, .max = 33 },
62	.p2 = { .dot_limit = 165000,
63		.p2_slow = 4, .p2_fast = 4 },
64};
65
66static const struct intel_limit intel_limits_i8xx_lvds = {
67	.dot = { .min = 25000, .max = 350000 },
68	.vco = { .min = 908000, .max = 1512000 },
69	.n = { .min = 2, .max = 16 },
70	.m = { .min = 96, .max = 140 },
71	.m1 = { .min = 18, .max = 26 },
72	.m2 = { .min = 6, .max = 16 },
73	.p = { .min = 4, .max = 128 },
74	.p1 = { .min = 1, .max = 6 },
75	.p2 = { .dot_limit = 165000,
76		.p2_slow = 14, .p2_fast = 7 },
77};
78
79static const struct intel_limit intel_limits_i9xx_sdvo = {
80	.dot = { .min = 20000, .max = 400000 },
81	.vco = { .min = 1400000, .max = 2800000 },
82	.n = { .min = 1, .max = 6 },
83	.m = { .min = 70, .max = 120 },
84	.m1 = { .min = 8, .max = 18 },
85	.m2 = { .min = 3, .max = 7 },
86	.p = { .min = 5, .max = 80 },
87	.p1 = { .min = 1, .max = 8 },
88	.p2 = { .dot_limit = 200000,
89		.p2_slow = 10, .p2_fast = 5 },
90};
91
92static const struct intel_limit intel_limits_i9xx_lvds = {
93	.dot = { .min = 20000, .max = 400000 },
94	.vco = { .min = 1400000, .max = 2800000 },
95	.n = { .min = 1, .max = 6 },
96	.m = { .min = 70, .max = 120 },
97	.m1 = { .min = 8, .max = 18 },
98	.m2 = { .min = 3, .max = 7 },
99	.p = { .min = 7, .max = 98 },
100	.p1 = { .min = 1, .max = 8 },
101	.p2 = { .dot_limit = 112000,
102		.p2_slow = 14, .p2_fast = 7 },
103};
104
105
106static const struct intel_limit intel_limits_g4x_sdvo = {
107	.dot = { .min = 25000, .max = 270000 },
108	.vco = { .min = 1750000, .max = 3500000},
109	.n = { .min = 1, .max = 4 },
110	.m = { .min = 104, .max = 138 },
111	.m1 = { .min = 17, .max = 23 },
112	.m2 = { .min = 5, .max = 11 },
113	.p = { .min = 10, .max = 30 },
114	.p1 = { .min = 1, .max = 3},
115	.p2 = { .dot_limit = 270000,
116		.p2_slow = 10,
117		.p2_fast = 10
118	},
119};
120
121static const struct intel_limit intel_limits_g4x_hdmi = {
122	.dot = { .min = 22000, .max = 400000 },
123	.vco = { .min = 1750000, .max = 3500000},
124	.n = { .min = 1, .max = 4 },
125	.m = { .min = 104, .max = 138 },
126	.m1 = { .min = 16, .max = 23 },
127	.m2 = { .min = 5, .max = 11 },
128	.p = { .min = 5, .max = 80 },
129	.p1 = { .min = 1, .max = 8},
130	.p2 = { .dot_limit = 165000,
131		.p2_slow = 10, .p2_fast = 5 },
132};
133
134static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
135	.dot = { .min = 20000, .max = 115000 },
136	.vco = { .min = 1750000, .max = 3500000 },
137	.n = { .min = 1, .max = 3 },
138	.m = { .min = 104, .max = 138 },
139	.m1 = { .min = 17, .max = 23 },
140	.m2 = { .min = 5, .max = 11 },
141	.p = { .min = 28, .max = 112 },
142	.p1 = { .min = 2, .max = 8 },
143	.p2 = { .dot_limit = 0,
144		.p2_slow = 14, .p2_fast = 14
145	},
146};
147
148static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
149	.dot = { .min = 80000, .max = 224000 },
150	.vco = { .min = 1750000, .max = 3500000 },
151	.n = { .min = 1, .max = 3 },
152	.m = { .min = 104, .max = 138 },
153	.m1 = { .min = 17, .max = 23 },
154	.m2 = { .min = 5, .max = 11 },
155	.p = { .min = 14, .max = 42 },
156	.p1 = { .min = 2, .max = 6 },
157	.p2 = { .dot_limit = 0,
158		.p2_slow = 7, .p2_fast = 7
159	},
160};
161
162static const struct intel_limit pnv_limits_sdvo = {
163	.dot = { .min = 20000, .max = 400000},
164	.vco = { .min = 1700000, .max = 3500000 },
165	/* Pineview's Ncounter is a ring counter */
166	.n = { .min = 3, .max = 6 },
167	.m = { .min = 2, .max = 256 },
168	/* Pineview only has one combined m divider, which we treat as m2. */
169	.m1 = { .min = 0, .max = 0 },
170	.m2 = { .min = 0, .max = 254 },
171	.p = { .min = 5, .max = 80 },
172	.p1 = { .min = 1, .max = 8 },
173	.p2 = { .dot_limit = 200000,
174		.p2_slow = 10, .p2_fast = 5 },
175};
176
177static const struct intel_limit pnv_limits_lvds = {
178	.dot = { .min = 20000, .max = 400000 },
179	.vco = { .min = 1700000, .max = 3500000 },
180	.n = { .min = 3, .max = 6 },
181	.m = { .min = 2, .max = 256 },
182	.m1 = { .min = 0, .max = 0 },
183	.m2 = { .min = 0, .max = 254 },
184	.p = { .min = 7, .max = 112 },
185	.p1 = { .min = 1, .max = 8 },
186	.p2 = { .dot_limit = 112000,
187		.p2_slow = 14, .p2_fast = 14 },
188};
189
190/* Ironlake / Sandybridge
191 *
192 * We calculate clock using (register_value + 2) for N/M1/M2, so here
193 * the range value for them is (actual_value - 2).
194 */
195static const struct intel_limit ilk_limits_dac = {
196	.dot = { .min = 25000, .max = 350000 },
197	.vco = { .min = 1760000, .max = 3510000 },
198	.n = { .min = 1, .max = 5 },
199	.m = { .min = 79, .max = 127 },
200	.m1 = { .min = 12, .max = 22 },
201	.m2 = { .min = 5, .max = 9 },
202	.p = { .min = 5, .max = 80 },
203	.p1 = { .min = 1, .max = 8 },
204	.p2 = { .dot_limit = 225000,
205		.p2_slow = 10, .p2_fast = 5 },
206};
207
208static const struct intel_limit ilk_limits_single_lvds = {
209	.dot = { .min = 25000, .max = 350000 },
210	.vco = { .min = 1760000, .max = 3510000 },
211	.n = { .min = 1, .max = 3 },
212	.m = { .min = 79, .max = 118 },
213	.m1 = { .min = 12, .max = 22 },
214	.m2 = { .min = 5, .max = 9 },
215	.p = { .min = 28, .max = 112 },
216	.p1 = { .min = 2, .max = 8 },
217	.p2 = { .dot_limit = 225000,
218		.p2_slow = 14, .p2_fast = 14 },
219};
220
221static const struct intel_limit ilk_limits_dual_lvds = {
222	.dot = { .min = 25000, .max = 350000 },
223	.vco = { .min = 1760000, .max = 3510000 },
224	.n = { .min = 1, .max = 3 },
225	.m = { .min = 79, .max = 127 },
226	.m1 = { .min = 12, .max = 22 },
227	.m2 = { .min = 5, .max = 9 },
228	.p = { .min = 14, .max = 56 },
229	.p1 = { .min = 2, .max = 8 },
230	.p2 = { .dot_limit = 225000,
231		.p2_slow = 7, .p2_fast = 7 },
232};
233
234/* LVDS 100mhz refclk limits. */
235static const struct intel_limit ilk_limits_single_lvds_100m = {
236	.dot = { .min = 25000, .max = 350000 },
237	.vco = { .min = 1760000, .max = 3510000 },
238	.n = { .min = 1, .max = 2 },
239	.m = { .min = 79, .max = 126 },
240	.m1 = { .min = 12, .max = 22 },
241	.m2 = { .min = 5, .max = 9 },
242	.p = { .min = 28, .max = 112 },
243	.p1 = { .min = 2, .max = 8 },
244	.p2 = { .dot_limit = 225000,
245		.p2_slow = 14, .p2_fast = 14 },
246};
247
248static const struct intel_limit ilk_limits_dual_lvds_100m = {
249	.dot = { .min = 25000, .max = 350000 },
250	.vco = { .min = 1760000, .max = 3510000 },
251	.n = { .min = 1, .max = 3 },
252	.m = { .min = 79, .max = 126 },
253	.m1 = { .min = 12, .max = 22 },
254	.m2 = { .min = 5, .max = 9 },
255	.p = { .min = 14, .max = 42 },
256	.p1 = { .min = 2, .max = 6 },
257	.p2 = { .dot_limit = 225000,
258		.p2_slow = 7, .p2_fast = 7 },
259};
260
261static const struct intel_limit intel_limits_vlv = {
262	 /*
263	  * These are based on the data rate limits (measured in fast clocks)
264	  * since those are the strictest limits we have. The fast
265	  * clock and actual rate limits are more relaxed, so checking
266	  * them would make no difference.
267	  */
268	.dot = { .min = 25000, .max = 270000 },
269	.vco = { .min = 4000000, .max = 6000000 },
270	.n = { .min = 1, .max = 7 },
271	.m1 = { .min = 2, .max = 3 },
272	.m2 = { .min = 11, .max = 156 },
273	.p1 = { .min = 2, .max = 3 },
274	.p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
275};
276
277static const struct intel_limit intel_limits_chv = {
278	/*
279	 * These are based on the data rate limits (measured in fast clocks)
280	 * since those are the strictest limits we have.  The fast
281	 * clock and actual rate limits are more relaxed, so checking
282	 * them would make no difference.
283	 */
284	.dot = { .min = 25000, .max = 540000 },
285	.vco = { .min = 4800000, .max = 6480000 },
286	.n = { .min = 1, .max = 1 },
287	.m1 = { .min = 2, .max = 2 },
288	.m2 = { .min = 24 << 22, .max = 175 << 22 },
289	.p1 = { .min = 2, .max = 4 },
290	.p2 = {	.p2_slow = 1, .p2_fast = 14 },
291};
292
293static const struct intel_limit intel_limits_bxt = {
294	.dot = { .min = 25000, .max = 594000 },
295	.vco = { .min = 4800000, .max = 6700000 },
296	.n = { .min = 1, .max = 1 },
297	.m1 = { .min = 2, .max = 2 },
298	/* FIXME: find real m2 limits */
299	.m2 = { .min = 2 << 22, .max = 255 << 22 },
300	.p1 = { .min = 2, .max = 4 },
301	.p2 = { .p2_slow = 1, .p2_fast = 20 },
302};
303
304/*
305 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
306 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
307 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
308 * The helpers' return value is the rate of the clock that is fed to the
309 * display engine's pipe which can be the above fast dot clock rate or a
310 * divided-down version of it.
311 */
312/* m1 is reserved as 0 in Pineview, n is a ring counter */
313int pnv_calc_dpll_params(int refclk, struct dpll *clock)
314{
315	clock->m = clock->m2 + 2;
316	clock->p = clock->p1 * clock->p2;
317	if (WARN_ON(clock->n == 0 || clock->p == 0))
318		return 0;
319	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
320	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
321
322	return clock->dot;
323}
324
325static u32 i9xx_dpll_compute_m(const struct dpll *dpll)
326{
327	return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
328}
329
330int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
331{
332	clock->m = i9xx_dpll_compute_m(clock);
333	clock->p = clock->p1 * clock->p2;
334	if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
335		return 0;
336	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
337	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
338
339	return clock->dot;
340}
341
342int vlv_calc_dpll_params(int refclk, struct dpll *clock)
343{
344	clock->m = clock->m1 * clock->m2;
345	clock->p = clock->p1 * clock->p2 * 5;
346	if (WARN_ON(clock->n == 0 || clock->p == 0))
347		return 0;
348	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
349	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
350
351	return clock->dot;
352}
353
354int chv_calc_dpll_params(int refclk, struct dpll *clock)
355{
356	clock->m = clock->m1 * clock->m2;
357	clock->p = clock->p1 * clock->p2 * 5;
358	if (WARN_ON(clock->n == 0 || clock->p == 0))
359		return 0;
360	clock->vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m),
361					   clock->n << 22);
362	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
363
364	return clock->dot;
365}
366
367/*
368 * Returns whether the given set of divisors are valid for a given refclk with
369 * the given connectors.
370 */
371static bool intel_pll_is_valid(struct drm_i915_private *dev_priv,
372			       const struct intel_limit *limit,
373			       const struct dpll *clock)
374{
375	if (clock->n < limit->n.min || limit->n.max < clock->n)
376		return false;
377	if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
378		return false;
379	if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
380		return false;
381	if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
382		return false;
383
384	if (!IS_PINEVIEW(dev_priv) && !IS_LP(dev_priv))
385		if (clock->m1 <= clock->m2)
386			return false;
387
388	if (!IS_LP(dev_priv)) {
389		if (clock->p < limit->p.min || limit->p.max < clock->p)
390			return false;
391		if (clock->m < limit->m.min || limit->m.max < clock->m)
392			return false;
393	}
394
395	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
396		return false;
397	/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
398	 * connector, etc., rather than just a single range.
399	 */
400	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
401		return false;
402
403	return true;
404}
405
406static int
407i9xx_select_p2_div(const struct intel_limit *limit,
408		   const struct intel_crtc_state *crtc_state,
409		   int target)
410{
411	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
412
413	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
414		/*
415		 * For LVDS just rely on its current settings for dual-channel.
416		 * We haven't figured out how to reliably set up different
417		 * single/dual channel state, if we even can.
418		 */
419		if (intel_is_dual_link_lvds(dev_priv))
420			return limit->p2.p2_fast;
421		else
422			return limit->p2.p2_slow;
423	} else {
424		if (target < limit->p2.dot_limit)
425			return limit->p2.p2_slow;
426		else
427			return limit->p2.p2_fast;
428	}
429}
430
431/*
432 * Returns a set of divisors for the desired target clock with the given
433 * refclk, or FALSE.
434 *
435 * Target and reference clocks are specified in kHz.
436 *
437 * If match_clock is provided, then best_clock P divider must match the P
438 * divider from @match_clock used for LVDS downclocking.
439 */
440static bool
441i9xx_find_best_dpll(const struct intel_limit *limit,
442		    struct intel_crtc_state *crtc_state,
443		    int target, int refclk,
444		    const struct dpll *match_clock,
445		    struct dpll *best_clock)
446{
447	struct drm_device *dev = crtc_state->uapi.crtc->dev;
448	struct dpll clock;
449	int err = target;
450
451	memset(best_clock, 0, sizeof(*best_clock));
452
453	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
454
455	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
456	     clock.m1++) {
457		for (clock.m2 = limit->m2.min;
458		     clock.m2 <= limit->m2.max; clock.m2++) {
459			if (clock.m2 >= clock.m1)
460				break;
461			for (clock.n = limit->n.min;
462			     clock.n <= limit->n.max; clock.n++) {
463				for (clock.p1 = limit->p1.min;
464					clock.p1 <= limit->p1.max; clock.p1++) {
465					int this_err;
466
467					i9xx_calc_dpll_params(refclk, &clock);
468					if (!intel_pll_is_valid(to_i915(dev),
469								limit,
470								&clock))
471						continue;
472					if (match_clock &&
473					    clock.p != match_clock->p)
474						continue;
475
476					this_err = abs(clock.dot - target);
477					if (this_err < err) {
478						*best_clock = clock;
479						err = this_err;
480					}
481				}
482			}
483		}
484	}
485
486	return (err != target);
487}
488
489/*
490 * Returns a set of divisors for the desired target clock with the given
491 * refclk, or FALSE.
492 *
493 * Target and reference clocks are specified in kHz.
494 *
495 * If match_clock is provided, then best_clock P divider must match the P
496 * divider from @match_clock used for LVDS downclocking.
497 */
498static bool
499pnv_find_best_dpll(const struct intel_limit *limit,
500		   struct intel_crtc_state *crtc_state,
501		   int target, int refclk,
502		   const struct dpll *match_clock,
503		   struct dpll *best_clock)
504{
505	struct drm_device *dev = crtc_state->uapi.crtc->dev;
506	struct dpll clock;
507	int err = target;
508
509	memset(best_clock, 0, sizeof(*best_clock));
510
511	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
512
513	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
514	     clock.m1++) {
515		for (clock.m2 = limit->m2.min;
516		     clock.m2 <= limit->m2.max; clock.m2++) {
517			for (clock.n = limit->n.min;
518			     clock.n <= limit->n.max; clock.n++) {
519				for (clock.p1 = limit->p1.min;
520					clock.p1 <= limit->p1.max; clock.p1++) {
521					int this_err;
522
523					pnv_calc_dpll_params(refclk, &clock);
524					if (!intel_pll_is_valid(to_i915(dev),
525								limit,
526								&clock))
527						continue;
528					if (match_clock &&
529					    clock.p != match_clock->p)
530						continue;
531
532					this_err = abs(clock.dot - target);
533					if (this_err < err) {
534						*best_clock = clock;
535						err = this_err;
536					}
537				}
538			}
539		}
540	}
541
542	return (err != target);
543}
544
545/*
546 * Returns a set of divisors for the desired target clock with the given
547 * refclk, or FALSE.
548 *
549 * Target and reference clocks are specified in kHz.
550 *
551 * If match_clock is provided, then best_clock P divider must match the P
552 * divider from @match_clock used for LVDS downclocking.
553 */
554static bool
555g4x_find_best_dpll(const struct intel_limit *limit,
556		   struct intel_crtc_state *crtc_state,
557		   int target, int refclk,
558		   const struct dpll *match_clock,
559		   struct dpll *best_clock)
560{
561	struct drm_device *dev = crtc_state->uapi.crtc->dev;
562	struct dpll clock;
563	int max_n;
564	bool found = false;
565	/* approximately equals target * 0.00585 */
566	int err_most = (target >> 8) + (target >> 9);
567
568	memset(best_clock, 0, sizeof(*best_clock));
569
570	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
571
572	max_n = limit->n.max;
573	/* based on hardware requirement, prefer smaller n to precision */
574	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
575		/* based on hardware requirement, prefere larger m1,m2 */
576		for (clock.m1 = limit->m1.max;
577		     clock.m1 >= limit->m1.min; clock.m1--) {
578			for (clock.m2 = limit->m2.max;
579			     clock.m2 >= limit->m2.min; clock.m2--) {
580				for (clock.p1 = limit->p1.max;
581				     clock.p1 >= limit->p1.min; clock.p1--) {
582					int this_err;
583
584					i9xx_calc_dpll_params(refclk, &clock);
585					if (!intel_pll_is_valid(to_i915(dev),
586								limit,
587								&clock))
588						continue;
589
590					this_err = abs(clock.dot - target);
591					if (this_err < err_most) {
592						*best_clock = clock;
593						err_most = this_err;
594						max_n = clock.n;
595						found = true;
596					}
597				}
598			}
599		}
600	}
601	return found;
602}
603
604/*
605 * Check if the calculated PLL configuration is more optimal compared to the
606 * best configuration and error found so far. Return the calculated error.
607 */
608static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
609			       const struct dpll *calculated_clock,
610			       const struct dpll *best_clock,
611			       unsigned int best_error_ppm,
612			       unsigned int *error_ppm)
613{
614	/*
615	 * For CHV ignore the error and consider only the P value.
616	 * Prefer a bigger P value based on HW requirements.
617	 */
618	if (IS_CHERRYVIEW(to_i915(dev))) {
619		*error_ppm = 0;
620
621		return calculated_clock->p > best_clock->p;
622	}
623
624	if (drm_WARN_ON_ONCE(dev, !target_freq))
625		return false;
626
627	*error_ppm = div_u64(1000000ULL *
628				abs(target_freq - calculated_clock->dot),
629			     target_freq);
630	/*
631	 * Prefer a better P value over a better (smaller) error if the error
632	 * is small. Ensure this preference for future configurations too by
633	 * setting the error to 0.
634	 */
635	if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
636		*error_ppm = 0;
637
638		return true;
639	}
640
641	return *error_ppm + 10 < best_error_ppm;
642}
643
644/*
645 * Returns a set of divisors for the desired target clock with the given
646 * refclk, or FALSE.
647 */
648static bool
649vlv_find_best_dpll(const struct intel_limit *limit,
650		   struct intel_crtc_state *crtc_state,
651		   int target, int refclk,
652		   const struct dpll *match_clock,
653		   struct dpll *best_clock)
654{
655	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
656	struct drm_device *dev = crtc->base.dev;
657	struct dpll clock;
658	unsigned int bestppm = 1000000;
659	/* min update 19.2 MHz */
660	int max_n = min(limit->n.max, refclk / 19200);
661	bool found = false;
662
663	memset(best_clock, 0, sizeof(*best_clock));
664
665	/* based on hardware requirement, prefer smaller n to precision */
666	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
667		for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
668			for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
669			     clock.p2 -= clock.p2 > 10 ? 2 : 1) {
670				clock.p = clock.p1 * clock.p2 * 5;
671				/* based on hardware requirement, prefer bigger m1,m2 values */
672				for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
673					unsigned int ppm;
674
675					clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
676								     refclk * clock.m1);
677
678					vlv_calc_dpll_params(refclk, &clock);
679
680					if (!intel_pll_is_valid(to_i915(dev),
681								limit,
682								&clock))
683						continue;
684
685					if (!vlv_PLL_is_optimal(dev, target,
686								&clock,
687								best_clock,
688								bestppm, &ppm))
689						continue;
690
691					*best_clock = clock;
692					bestppm = ppm;
693					found = true;
694				}
695			}
696		}
697	}
698
699	return found;
700}
701
702/*
703 * Returns a set of divisors for the desired target clock with the given
704 * refclk, or FALSE.
705 */
706static bool
707chv_find_best_dpll(const struct intel_limit *limit,
708		   struct intel_crtc_state *crtc_state,
709		   int target, int refclk,
710		   const struct dpll *match_clock,
711		   struct dpll *best_clock)
712{
713	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
714	struct drm_device *dev = crtc->base.dev;
715	unsigned int best_error_ppm;
716	struct dpll clock;
717	u64 m2;
718	int found = false;
719
720	memset(best_clock, 0, sizeof(*best_clock));
721	best_error_ppm = 1000000;
722
723	/*
724	 * Based on hardware doc, the n always set to 1, and m1 always
725	 * set to 2.  If requires to support 200Mhz refclk, we need to
726	 * revisit this because n may not 1 anymore.
727	 */
728	clock.n = 1;
729	clock.m1 = 2;
730
731	for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
732		for (clock.p2 = limit->p2.p2_fast;
733				clock.p2 >= limit->p2.p2_slow;
734				clock.p2 -= clock.p2 > 10 ? 2 : 1) {
735			unsigned int error_ppm;
736
737			clock.p = clock.p1 * clock.p2 * 5;
738
739			m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22,
740						   refclk * clock.m1);
741
742			if (m2 > INT_MAX/clock.m1)
743				continue;
744
745			clock.m2 = m2;
746
747			chv_calc_dpll_params(refclk, &clock);
748
749			if (!intel_pll_is_valid(to_i915(dev), limit, &clock))
750				continue;
751
752			if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
753						best_error_ppm, &error_ppm))
754				continue;
755
756			*best_clock = clock;
757			best_error_ppm = error_ppm;
758			found = true;
759		}
760	}
761
762	return found;
763}
764
765bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state,
766			struct dpll *best_clock)
767{
768	const struct intel_limit *limit = &intel_limits_bxt;
769	int refclk = 100000;
770
771	return chv_find_best_dpll(limit, crtc_state,
772				  crtc_state->port_clock, refclk,
773				  NULL, best_clock);
774}
775
776u32 i9xx_dpll_compute_fp(const struct dpll *dpll)
777{
778	return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
779}
780
781static u32 pnv_dpll_compute_fp(const struct dpll *dpll)
782{
783	return (1 << dpll->n) << 16 | dpll->m2;
784}
785
786static void i9xx_update_pll_dividers(struct intel_crtc_state *crtc_state,
787				     const struct dpll *clock,
788				     const struct dpll *reduced_clock)
789{
790	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
791	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
792	u32 fp, fp2;
793
794	if (IS_PINEVIEW(dev_priv)) {
795		fp = pnv_dpll_compute_fp(clock);
796		fp2 = pnv_dpll_compute_fp(reduced_clock);
797	} else {
798		fp = i9xx_dpll_compute_fp(clock);
799		fp2 = i9xx_dpll_compute_fp(reduced_clock);
800	}
801
802	crtc_state->dpll_hw_state.fp0 = fp;
803	crtc_state->dpll_hw_state.fp1 = fp2;
804}
805
806static void i9xx_compute_dpll(struct intel_crtc_state *crtc_state,
807			      const struct dpll *clock,
808			      const struct dpll *reduced_clock)
809{
810	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
811	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
812	u32 dpll;
813
814	i9xx_update_pll_dividers(crtc_state, clock, reduced_clock);
815
816	dpll = DPLL_VGA_MODE_DIS;
817
818	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
819		dpll |= DPLLB_MODE_LVDS;
820	else
821		dpll |= DPLLB_MODE_DAC_SERIAL;
822
823	if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
824	    IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
825		dpll |= (crtc_state->pixel_multiplier - 1)
826			<< SDVO_MULTIPLIER_SHIFT_HIRES;
827	}
828
829	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
830	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
831		dpll |= DPLL_SDVO_HIGH_SPEED;
832
833	if (intel_crtc_has_dp_encoder(crtc_state))
834		dpll |= DPLL_SDVO_HIGH_SPEED;
835
836	/* compute bitmask from p1 value */
837	if (IS_G4X(dev_priv)) {
838		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
839		dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
840	} else if (IS_PINEVIEW(dev_priv)) {
841		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
842		WARN_ON(reduced_clock->p1 != clock->p1);
843	} else {
844		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
845		WARN_ON(reduced_clock->p1 != clock->p1);
846	}
847
848	switch (clock->p2) {
849	case 5:
850		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
851		break;
852	case 7:
853		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
854		break;
855	case 10:
856		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
857		break;
858	case 14:
859		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
860		break;
861	}
862	WARN_ON(reduced_clock->p2 != clock->p2);
863
864	if (DISPLAY_VER(dev_priv) >= 4)
865		dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
866
867	if (crtc_state->sdvo_tv_clock)
868		dpll |= PLL_REF_INPUT_TVCLKINBC;
869	else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
870		 intel_panel_use_ssc(dev_priv))
871		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
872	else
873		dpll |= PLL_REF_INPUT_DREFCLK;
874
875	dpll |= DPLL_VCO_ENABLE;
876	crtc_state->dpll_hw_state.dpll = dpll;
877
878	if (DISPLAY_VER(dev_priv) >= 4) {
879		u32 dpll_md = (crtc_state->pixel_multiplier - 1)
880			<< DPLL_MD_UDI_MULTIPLIER_SHIFT;
881		crtc_state->dpll_hw_state.dpll_md = dpll_md;
882	}
883}
884
885static void i8xx_compute_dpll(struct intel_crtc_state *crtc_state,
886			      const struct dpll *clock,
887			      const struct dpll *reduced_clock)
888{
889	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
890	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
891	u32 dpll;
892
893	i9xx_update_pll_dividers(crtc_state, clock, reduced_clock);
894
895	dpll = DPLL_VGA_MODE_DIS;
896
897	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
898		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
899	} else {
900		if (clock->p1 == 2)
901			dpll |= PLL_P1_DIVIDE_BY_TWO;
902		else
903			dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
904		if (clock->p2 == 4)
905			dpll |= PLL_P2_DIVIDE_BY_4;
906	}
907	WARN_ON(reduced_clock->p1 != clock->p1);
908	WARN_ON(reduced_clock->p2 != clock->p2);
909
910	/*
911	 * Bspec:
912	 * "[Almador Errata}: For the correct operation of the muxed DVO pins
913	 *  (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data,
914	 *  GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock
915	 *  Enable) must be set to “1” in both the DPLL A Control Register
916	 *  (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)."
917	 *
918	 * For simplicity We simply keep both bits always enabled in
919	 * both DPLLS. The spec says we should disable the DVO 2X clock
920	 * when not needed, but this seems to work fine in practice.
921	 */
922	if (IS_I830(dev_priv) ||
923	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
924		dpll |= DPLL_DVO_2X_MODE;
925
926	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
927	    intel_panel_use_ssc(dev_priv))
928		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
929	else
930		dpll |= PLL_REF_INPUT_DREFCLK;
931
932	dpll |= DPLL_VCO_ENABLE;
933	crtc_state->dpll_hw_state.dpll = dpll;
934}
935
936static int hsw_crtc_compute_clock(struct intel_atomic_state *state,
937				  struct intel_crtc *crtc)
938{
939	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
940	struct intel_crtc_state *crtc_state =
941		intel_atomic_get_new_crtc_state(state, crtc);
942	struct intel_encoder *encoder =
943		intel_get_crtc_new_encoder(state, crtc_state);
944	int ret;
945
946	if (DISPLAY_VER(dev_priv) < 11 &&
947	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
948		return 0;
949
950	ret = intel_compute_shared_dplls(state, crtc, encoder);
951	if (ret)
952		return ret;
953
954	/* FIXME this is a mess */
955	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
956		return 0;
957
958	/* CRT dotclock is determined via other means */
959	if (!crtc_state->has_pch_encoder)
960		crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
961
962	return 0;
963}
964
965static int hsw_crtc_get_shared_dpll(struct intel_atomic_state *state,
966				    struct intel_crtc *crtc)
967{
968	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
969	struct intel_crtc_state *crtc_state =
970		intel_atomic_get_new_crtc_state(state, crtc);
971	struct intel_encoder *encoder =
972		intel_get_crtc_new_encoder(state, crtc_state);
973
974	if (DISPLAY_VER(dev_priv) < 11 &&
975	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
976		return 0;
977
978	return intel_reserve_shared_dplls(state, crtc, encoder);
979}
980
981static int dg2_crtc_compute_clock(struct intel_atomic_state *state,
982				  struct intel_crtc *crtc)
983{
984	struct intel_crtc_state *crtc_state =
985		intel_atomic_get_new_crtc_state(state, crtc);
986	struct intel_encoder *encoder =
987		intel_get_crtc_new_encoder(state, crtc_state);
988	int ret;
989
990	ret = intel_mpllb_calc_state(crtc_state, encoder);
991	if (ret)
992		return ret;
993
994	crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
995
996	return 0;
997}
998
999static int mtl_crtc_compute_clock(struct intel_atomic_state *state,
1000				  struct intel_crtc *crtc)
1001{
1002	struct drm_i915_private *i915 = to_i915(state->base.dev);
1003	struct intel_crtc_state *crtc_state =
1004		intel_atomic_get_new_crtc_state(state, crtc);
1005	struct intel_encoder *encoder =
1006		intel_get_crtc_new_encoder(state, crtc_state);
1007	enum phy phy = intel_port_to_phy(i915, encoder->port);
1008	int ret;
1009
1010	ret = intel_cx0pll_calc_state(crtc_state, encoder);
1011	if (ret)
1012		return ret;
1013
1014	/* TODO: Do the readback via intel_compute_shared_dplls() */
1015	if (intel_is_c10phy(i915, phy))
1016		crtc_state->port_clock = intel_c10pll_calc_port_clock(encoder, &crtc_state->cx0pll_state.c10);
1017	else
1018		crtc_state->port_clock = intel_c20pll_calc_port_clock(encoder, &crtc_state->cx0pll_state.c20);
1019
1020	crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1021
1022	return 0;
1023}
1024
1025static bool ilk_needs_fb_cb_tune(const struct dpll *dpll, int factor)
1026{
1027	return dpll->m < factor * dpll->n;
1028}
1029
1030static void ilk_update_pll_dividers(struct intel_crtc_state *crtc_state,
1031				    const struct dpll *clock,
1032				    const struct dpll *reduced_clock)
1033{
1034	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1035	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1036	u32 fp, fp2;
1037	int factor;
1038
1039	/* Enable autotuning of the PLL clock (if permissible) */
1040	factor = 21;
1041	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1042		if ((intel_panel_use_ssc(dev_priv) &&
1043		     dev_priv->display.vbt.lvds_ssc_freq == 100000) ||
1044		    (HAS_PCH_IBX(dev_priv) &&
1045		     intel_is_dual_link_lvds(dev_priv)))
1046			factor = 25;
1047	} else if (crtc_state->sdvo_tv_clock) {
1048		factor = 20;
1049	}
1050
1051	fp = i9xx_dpll_compute_fp(clock);
1052	if (ilk_needs_fb_cb_tune(clock, factor))
1053		fp |= FP_CB_TUNE;
1054
1055	fp2 = i9xx_dpll_compute_fp(reduced_clock);
1056	if (ilk_needs_fb_cb_tune(reduced_clock, factor))
1057		fp2 |= FP_CB_TUNE;
1058
1059	crtc_state->dpll_hw_state.fp0 = fp;
1060	crtc_state->dpll_hw_state.fp1 = fp2;
1061}
1062
1063static void ilk_compute_dpll(struct intel_crtc_state *crtc_state,
1064			     const struct dpll *clock,
1065			     const struct dpll *reduced_clock)
1066{
1067	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1068	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1069	u32 dpll;
1070
1071	ilk_update_pll_dividers(crtc_state, clock, reduced_clock);
1072
1073	dpll = 0;
1074
1075	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
1076		dpll |= DPLLB_MODE_LVDS;
1077	else
1078		dpll |= DPLLB_MODE_DAC_SERIAL;
1079
1080	dpll |= (crtc_state->pixel_multiplier - 1)
1081		<< PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
1082
1083	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
1084	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1085		dpll |= DPLL_SDVO_HIGH_SPEED;
1086
1087	if (intel_crtc_has_dp_encoder(crtc_state))
1088		dpll |= DPLL_SDVO_HIGH_SPEED;
1089
1090	/*
1091	 * The high speed IO clock is only really required for
1092	 * SDVO/HDMI/DP, but we also enable it for CRT to make it
1093	 * possible to share the DPLL between CRT and HDMI. Enabling
1094	 * the clock needlessly does no real harm, except use up a
1095	 * bit of power potentially.
1096	 *
1097	 * We'll limit this to IVB with 3 pipes, since it has only two
1098	 * DPLLs and so DPLL sharing is the only way to get three pipes
1099	 * driving PCH ports at the same time. On SNB we could do this,
1100	 * and potentially avoid enabling the second DPLL, but it's not
1101	 * clear if it''s a win or loss power wise. No point in doing
1102	 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
1103	 */
1104	if (INTEL_NUM_PIPES(dev_priv) == 3 &&
1105	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
1106		dpll |= DPLL_SDVO_HIGH_SPEED;
1107
1108	/* compute bitmask from p1 value */
1109	dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1110	/* also FPA1 */
1111	dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
1112
1113	switch (clock->p2) {
1114	case 5:
1115		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
1116		break;
1117	case 7:
1118		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
1119		break;
1120	case 10:
1121		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
1122		break;
1123	case 14:
1124		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
1125		break;
1126	}
1127	WARN_ON(reduced_clock->p2 != clock->p2);
1128
1129	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
1130	    intel_panel_use_ssc(dev_priv))
1131		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
1132	else
1133		dpll |= PLL_REF_INPUT_DREFCLK;
1134
1135	dpll |= DPLL_VCO_ENABLE;
1136
1137	crtc_state->dpll_hw_state.dpll = dpll;
1138}
1139
1140static int ilk_crtc_compute_clock(struct intel_atomic_state *state,
1141				  struct intel_crtc *crtc)
1142{
1143	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1144	struct intel_crtc_state *crtc_state =
1145		intel_atomic_get_new_crtc_state(state, crtc);
1146	const struct intel_limit *limit;
1147	int refclk = 120000;
1148	int ret;
1149
1150	/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
1151	if (!crtc_state->has_pch_encoder)
1152		return 0;
1153
1154	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1155		if (intel_panel_use_ssc(dev_priv)) {
1156			drm_dbg_kms(&dev_priv->drm,
1157				    "using SSC reference clock of %d kHz\n",
1158				    dev_priv->display.vbt.lvds_ssc_freq);
1159			refclk = dev_priv->display.vbt.lvds_ssc_freq;
1160		}
1161
1162		if (intel_is_dual_link_lvds(dev_priv)) {
1163			if (refclk == 100000)
1164				limit = &ilk_limits_dual_lvds_100m;
1165			else
1166				limit = &ilk_limits_dual_lvds;
1167		} else {
1168			if (refclk == 100000)
1169				limit = &ilk_limits_single_lvds_100m;
1170			else
1171				limit = &ilk_limits_single_lvds;
1172		}
1173	} else {
1174		limit = &ilk_limits_dac;
1175	}
1176
1177	if (!crtc_state->clock_set &&
1178	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1179				refclk, NULL, &crtc_state->dpll))
1180		return -EINVAL;
1181
1182	ilk_compute_dpll(crtc_state, &crtc_state->dpll,
1183			 &crtc_state->dpll);
1184
1185	ret = intel_compute_shared_dplls(state, crtc, NULL);
1186	if (ret)
1187		return ret;
1188
1189	crtc_state->port_clock = crtc_state->dpll.dot;
1190	crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1191
1192	return ret;
1193}
1194
1195static int ilk_crtc_get_shared_dpll(struct intel_atomic_state *state,
1196				    struct intel_crtc *crtc)
1197{
1198	struct intel_crtc_state *crtc_state =
1199		intel_atomic_get_new_crtc_state(state, crtc);
1200
1201	/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
1202	if (!crtc_state->has_pch_encoder)
1203		return 0;
1204
1205	return intel_reserve_shared_dplls(state, crtc, NULL);
1206}
1207
1208void vlv_compute_dpll(struct intel_crtc_state *crtc_state)
1209{
1210	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1211
1212	crtc_state->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
1213		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1214	if (crtc->pipe != PIPE_A)
1215		crtc_state->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1216
1217	/* DPLL not used with DSI, but still need the rest set up */
1218	if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1219		crtc_state->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
1220			DPLL_EXT_BUFFER_ENABLE_VLV;
1221
1222	crtc_state->dpll_hw_state.dpll_md =
1223		(crtc_state->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1224}
1225
1226void chv_compute_dpll(struct intel_crtc_state *crtc_state)
1227{
1228	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1229
1230	crtc_state->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
1231		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1232	if (crtc->pipe != PIPE_A)
1233		crtc_state->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1234
1235	/* DPLL not used with DSI, but still need the rest set up */
1236	if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1237		crtc_state->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
1238
1239	crtc_state->dpll_hw_state.dpll_md =
1240		(crtc_state->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1241}
1242
1243static int chv_crtc_compute_clock(struct intel_atomic_state *state,
1244				  struct intel_crtc *crtc)
1245{
1246	struct intel_crtc_state *crtc_state =
1247		intel_atomic_get_new_crtc_state(state, crtc);
1248	const struct intel_limit *limit = &intel_limits_chv;
1249	int refclk = 100000;
1250
1251	if (!crtc_state->clock_set &&
1252	    !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1253				refclk, NULL, &crtc_state->dpll))
1254		return -EINVAL;
1255
1256	chv_compute_dpll(crtc_state);
1257
1258	/* FIXME this is a mess */
1259	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1260		return 0;
1261
1262	crtc_state->port_clock = crtc_state->dpll.dot;
1263	crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1264
1265	return 0;
1266}
1267
1268static int vlv_crtc_compute_clock(struct intel_atomic_state *state,
1269				  struct intel_crtc *crtc)
1270{
1271	struct intel_crtc_state *crtc_state =
1272		intel_atomic_get_new_crtc_state(state, crtc);
1273	const struct intel_limit *limit = &intel_limits_vlv;
1274	int refclk = 100000;
1275
1276	if (!crtc_state->clock_set &&
1277	    !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1278				refclk, NULL, &crtc_state->dpll)) {
1279		return -EINVAL;
1280	}
1281
1282	vlv_compute_dpll(crtc_state);
1283
1284	/* FIXME this is a mess */
1285	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1286		return 0;
1287
1288	crtc_state->port_clock = crtc_state->dpll.dot;
1289	crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1290
1291	return 0;
1292}
1293
1294static int g4x_crtc_compute_clock(struct intel_atomic_state *state,
1295				  struct intel_crtc *crtc)
1296{
1297	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1298	struct intel_crtc_state *crtc_state =
1299		intel_atomic_get_new_crtc_state(state, crtc);
1300	const struct intel_limit *limit;
1301	int refclk = 96000;
1302
1303	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1304		if (intel_panel_use_ssc(dev_priv)) {
1305			refclk = dev_priv->display.vbt.lvds_ssc_freq;
1306			drm_dbg_kms(&dev_priv->drm,
1307				    "using SSC reference clock of %d kHz\n",
1308				    refclk);
1309		}
1310
1311		if (intel_is_dual_link_lvds(dev_priv))
1312			limit = &intel_limits_g4x_dual_channel_lvds;
1313		else
1314			limit = &intel_limits_g4x_single_channel_lvds;
1315	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
1316		   intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
1317		limit = &intel_limits_g4x_hdmi;
1318	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
1319		limit = &intel_limits_g4x_sdvo;
1320	} else {
1321		/* The option is for other outputs */
1322		limit = &intel_limits_i9xx_sdvo;
1323	}
1324
1325	if (!crtc_state->clock_set &&
1326	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1327				refclk, NULL, &crtc_state->dpll))
1328		return -EINVAL;
1329
1330	i9xx_compute_dpll(crtc_state, &crtc_state->dpll,
1331			  &crtc_state->dpll);
1332
1333	crtc_state->port_clock = crtc_state->dpll.dot;
1334	/* FIXME this is a mess */
1335	if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_TVOUT))
1336		crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1337
1338	return 0;
1339}
1340
1341static int pnv_crtc_compute_clock(struct intel_atomic_state *state,
1342				  struct intel_crtc *crtc)
1343{
1344	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1345	struct intel_crtc_state *crtc_state =
1346		intel_atomic_get_new_crtc_state(state, crtc);
1347	const struct intel_limit *limit;
1348	int refclk = 96000;
1349
1350	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1351		if (intel_panel_use_ssc(dev_priv)) {
1352			refclk = dev_priv->display.vbt.lvds_ssc_freq;
1353			drm_dbg_kms(&dev_priv->drm,
1354				    "using SSC reference clock of %d kHz\n",
1355				    refclk);
1356		}
1357
1358		limit = &pnv_limits_lvds;
1359	} else {
1360		limit = &pnv_limits_sdvo;
1361	}
1362
1363	if (!crtc_state->clock_set &&
1364	    !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1365				refclk, NULL, &crtc_state->dpll))
1366		return -EINVAL;
1367
1368	i9xx_compute_dpll(crtc_state, &crtc_state->dpll,
1369			  &crtc_state->dpll);
1370
1371	crtc_state->port_clock = crtc_state->dpll.dot;
1372	crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1373
1374	return 0;
1375}
1376
1377static int i9xx_crtc_compute_clock(struct intel_atomic_state *state,
1378				   struct intel_crtc *crtc)
1379{
1380	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1381	struct intel_crtc_state *crtc_state =
1382		intel_atomic_get_new_crtc_state(state, crtc);
1383	const struct intel_limit *limit;
1384	int refclk = 96000;
1385
1386	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1387		if (intel_panel_use_ssc(dev_priv)) {
1388			refclk = dev_priv->display.vbt.lvds_ssc_freq;
1389			drm_dbg_kms(&dev_priv->drm,
1390				    "using SSC reference clock of %d kHz\n",
1391				    refclk);
1392		}
1393
1394		limit = &intel_limits_i9xx_lvds;
1395	} else {
1396		limit = &intel_limits_i9xx_sdvo;
1397	}
1398
1399	if (!crtc_state->clock_set &&
1400	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1401				 refclk, NULL, &crtc_state->dpll))
1402		return -EINVAL;
1403
1404	i9xx_compute_dpll(crtc_state, &crtc_state->dpll,
1405			  &crtc_state->dpll);
1406
1407	crtc_state->port_clock = crtc_state->dpll.dot;
1408	/* FIXME this is a mess */
1409	if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_TVOUT))
1410		crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1411
1412	return 0;
1413}
1414
1415static int i8xx_crtc_compute_clock(struct intel_atomic_state *state,
1416				   struct intel_crtc *crtc)
1417{
1418	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1419	struct intel_crtc_state *crtc_state =
1420		intel_atomic_get_new_crtc_state(state, crtc);
1421	const struct intel_limit *limit;
1422	int refclk = 48000;
1423
1424	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1425		if (intel_panel_use_ssc(dev_priv)) {
1426			refclk = dev_priv->display.vbt.lvds_ssc_freq;
1427			drm_dbg_kms(&dev_priv->drm,
1428				    "using SSC reference clock of %d kHz\n",
1429				    refclk);
1430		}
1431
1432		limit = &intel_limits_i8xx_lvds;
1433	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
1434		limit = &intel_limits_i8xx_dvo;
1435	} else {
1436		limit = &intel_limits_i8xx_dac;
1437	}
1438
1439	if (!crtc_state->clock_set &&
1440	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1441				 refclk, NULL, &crtc_state->dpll))
1442		return -EINVAL;
1443
1444	i8xx_compute_dpll(crtc_state, &crtc_state->dpll,
1445			  &crtc_state->dpll);
1446
1447	crtc_state->port_clock = crtc_state->dpll.dot;
1448	crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1449
1450	return 0;
1451}
1452
1453static const struct intel_dpll_funcs mtl_dpll_funcs = {
1454	.crtc_compute_clock = mtl_crtc_compute_clock,
1455};
1456
1457static const struct intel_dpll_funcs dg2_dpll_funcs = {
1458	.crtc_compute_clock = dg2_crtc_compute_clock,
1459};
1460
1461static const struct intel_dpll_funcs hsw_dpll_funcs = {
1462	.crtc_compute_clock = hsw_crtc_compute_clock,
1463	.crtc_get_shared_dpll = hsw_crtc_get_shared_dpll,
1464};
1465
1466static const struct intel_dpll_funcs ilk_dpll_funcs = {
1467	.crtc_compute_clock = ilk_crtc_compute_clock,
1468	.crtc_get_shared_dpll = ilk_crtc_get_shared_dpll,
1469};
1470
1471static const struct intel_dpll_funcs chv_dpll_funcs = {
1472	.crtc_compute_clock = chv_crtc_compute_clock,
1473};
1474
1475static const struct intel_dpll_funcs vlv_dpll_funcs = {
1476	.crtc_compute_clock = vlv_crtc_compute_clock,
1477};
1478
1479static const struct intel_dpll_funcs g4x_dpll_funcs = {
1480	.crtc_compute_clock = g4x_crtc_compute_clock,
1481};
1482
1483static const struct intel_dpll_funcs pnv_dpll_funcs = {
1484	.crtc_compute_clock = pnv_crtc_compute_clock,
1485};
1486
1487static const struct intel_dpll_funcs i9xx_dpll_funcs = {
1488	.crtc_compute_clock = i9xx_crtc_compute_clock,
1489};
1490
1491static const struct intel_dpll_funcs i8xx_dpll_funcs = {
1492	.crtc_compute_clock = i8xx_crtc_compute_clock,
1493};
1494
1495int intel_dpll_crtc_compute_clock(struct intel_atomic_state *state,
1496				  struct intel_crtc *crtc)
1497{
1498	struct drm_i915_private *i915 = to_i915(state->base.dev);
1499	struct intel_crtc_state *crtc_state =
1500		intel_atomic_get_new_crtc_state(state, crtc);
1501	int ret;
1502
1503	drm_WARN_ON(&i915->drm, !intel_crtc_needs_modeset(crtc_state));
1504
1505	memset(&crtc_state->dpll_hw_state, 0,
1506	       sizeof(crtc_state->dpll_hw_state));
1507
1508	if (!crtc_state->hw.enable)
1509		return 0;
1510
1511	ret = i915->display.funcs.dpll->crtc_compute_clock(state, crtc);
1512	if (ret) {
1513		drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] Couldn't calculate DPLL settings\n",
1514			    crtc->base.base.id, crtc->base.name);
1515		return ret;
1516	}
1517
1518	return 0;
1519}
1520
1521int intel_dpll_crtc_get_shared_dpll(struct intel_atomic_state *state,
1522				    struct intel_crtc *crtc)
1523{
1524	struct drm_i915_private *i915 = to_i915(state->base.dev);
1525	struct intel_crtc_state *crtc_state =
1526		intel_atomic_get_new_crtc_state(state, crtc);
1527	int ret;
1528
1529	drm_WARN_ON(&i915->drm, !intel_crtc_needs_modeset(crtc_state));
1530	drm_WARN_ON(&i915->drm, !crtc_state->hw.enable && crtc_state->shared_dpll);
1531
1532	if (!crtc_state->hw.enable || crtc_state->shared_dpll)
1533		return 0;
1534
1535	if (!i915->display.funcs.dpll->crtc_get_shared_dpll)
1536		return 0;
1537
1538	ret = i915->display.funcs.dpll->crtc_get_shared_dpll(state, crtc);
1539	if (ret) {
1540		drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] Couldn't get a shared DPLL\n",
1541			    crtc->base.base.id, crtc->base.name);
1542		return ret;
1543	}
1544
1545	return 0;
1546}
1547
1548void
1549intel_dpll_init_clock_hook(struct drm_i915_private *dev_priv)
1550{
1551	if (DISPLAY_VER(dev_priv) >= 14)
1552		dev_priv->display.funcs.dpll = &mtl_dpll_funcs;
1553	else if (IS_DG2(dev_priv))
1554		dev_priv->display.funcs.dpll = &dg2_dpll_funcs;
1555	else if (DISPLAY_VER(dev_priv) >= 9 || HAS_DDI(dev_priv))
1556		dev_priv->display.funcs.dpll = &hsw_dpll_funcs;
1557	else if (HAS_PCH_SPLIT(dev_priv))
1558		dev_priv->display.funcs.dpll = &ilk_dpll_funcs;
1559	else if (IS_CHERRYVIEW(dev_priv))
1560		dev_priv->display.funcs.dpll = &chv_dpll_funcs;
1561	else if (IS_VALLEYVIEW(dev_priv))
1562		dev_priv->display.funcs.dpll = &vlv_dpll_funcs;
1563	else if (IS_G4X(dev_priv))
1564		dev_priv->display.funcs.dpll = &g4x_dpll_funcs;
1565	else if (IS_PINEVIEW(dev_priv))
1566		dev_priv->display.funcs.dpll = &pnv_dpll_funcs;
1567	else if (DISPLAY_VER(dev_priv) != 2)
1568		dev_priv->display.funcs.dpll = &i9xx_dpll_funcs;
1569	else
1570		dev_priv->display.funcs.dpll = &i8xx_dpll_funcs;
1571}
1572
1573static bool i9xx_has_pps(struct drm_i915_private *dev_priv)
1574{
1575	if (IS_I830(dev_priv))
1576		return false;
1577
1578	return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
1579}
1580
1581void i9xx_enable_pll(const struct intel_crtc_state *crtc_state)
1582{
1583	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1584	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1585	u32 dpll = crtc_state->dpll_hw_state.dpll;
1586	enum pipe pipe = crtc->pipe;
1587	int i;
1588
1589	assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
1590
1591	/* PLL is protected by panel, make sure we can write it */
1592	if (i9xx_has_pps(dev_priv))
1593		assert_pps_unlocked(dev_priv, pipe);
1594
1595	intel_de_write(dev_priv, FP0(pipe), crtc_state->dpll_hw_state.fp0);
1596	intel_de_write(dev_priv, FP1(pipe), crtc_state->dpll_hw_state.fp1);
1597
1598	/*
1599	 * Apparently we need to have VGA mode enabled prior to changing
1600	 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1601	 * dividers, even though the register value does change.
1602	 */
1603	intel_de_write(dev_priv, DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS);
1604	intel_de_write(dev_priv, DPLL(pipe), dpll);
1605
1606	/* Wait for the clocks to stabilize. */
1607	intel_de_posting_read(dev_priv, DPLL(pipe));
1608	udelay(150);
1609
1610	if (DISPLAY_VER(dev_priv) >= 4) {
1611		intel_de_write(dev_priv, DPLL_MD(pipe),
1612			       crtc_state->dpll_hw_state.dpll_md);
1613	} else {
1614		/* The pixel multiplier can only be updated once the
1615		 * DPLL is enabled and the clocks are stable.
1616		 *
1617		 * So write it again.
1618		 */
1619		intel_de_write(dev_priv, DPLL(pipe), dpll);
1620	}
1621
1622	/* We do this three times for luck */
1623	for (i = 0; i < 3; i++) {
1624		intel_de_write(dev_priv, DPLL(pipe), dpll);
1625		intel_de_posting_read(dev_priv, DPLL(pipe));
1626		udelay(150); /* wait for warmup */
1627	}
1628}
1629
1630static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv,
1631				 enum pipe pipe)
1632{
1633	u32 reg_val;
1634
1635	/*
1636	 * PLLB opamp always calibrates to max value of 0x3f, force enable it
1637	 * and set it to a reasonable value instead.
1638	 */
1639	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
1640	reg_val &= 0xffffff00;
1641	reg_val |= 0x00000030;
1642	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
1643
1644	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
1645	reg_val &= 0x00ffffff;
1646	reg_val |= 0x8c000000;
1647	vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
1648
1649	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
1650	reg_val &= 0xffffff00;
1651	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
1652
1653	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
1654	reg_val &= 0x00ffffff;
1655	reg_val |= 0xb0000000;
1656	vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
1657}
1658
1659static void vlv_prepare_pll(const struct intel_crtc_state *crtc_state)
1660{
1661	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1662	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1663	enum pipe pipe = crtc->pipe;
1664	u32 mdiv;
1665	u32 bestn, bestm1, bestm2, bestp1, bestp2;
1666	u32 coreclk, reg_val;
1667
1668	vlv_dpio_get(dev_priv);
1669
1670	bestn = crtc_state->dpll.n;
1671	bestm1 = crtc_state->dpll.m1;
1672	bestm2 = crtc_state->dpll.m2;
1673	bestp1 = crtc_state->dpll.p1;
1674	bestp2 = crtc_state->dpll.p2;
1675
1676	/* See eDP HDMI DPIO driver vbios notes doc */
1677
1678	/* PLL B needs special handling */
1679	if (pipe == PIPE_B)
1680		vlv_pllb_recal_opamp(dev_priv, pipe);
1681
1682	/* Set up Tx target for periodic Rcomp update */
1683	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
1684
1685	/* Disable target IRef on PLL */
1686	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
1687	reg_val &= 0x00ffffff;
1688	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
1689
1690	/* Disable fast lock */
1691	vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
1692
1693	/* Set idtafcrecal before PLL is enabled */
1694	mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
1695	mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
1696	mdiv |= ((bestn << DPIO_N_SHIFT));
1697	mdiv |= (1 << DPIO_K_SHIFT);
1698
1699	/*
1700	 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
1701	 * but we don't support that).
1702	 * Note: don't use the DAC post divider as it seems unstable.
1703	 */
1704	mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
1705	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
1706
1707	mdiv |= DPIO_ENABLE_CALIBRATION;
1708	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
1709
1710	/* Set HBR and RBR LPF coefficients */
1711	if (crtc_state->port_clock == 162000 ||
1712	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG) ||
1713	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1714		vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
1715				 0x009f0003);
1716	else
1717		vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
1718				 0x00d0000f);
1719
1720	if (intel_crtc_has_dp_encoder(crtc_state)) {
1721		/* Use SSC source */
1722		if (pipe == PIPE_A)
1723			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
1724					 0x0df40000);
1725		else
1726			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
1727					 0x0df70000);
1728	} else { /* HDMI or VGA */
1729		/* Use bend source */
1730		if (pipe == PIPE_A)
1731			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
1732					 0x0df70000);
1733		else
1734			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
1735					 0x0df40000);
1736	}
1737
1738	coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
1739	coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
1740	if (intel_crtc_has_dp_encoder(crtc_state))
1741		coreclk |= 0x01000000;
1742	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
1743
1744	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
1745
1746	vlv_dpio_put(dev_priv);
1747}
1748
1749static void _vlv_enable_pll(const struct intel_crtc_state *crtc_state)
1750{
1751	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1752	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1753	enum pipe pipe = crtc->pipe;
1754
1755	intel_de_write(dev_priv, DPLL(pipe), crtc_state->dpll_hw_state.dpll);
1756	intel_de_posting_read(dev_priv, DPLL(pipe));
1757	udelay(150);
1758
1759	if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
1760		drm_err(&dev_priv->drm, "DPLL %d failed to lock\n", pipe);
1761}
1762
1763void vlv_enable_pll(const struct intel_crtc_state *crtc_state)
1764{
1765	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1766	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1767	enum pipe pipe = crtc->pipe;
1768
1769	assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
1770
1771	/* PLL is protected by panel, make sure we can write it */
1772	assert_pps_unlocked(dev_priv, pipe);
1773
1774	/* Enable Refclk */
1775	intel_de_write(dev_priv, DPLL(pipe),
1776		       crtc_state->dpll_hw_state.dpll &
1777		       ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
1778
1779	if (crtc_state->dpll_hw_state.dpll & DPLL_VCO_ENABLE) {
1780		vlv_prepare_pll(crtc_state);
1781		_vlv_enable_pll(crtc_state);
1782	}
1783
1784	intel_de_write(dev_priv, DPLL_MD(pipe),
1785		       crtc_state->dpll_hw_state.dpll_md);
1786	intel_de_posting_read(dev_priv, DPLL_MD(pipe));
1787}
1788
1789static void chv_prepare_pll(const struct intel_crtc_state *crtc_state)
1790{
1791	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1792	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1793	enum pipe pipe = crtc->pipe;
1794	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1795	u32 loopfilter, tribuf_calcntr;
1796	u32 bestm2, bestp1, bestp2, bestm2_frac;
1797	u32 dpio_val;
1798	int vco;
1799
1800	bestm2_frac = crtc_state->dpll.m2 & 0x3fffff;
1801	bestm2 = crtc_state->dpll.m2 >> 22;
1802	bestp1 = crtc_state->dpll.p1;
1803	bestp2 = crtc_state->dpll.p2;
1804	vco = crtc_state->dpll.vco;
1805	dpio_val = 0;
1806	loopfilter = 0;
1807
1808	vlv_dpio_get(dev_priv);
1809
1810	/* p1 and p2 divider */
1811	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
1812			5 << DPIO_CHV_S1_DIV_SHIFT |
1813			bestp1 << DPIO_CHV_P1_DIV_SHIFT |
1814			bestp2 << DPIO_CHV_P2_DIV_SHIFT |
1815			1 << DPIO_CHV_K_DIV_SHIFT);
1816
1817	/* Feedback post-divider - m2 */
1818	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
1819
1820	/* Feedback refclk divider - n and m1 */
1821	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
1822			DPIO_CHV_M1_DIV_BY_2 |
1823			1 << DPIO_CHV_N_DIV_SHIFT);
1824
1825	/* M2 fraction division */
1826	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
1827
1828	/* M2 fraction division enable */
1829	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
1830	dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
1831	dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
1832	if (bestm2_frac)
1833		dpio_val |= DPIO_CHV_FRAC_DIV_EN;
1834	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
1835
1836	/* Program digital lock detect threshold */
1837	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
1838	dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
1839					DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
1840	dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
1841	if (!bestm2_frac)
1842		dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
1843	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
1844
1845	/* Loop filter */
1846	if (vco == 5400000) {
1847		loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
1848		loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
1849		loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
1850		tribuf_calcntr = 0x9;
1851	} else if (vco <= 6200000) {
1852		loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
1853		loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
1854		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
1855		tribuf_calcntr = 0x9;
1856	} else if (vco <= 6480000) {
1857		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
1858		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
1859		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
1860		tribuf_calcntr = 0x8;
1861	} else {
1862		/* Not supported. Apply the same limits as in the max case */
1863		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
1864		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
1865		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
1866		tribuf_calcntr = 0;
1867	}
1868	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
1869
1870	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
1871	dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
1872	dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
1873	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
1874
1875	/* AFC Recal */
1876	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
1877			vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
1878			DPIO_AFC_RECAL);
1879
1880	vlv_dpio_put(dev_priv);
1881}
1882
1883static void _chv_enable_pll(const struct intel_crtc_state *crtc_state)
1884{
1885	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1886	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1887	enum pipe pipe = crtc->pipe;
1888	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1889	u32 tmp;
1890
1891	vlv_dpio_get(dev_priv);
1892
1893	/* Enable back the 10bit clock to display controller */
1894	tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1895	tmp |= DPIO_DCLKP_EN;
1896	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1897
1898	vlv_dpio_put(dev_priv);
1899
1900	/*
1901	 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1902	 */
1903	udelay(1);
1904
1905	/* Enable PLL */
1906	intel_de_write(dev_priv, DPLL(pipe), crtc_state->dpll_hw_state.dpll);
1907
1908	/* Check PLL is locked */
1909	if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
1910		drm_err(&dev_priv->drm, "PLL %d failed to lock\n", pipe);
1911}
1912
1913void chv_enable_pll(const struct intel_crtc_state *crtc_state)
1914{
1915	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1916	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1917	enum pipe pipe = crtc->pipe;
1918
1919	assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
1920
1921	/* PLL is protected by panel, make sure we can write it */
1922	assert_pps_unlocked(dev_priv, pipe);
1923
1924	/* Enable Refclk and SSC */
1925	intel_de_write(dev_priv, DPLL(pipe),
1926		       crtc_state->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
1927
1928	if (crtc_state->dpll_hw_state.dpll & DPLL_VCO_ENABLE) {
1929		chv_prepare_pll(crtc_state);
1930		_chv_enable_pll(crtc_state);
1931	}
1932
1933	if (pipe != PIPE_A) {
1934		/*
1935		 * WaPixelRepeatModeFixForC0:chv
1936		 *
1937		 * DPLLCMD is AWOL. Use chicken bits to propagate
1938		 * the value from DPLLBMD to either pipe B or C.
1939		 */
1940		intel_de_write(dev_priv, CBR4_VLV, CBR_DPLLBMD_PIPE(pipe));
1941		intel_de_write(dev_priv, DPLL_MD(PIPE_B),
1942			       crtc_state->dpll_hw_state.dpll_md);
1943		intel_de_write(dev_priv, CBR4_VLV, 0);
1944		dev_priv->display.state.chv_dpll_md[pipe] = crtc_state->dpll_hw_state.dpll_md;
1945
1946		/*
1947		 * DPLLB VGA mode also seems to cause problems.
1948		 * We should always have it disabled.
1949		 */
1950		drm_WARN_ON(&dev_priv->drm,
1951			    (intel_de_read(dev_priv, DPLL(PIPE_B)) &
1952			     DPLL_VGA_MODE_DIS) == 0);
1953	} else {
1954		intel_de_write(dev_priv, DPLL_MD(pipe),
1955			       crtc_state->dpll_hw_state.dpll_md);
1956		intel_de_posting_read(dev_priv, DPLL_MD(pipe));
1957	}
1958}
1959
1960/**
1961 * vlv_force_pll_on - forcibly enable just the PLL
1962 * @dev_priv: i915 private structure
1963 * @pipe: pipe PLL to enable
1964 * @dpll: PLL configuration
1965 *
1966 * Enable the PLL for @pipe using the supplied @dpll config. To be used
1967 * in cases where we need the PLL enabled even when @pipe is not going to
1968 * be enabled.
1969 */
1970int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
1971		     const struct dpll *dpll)
1972{
1973	struct intel_crtc *crtc = intel_crtc_for_pipe(dev_priv, pipe);
1974	struct intel_crtc_state *crtc_state;
1975
1976	crtc_state = intel_crtc_state_alloc(crtc);
1977	if (!crtc_state)
1978		return -ENOMEM;
1979
1980	crtc_state->cpu_transcoder = (enum transcoder)pipe;
1981	crtc_state->pixel_multiplier = 1;
1982	crtc_state->dpll = *dpll;
1983	crtc_state->output_types = BIT(INTEL_OUTPUT_EDP);
1984
1985	if (IS_CHERRYVIEW(dev_priv)) {
1986		chv_compute_dpll(crtc_state);
1987		chv_enable_pll(crtc_state);
1988	} else {
1989		vlv_compute_dpll(crtc_state);
1990		vlv_enable_pll(crtc_state);
1991	}
1992
1993	kfree(crtc_state);
1994
1995	return 0;
1996}
1997
1998void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1999{
2000	u32 val;
2001
2002	/* Make sure the pipe isn't still relying on us */
2003	assert_transcoder_disabled(dev_priv, (enum transcoder)pipe);
2004
2005	val = DPLL_INTEGRATED_REF_CLK_VLV |
2006		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
2007	if (pipe != PIPE_A)
2008		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
2009
2010	intel_de_write(dev_priv, DPLL(pipe), val);
2011	intel_de_posting_read(dev_priv, DPLL(pipe));
2012}
2013
2014void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
2015{
2016	enum dpio_channel port = vlv_pipe_to_channel(pipe);
2017	u32 val;
2018
2019	/* Make sure the pipe isn't still relying on us */
2020	assert_transcoder_disabled(dev_priv, (enum transcoder)pipe);
2021
2022	val = DPLL_SSC_REF_CLK_CHV |
2023		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
2024	if (pipe != PIPE_A)
2025		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
2026
2027	intel_de_write(dev_priv, DPLL(pipe), val);
2028	intel_de_posting_read(dev_priv, DPLL(pipe));
2029
2030	vlv_dpio_get(dev_priv);
2031
2032	/* Disable 10bit clock to display controller */
2033	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
2034	val &= ~DPIO_DCLKP_EN;
2035	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
2036
2037	vlv_dpio_put(dev_priv);
2038}
2039
2040void i9xx_disable_pll(const struct intel_crtc_state *crtc_state)
2041{
2042	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2043	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2044	enum pipe pipe = crtc->pipe;
2045
2046	/* Don't disable pipe or pipe PLLs if needed */
2047	if (IS_I830(dev_priv))
2048		return;
2049
2050	/* Make sure the pipe isn't still relying on us */
2051	assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
2052
2053	intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS);
2054	intel_de_posting_read(dev_priv, DPLL(pipe));
2055}
2056
2057
2058/**
2059 * vlv_force_pll_off - forcibly disable just the PLL
2060 * @dev_priv: i915 private structure
2061 * @pipe: pipe PLL to disable
2062 *
2063 * Disable the PLL for @pipe. To be used in cases where we need
2064 * the PLL enabled even when @pipe is not going to be enabled.
2065 */
2066void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
2067{
2068	if (IS_CHERRYVIEW(dev_priv))
2069		chv_disable_pll(dev_priv, pipe);
2070	else
2071		vlv_disable_pll(dev_priv, pipe);
2072}
2073
2074/* Only for pre-ILK configs */
2075static void assert_pll(struct drm_i915_private *dev_priv,
2076		       enum pipe pipe, bool state)
2077{
2078	bool cur_state;
2079
2080	cur_state = intel_de_read(dev_priv, DPLL(pipe)) & DPLL_VCO_ENABLE;
2081	I915_STATE_WARN(dev_priv, cur_state != state,
2082			"PLL state assertion failure (expected %s, current %s)\n",
2083			str_on_off(state), str_on_off(cur_state));
2084}
2085
2086void assert_pll_enabled(struct drm_i915_private *i915, enum pipe pipe)
2087{
2088	assert_pll(i915, pipe, true);
2089}
2090
2091void assert_pll_disabled(struct drm_i915_private *i915, enum pipe pipe)
2092{
2093	assert_pll(i915, pipe, false);
2094}
2095