1/*
2 * Copyright © 2006 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 *    Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include <drm/display/drm_dp_helper.h>
29#include <drm/display/drm_dsc_helper.h>
30#include <drm/drm_edid.h>
31
32#include "i915_drv.h"
33#include "i915_reg.h"
34#include "intel_display.h"
35#include "intel_display_types.h"
36#include "intel_gmbus.h"
37
38#define _INTEL_BIOS_PRIVATE
39#include "intel_vbt_defs.h"
40
41/**
42 * DOC: Video BIOS Table (VBT)
43 *
44 * The Video BIOS Table, or VBT, provides platform and board specific
45 * configuration information to the driver that is not discoverable or available
46 * through other means. The configuration is mostly related to display
47 * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in
48 * the PCI ROM.
49 *
50 * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB
51 * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that
52 * contain the actual configuration information. The VBT Header, and thus the
53 * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the
54 * BDB Header. The data blocks are concatenated after the BDB Header. The data
55 * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of
56 * data. (Block 53, the MIPI Sequence Block is an exception.)
57 *
58 * The driver parses the VBT during load. The relevant information is stored in
59 * driver private data for ease of use, and the actual VBT is not read after
60 * that.
61 */
62
63/* Wrapper for VBT child device config */
64struct intel_bios_encoder_data {
65	struct drm_i915_private *i915;
66
67	struct child_device_config child;
68	struct dsc_compression_parameters_entry *dsc;
69	struct list_head node;
70};
71
72#define	SLAVE_ADDR1	0x70
73#define	SLAVE_ADDR2	0x72
74
75/* Get BDB block size given a pointer to Block ID. */
76static u32 _get_blocksize(const u8 *block_base)
77{
78	/* The MIPI Sequence Block v3+ has a separate size field. */
79	if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3)
80		return *((const u32 *)(block_base + 4));
81	else
82		return *((const u16 *)(block_base + 1));
83}
84
85/* Get BDB block size give a pointer to data after Block ID and Block Size. */
86static u32 get_blocksize(const void *block_data)
87{
88	return _get_blocksize(block_data - 3);
89}
90
91static const void *
92find_raw_section(const void *_bdb, enum bdb_block_id section_id)
93{
94	const struct bdb_header *bdb = _bdb;
95	const u8 *base = _bdb;
96	int index = 0;
97	u32 total, current_size;
98	enum bdb_block_id current_id;
99
100	/* skip to first section */
101	index += bdb->header_size;
102	total = bdb->bdb_size;
103
104	/* walk the sections looking for section_id */
105	while (index + 3 < total) {
106		current_id = *(base + index);
107		current_size = _get_blocksize(base + index);
108		index += 3;
109
110		if (index + current_size > total)
111			return NULL;
112
113		if (current_id == section_id)
114			return base + index;
115
116		index += current_size;
117	}
118
119	return NULL;
120}
121
122/*
123 * Offset from the start of BDB to the start of the
124 * block data (just past the block header).
125 */
126static u32 raw_block_offset(const void *bdb, enum bdb_block_id section_id)
127{
128	const void *block;
129
130	block = find_raw_section(bdb, section_id);
131	if (!block)
132		return 0;
133
134	return block - bdb;
135}
136
137struct bdb_block_entry {
138	struct list_head node;
139	enum bdb_block_id section_id;
140	u8 data[];
141};
142
143static const void *
144bdb_find_section(struct drm_i915_private *i915,
145		 enum bdb_block_id section_id)
146{
147	struct bdb_block_entry *entry;
148
149	list_for_each_entry(entry, &i915->display.vbt.bdb_blocks, node) {
150		if (entry->section_id == section_id)
151			return entry->data + 3;
152	}
153
154	return NULL;
155}
156
157static const struct {
158	enum bdb_block_id section_id;
159	size_t min_size;
160} bdb_blocks[] = {
161	{ .section_id = BDB_GENERAL_FEATURES,
162	  .min_size = sizeof(struct bdb_general_features), },
163	{ .section_id = BDB_GENERAL_DEFINITIONS,
164	  .min_size = sizeof(struct bdb_general_definitions), },
165	{ .section_id = BDB_PSR,
166	  .min_size = sizeof(struct bdb_psr), },
167	{ .section_id = BDB_DRIVER_FEATURES,
168	  .min_size = sizeof(struct bdb_driver_features), },
169	{ .section_id = BDB_SDVO_LVDS_OPTIONS,
170	  .min_size = sizeof(struct bdb_sdvo_lvds_options), },
171	{ .section_id = BDB_SDVO_PANEL_DTDS,
172	  .min_size = sizeof(struct bdb_sdvo_panel_dtds), },
173	{ .section_id = BDB_EDP,
174	  .min_size = sizeof(struct bdb_edp), },
175	{ .section_id = BDB_LVDS_OPTIONS,
176	  .min_size = sizeof(struct bdb_lvds_options), },
177	/*
178	 * BDB_LVDS_LFP_DATA depends on BDB_LVDS_LFP_DATA_PTRS,
179	 * so keep the two ordered.
180	 */
181	{ .section_id = BDB_LVDS_LFP_DATA_PTRS,
182	  .min_size = sizeof(struct bdb_lvds_lfp_data_ptrs), },
183	{ .section_id = BDB_LVDS_LFP_DATA,
184	  .min_size = 0, /* special case */ },
185	{ .section_id = BDB_LVDS_BACKLIGHT,
186	  .min_size = sizeof(struct bdb_lfp_backlight_data), },
187	{ .section_id = BDB_LFP_POWER,
188	  .min_size = sizeof(struct bdb_lfp_power), },
189	{ .section_id = BDB_MIPI_CONFIG,
190	  .min_size = sizeof(struct bdb_mipi_config), },
191	{ .section_id = BDB_MIPI_SEQUENCE,
192	  .min_size = sizeof(struct bdb_mipi_sequence) },
193	{ .section_id = BDB_COMPRESSION_PARAMETERS,
194	  .min_size = sizeof(struct bdb_compression_parameters), },
195	{ .section_id = BDB_GENERIC_DTD,
196	  .min_size = sizeof(struct bdb_generic_dtd), },
197};
198
199static size_t lfp_data_min_size(struct drm_i915_private *i915)
200{
201	const struct bdb_lvds_lfp_data_ptrs *ptrs;
202	size_t size;
203
204	ptrs = bdb_find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
205	if (!ptrs)
206		return 0;
207
208	size = sizeof(struct bdb_lvds_lfp_data);
209	if (ptrs->panel_name.table_size)
210		size = max(size, ptrs->panel_name.offset +
211			   sizeof(struct bdb_lvds_lfp_data_tail));
212
213	return size;
214}
215
216static bool validate_lfp_data_ptrs(const void *bdb,
217				   const struct bdb_lvds_lfp_data_ptrs *ptrs)
218{
219	int fp_timing_size, dvo_timing_size, panel_pnp_id_size, panel_name_size;
220	int data_block_size, lfp_data_size;
221	const void *data_block;
222	int i;
223
224	data_block = find_raw_section(bdb, BDB_LVDS_LFP_DATA);
225	if (!data_block)
226		return false;
227
228	data_block_size = get_blocksize(data_block);
229	if (data_block_size == 0)
230		return false;
231
232	/* always 3 indicating the presence of fp_timing+dvo_timing+panel_pnp_id */
233	if (ptrs->lvds_entries != 3)
234		return false;
235
236	fp_timing_size = ptrs->ptr[0].fp_timing.table_size;
237	dvo_timing_size = ptrs->ptr[0].dvo_timing.table_size;
238	panel_pnp_id_size = ptrs->ptr[0].panel_pnp_id.table_size;
239	panel_name_size = ptrs->panel_name.table_size;
240
241	/* fp_timing has variable size */
242	if (fp_timing_size < 32 ||
243	    dvo_timing_size != sizeof(struct lvds_dvo_timing) ||
244	    panel_pnp_id_size != sizeof(struct lvds_pnp_id))
245		return false;
246
247	/* panel_name is not present in old VBTs */
248	if (panel_name_size != 0 &&
249	    panel_name_size != sizeof(struct lvds_lfp_panel_name))
250		return false;
251
252	lfp_data_size = ptrs->ptr[1].fp_timing.offset - ptrs->ptr[0].fp_timing.offset;
253	if (16 * lfp_data_size > data_block_size)
254		return false;
255
256	/* make sure the table entries have uniform size */
257	for (i = 1; i < 16; i++) {
258		if (ptrs->ptr[i].fp_timing.table_size != fp_timing_size ||
259		    ptrs->ptr[i].dvo_timing.table_size != dvo_timing_size ||
260		    ptrs->ptr[i].panel_pnp_id.table_size != panel_pnp_id_size)
261			return false;
262
263		if (ptrs->ptr[i].fp_timing.offset - ptrs->ptr[i-1].fp_timing.offset != lfp_data_size ||
264		    ptrs->ptr[i].dvo_timing.offset - ptrs->ptr[i-1].dvo_timing.offset != lfp_data_size ||
265		    ptrs->ptr[i].panel_pnp_id.offset - ptrs->ptr[i-1].panel_pnp_id.offset != lfp_data_size)
266			return false;
267	}
268
269	/*
270	 * Except for vlv/chv machines all real VBTs seem to have 6
271	 * unaccounted bytes in the fp_timing table. And it doesn't
272	 * appear to be a really intentional hole as the fp_timing
273	 * 0xffff terminator is always within those 6 missing bytes.
274	 */
275	if (fp_timing_size + 6 + dvo_timing_size + panel_pnp_id_size == lfp_data_size)
276		fp_timing_size += 6;
277
278	if (fp_timing_size + dvo_timing_size + panel_pnp_id_size != lfp_data_size)
279		return false;
280
281	if (ptrs->ptr[0].fp_timing.offset + fp_timing_size != ptrs->ptr[0].dvo_timing.offset ||
282	    ptrs->ptr[0].dvo_timing.offset + dvo_timing_size != ptrs->ptr[0].panel_pnp_id.offset ||
283	    ptrs->ptr[0].panel_pnp_id.offset + panel_pnp_id_size != lfp_data_size)
284		return false;
285
286	/* make sure the tables fit inside the data block */
287	for (i = 0; i < 16; i++) {
288		if (ptrs->ptr[i].fp_timing.offset + fp_timing_size > data_block_size ||
289		    ptrs->ptr[i].dvo_timing.offset + dvo_timing_size > data_block_size ||
290		    ptrs->ptr[i].panel_pnp_id.offset + panel_pnp_id_size > data_block_size)
291			return false;
292	}
293
294	if (ptrs->panel_name.offset + 16 * panel_name_size > data_block_size)
295		return false;
296
297	/* make sure fp_timing terminators are present at expected locations */
298	for (i = 0; i < 16; i++) {
299		const u16 *t = data_block + ptrs->ptr[i].fp_timing.offset +
300			fp_timing_size - 2;
301
302		if (*t != 0xffff)
303			return false;
304	}
305
306	return true;
307}
308
309/* make the data table offsets relative to the data block */
310static bool fixup_lfp_data_ptrs(const void *bdb, void *ptrs_block)
311{
312	struct bdb_lvds_lfp_data_ptrs *ptrs = ptrs_block;
313	u32 offset;
314	int i;
315
316	offset = raw_block_offset(bdb, BDB_LVDS_LFP_DATA);
317
318	for (i = 0; i < 16; i++) {
319		if (ptrs->ptr[i].fp_timing.offset < offset ||
320		    ptrs->ptr[i].dvo_timing.offset < offset ||
321		    ptrs->ptr[i].panel_pnp_id.offset < offset)
322			return false;
323
324		ptrs->ptr[i].fp_timing.offset -= offset;
325		ptrs->ptr[i].dvo_timing.offset -= offset;
326		ptrs->ptr[i].panel_pnp_id.offset -= offset;
327	}
328
329	if (ptrs->panel_name.table_size) {
330		if (ptrs->panel_name.offset < offset)
331			return false;
332
333		ptrs->panel_name.offset -= offset;
334	}
335
336	return validate_lfp_data_ptrs(bdb, ptrs);
337}
338
339static int make_lfp_data_ptr(struct lvds_lfp_data_ptr_table *table,
340			     int table_size, int total_size)
341{
342	if (total_size < table_size)
343		return total_size;
344
345	table->table_size = table_size;
346	table->offset = total_size - table_size;
347
348	return total_size - table_size;
349}
350
351static void next_lfp_data_ptr(struct lvds_lfp_data_ptr_table *next,
352			      const struct lvds_lfp_data_ptr_table *prev,
353			      int size)
354{
355	next->table_size = prev->table_size;
356	next->offset = prev->offset + size;
357}
358
359static void *generate_lfp_data_ptrs(struct drm_i915_private *i915,
360				    const void *bdb)
361{
362	int i, size, table_size, block_size, offset, fp_timing_size;
363	struct bdb_lvds_lfp_data_ptrs *ptrs;
364	const void *block;
365	void *ptrs_block;
366
367	/*
368	 * The hardcoded fp_timing_size is only valid for
369	 * modernish VBTs. All older VBTs definitely should
370	 * include block 41 and thus we don't need to
371	 * generate one.
372	 */
373	if (i915->display.vbt.version < 155)
374		return NULL;
375
376	fp_timing_size = 38;
377
378	block = find_raw_section(bdb, BDB_LVDS_LFP_DATA);
379	if (!block)
380		return NULL;
381
382	drm_dbg_kms(&i915->drm, "Generating LFP data table pointers\n");
383
384	block_size = get_blocksize(block);
385
386	size = fp_timing_size + sizeof(struct lvds_dvo_timing) +
387		sizeof(struct lvds_pnp_id);
388	if (size * 16 > block_size)
389		return NULL;
390
391	ptrs_block = kzalloc(sizeof(*ptrs) + 3, GFP_KERNEL);
392	if (!ptrs_block)
393		return NULL;
394
395	*(u8 *)(ptrs_block + 0) = BDB_LVDS_LFP_DATA_PTRS;
396	*(u16 *)(ptrs_block + 1) = sizeof(*ptrs);
397	ptrs = ptrs_block + 3;
398
399	table_size = sizeof(struct lvds_pnp_id);
400	size = make_lfp_data_ptr(&ptrs->ptr[0].panel_pnp_id, table_size, size);
401
402	table_size = sizeof(struct lvds_dvo_timing);
403	size = make_lfp_data_ptr(&ptrs->ptr[0].dvo_timing, table_size, size);
404
405	table_size = fp_timing_size;
406	size = make_lfp_data_ptr(&ptrs->ptr[0].fp_timing, table_size, size);
407
408	if (ptrs->ptr[0].fp_timing.table_size)
409		ptrs->lvds_entries++;
410	if (ptrs->ptr[0].dvo_timing.table_size)
411		ptrs->lvds_entries++;
412	if (ptrs->ptr[0].panel_pnp_id.table_size)
413		ptrs->lvds_entries++;
414
415	if (size != 0 || ptrs->lvds_entries != 3) {
416		kfree(ptrs_block);
417		return NULL;
418	}
419
420	size = fp_timing_size + sizeof(struct lvds_dvo_timing) +
421		sizeof(struct lvds_pnp_id);
422	for (i = 1; i < 16; i++) {
423		next_lfp_data_ptr(&ptrs->ptr[i].fp_timing, &ptrs->ptr[i-1].fp_timing, size);
424		next_lfp_data_ptr(&ptrs->ptr[i].dvo_timing, &ptrs->ptr[i-1].dvo_timing, size);
425		next_lfp_data_ptr(&ptrs->ptr[i].panel_pnp_id, &ptrs->ptr[i-1].panel_pnp_id, size);
426	}
427
428	table_size = sizeof(struct lvds_lfp_panel_name);
429
430	if (16 * (size + table_size) <= block_size) {
431		ptrs->panel_name.table_size = table_size;
432		ptrs->panel_name.offset = size * 16;
433	}
434
435	offset = block - bdb;
436
437	for (i = 0; i < 16; i++) {
438		ptrs->ptr[i].fp_timing.offset += offset;
439		ptrs->ptr[i].dvo_timing.offset += offset;
440		ptrs->ptr[i].panel_pnp_id.offset += offset;
441	}
442
443	if (ptrs->panel_name.table_size)
444		ptrs->panel_name.offset += offset;
445
446	return ptrs_block;
447}
448
449static void
450init_bdb_block(struct drm_i915_private *i915,
451	       const void *bdb, enum bdb_block_id section_id,
452	       size_t min_size)
453{
454	struct bdb_block_entry *entry;
455	void *temp_block = NULL;
456	const void *block;
457	size_t block_size;
458
459	block = find_raw_section(bdb, section_id);
460
461	/* Modern VBTs lack the LFP data table pointers block, make one up */
462	if (!block && section_id == BDB_LVDS_LFP_DATA_PTRS) {
463		temp_block = generate_lfp_data_ptrs(i915, bdb);
464		if (temp_block)
465			block = temp_block + 3;
466	}
467	if (!block)
468		return;
469
470	drm_WARN(&i915->drm, min_size == 0,
471		 "Block %d min_size is zero\n", section_id);
472
473	block_size = get_blocksize(block);
474
475	/*
476	 * Version number and new block size are considered
477	 * part of the header for MIPI sequenece block v3+.
478	 */
479	if (section_id == BDB_MIPI_SEQUENCE && *(const u8 *)block >= 3)
480		block_size += 5;
481
482	entry = kzalloc(struct_size(entry, data, max(min_size, block_size) + 3),
483			GFP_KERNEL);
484	if (!entry) {
485		kfree(temp_block);
486		return;
487	}
488
489	entry->section_id = section_id;
490	memcpy(entry->data, block - 3, block_size + 3);
491
492	kfree(temp_block);
493
494	drm_dbg_kms(&i915->drm, "Found BDB block %d (size %zu, min size %zu)\n",
495		    section_id, block_size, min_size);
496
497	if (section_id == BDB_LVDS_LFP_DATA_PTRS &&
498	    !fixup_lfp_data_ptrs(bdb, entry->data + 3)) {
499		drm_err(&i915->drm, "VBT has malformed LFP data table pointers\n");
500		kfree(entry);
501		return;
502	}
503
504	list_add_tail(&entry->node, &i915->display.vbt.bdb_blocks);
505}
506
507static void init_bdb_blocks(struct drm_i915_private *i915,
508			    const void *bdb)
509{
510	int i;
511
512	for (i = 0; i < ARRAY_SIZE(bdb_blocks); i++) {
513		enum bdb_block_id section_id = bdb_blocks[i].section_id;
514		size_t min_size = bdb_blocks[i].min_size;
515
516		if (section_id == BDB_LVDS_LFP_DATA)
517			min_size = lfp_data_min_size(i915);
518
519		init_bdb_block(i915, bdb, section_id, min_size);
520	}
521}
522
523static void
524fill_detail_timing_data(struct drm_display_mode *panel_fixed_mode,
525			const struct lvds_dvo_timing *dvo_timing)
526{
527	panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) |
528		dvo_timing->hactive_lo;
529	panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay +
530		((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo);
531	panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start +
532		((dvo_timing->hsync_pulse_width_hi << 8) |
533			dvo_timing->hsync_pulse_width_lo);
534	panel_fixed_mode->htotal = panel_fixed_mode->hdisplay +
535		((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo);
536
537	panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) |
538		dvo_timing->vactive_lo;
539	panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay +
540		((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo);
541	panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start +
542		((dvo_timing->vsync_pulse_width_hi << 4) |
543			dvo_timing->vsync_pulse_width_lo);
544	panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay +
545		((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo);
546	panel_fixed_mode->clock = dvo_timing->clock * 10;
547	panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
548
549	if (dvo_timing->hsync_positive)
550		panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
551	else
552		panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
553
554	if (dvo_timing->vsync_positive)
555		panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
556	else
557		panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
558
559	panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) |
560		dvo_timing->himage_lo;
561	panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) |
562		dvo_timing->vimage_lo;
563
564	/* Some VBTs have bogus h/vtotal values */
565	if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal)
566		panel_fixed_mode->htotal = panel_fixed_mode->hsync_end + 1;
567	if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal)
568		panel_fixed_mode->vtotal = panel_fixed_mode->vsync_end + 1;
569
570	drm_mode_set_name(panel_fixed_mode);
571}
572
573static const struct lvds_dvo_timing *
574get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *data,
575		    const struct bdb_lvds_lfp_data_ptrs *ptrs,
576		    int index)
577{
578	return (const void *)data + ptrs->ptr[index].dvo_timing.offset;
579}
580
581static const struct lvds_fp_timing *
582get_lvds_fp_timing(const struct bdb_lvds_lfp_data *data,
583		   const struct bdb_lvds_lfp_data_ptrs *ptrs,
584		   int index)
585{
586	return (const void *)data + ptrs->ptr[index].fp_timing.offset;
587}
588
589static const struct lvds_pnp_id *
590get_lvds_pnp_id(const struct bdb_lvds_lfp_data *data,
591		const struct bdb_lvds_lfp_data_ptrs *ptrs,
592		int index)
593{
594	return (const void *)data + ptrs->ptr[index].panel_pnp_id.offset;
595}
596
597static const struct bdb_lvds_lfp_data_tail *
598get_lfp_data_tail(const struct bdb_lvds_lfp_data *data,
599		  const struct bdb_lvds_lfp_data_ptrs *ptrs)
600{
601	if (ptrs->panel_name.table_size)
602		return (const void *)data + ptrs->panel_name.offset;
603	else
604		return NULL;
605}
606
607static void dump_pnp_id(struct drm_i915_private *i915,
608			const struct lvds_pnp_id *pnp_id,
609			const char *name)
610{
611	u16 mfg_name = be16_to_cpu((__force __be16)pnp_id->mfg_name);
612	char vend[4];
613
614	drm_dbg_kms(&i915->drm, "%s PNPID mfg: %s (0x%x), prod: %u, serial: %u, week: %d, year: %d\n",
615		    name, drm_edid_decode_mfg_id(mfg_name, vend),
616		    pnp_id->mfg_name, pnp_id->product_code, pnp_id->serial,
617		    pnp_id->mfg_week, pnp_id->mfg_year + 1990);
618}
619
620static int opregion_get_panel_type(struct drm_i915_private *i915,
621				   const struct intel_bios_encoder_data *devdata,
622				   const struct drm_edid *drm_edid, bool use_fallback)
623{
624	return intel_opregion_get_panel_type(i915);
625}
626
627static int vbt_get_panel_type(struct drm_i915_private *i915,
628			      const struct intel_bios_encoder_data *devdata,
629			      const struct drm_edid *drm_edid, bool use_fallback)
630{
631	const struct bdb_lvds_options *lvds_options;
632
633	lvds_options = bdb_find_section(i915, BDB_LVDS_OPTIONS);
634	if (!lvds_options)
635		return -1;
636
637	if (lvds_options->panel_type > 0xf &&
638	    lvds_options->panel_type != 0xff) {
639		drm_dbg_kms(&i915->drm, "Invalid VBT panel type 0x%x\n",
640			    lvds_options->panel_type);
641		return -1;
642	}
643
644	if (devdata && devdata->child.handle == DEVICE_HANDLE_LFP2)
645		return lvds_options->panel_type2;
646
647	drm_WARN_ON(&i915->drm, devdata && devdata->child.handle != DEVICE_HANDLE_LFP1);
648
649	return lvds_options->panel_type;
650}
651
652static int pnpid_get_panel_type(struct drm_i915_private *i915,
653				const struct intel_bios_encoder_data *devdata,
654				const struct drm_edid *drm_edid, bool use_fallback)
655{
656	const struct bdb_lvds_lfp_data *data;
657	const struct bdb_lvds_lfp_data_ptrs *ptrs;
658	const struct lvds_pnp_id *edid_id;
659	struct lvds_pnp_id edid_id_nodate;
660	const struct edid *edid = drm_edid_raw(drm_edid); /* FIXME */
661	int i, best = -1;
662
663	if (!edid)
664		return -1;
665
666	edid_id = (const void *)&edid->mfg_id[0];
667
668	edid_id_nodate = *edid_id;
669	edid_id_nodate.mfg_week = 0;
670	edid_id_nodate.mfg_year = 0;
671
672	dump_pnp_id(i915, edid_id, "EDID");
673
674	ptrs = bdb_find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
675	if (!ptrs)
676		return -1;
677
678	data = bdb_find_section(i915, BDB_LVDS_LFP_DATA);
679	if (!data)
680		return -1;
681
682	for (i = 0; i < 16; i++) {
683		const struct lvds_pnp_id *vbt_id =
684			get_lvds_pnp_id(data, ptrs, i);
685
686		/* full match? */
687		if (!memcmp(vbt_id, edid_id, sizeof(*vbt_id)))
688			return i;
689
690		/*
691		 * Accept a match w/o date if no full match is found,
692		 * and the VBT entry does not specify a date.
693		 */
694		if (best < 0 &&
695		    !memcmp(vbt_id, &edid_id_nodate, sizeof(*vbt_id)))
696			best = i;
697	}
698
699	return best;
700}
701
702static int fallback_get_panel_type(struct drm_i915_private *i915,
703				   const struct intel_bios_encoder_data *devdata,
704				   const struct drm_edid *drm_edid, bool use_fallback)
705{
706	return use_fallback ? 0 : -1;
707}
708
709enum panel_type {
710	PANEL_TYPE_OPREGION,
711	PANEL_TYPE_VBT,
712	PANEL_TYPE_PNPID,
713	PANEL_TYPE_FALLBACK,
714};
715
716static int get_panel_type(struct drm_i915_private *i915,
717			  const struct intel_bios_encoder_data *devdata,
718			  const struct drm_edid *drm_edid, bool use_fallback)
719{
720	struct {
721		const char *name;
722		int (*get_panel_type)(struct drm_i915_private *i915,
723				      const struct intel_bios_encoder_data *devdata,
724				      const struct drm_edid *drm_edid, bool use_fallback);
725		int panel_type;
726	} panel_types[] = {
727		[PANEL_TYPE_OPREGION] = {
728			.name = "OpRegion",
729			.get_panel_type = opregion_get_panel_type,
730		},
731		[PANEL_TYPE_VBT] = {
732			.name = "VBT",
733			.get_panel_type = vbt_get_panel_type,
734		},
735		[PANEL_TYPE_PNPID] = {
736			.name = "PNPID",
737			.get_panel_type = pnpid_get_panel_type,
738		},
739		[PANEL_TYPE_FALLBACK] = {
740			.name = "fallback",
741			.get_panel_type = fallback_get_panel_type,
742		},
743	};
744	int i;
745
746	for (i = 0; i < ARRAY_SIZE(panel_types); i++) {
747		panel_types[i].panel_type = panel_types[i].get_panel_type(i915, devdata,
748									  drm_edid, use_fallback);
749
750		drm_WARN_ON(&i915->drm, panel_types[i].panel_type > 0xf &&
751			    panel_types[i].panel_type != 0xff);
752
753		if (panel_types[i].panel_type >= 0)
754			drm_dbg_kms(&i915->drm, "Panel type (%s): %d\n",
755				    panel_types[i].name, panel_types[i].panel_type);
756	}
757
758	if (panel_types[PANEL_TYPE_OPREGION].panel_type >= 0)
759		i = PANEL_TYPE_OPREGION;
760	else if (panel_types[PANEL_TYPE_VBT].panel_type == 0xff &&
761		 panel_types[PANEL_TYPE_PNPID].panel_type >= 0)
762		i = PANEL_TYPE_PNPID;
763	else if (panel_types[PANEL_TYPE_VBT].panel_type != 0xff &&
764		 panel_types[PANEL_TYPE_VBT].panel_type >= 0)
765		i = PANEL_TYPE_VBT;
766	else
767		i = PANEL_TYPE_FALLBACK;
768
769	drm_dbg_kms(&i915->drm, "Selected panel type (%s): %d\n",
770		    panel_types[i].name, panel_types[i].panel_type);
771
772	return panel_types[i].panel_type;
773}
774
775static unsigned int panel_bits(unsigned int value, int panel_type, int num_bits)
776{
777	return (value >> (panel_type * num_bits)) & (BIT(num_bits) - 1);
778}
779
780static bool panel_bool(unsigned int value, int panel_type)
781{
782	return panel_bits(value, panel_type, 1);
783}
784
785/* Parse general panel options */
786static void
787parse_panel_options(struct drm_i915_private *i915,
788		    struct intel_panel *panel)
789{
790	const struct bdb_lvds_options *lvds_options;
791	int panel_type = panel->vbt.panel_type;
792	int drrs_mode;
793
794	lvds_options = bdb_find_section(i915, BDB_LVDS_OPTIONS);
795	if (!lvds_options)
796		return;
797
798	panel->vbt.lvds_dither = lvds_options->pixel_dither;
799
800	/*
801	 * Empirical evidence indicates the block size can be
802	 * either 4,14,16,24+ bytes. For older VBTs no clear
803	 * relationship between the block size vs. BDB version.
804	 */
805	if (get_blocksize(lvds_options) < 16)
806		return;
807
808	drrs_mode = panel_bits(lvds_options->dps_panel_type_bits,
809			       panel_type, 2);
810	/*
811	 * VBT has static DRRS = 0 and seamless DRRS = 2.
812	 * The below piece of code is required to adjust vbt.drrs_type
813	 * to match the enum drrs_support_type.
814	 */
815	switch (drrs_mode) {
816	case 0:
817		panel->vbt.drrs_type = DRRS_TYPE_STATIC;
818		drm_dbg_kms(&i915->drm, "DRRS supported mode is static\n");
819		break;
820	case 2:
821		panel->vbt.drrs_type = DRRS_TYPE_SEAMLESS;
822		drm_dbg_kms(&i915->drm,
823			    "DRRS supported mode is seamless\n");
824		break;
825	default:
826		panel->vbt.drrs_type = DRRS_TYPE_NONE;
827		drm_dbg_kms(&i915->drm,
828			    "DRRS not supported (VBT input)\n");
829		break;
830	}
831}
832
833static void
834parse_lfp_panel_dtd(struct drm_i915_private *i915,
835		    struct intel_panel *panel,
836		    const struct bdb_lvds_lfp_data *lvds_lfp_data,
837		    const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs)
838{
839	const struct lvds_dvo_timing *panel_dvo_timing;
840	const struct lvds_fp_timing *fp_timing;
841	struct drm_display_mode *panel_fixed_mode;
842	int panel_type = panel->vbt.panel_type;
843
844	panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data,
845					       lvds_lfp_data_ptrs,
846					       panel_type);
847
848	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
849	if (!panel_fixed_mode)
850		return;
851
852	fill_detail_timing_data(panel_fixed_mode, panel_dvo_timing);
853
854	panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
855
856	drm_dbg_kms(&i915->drm,
857		    "Found panel mode in BIOS VBT legacy lfp table: " DRM_MODE_FMT "\n",
858		    DRM_MODE_ARG(panel_fixed_mode));
859
860	fp_timing = get_lvds_fp_timing(lvds_lfp_data,
861				       lvds_lfp_data_ptrs,
862				       panel_type);
863
864	/* check the resolution, just to be sure */
865	if (fp_timing->x_res == panel_fixed_mode->hdisplay &&
866	    fp_timing->y_res == panel_fixed_mode->vdisplay) {
867		panel->vbt.bios_lvds_val = fp_timing->lvds_reg_val;
868		drm_dbg_kms(&i915->drm,
869			    "VBT initial LVDS value %x\n",
870			    panel->vbt.bios_lvds_val);
871	}
872}
873
874static void
875parse_lfp_data(struct drm_i915_private *i915,
876	       struct intel_panel *panel)
877{
878	const struct bdb_lvds_lfp_data *data;
879	const struct bdb_lvds_lfp_data_tail *tail;
880	const struct bdb_lvds_lfp_data_ptrs *ptrs;
881	const struct lvds_pnp_id *pnp_id;
882	int panel_type = panel->vbt.panel_type;
883
884	ptrs = bdb_find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
885	if (!ptrs)
886		return;
887
888	data = bdb_find_section(i915, BDB_LVDS_LFP_DATA);
889	if (!data)
890		return;
891
892	if (!panel->vbt.lfp_lvds_vbt_mode)
893		parse_lfp_panel_dtd(i915, panel, data, ptrs);
894
895	pnp_id = get_lvds_pnp_id(data, ptrs, panel_type);
896	dump_pnp_id(i915, pnp_id, "Panel");
897
898	tail = get_lfp_data_tail(data, ptrs);
899	if (!tail)
900		return;
901
902	drm_dbg_kms(&i915->drm, "Panel name: %.*s\n",
903		    (int)sizeof(tail->panel_name[0].name),
904		    tail->panel_name[panel_type].name);
905
906	if (i915->display.vbt.version >= 188) {
907		panel->vbt.seamless_drrs_min_refresh_rate =
908			tail->seamless_drrs_min_refresh_rate[panel_type];
909		drm_dbg_kms(&i915->drm,
910			    "Seamless DRRS min refresh rate: %d Hz\n",
911			    panel->vbt.seamless_drrs_min_refresh_rate);
912	}
913}
914
915static void
916parse_generic_dtd(struct drm_i915_private *i915,
917		  struct intel_panel *panel)
918{
919	const struct bdb_generic_dtd *generic_dtd;
920	const struct generic_dtd_entry *dtd;
921	struct drm_display_mode *panel_fixed_mode;
922	int num_dtd;
923
924	/*
925	 * Older VBTs provided DTD information for internal displays through
926	 * the "LFP panel tables" block (42).  As of VBT revision 229 the
927	 * DTD information should be provided via a newer "generic DTD"
928	 * block (58).  Just to be safe, we'll try the new generic DTD block
929	 * first on VBT >= 229, but still fall back to trying the old LFP
930	 * block if that fails.
931	 */
932	if (i915->display.vbt.version < 229)
933		return;
934
935	generic_dtd = bdb_find_section(i915, BDB_GENERIC_DTD);
936	if (!generic_dtd)
937		return;
938
939	if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) {
940		drm_err(&i915->drm, "GDTD size %u is too small.\n",
941			generic_dtd->gdtd_size);
942		return;
943	} else if (generic_dtd->gdtd_size !=
944		   sizeof(struct generic_dtd_entry)) {
945		drm_err(&i915->drm, "Unexpected GDTD size %u\n",
946			generic_dtd->gdtd_size);
947		/* DTD has unknown fields, but keep going */
948	}
949
950	num_dtd = (get_blocksize(generic_dtd) -
951		   sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size;
952	if (panel->vbt.panel_type >= num_dtd) {
953		drm_err(&i915->drm,
954			"Panel type %d not found in table of %d DTD's\n",
955			panel->vbt.panel_type, num_dtd);
956		return;
957	}
958
959	dtd = &generic_dtd->dtd[panel->vbt.panel_type];
960
961	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
962	if (!panel_fixed_mode)
963		return;
964
965	panel_fixed_mode->hdisplay = dtd->hactive;
966	panel_fixed_mode->hsync_start =
967		panel_fixed_mode->hdisplay + dtd->hfront_porch;
968	panel_fixed_mode->hsync_end =
969		panel_fixed_mode->hsync_start + dtd->hsync;
970	panel_fixed_mode->htotal =
971		panel_fixed_mode->hdisplay + dtd->hblank;
972
973	panel_fixed_mode->vdisplay = dtd->vactive;
974	panel_fixed_mode->vsync_start =
975		panel_fixed_mode->vdisplay + dtd->vfront_porch;
976	panel_fixed_mode->vsync_end =
977		panel_fixed_mode->vsync_start + dtd->vsync;
978	panel_fixed_mode->vtotal =
979		panel_fixed_mode->vdisplay + dtd->vblank;
980
981	panel_fixed_mode->clock = dtd->pixel_clock;
982	panel_fixed_mode->width_mm = dtd->width_mm;
983	panel_fixed_mode->height_mm = dtd->height_mm;
984
985	panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
986	drm_mode_set_name(panel_fixed_mode);
987
988	if (dtd->hsync_positive_polarity)
989		panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
990	else
991		panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
992
993	if (dtd->vsync_positive_polarity)
994		panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
995	else
996		panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
997
998	drm_dbg_kms(&i915->drm,
999		    "Found panel mode in BIOS VBT generic dtd table: " DRM_MODE_FMT "\n",
1000		    DRM_MODE_ARG(panel_fixed_mode));
1001
1002	panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
1003}
1004
1005static void
1006parse_lfp_backlight(struct drm_i915_private *i915,
1007		    struct intel_panel *panel)
1008{
1009	const struct bdb_lfp_backlight_data *backlight_data;
1010	const struct lfp_backlight_data_entry *entry;
1011	int panel_type = panel->vbt.panel_type;
1012	u16 level;
1013
1014	backlight_data = bdb_find_section(i915, BDB_LVDS_BACKLIGHT);
1015	if (!backlight_data)
1016		return;
1017
1018	if (backlight_data->entry_size != sizeof(backlight_data->data[0])) {
1019		drm_dbg_kms(&i915->drm,
1020			    "Unsupported backlight data entry size %u\n",
1021			    backlight_data->entry_size);
1022		return;
1023	}
1024
1025	entry = &backlight_data->data[panel_type];
1026
1027	panel->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM;
1028	if (!panel->vbt.backlight.present) {
1029		drm_dbg_kms(&i915->drm,
1030			    "PWM backlight not present in VBT (type %u)\n",
1031			    entry->type);
1032		return;
1033	}
1034
1035	panel->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI;
1036	panel->vbt.backlight.controller = 0;
1037	if (i915->display.vbt.version >= 191) {
1038		size_t exp_size;
1039
1040		if (i915->display.vbt.version >= 236)
1041			exp_size = sizeof(struct bdb_lfp_backlight_data);
1042		else if (i915->display.vbt.version >= 234)
1043			exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_234;
1044		else
1045			exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_191;
1046
1047		if (get_blocksize(backlight_data) >= exp_size) {
1048			const struct lfp_backlight_control_method *method;
1049
1050			method = &backlight_data->backlight_control[panel_type];
1051			panel->vbt.backlight.type = method->type;
1052			panel->vbt.backlight.controller = method->controller;
1053		}
1054	}
1055
1056	panel->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz;
1057	panel->vbt.backlight.active_low_pwm = entry->active_low_pwm;
1058
1059	if (i915->display.vbt.version >= 234) {
1060		u16 min_level;
1061		bool scale;
1062
1063		level = backlight_data->brightness_level[panel_type].level;
1064		min_level = backlight_data->brightness_min_level[panel_type].level;
1065
1066		if (i915->display.vbt.version >= 236)
1067			scale = backlight_data->brightness_precision_bits[panel_type] == 16;
1068		else
1069			scale = level > 255;
1070
1071		if (scale)
1072			min_level = min_level / 255;
1073
1074		if (min_level > 255) {
1075			drm_warn(&i915->drm, "Brightness min level > 255\n");
1076			level = 255;
1077		}
1078		panel->vbt.backlight.min_brightness = min_level;
1079
1080		panel->vbt.backlight.brightness_precision_bits =
1081			backlight_data->brightness_precision_bits[panel_type];
1082	} else {
1083		level = backlight_data->level[panel_type];
1084		panel->vbt.backlight.min_brightness = entry->min_brightness;
1085	}
1086
1087	if (i915->display.vbt.version >= 239)
1088		panel->vbt.backlight.hdr_dpcd_refresh_timeout =
1089			DIV_ROUND_UP(backlight_data->hdr_dpcd_refresh_timeout[panel_type], 100);
1090	else
1091		panel->vbt.backlight.hdr_dpcd_refresh_timeout = 30;
1092
1093	drm_dbg_kms(&i915->drm,
1094		    "VBT backlight PWM modulation frequency %u Hz, "
1095		    "active %s, min brightness %u, level %u, controller %u\n",
1096		    panel->vbt.backlight.pwm_freq_hz,
1097		    panel->vbt.backlight.active_low_pwm ? "low" : "high",
1098		    panel->vbt.backlight.min_brightness,
1099		    level,
1100		    panel->vbt.backlight.controller);
1101}
1102
1103/* Try to find sdvo panel data */
1104static void
1105parse_sdvo_panel_data(struct drm_i915_private *i915,
1106		      struct intel_panel *panel)
1107{
1108	const struct bdb_sdvo_panel_dtds *dtds;
1109	struct drm_display_mode *panel_fixed_mode;
1110	int index;
1111
1112	index = i915->params.vbt_sdvo_panel_type;
1113	if (index == -2) {
1114		drm_dbg_kms(&i915->drm,
1115			    "Ignore SDVO panel mode from BIOS VBT tables.\n");
1116		return;
1117	}
1118
1119	if (index == -1) {
1120		const struct bdb_sdvo_lvds_options *sdvo_lvds_options;
1121
1122		sdvo_lvds_options = bdb_find_section(i915, BDB_SDVO_LVDS_OPTIONS);
1123		if (!sdvo_lvds_options)
1124			return;
1125
1126		index = sdvo_lvds_options->panel_type;
1127	}
1128
1129	dtds = bdb_find_section(i915, BDB_SDVO_PANEL_DTDS);
1130	if (!dtds)
1131		return;
1132
1133	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
1134	if (!panel_fixed_mode)
1135		return;
1136
1137	fill_detail_timing_data(panel_fixed_mode, &dtds->dtds[index]);
1138
1139	panel->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode;
1140
1141	drm_dbg_kms(&i915->drm,
1142		    "Found SDVO panel mode in BIOS VBT tables: " DRM_MODE_FMT "\n",
1143		    DRM_MODE_ARG(panel_fixed_mode));
1144}
1145
1146static int intel_bios_ssc_frequency(struct drm_i915_private *i915,
1147				    bool alternate)
1148{
1149	switch (DISPLAY_VER(i915)) {
1150	case 2:
1151		return alternate ? 66667 : 48000;
1152	case 3:
1153	case 4:
1154		return alternate ? 100000 : 96000;
1155	default:
1156		return alternate ? 100000 : 120000;
1157	}
1158}
1159
1160static void
1161parse_general_features(struct drm_i915_private *i915)
1162{
1163	const struct bdb_general_features *general;
1164
1165	general = bdb_find_section(i915, BDB_GENERAL_FEATURES);
1166	if (!general)
1167		return;
1168
1169	i915->display.vbt.int_tv_support = general->int_tv_support;
1170	/* int_crt_support can't be trusted on earlier platforms */
1171	if (i915->display.vbt.version >= 155 &&
1172	    (HAS_DDI(i915) || IS_VALLEYVIEW(i915)))
1173		i915->display.vbt.int_crt_support = general->int_crt_support;
1174	i915->display.vbt.lvds_use_ssc = general->enable_ssc;
1175	i915->display.vbt.lvds_ssc_freq =
1176		intel_bios_ssc_frequency(i915, general->ssc_freq);
1177	i915->display.vbt.display_clock_mode = general->display_clock_mode;
1178	i915->display.vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted;
1179	if (i915->display.vbt.version >= 181) {
1180		i915->display.vbt.orientation = general->rotate_180 ?
1181			DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP :
1182			DRM_MODE_PANEL_ORIENTATION_NORMAL;
1183	} else {
1184		i915->display.vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1185	}
1186
1187	if (i915->display.vbt.version >= 249 && general->afc_startup_config) {
1188		i915->display.vbt.override_afc_startup = true;
1189		i915->display.vbt.override_afc_startup_val = general->afc_startup_config == 0x1 ? 0x0 : 0x7;
1190	}
1191
1192	drm_dbg_kms(&i915->drm,
1193		    "BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n",
1194		    i915->display.vbt.int_tv_support,
1195		    i915->display.vbt.int_crt_support,
1196		    i915->display.vbt.lvds_use_ssc,
1197		    i915->display.vbt.lvds_ssc_freq,
1198		    i915->display.vbt.display_clock_mode,
1199		    i915->display.vbt.fdi_rx_polarity_inverted);
1200}
1201
1202static const struct child_device_config *
1203child_device_ptr(const struct bdb_general_definitions *defs, int i)
1204{
1205	return (const void *) &defs->devices[i * defs->child_dev_size];
1206}
1207
1208static void
1209parse_sdvo_device_mapping(struct drm_i915_private *i915)
1210{
1211	const struct intel_bios_encoder_data *devdata;
1212	int count = 0;
1213
1214	/*
1215	 * Only parse SDVO mappings on gens that could have SDVO. This isn't
1216	 * accurate and doesn't have to be, as long as it's not too strict.
1217	 */
1218	if (!IS_DISPLAY_VER(i915, 3, 7)) {
1219		drm_dbg_kms(&i915->drm, "Skipping SDVO device mapping\n");
1220		return;
1221	}
1222
1223	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
1224		const struct child_device_config *child = &devdata->child;
1225		struct sdvo_device_mapping *mapping;
1226
1227		if (child->slave_addr != SLAVE_ADDR1 &&
1228		    child->slave_addr != SLAVE_ADDR2) {
1229			/*
1230			 * If the slave address is neither 0x70 nor 0x72,
1231			 * it is not a SDVO device. Skip it.
1232			 */
1233			continue;
1234		}
1235		if (child->dvo_port != DEVICE_PORT_DVOB &&
1236		    child->dvo_port != DEVICE_PORT_DVOC) {
1237			/* skip the incorrect SDVO port */
1238			drm_dbg_kms(&i915->drm,
1239				    "Incorrect SDVO port. Skip it\n");
1240			continue;
1241		}
1242		drm_dbg_kms(&i915->drm,
1243			    "the SDVO device with slave addr %2x is found on"
1244			    " %s port\n",
1245			    child->slave_addr,
1246			    (child->dvo_port == DEVICE_PORT_DVOB) ?
1247			    "SDVOB" : "SDVOC");
1248		mapping = &i915->display.vbt.sdvo_mappings[child->dvo_port - 1];
1249		if (!mapping->initialized) {
1250			mapping->dvo_port = child->dvo_port;
1251			mapping->slave_addr = child->slave_addr;
1252			mapping->dvo_wiring = child->dvo_wiring;
1253			mapping->ddc_pin = child->ddc_pin;
1254			mapping->i2c_pin = child->i2c_pin;
1255			mapping->initialized = 1;
1256			drm_dbg_kms(&i915->drm,
1257				    "SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n",
1258				    mapping->dvo_port, mapping->slave_addr,
1259				    mapping->dvo_wiring, mapping->ddc_pin,
1260				    mapping->i2c_pin);
1261		} else {
1262			drm_dbg_kms(&i915->drm,
1263				    "Maybe one SDVO port is shared by "
1264				    "two SDVO device.\n");
1265		}
1266		if (child->slave2_addr) {
1267			/* Maybe this is a SDVO device with multiple inputs */
1268			/* And the mapping info is not added */
1269			drm_dbg_kms(&i915->drm,
1270				    "there exists the slave2_addr. Maybe this"
1271				    " is a SDVO device with multiple inputs.\n");
1272		}
1273		count++;
1274	}
1275
1276	if (!count) {
1277		/* No SDVO device info is found */
1278		drm_dbg_kms(&i915->drm,
1279			    "No SDVO device info is found in VBT\n");
1280	}
1281}
1282
1283static void
1284parse_driver_features(struct drm_i915_private *i915)
1285{
1286	const struct bdb_driver_features *driver;
1287
1288	driver = bdb_find_section(i915, BDB_DRIVER_FEATURES);
1289	if (!driver)
1290		return;
1291
1292	if (DISPLAY_VER(i915) >= 5) {
1293		/*
1294		 * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS
1295		 * to mean "eDP". The VBT spec doesn't agree with that
1296		 * interpretation, but real world VBTs seem to.
1297		 */
1298		if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS)
1299			i915->display.vbt.int_lvds_support = 0;
1300	} else {
1301		/*
1302		 * FIXME it's not clear which BDB version has the LVDS config
1303		 * bits defined. Revision history in the VBT spec says:
1304		 * "0.92 | Add two definitions for VBT value of LVDS Active
1305		 *  Config (00b and 11b values defined) | 06/13/2005"
1306		 * but does not the specify the BDB version.
1307		 *
1308		 * So far version 134 (on i945gm) is the oldest VBT observed
1309		 * in the wild with the bits correctly populated. Version
1310		 * 108 (on i85x) does not have the bits correctly populated.
1311		 */
1312		if (i915->display.vbt.version >= 134 &&
1313		    driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS &&
1314		    driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS)
1315			i915->display.vbt.int_lvds_support = 0;
1316	}
1317}
1318
1319static void
1320parse_panel_driver_features(struct drm_i915_private *i915,
1321			    struct intel_panel *panel)
1322{
1323	const struct bdb_driver_features *driver;
1324
1325	driver = bdb_find_section(i915, BDB_DRIVER_FEATURES);
1326	if (!driver)
1327		return;
1328
1329	if (i915->display.vbt.version < 228) {
1330		drm_dbg_kms(&i915->drm, "DRRS State Enabled:%d\n",
1331			    driver->drrs_enabled);
1332		/*
1333		 * If DRRS is not supported, drrs_type has to be set to 0.
1334		 * This is because, VBT is configured in such a way that
1335		 * static DRRS is 0 and DRRS not supported is represented by
1336		 * driver->drrs_enabled=false
1337		 */
1338		if (!driver->drrs_enabled && panel->vbt.drrs_type != DRRS_TYPE_NONE) {
1339			/*
1340			 * FIXME Should DMRRS perhaps be treated as seamless
1341			 * but without the automatic downclocking?
1342			 */
1343			if (driver->dmrrs_enabled)
1344				panel->vbt.drrs_type = DRRS_TYPE_STATIC;
1345			else
1346				panel->vbt.drrs_type = DRRS_TYPE_NONE;
1347		}
1348
1349		panel->vbt.psr.enable = driver->psr_enabled;
1350	}
1351}
1352
1353static void
1354parse_power_conservation_features(struct drm_i915_private *i915,
1355				  struct intel_panel *panel)
1356{
1357	const struct bdb_lfp_power *power;
1358	u8 panel_type = panel->vbt.panel_type;
1359
1360	panel->vbt.vrr = true; /* matches Windows behaviour */
1361
1362	if (i915->display.vbt.version < 228)
1363		return;
1364
1365	power = bdb_find_section(i915, BDB_LFP_POWER);
1366	if (!power)
1367		return;
1368
1369	panel->vbt.psr.enable = panel_bool(power->psr, panel_type);
1370
1371	/*
1372	 * If DRRS is not supported, drrs_type has to be set to 0.
1373	 * This is because, VBT is configured in such a way that
1374	 * static DRRS is 0 and DRRS not supported is represented by
1375	 * power->drrs & BIT(panel_type)=false
1376	 */
1377	if (!panel_bool(power->drrs, panel_type) && panel->vbt.drrs_type != DRRS_TYPE_NONE) {
1378		/*
1379		 * FIXME Should DMRRS perhaps be treated as seamless
1380		 * but without the automatic downclocking?
1381		 */
1382		if (panel_bool(power->dmrrs, panel_type))
1383			panel->vbt.drrs_type = DRRS_TYPE_STATIC;
1384		else
1385			panel->vbt.drrs_type = DRRS_TYPE_NONE;
1386	}
1387
1388	if (i915->display.vbt.version >= 232)
1389		panel->vbt.edp.hobl = panel_bool(power->hobl, panel_type);
1390
1391	if (i915->display.vbt.version >= 233)
1392		panel->vbt.vrr = panel_bool(power->vrr_feature_enabled,
1393					    panel_type);
1394}
1395
1396static void
1397parse_edp(struct drm_i915_private *i915,
1398	  struct intel_panel *panel)
1399{
1400	const struct bdb_edp *edp;
1401	const struct edp_power_seq *edp_pps;
1402	const struct edp_fast_link_params *edp_link_params;
1403	int panel_type = panel->vbt.panel_type;
1404
1405	edp = bdb_find_section(i915, BDB_EDP);
1406	if (!edp)
1407		return;
1408
1409	switch (panel_bits(edp->color_depth, panel_type, 2)) {
1410	case EDP_18BPP:
1411		panel->vbt.edp.bpp = 18;
1412		break;
1413	case EDP_24BPP:
1414		panel->vbt.edp.bpp = 24;
1415		break;
1416	case EDP_30BPP:
1417		panel->vbt.edp.bpp = 30;
1418		break;
1419	}
1420
1421	/* Get the eDP sequencing and link info */
1422	edp_pps = &edp->power_seqs[panel_type];
1423	edp_link_params = &edp->fast_link_params[panel_type];
1424
1425	panel->vbt.edp.pps = *edp_pps;
1426
1427	if (i915->display.vbt.version >= 224) {
1428		panel->vbt.edp.rate =
1429			edp->edp_fast_link_training_rate[panel_type] * 20;
1430	} else {
1431		switch (edp_link_params->rate) {
1432		case EDP_RATE_1_62:
1433			panel->vbt.edp.rate = 162000;
1434			break;
1435		case EDP_RATE_2_7:
1436			panel->vbt.edp.rate = 270000;
1437			break;
1438		case EDP_RATE_5_4:
1439			panel->vbt.edp.rate = 540000;
1440			break;
1441		default:
1442			drm_dbg_kms(&i915->drm,
1443				    "VBT has unknown eDP link rate value %u\n",
1444				    edp_link_params->rate);
1445			break;
1446		}
1447	}
1448
1449	switch (edp_link_params->lanes) {
1450	case EDP_LANE_1:
1451		panel->vbt.edp.lanes = 1;
1452		break;
1453	case EDP_LANE_2:
1454		panel->vbt.edp.lanes = 2;
1455		break;
1456	case EDP_LANE_4:
1457		panel->vbt.edp.lanes = 4;
1458		break;
1459	default:
1460		drm_dbg_kms(&i915->drm,
1461			    "VBT has unknown eDP lane count value %u\n",
1462			    edp_link_params->lanes);
1463		break;
1464	}
1465
1466	switch (edp_link_params->preemphasis) {
1467	case EDP_PREEMPHASIS_NONE:
1468		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0;
1469		break;
1470	case EDP_PREEMPHASIS_3_5dB:
1471		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1;
1472		break;
1473	case EDP_PREEMPHASIS_6dB:
1474		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2;
1475		break;
1476	case EDP_PREEMPHASIS_9_5dB:
1477		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3;
1478		break;
1479	default:
1480		drm_dbg_kms(&i915->drm,
1481			    "VBT has unknown eDP pre-emphasis value %u\n",
1482			    edp_link_params->preemphasis);
1483		break;
1484	}
1485
1486	switch (edp_link_params->vswing) {
1487	case EDP_VSWING_0_4V:
1488		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
1489		break;
1490	case EDP_VSWING_0_6V:
1491		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1;
1492		break;
1493	case EDP_VSWING_0_8V:
1494		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
1495		break;
1496	case EDP_VSWING_1_2V:
1497		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
1498		break;
1499	default:
1500		drm_dbg_kms(&i915->drm,
1501			    "VBT has unknown eDP voltage swing value %u\n",
1502			    edp_link_params->vswing);
1503		break;
1504	}
1505
1506	if (i915->display.vbt.version >= 173) {
1507		u8 vswing;
1508
1509		/* Don't read from VBT if module parameter has valid value*/
1510		if (i915->params.edp_vswing) {
1511			panel->vbt.edp.low_vswing =
1512				i915->params.edp_vswing == 1;
1513		} else {
1514			vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF;
1515			panel->vbt.edp.low_vswing = vswing == 0;
1516		}
1517	}
1518
1519	panel->vbt.edp.drrs_msa_timing_delay =
1520		panel_bits(edp->sdrrs_msa_timing_delay, panel_type, 2);
1521
1522	if (i915->display.vbt.version >= 244)
1523		panel->vbt.edp.max_link_rate =
1524			edp->edp_max_port_link_rate[panel_type] * 20;
1525}
1526
1527static void
1528parse_psr(struct drm_i915_private *i915,
1529	  struct intel_panel *panel)
1530{
1531	const struct bdb_psr *psr;
1532	const struct psr_table *psr_table;
1533	int panel_type = panel->vbt.panel_type;
1534
1535	psr = bdb_find_section(i915, BDB_PSR);
1536	if (!psr) {
1537		drm_dbg_kms(&i915->drm, "No PSR BDB found.\n");
1538		return;
1539	}
1540
1541	psr_table = &psr->psr_table[panel_type];
1542
1543	panel->vbt.psr.full_link = psr_table->full_link;
1544	panel->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup;
1545
1546	/* Allowed VBT values goes from 0 to 15 */
1547	panel->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 :
1548		psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames;
1549
1550	/*
1551	 * New psr options 0=500us, 1=100us, 2=2500us, 3=0us
1552	 * Old decimal value is wake up time in multiples of 100 us.
1553	 */
1554	if (i915->display.vbt.version >= 205 &&
1555	    (DISPLAY_VER(i915) >= 9 && !IS_BROXTON(i915))) {
1556		switch (psr_table->tp1_wakeup_time) {
1557		case 0:
1558			panel->vbt.psr.tp1_wakeup_time_us = 500;
1559			break;
1560		case 1:
1561			panel->vbt.psr.tp1_wakeup_time_us = 100;
1562			break;
1563		case 3:
1564			panel->vbt.psr.tp1_wakeup_time_us = 0;
1565			break;
1566		default:
1567			drm_dbg_kms(&i915->drm,
1568				    "VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
1569				    psr_table->tp1_wakeup_time);
1570			fallthrough;
1571		case 2:
1572			panel->vbt.psr.tp1_wakeup_time_us = 2500;
1573			break;
1574		}
1575
1576		switch (psr_table->tp2_tp3_wakeup_time) {
1577		case 0:
1578			panel->vbt.psr.tp2_tp3_wakeup_time_us = 500;
1579			break;
1580		case 1:
1581			panel->vbt.psr.tp2_tp3_wakeup_time_us = 100;
1582			break;
1583		case 3:
1584			panel->vbt.psr.tp2_tp3_wakeup_time_us = 0;
1585			break;
1586		default:
1587			drm_dbg_kms(&i915->drm,
1588				    "VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
1589				    psr_table->tp2_tp3_wakeup_time);
1590			fallthrough;
1591		case 2:
1592			panel->vbt.psr.tp2_tp3_wakeup_time_us = 2500;
1593		break;
1594		}
1595	} else {
1596		panel->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100;
1597		panel->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100;
1598	}
1599
1600	if (i915->display.vbt.version >= 226) {
1601		u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time;
1602
1603		wakeup_time = panel_bits(wakeup_time, panel_type, 2);
1604		switch (wakeup_time) {
1605		case 0:
1606			wakeup_time = 500;
1607			break;
1608		case 1:
1609			wakeup_time = 100;
1610			break;
1611		case 3:
1612			wakeup_time = 50;
1613			break;
1614		default:
1615		case 2:
1616			wakeup_time = 2500;
1617			break;
1618		}
1619		panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time;
1620	} else {
1621		/* Reusing PSR1 wakeup time for PSR2 in older VBTs */
1622		panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = panel->vbt.psr.tp2_tp3_wakeup_time_us;
1623	}
1624}
1625
1626static void parse_dsi_backlight_ports(struct drm_i915_private *i915,
1627				      struct intel_panel *panel,
1628				      enum port port)
1629{
1630	enum port port_bc = DISPLAY_VER(i915) >= 11 ? PORT_B : PORT_C;
1631
1632	if (!panel->vbt.dsi.config->dual_link || i915->display.vbt.version < 197) {
1633		panel->vbt.dsi.bl_ports = BIT(port);
1634		if (panel->vbt.dsi.config->cabc_supported)
1635			panel->vbt.dsi.cabc_ports = BIT(port);
1636
1637		return;
1638	}
1639
1640	switch (panel->vbt.dsi.config->dl_dcs_backlight_ports) {
1641	case DL_DCS_PORT_A:
1642		panel->vbt.dsi.bl_ports = BIT(PORT_A);
1643		break;
1644	case DL_DCS_PORT_C:
1645		panel->vbt.dsi.bl_ports = BIT(port_bc);
1646		break;
1647	default:
1648	case DL_DCS_PORT_A_AND_C:
1649		panel->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(port_bc);
1650		break;
1651	}
1652
1653	if (!panel->vbt.dsi.config->cabc_supported)
1654		return;
1655
1656	switch (panel->vbt.dsi.config->dl_dcs_cabc_ports) {
1657	case DL_DCS_PORT_A:
1658		panel->vbt.dsi.cabc_ports = BIT(PORT_A);
1659		break;
1660	case DL_DCS_PORT_C:
1661		panel->vbt.dsi.cabc_ports = BIT(port_bc);
1662		break;
1663	default:
1664	case DL_DCS_PORT_A_AND_C:
1665		panel->vbt.dsi.cabc_ports =
1666					BIT(PORT_A) | BIT(port_bc);
1667		break;
1668	}
1669}
1670
1671static void
1672parse_mipi_config(struct drm_i915_private *i915,
1673		  struct intel_panel *panel)
1674{
1675	const struct bdb_mipi_config *start;
1676	const struct mipi_config *config;
1677	const struct mipi_pps_data *pps;
1678	int panel_type = panel->vbt.panel_type;
1679	enum port port;
1680
1681	/* parse MIPI blocks only if LFP type is MIPI */
1682	if (!intel_bios_is_dsi_present(i915, &port))
1683		return;
1684
1685	/* Initialize this to undefined indicating no generic MIPI support */
1686	panel->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID;
1687
1688	/* Block #40 is already parsed and panel_fixed_mode is
1689	 * stored in i915->lfp_lvds_vbt_mode
1690	 * resuse this when needed
1691	 */
1692
1693	/* Parse #52 for panel index used from panel_type already
1694	 * parsed
1695	 */
1696	start = bdb_find_section(i915, BDB_MIPI_CONFIG);
1697	if (!start) {
1698		drm_dbg_kms(&i915->drm, "No MIPI config BDB found");
1699		return;
1700	}
1701
1702	drm_dbg(&i915->drm, "Found MIPI Config block, panel index = %d\n",
1703		panel_type);
1704
1705	/*
1706	 * get hold of the correct configuration block and pps data as per
1707	 * the panel_type as index
1708	 */
1709	config = &start->config[panel_type];
1710	pps = &start->pps[panel_type];
1711
1712	/* store as of now full data. Trim when we realise all is not needed */
1713	panel->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL);
1714	if (!panel->vbt.dsi.config)
1715		return;
1716
1717	panel->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL);
1718	if (!panel->vbt.dsi.pps) {
1719		kfree(panel->vbt.dsi.config);
1720		return;
1721	}
1722
1723	parse_dsi_backlight_ports(i915, panel, port);
1724
1725	/* FIXME is the 90 vs. 270 correct? */
1726	switch (config->rotation) {
1727	case ENABLE_ROTATION_0:
1728		/*
1729		 * Most (all?) VBTs claim 0 degrees despite having
1730		 * an upside down panel, thus we do not trust this.
1731		 */
1732		panel->vbt.dsi.orientation =
1733			DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1734		break;
1735	case ENABLE_ROTATION_90:
1736		panel->vbt.dsi.orientation =
1737			DRM_MODE_PANEL_ORIENTATION_RIGHT_UP;
1738		break;
1739	case ENABLE_ROTATION_180:
1740		panel->vbt.dsi.orientation =
1741			DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP;
1742		break;
1743	case ENABLE_ROTATION_270:
1744		panel->vbt.dsi.orientation =
1745			DRM_MODE_PANEL_ORIENTATION_LEFT_UP;
1746		break;
1747	}
1748
1749	/* We have mandatory mipi config blocks. Initialize as generic panel */
1750	panel->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID;
1751}
1752
1753/* Find the sequence block and size for the given panel. */
1754static const u8 *
1755find_panel_sequence_block(const struct bdb_mipi_sequence *sequence,
1756			  u16 panel_id, u32 *seq_size)
1757{
1758	u32 total = get_blocksize(sequence);
1759	const u8 *data = &sequence->data[0];
1760	u8 current_id;
1761	u32 current_size;
1762	int header_size = sequence->version >= 3 ? 5 : 3;
1763	int index = 0;
1764	int i;
1765
1766	/* skip new block size */
1767	if (sequence->version >= 3)
1768		data += 4;
1769
1770	for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) {
1771		if (index + header_size > total) {
1772			DRM_ERROR("Invalid sequence block (header)\n");
1773			return NULL;
1774		}
1775
1776		current_id = *(data + index);
1777		if (sequence->version >= 3)
1778			current_size = *((const u32 *)(data + index + 1));
1779		else
1780			current_size = *((const u16 *)(data + index + 1));
1781
1782		index += header_size;
1783
1784		if (index + current_size > total) {
1785			DRM_ERROR("Invalid sequence block\n");
1786			return NULL;
1787		}
1788
1789		if (current_id == panel_id) {
1790			*seq_size = current_size;
1791			return data + index;
1792		}
1793
1794		index += current_size;
1795	}
1796
1797	DRM_ERROR("Sequence block detected but no valid configuration\n");
1798
1799	return NULL;
1800}
1801
1802static int goto_next_sequence(const u8 *data, int index, int total)
1803{
1804	u16 len;
1805
1806	/* Skip Sequence Byte. */
1807	for (index = index + 1; index < total; index += len) {
1808		u8 operation_byte = *(data + index);
1809		index++;
1810
1811		switch (operation_byte) {
1812		case MIPI_SEQ_ELEM_END:
1813			return index;
1814		case MIPI_SEQ_ELEM_SEND_PKT:
1815			if (index + 4 > total)
1816				return 0;
1817
1818			len = *((const u16 *)(data + index + 2)) + 4;
1819			break;
1820		case MIPI_SEQ_ELEM_DELAY:
1821			len = 4;
1822			break;
1823		case MIPI_SEQ_ELEM_GPIO:
1824			len = 2;
1825			break;
1826		case MIPI_SEQ_ELEM_I2C:
1827			if (index + 7 > total)
1828				return 0;
1829			len = *(data + index + 6) + 7;
1830			break;
1831		default:
1832			DRM_ERROR("Unknown operation byte\n");
1833			return 0;
1834		}
1835	}
1836
1837	return 0;
1838}
1839
1840static int goto_next_sequence_v3(const u8 *data, int index, int total)
1841{
1842	int seq_end;
1843	u16 len;
1844	u32 size_of_sequence;
1845
1846	/*
1847	 * Could skip sequence based on Size of Sequence alone, but also do some
1848	 * checking on the structure.
1849	 */
1850	if (total < 5) {
1851		DRM_ERROR("Too small sequence size\n");
1852		return 0;
1853	}
1854
1855	/* Skip Sequence Byte. */
1856	index++;
1857
1858	/*
1859	 * Size of Sequence. Excludes the Sequence Byte and the size itself,
1860	 * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END
1861	 * byte.
1862	 */
1863	size_of_sequence = *((const u32 *)(data + index));
1864	index += 4;
1865
1866	seq_end = index + size_of_sequence;
1867	if (seq_end > total) {
1868		DRM_ERROR("Invalid sequence size\n");
1869		return 0;
1870	}
1871
1872	for (; index < total; index += len) {
1873		u8 operation_byte = *(data + index);
1874		index++;
1875
1876		if (operation_byte == MIPI_SEQ_ELEM_END) {
1877			if (index != seq_end) {
1878				DRM_ERROR("Invalid element structure\n");
1879				return 0;
1880			}
1881			return index;
1882		}
1883
1884		len = *(data + index);
1885		index++;
1886
1887		/*
1888		 * FIXME: Would be nice to check elements like for v1/v2 in
1889		 * goto_next_sequence() above.
1890		 */
1891		switch (operation_byte) {
1892		case MIPI_SEQ_ELEM_SEND_PKT:
1893		case MIPI_SEQ_ELEM_DELAY:
1894		case MIPI_SEQ_ELEM_GPIO:
1895		case MIPI_SEQ_ELEM_I2C:
1896		case MIPI_SEQ_ELEM_SPI:
1897		case MIPI_SEQ_ELEM_PMIC:
1898			break;
1899		default:
1900			DRM_ERROR("Unknown operation byte %u\n",
1901				  operation_byte);
1902			break;
1903		}
1904	}
1905
1906	return 0;
1907}
1908
1909/*
1910 * Get len of pre-fixed deassert fragment from a v1 init OTP sequence,
1911 * skip all delay + gpio operands and stop at the first DSI packet op.
1912 */
1913static int get_init_otp_deassert_fragment_len(struct drm_i915_private *i915,
1914					      struct intel_panel *panel)
1915{
1916	const u8 *data = panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1917	int index, len;
1918
1919	if (drm_WARN_ON(&i915->drm,
1920			!data || panel->vbt.dsi.seq_version != 1))
1921		return 0;
1922
1923	/* index = 1 to skip sequence byte */
1924	for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) {
1925		switch (data[index]) {
1926		case MIPI_SEQ_ELEM_SEND_PKT:
1927			return index == 1 ? 0 : index;
1928		case MIPI_SEQ_ELEM_DELAY:
1929			len = 5; /* 1 byte for operand + uint32 */
1930			break;
1931		case MIPI_SEQ_ELEM_GPIO:
1932			len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */
1933			break;
1934		default:
1935			return 0;
1936		}
1937	}
1938
1939	return 0;
1940}
1941
1942/*
1943 * Some v1 VBT MIPI sequences do the deassert in the init OTP sequence.
1944 * The deassert must be done before calling intel_dsi_device_ready, so for
1945 * these devices we split the init OTP sequence into a deassert sequence and
1946 * the actual init OTP part.
1947 */
1948static void fixup_mipi_sequences(struct drm_i915_private *i915,
1949				 struct intel_panel *panel)
1950{
1951	u8 *init_otp;
1952	int len;
1953
1954	/* Limit this to VLV for now. */
1955	if (!IS_VALLEYVIEW(i915))
1956		return;
1957
1958	/* Limit this to v1 vid-mode sequences */
1959	if (panel->vbt.dsi.config->is_cmd_mode ||
1960	    panel->vbt.dsi.seq_version != 1)
1961		return;
1962
1963	/* Only do this if there are otp and assert seqs and no deassert seq */
1964	if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] ||
1965	    !panel->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] ||
1966	    panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET])
1967		return;
1968
1969	/* The deassert-sequence ends at the first DSI packet */
1970	len = get_init_otp_deassert_fragment_len(i915, panel);
1971	if (!len)
1972		return;
1973
1974	drm_dbg_kms(&i915->drm,
1975		    "Using init OTP fragment to deassert reset\n");
1976
1977	/* Copy the fragment, update seq byte and terminate it */
1978	init_otp = (u8 *)panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1979	panel->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL);
1980	if (!panel->vbt.dsi.deassert_seq)
1981		return;
1982	panel->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET;
1983	panel->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END;
1984	/* Use the copy for deassert */
1985	panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] =
1986		panel->vbt.dsi.deassert_seq;
1987	/* Replace the last byte of the fragment with init OTP seq byte */
1988	init_otp[len - 1] = MIPI_SEQ_INIT_OTP;
1989	/* And make MIPI_MIPI_SEQ_INIT_OTP point to it */
1990	panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1;
1991}
1992
1993static void
1994parse_mipi_sequence(struct drm_i915_private *i915,
1995		    struct intel_panel *panel)
1996{
1997	int panel_type = panel->vbt.panel_type;
1998	const struct bdb_mipi_sequence *sequence;
1999	const u8 *seq_data;
2000	u32 seq_size;
2001	u8 *data;
2002	int index = 0;
2003
2004	/* Only our generic panel driver uses the sequence block. */
2005	if (panel->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID)
2006		return;
2007
2008	sequence = bdb_find_section(i915, BDB_MIPI_SEQUENCE);
2009	if (!sequence) {
2010		drm_dbg_kms(&i915->drm,
2011			    "No MIPI Sequence found, parsing complete\n");
2012		return;
2013	}
2014
2015	/* Fail gracefully for forward incompatible sequence block. */
2016	if (sequence->version >= 4) {
2017		drm_err(&i915->drm,
2018			"Unable to parse MIPI Sequence Block v%u\n",
2019			sequence->version);
2020		return;
2021	}
2022
2023	drm_dbg(&i915->drm, "Found MIPI sequence block v%u\n",
2024		sequence->version);
2025
2026	seq_data = find_panel_sequence_block(sequence, panel_type, &seq_size);
2027	if (!seq_data)
2028		return;
2029
2030	data = kmemdup(seq_data, seq_size, GFP_KERNEL);
2031	if (!data)
2032		return;
2033
2034	/* Parse the sequences, store pointers to each sequence. */
2035	for (;;) {
2036		u8 seq_id = *(data + index);
2037		if (seq_id == MIPI_SEQ_END)
2038			break;
2039
2040		if (seq_id >= MIPI_SEQ_MAX) {
2041			drm_err(&i915->drm, "Unknown sequence %u\n",
2042				seq_id);
2043			goto err;
2044		}
2045
2046		/* Log about presence of sequences we won't run. */
2047		if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF)
2048			drm_dbg_kms(&i915->drm,
2049				    "Unsupported sequence %u\n", seq_id);
2050
2051		panel->vbt.dsi.sequence[seq_id] = data + index;
2052
2053		if (sequence->version >= 3)
2054			index = goto_next_sequence_v3(data, index, seq_size);
2055		else
2056			index = goto_next_sequence(data, index, seq_size);
2057		if (!index) {
2058			drm_err(&i915->drm, "Invalid sequence %u\n",
2059				seq_id);
2060			goto err;
2061		}
2062	}
2063
2064	panel->vbt.dsi.data = data;
2065	panel->vbt.dsi.size = seq_size;
2066	panel->vbt.dsi.seq_version = sequence->version;
2067
2068	fixup_mipi_sequences(i915, panel);
2069
2070	drm_dbg(&i915->drm, "MIPI related VBT parsing complete\n");
2071	return;
2072
2073err:
2074	kfree(data);
2075	memset(panel->vbt.dsi.sequence, 0, sizeof(panel->vbt.dsi.sequence));
2076}
2077
2078static void
2079parse_compression_parameters(struct drm_i915_private *i915)
2080{
2081	const struct bdb_compression_parameters *params;
2082	struct intel_bios_encoder_data *devdata;
2083	u16 block_size;
2084	int index;
2085
2086	if (i915->display.vbt.version < 198)
2087		return;
2088
2089	params = bdb_find_section(i915, BDB_COMPRESSION_PARAMETERS);
2090	if (params) {
2091		/* Sanity checks */
2092		if (params->entry_size != sizeof(params->data[0])) {
2093			drm_dbg_kms(&i915->drm,
2094				    "VBT: unsupported compression param entry size\n");
2095			return;
2096		}
2097
2098		block_size = get_blocksize(params);
2099		if (block_size < sizeof(*params)) {
2100			drm_dbg_kms(&i915->drm,
2101				    "VBT: expected 16 compression param entries\n");
2102			return;
2103		}
2104	}
2105
2106	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
2107		const struct child_device_config *child = &devdata->child;
2108
2109		if (!child->compression_enable)
2110			continue;
2111
2112		if (!params) {
2113			drm_dbg_kms(&i915->drm,
2114				    "VBT: compression params not available\n");
2115			continue;
2116		}
2117
2118		if (child->compression_method_cps) {
2119			drm_dbg_kms(&i915->drm,
2120				    "VBT: CPS compression not supported\n");
2121			continue;
2122		}
2123
2124		index = child->compression_structure_index;
2125
2126		devdata->dsc = kmemdup(&params->data[index],
2127				       sizeof(*devdata->dsc), GFP_KERNEL);
2128	}
2129}
2130
2131static u8 translate_iboost(u8 val)
2132{
2133	static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */
2134
2135	if (val >= ARRAY_SIZE(mapping)) {
2136		DRM_DEBUG_KMS("Unsupported I_boost value found in VBT (%d), display may not work properly\n", val);
2137		return 0;
2138	}
2139	return mapping[val];
2140}
2141
2142static const u8 cnp_ddc_pin_map[] = {
2143	[0] = 0, /* N/A */
2144	[GMBUS_PIN_1_BXT] = DDC_BUS_DDI_B,
2145	[GMBUS_PIN_2_BXT] = DDC_BUS_DDI_C,
2146	[GMBUS_PIN_4_CNP] = DDC_BUS_DDI_D, /* sic */
2147	[GMBUS_PIN_3_BXT] = DDC_BUS_DDI_F, /* sic */
2148};
2149
2150static const u8 icp_ddc_pin_map[] = {
2151	[GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2152	[GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
2153	[GMBUS_PIN_3_BXT] = TGL_DDC_BUS_DDI_C,
2154	[GMBUS_PIN_9_TC1_ICP] = ICL_DDC_BUS_PORT_1,
2155	[GMBUS_PIN_10_TC2_ICP] = ICL_DDC_BUS_PORT_2,
2156	[GMBUS_PIN_11_TC3_ICP] = ICL_DDC_BUS_PORT_3,
2157	[GMBUS_PIN_12_TC4_ICP] = ICL_DDC_BUS_PORT_4,
2158	[GMBUS_PIN_13_TC5_TGP] = TGL_DDC_BUS_PORT_5,
2159	[GMBUS_PIN_14_TC6_TGP] = TGL_DDC_BUS_PORT_6,
2160};
2161
2162static const u8 rkl_pch_tgp_ddc_pin_map[] = {
2163	[GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2164	[GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
2165	[GMBUS_PIN_9_TC1_ICP] = RKL_DDC_BUS_DDI_D,
2166	[GMBUS_PIN_10_TC2_ICP] = RKL_DDC_BUS_DDI_E,
2167};
2168
2169static const u8 adls_ddc_pin_map[] = {
2170	[GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2171	[GMBUS_PIN_9_TC1_ICP] = ADLS_DDC_BUS_PORT_TC1,
2172	[GMBUS_PIN_10_TC2_ICP] = ADLS_DDC_BUS_PORT_TC2,
2173	[GMBUS_PIN_11_TC3_ICP] = ADLS_DDC_BUS_PORT_TC3,
2174	[GMBUS_PIN_12_TC4_ICP] = ADLS_DDC_BUS_PORT_TC4,
2175};
2176
2177static const u8 gen9bc_tgp_ddc_pin_map[] = {
2178	[GMBUS_PIN_2_BXT] = DDC_BUS_DDI_B,
2179	[GMBUS_PIN_9_TC1_ICP] = DDC_BUS_DDI_C,
2180	[GMBUS_PIN_10_TC2_ICP] = DDC_BUS_DDI_D,
2181};
2182
2183static const u8 adlp_ddc_pin_map[] = {
2184	[GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2185	[GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
2186	[GMBUS_PIN_9_TC1_ICP] = ADLP_DDC_BUS_PORT_TC1,
2187	[GMBUS_PIN_10_TC2_ICP] = ADLP_DDC_BUS_PORT_TC2,
2188	[GMBUS_PIN_11_TC3_ICP] = ADLP_DDC_BUS_PORT_TC3,
2189	[GMBUS_PIN_12_TC4_ICP] = ADLP_DDC_BUS_PORT_TC4,
2190};
2191
2192static u8 map_ddc_pin(struct drm_i915_private *i915, u8 vbt_pin)
2193{
2194	const u8 *ddc_pin_map;
2195	int i, n_entries;
2196
2197	if (HAS_PCH_MTP(i915) || IS_ALDERLAKE_P(i915)) {
2198		ddc_pin_map = adlp_ddc_pin_map;
2199		n_entries = ARRAY_SIZE(adlp_ddc_pin_map);
2200	} else if (IS_ALDERLAKE_S(i915)) {
2201		ddc_pin_map = adls_ddc_pin_map;
2202		n_entries = ARRAY_SIZE(adls_ddc_pin_map);
2203	} else if (INTEL_PCH_TYPE(i915) >= PCH_DG1) {
2204		return vbt_pin;
2205	} else if (IS_ROCKETLAKE(i915) && INTEL_PCH_TYPE(i915) == PCH_TGP) {
2206		ddc_pin_map = rkl_pch_tgp_ddc_pin_map;
2207		n_entries = ARRAY_SIZE(rkl_pch_tgp_ddc_pin_map);
2208	} else if (HAS_PCH_TGP(i915) && DISPLAY_VER(i915) == 9) {
2209		ddc_pin_map = gen9bc_tgp_ddc_pin_map;
2210		n_entries = ARRAY_SIZE(gen9bc_tgp_ddc_pin_map);
2211	} else if (INTEL_PCH_TYPE(i915) >= PCH_ICP) {
2212		ddc_pin_map = icp_ddc_pin_map;
2213		n_entries = ARRAY_SIZE(icp_ddc_pin_map);
2214	} else if (HAS_PCH_CNP(i915)) {
2215		ddc_pin_map = cnp_ddc_pin_map;
2216		n_entries = ARRAY_SIZE(cnp_ddc_pin_map);
2217	} else {
2218		/* Assuming direct map */
2219		return vbt_pin;
2220	}
2221
2222	for (i = 0; i < n_entries; i++) {
2223		if (ddc_pin_map[i] == vbt_pin)
2224			return i;
2225	}
2226
2227	drm_dbg_kms(&i915->drm,
2228		    "Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n",
2229		    vbt_pin);
2230	return 0;
2231}
2232
2233static u8 dvo_port_type(u8 dvo_port)
2234{
2235	switch (dvo_port) {
2236	case DVO_PORT_HDMIA:
2237	case DVO_PORT_HDMIB:
2238	case DVO_PORT_HDMIC:
2239	case DVO_PORT_HDMID:
2240	case DVO_PORT_HDMIE:
2241	case DVO_PORT_HDMIF:
2242	case DVO_PORT_HDMIG:
2243	case DVO_PORT_HDMIH:
2244	case DVO_PORT_HDMII:
2245		return DVO_PORT_HDMIA;
2246	case DVO_PORT_DPA:
2247	case DVO_PORT_DPB:
2248	case DVO_PORT_DPC:
2249	case DVO_PORT_DPD:
2250	case DVO_PORT_DPE:
2251	case DVO_PORT_DPF:
2252	case DVO_PORT_DPG:
2253	case DVO_PORT_DPH:
2254	case DVO_PORT_DPI:
2255		return DVO_PORT_DPA;
2256	case DVO_PORT_MIPIA:
2257	case DVO_PORT_MIPIB:
2258	case DVO_PORT_MIPIC:
2259	case DVO_PORT_MIPID:
2260		return DVO_PORT_MIPIA;
2261	default:
2262		return dvo_port;
2263	}
2264}
2265
2266static enum port __dvo_port_to_port(int n_ports, int n_dvo,
2267				    const int port_mapping[][3], u8 dvo_port)
2268{
2269	enum port port;
2270	int i;
2271
2272	for (port = PORT_A; port < n_ports; port++) {
2273		for (i = 0; i < n_dvo; i++) {
2274			if (port_mapping[port][i] == -1)
2275				break;
2276
2277			if (dvo_port == port_mapping[port][i])
2278				return port;
2279		}
2280	}
2281
2282	return PORT_NONE;
2283}
2284
2285static enum port dvo_port_to_port(struct drm_i915_private *i915,
2286				  u8 dvo_port)
2287{
2288	/*
2289	 * Each DDI port can have more than one value on the "DVO Port" field,
2290	 * so look for all the possible values for each port.
2291	 */
2292	static const int port_mapping[][3] = {
2293		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2294		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2295		[PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2296		[PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2297		[PORT_E] = { DVO_PORT_HDMIE, DVO_PORT_DPE, DVO_PORT_CRT },
2298		[PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
2299		[PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
2300		[PORT_H] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
2301		[PORT_I] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
2302	};
2303	/*
2304	 * RKL VBT uses PHY based mapping. Combo PHYs A,B,C,D
2305	 * map to DDI A,B,TC1,TC2 respectively.
2306	 */
2307	static const int rkl_port_mapping[][3] = {
2308		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2309		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2310		[PORT_C] = { -1 },
2311		[PORT_TC1] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2312		[PORT_TC2] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2313	};
2314	/*
2315	 * Alderlake S ports used in the driver are PORT_A, PORT_D, PORT_E,
2316	 * PORT_F and PORT_G, we need to map that to correct VBT sections.
2317	 */
2318	static const int adls_port_mapping[][3] = {
2319		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2320		[PORT_B] = { -1 },
2321		[PORT_C] = { -1 },
2322		[PORT_TC1] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2323		[PORT_TC2] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2324		[PORT_TC3] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2325		[PORT_TC4] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
2326	};
2327	static const int xelpd_port_mapping[][3] = {
2328		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2329		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2330		[PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2331		[PORT_D_XELPD] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2332		[PORT_E_XELPD] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
2333		[PORT_TC1] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
2334		[PORT_TC2] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
2335		[PORT_TC3] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
2336		[PORT_TC4] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
2337	};
2338
2339	if (DISPLAY_VER(i915) >= 13)
2340		return __dvo_port_to_port(ARRAY_SIZE(xelpd_port_mapping),
2341					  ARRAY_SIZE(xelpd_port_mapping[0]),
2342					  xelpd_port_mapping,
2343					  dvo_port);
2344	else if (IS_ALDERLAKE_S(i915))
2345		return __dvo_port_to_port(ARRAY_SIZE(adls_port_mapping),
2346					  ARRAY_SIZE(adls_port_mapping[0]),
2347					  adls_port_mapping,
2348					  dvo_port);
2349	else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
2350		return __dvo_port_to_port(ARRAY_SIZE(rkl_port_mapping),
2351					  ARRAY_SIZE(rkl_port_mapping[0]),
2352					  rkl_port_mapping,
2353					  dvo_port);
2354	else
2355		return __dvo_port_to_port(ARRAY_SIZE(port_mapping),
2356					  ARRAY_SIZE(port_mapping[0]),
2357					  port_mapping,
2358					  dvo_port);
2359}
2360
2361static enum port
2362dsi_dvo_port_to_port(struct drm_i915_private *i915, u8 dvo_port)
2363{
2364	switch (dvo_port) {
2365	case DVO_PORT_MIPIA:
2366		return PORT_A;
2367	case DVO_PORT_MIPIC:
2368		if (DISPLAY_VER(i915) >= 11)
2369			return PORT_B;
2370		else
2371			return PORT_C;
2372	default:
2373		return PORT_NONE;
2374	}
2375}
2376
2377enum port intel_bios_encoder_port(const struct intel_bios_encoder_data *devdata)
2378{
2379	struct drm_i915_private *i915 = devdata->i915;
2380	const struct child_device_config *child = &devdata->child;
2381	enum port port;
2382
2383	port = dvo_port_to_port(i915, child->dvo_port);
2384	if (port == PORT_NONE && DISPLAY_VER(i915) >= 11)
2385		port = dsi_dvo_port_to_port(i915, child->dvo_port);
2386
2387	return port;
2388}
2389
2390static int parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate)
2391{
2392	switch (vbt_max_link_rate) {
2393	default:
2394	case BDB_230_VBT_DP_MAX_LINK_RATE_DEF:
2395		return 0;
2396	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20:
2397		return 2000000;
2398	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5:
2399		return 1350000;
2400	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10:
2401		return 1000000;
2402	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR3:
2403		return 810000;
2404	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR2:
2405		return 540000;
2406	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR:
2407		return 270000;
2408	case BDB_230_VBT_DP_MAX_LINK_RATE_LBR:
2409		return 162000;
2410	}
2411}
2412
2413static int parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate)
2414{
2415	switch (vbt_max_link_rate) {
2416	default:
2417	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR3:
2418		return 810000;
2419	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR2:
2420		return 540000;
2421	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR:
2422		return 270000;
2423	case BDB_216_VBT_DP_MAX_LINK_RATE_LBR:
2424		return 162000;
2425	}
2426}
2427
2428int intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data *devdata)
2429{
2430	if (!devdata || devdata->i915->display.vbt.version < 216)
2431		return 0;
2432
2433	if (devdata->i915->display.vbt.version >= 230)
2434		return parse_bdb_230_dp_max_link_rate(devdata->child.dp_max_link_rate);
2435	else
2436		return parse_bdb_216_dp_max_link_rate(devdata->child.dp_max_link_rate);
2437}
2438
2439int intel_bios_dp_max_lane_count(const struct intel_bios_encoder_data *devdata)
2440{
2441	if (!devdata || devdata->i915->display.vbt.version < 244)
2442		return 0;
2443
2444	return devdata->child.dp_max_lane_count + 1;
2445}
2446
2447static void sanitize_device_type(struct intel_bios_encoder_data *devdata,
2448				 enum port port)
2449{
2450	struct drm_i915_private *i915 = devdata->i915;
2451	bool is_hdmi;
2452
2453	if (port != PORT_A || DISPLAY_VER(i915) >= 12)
2454		return;
2455
2456	if (!intel_bios_encoder_supports_dvi(devdata))
2457		return;
2458
2459	is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2460
2461	drm_dbg_kms(&i915->drm, "VBT claims port A supports DVI%s, ignoring\n",
2462		    is_hdmi ? "/HDMI" : "");
2463
2464	devdata->child.device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING;
2465	devdata->child.device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT;
2466}
2467
2468static bool
2469intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data *devdata)
2470{
2471	return devdata->child.device_type & DEVICE_TYPE_ANALOG_OUTPUT;
2472}
2473
2474bool
2475intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data *devdata)
2476{
2477	return devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING;
2478}
2479
2480bool
2481intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data *devdata)
2482{
2483	return intel_bios_encoder_supports_dvi(devdata) &&
2484		(devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0;
2485}
2486
2487bool
2488intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data *devdata)
2489{
2490	return devdata->child.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2491}
2492
2493bool
2494intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data *devdata)
2495{
2496	return intel_bios_encoder_supports_dp(devdata) &&
2497		devdata->child.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR;
2498}
2499
2500bool
2501intel_bios_encoder_supports_dsi(const struct intel_bios_encoder_data *devdata)
2502{
2503	return devdata->child.device_type & DEVICE_TYPE_MIPI_OUTPUT;
2504}
2505
2506bool
2507intel_bios_encoder_is_lspcon(const struct intel_bios_encoder_data *devdata)
2508{
2509	return devdata && HAS_LSPCON(devdata->i915) && devdata->child.lspcon;
2510}
2511
2512/* This is an index in the HDMI/DVI DDI buffer translation table, or -1 */
2513int intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data *devdata)
2514{
2515	if (!devdata || devdata->i915->display.vbt.version < 158 ||
2516	    DISPLAY_VER(devdata->i915) >= 14)
2517		return -1;
2518
2519	return devdata->child.hdmi_level_shifter_value;
2520}
2521
2522int intel_bios_hdmi_max_tmds_clock(const struct intel_bios_encoder_data *devdata)
2523{
2524	if (!devdata || devdata->i915->display.vbt.version < 204)
2525		return 0;
2526
2527	switch (devdata->child.hdmi_max_data_rate) {
2528	default:
2529		MISSING_CASE(devdata->child.hdmi_max_data_rate);
2530		fallthrough;
2531	case HDMI_MAX_DATA_RATE_PLATFORM:
2532		return 0;
2533	case HDMI_MAX_DATA_RATE_594:
2534		return 594000;
2535	case HDMI_MAX_DATA_RATE_340:
2536		return 340000;
2537	case HDMI_MAX_DATA_RATE_300:
2538		return 300000;
2539	case HDMI_MAX_DATA_RATE_297:
2540		return 297000;
2541	case HDMI_MAX_DATA_RATE_165:
2542		return 165000;
2543	}
2544}
2545
2546static bool is_port_valid(struct drm_i915_private *i915, enum port port)
2547{
2548	/*
2549	 * On some ICL SKUs port F is not present, but broken VBTs mark
2550	 * the port as present. Only try to initialize port F for the
2551	 * SKUs that may actually have it.
2552	 */
2553	if (port == PORT_F && IS_ICELAKE(i915))
2554		return IS_ICL_WITH_PORT_F(i915);
2555
2556	return true;
2557}
2558
2559static void print_ddi_port(const struct intel_bios_encoder_data *devdata)
2560{
2561	struct drm_i915_private *i915 = devdata->i915;
2562	const struct child_device_config *child = &devdata->child;
2563	bool is_dvi, is_hdmi, is_dp, is_edp, is_dsi, is_crt, supports_typec_usb, supports_tbt;
2564	int dp_boost_level, dp_max_link_rate, hdmi_boost_level, hdmi_level_shift, max_tmds_clock;
2565	enum port port;
2566
2567	port = intel_bios_encoder_port(devdata);
2568	if (port == PORT_NONE)
2569		return;
2570
2571	is_dvi = intel_bios_encoder_supports_dvi(devdata);
2572	is_dp = intel_bios_encoder_supports_dp(devdata);
2573	is_crt = intel_bios_encoder_supports_crt(devdata);
2574	is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2575	is_edp = intel_bios_encoder_supports_edp(devdata);
2576	is_dsi = intel_bios_encoder_supports_dsi(devdata);
2577
2578	supports_typec_usb = intel_bios_encoder_supports_typec_usb(devdata);
2579	supports_tbt = intel_bios_encoder_supports_tbt(devdata);
2580
2581	drm_dbg_kms(&i915->drm,
2582		    "Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d DSI:%d DP++:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n",
2583		    port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp, is_dsi,
2584		    intel_bios_encoder_supports_dp_dual_mode(devdata),
2585		    intel_bios_encoder_is_lspcon(devdata),
2586		    supports_typec_usb, supports_tbt,
2587		    devdata->dsc != NULL);
2588
2589	hdmi_level_shift = intel_bios_hdmi_level_shift(devdata);
2590	if (hdmi_level_shift >= 0) {
2591		drm_dbg_kms(&i915->drm,
2592			    "Port %c VBT HDMI level shift: %d\n",
2593			    port_name(port), hdmi_level_shift);
2594	}
2595
2596	max_tmds_clock = intel_bios_hdmi_max_tmds_clock(devdata);
2597	if (max_tmds_clock)
2598		drm_dbg_kms(&i915->drm,
2599			    "Port %c VBT HDMI max TMDS clock: %d kHz\n",
2600			    port_name(port), max_tmds_clock);
2601
2602	/* I_boost config for SKL and above */
2603	dp_boost_level = intel_bios_dp_boost_level(devdata);
2604	if (dp_boost_level)
2605		drm_dbg_kms(&i915->drm,
2606			    "Port %c VBT (e)DP boost level: %d\n",
2607			    port_name(port), dp_boost_level);
2608
2609	hdmi_boost_level = intel_bios_hdmi_boost_level(devdata);
2610	if (hdmi_boost_level)
2611		drm_dbg_kms(&i915->drm,
2612			    "Port %c VBT HDMI boost level: %d\n",
2613			    port_name(port), hdmi_boost_level);
2614
2615	dp_max_link_rate = intel_bios_dp_max_link_rate(devdata);
2616	if (dp_max_link_rate)
2617		drm_dbg_kms(&i915->drm,
2618			    "Port %c VBT DP max link rate: %d\n",
2619			    port_name(port), dp_max_link_rate);
2620
2621	/*
2622	 * FIXME need to implement support for VBT
2623	 * vswing/preemph tables should this ever trigger.
2624	 */
2625	drm_WARN(&i915->drm, child->use_vbt_vswing,
2626		 "Port %c asks to use VBT vswing/preemph tables\n",
2627		 port_name(port));
2628}
2629
2630static void parse_ddi_port(struct intel_bios_encoder_data *devdata)
2631{
2632	struct drm_i915_private *i915 = devdata->i915;
2633	enum port port;
2634
2635	port = intel_bios_encoder_port(devdata);
2636	if (port == PORT_NONE)
2637		return;
2638
2639	if (!is_port_valid(i915, port)) {
2640		drm_dbg_kms(&i915->drm,
2641			    "VBT reports port %c as supported, but that can't be true: skipping\n",
2642			    port_name(port));
2643		return;
2644	}
2645
2646	sanitize_device_type(devdata, port);
2647}
2648
2649static bool has_ddi_port_info(struct drm_i915_private *i915)
2650{
2651	return DISPLAY_VER(i915) >= 5 || IS_G4X(i915);
2652}
2653
2654static void parse_ddi_ports(struct drm_i915_private *i915)
2655{
2656	struct intel_bios_encoder_data *devdata;
2657
2658	if (!has_ddi_port_info(i915))
2659		return;
2660
2661	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node)
2662		parse_ddi_port(devdata);
2663
2664	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node)
2665		print_ddi_port(devdata);
2666}
2667
2668static void
2669parse_general_definitions(struct drm_i915_private *i915)
2670{
2671	const struct bdb_general_definitions *defs;
2672	struct intel_bios_encoder_data *devdata;
2673	const struct child_device_config *child;
2674	int i, child_device_num;
2675	u8 expected_size;
2676	u16 block_size;
2677	int bus_pin;
2678
2679	defs = bdb_find_section(i915, BDB_GENERAL_DEFINITIONS);
2680	if (!defs) {
2681		drm_dbg_kms(&i915->drm,
2682			    "No general definition block is found, no devices defined.\n");
2683		return;
2684	}
2685
2686	block_size = get_blocksize(defs);
2687	if (block_size < sizeof(*defs)) {
2688		drm_dbg_kms(&i915->drm,
2689			    "General definitions block too small (%u)\n",
2690			    block_size);
2691		return;
2692	}
2693
2694	bus_pin = defs->crt_ddc_gmbus_pin;
2695	drm_dbg_kms(&i915->drm, "crt_ddc_bus_pin: %d\n", bus_pin);
2696	if (intel_gmbus_is_valid_pin(i915, bus_pin))
2697		i915->display.vbt.crt_ddc_pin = bus_pin;
2698
2699	if (i915->display.vbt.version < 106) {
2700		expected_size = 22;
2701	} else if (i915->display.vbt.version < 111) {
2702		expected_size = 27;
2703	} else if (i915->display.vbt.version < 195) {
2704		expected_size = LEGACY_CHILD_DEVICE_CONFIG_SIZE;
2705	} else if (i915->display.vbt.version == 195) {
2706		expected_size = 37;
2707	} else if (i915->display.vbt.version <= 215) {
2708		expected_size = 38;
2709	} else if (i915->display.vbt.version <= 250) {
2710		expected_size = 39;
2711	} else {
2712		expected_size = sizeof(*child);
2713		BUILD_BUG_ON(sizeof(*child) < 39);
2714		drm_dbg(&i915->drm,
2715			"Expected child device config size for VBT version %u not known; assuming %u\n",
2716			i915->display.vbt.version, expected_size);
2717	}
2718
2719	/* Flag an error for unexpected size, but continue anyway. */
2720	if (defs->child_dev_size != expected_size)
2721		drm_err(&i915->drm,
2722			"Unexpected child device config size %u (expected %u for VBT version %u)\n",
2723			defs->child_dev_size, expected_size, i915->display.vbt.version);
2724
2725	/* The legacy sized child device config is the minimum we need. */
2726	if (defs->child_dev_size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) {
2727		drm_dbg_kms(&i915->drm,
2728			    "Child device config size %u is too small.\n",
2729			    defs->child_dev_size);
2730		return;
2731	}
2732
2733	/* get the number of child device */
2734	child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size;
2735
2736	for (i = 0; i < child_device_num; i++) {
2737		child = child_device_ptr(defs, i);
2738		if (!child->device_type)
2739			continue;
2740
2741		drm_dbg_kms(&i915->drm,
2742			    "Found VBT child device with type 0x%x\n",
2743			    child->device_type);
2744
2745		devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2746		if (!devdata)
2747			break;
2748
2749		devdata->i915 = i915;
2750
2751		/*
2752		 * Copy as much as we know (sizeof) and is available
2753		 * (child_dev_size) of the child device config. Accessing the
2754		 * data must depend on VBT version.
2755		 */
2756		memcpy(&devdata->child, child,
2757		       min_t(size_t, defs->child_dev_size, sizeof(*child)));
2758
2759		list_add_tail(&devdata->node, &i915->display.vbt.display_devices);
2760	}
2761
2762	if (list_empty(&i915->display.vbt.display_devices))
2763		drm_dbg_kms(&i915->drm,
2764			    "no child dev is parsed from VBT\n");
2765}
2766
2767/* Common defaults which may be overridden by VBT. */
2768static void
2769init_vbt_defaults(struct drm_i915_private *i915)
2770{
2771	i915->display.vbt.crt_ddc_pin = GMBUS_PIN_VGADDC;
2772
2773	/* general features */
2774	i915->display.vbt.int_tv_support = 1;
2775	i915->display.vbt.int_crt_support = 1;
2776
2777	/* driver features */
2778	i915->display.vbt.int_lvds_support = 1;
2779
2780	/* Default to using SSC */
2781	i915->display.vbt.lvds_use_ssc = 1;
2782	/*
2783	 * Core/SandyBridge/IvyBridge use alternative (120MHz) reference
2784	 * clock for LVDS.
2785	 */
2786	i915->display.vbt.lvds_ssc_freq = intel_bios_ssc_frequency(i915,
2787								   !HAS_PCH_SPLIT(i915));
2788	drm_dbg_kms(&i915->drm, "Set default to SSC at %d kHz\n",
2789		    i915->display.vbt.lvds_ssc_freq);
2790}
2791
2792/* Common defaults which may be overridden by VBT. */
2793static void
2794init_vbt_panel_defaults(struct intel_panel *panel)
2795{
2796	/* Default to having backlight */
2797	panel->vbt.backlight.present = true;
2798
2799	/* LFP panel data */
2800	panel->vbt.lvds_dither = true;
2801}
2802
2803/* Defaults to initialize only if there is no VBT. */
2804static void
2805init_vbt_missing_defaults(struct drm_i915_private *i915)
2806{
2807	enum port port;
2808	int ports = BIT(PORT_A) | BIT(PORT_B) | BIT(PORT_C) |
2809		    BIT(PORT_D) | BIT(PORT_E) | BIT(PORT_F);
2810
2811	if (!HAS_DDI(i915) && !IS_CHERRYVIEW(i915))
2812		return;
2813
2814	for_each_port_masked(port, ports) {
2815		struct intel_bios_encoder_data *devdata;
2816		struct child_device_config *child;
2817		enum phy phy = intel_port_to_phy(i915, port);
2818
2819		/*
2820		 * VBT has the TypeC mode (native,TBT/USB) and we don't want
2821		 * to detect it.
2822		 */
2823		if (intel_phy_is_tc(i915, phy))
2824			continue;
2825
2826		/* Create fake child device config */
2827		devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2828		if (!devdata)
2829			break;
2830
2831		devdata->i915 = i915;
2832		child = &devdata->child;
2833
2834		if (port == PORT_F)
2835			child->dvo_port = DVO_PORT_HDMIF;
2836		else if (port == PORT_E)
2837			child->dvo_port = DVO_PORT_HDMIE;
2838		else
2839			child->dvo_port = DVO_PORT_HDMIA + port;
2840
2841		if (port != PORT_A && port != PORT_E)
2842			child->device_type |= DEVICE_TYPE_TMDS_DVI_SIGNALING;
2843
2844		if (port != PORT_E)
2845			child->device_type |= DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2846
2847		if (port == PORT_A)
2848			child->device_type |= DEVICE_TYPE_INTERNAL_CONNECTOR;
2849
2850		list_add_tail(&devdata->node, &i915->display.vbt.display_devices);
2851
2852		drm_dbg_kms(&i915->drm,
2853			    "Generating default VBT child device with type 0x04%x on port %c\n",
2854			    child->device_type, port_name(port));
2855	}
2856
2857	/* Bypass some minimum baseline VBT version checks */
2858	i915->display.vbt.version = 155;
2859}
2860
2861static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt)
2862{
2863	const void *_vbt = vbt;
2864
2865	return _vbt + vbt->bdb_offset;
2866}
2867
2868/**
2869 * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT
2870 * @buf:	pointer to a buffer to validate
2871 * @size:	size of the buffer
2872 *
2873 * Returns true on valid VBT.
2874 */
2875bool intel_bios_is_valid_vbt(const void *buf, size_t size)
2876{
2877	const struct vbt_header *vbt = buf;
2878	const struct bdb_header *bdb;
2879
2880	if (!vbt)
2881		return false;
2882
2883	if (sizeof(struct vbt_header) > size) {
2884		DRM_DEBUG_DRIVER("VBT header incomplete\n");
2885		return false;
2886	}
2887
2888	if (memcmp(vbt->signature, "$VBT", 4)) {
2889		DRM_DEBUG_DRIVER("VBT invalid signature\n");
2890		return false;
2891	}
2892
2893	if (vbt->vbt_size > size) {
2894		DRM_DEBUG_DRIVER("VBT incomplete (vbt_size overflows)\n");
2895		return false;
2896	}
2897
2898	size = vbt->vbt_size;
2899
2900	if (range_overflows_t(size_t,
2901			      vbt->bdb_offset,
2902			      sizeof(struct bdb_header),
2903			      size)) {
2904		DRM_DEBUG_DRIVER("BDB header incomplete\n");
2905		return false;
2906	}
2907
2908	bdb = get_bdb_header(vbt);
2909	if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) {
2910		DRM_DEBUG_DRIVER("BDB incomplete\n");
2911		return false;
2912	}
2913
2914	return vbt;
2915}
2916
2917static u32 intel_spi_read(struct intel_uncore *uncore, u32 offset)
2918{
2919	intel_uncore_write(uncore, PRIMARY_SPI_ADDRESS, offset);
2920
2921	return intel_uncore_read(uncore, PRIMARY_SPI_TRIGGER);
2922}
2923
2924static struct vbt_header *spi_oprom_get_vbt(struct drm_i915_private *i915)
2925{
2926	u32 count, data, found, store = 0;
2927	u32 static_region, oprom_offset;
2928	u32 oprom_size = 0x200000;
2929	u16 vbt_size;
2930	u32 *vbt;
2931
2932	static_region = intel_uncore_read(&i915->uncore, SPI_STATIC_REGIONS);
2933	static_region &= OPTIONROM_SPI_REGIONID_MASK;
2934	intel_uncore_write(&i915->uncore, PRIMARY_SPI_REGIONID, static_region);
2935
2936	oprom_offset = intel_uncore_read(&i915->uncore, OROM_OFFSET);
2937	oprom_offset &= OROM_OFFSET_MASK;
2938
2939	for (count = 0; count < oprom_size; count += 4) {
2940		data = intel_spi_read(&i915->uncore, oprom_offset + count);
2941		if (data == *((const u32 *)"$VBT")) {
2942			found = oprom_offset + count;
2943			break;
2944		}
2945	}
2946
2947	if (count >= oprom_size)
2948		goto err_not_found;
2949
2950	/* Get VBT size and allocate space for the VBT */
2951	vbt_size = intel_spi_read(&i915->uncore,
2952				  found + offsetof(struct vbt_header, vbt_size));
2953	vbt_size &= 0xffff;
2954
2955	vbt = kzalloc(round_up(vbt_size, 4), GFP_KERNEL);
2956	if (!vbt)
2957		goto err_not_found;
2958
2959	for (count = 0; count < vbt_size; count += 4)
2960		*(vbt + store++) = intel_spi_read(&i915->uncore, found + count);
2961
2962	if (!intel_bios_is_valid_vbt(vbt, vbt_size))
2963		goto err_free_vbt;
2964
2965	drm_dbg_kms(&i915->drm, "Found valid VBT in SPI flash\n");
2966
2967	return (struct vbt_header *)vbt;
2968
2969err_free_vbt:
2970	kfree(vbt);
2971err_not_found:
2972	return NULL;
2973}
2974
2975static struct vbt_header *oprom_get_vbt(struct drm_i915_private *i915)
2976{
2977	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
2978	void __iomem *p = NULL, *oprom;
2979	struct vbt_header *vbt;
2980	u16 vbt_size;
2981	size_t i, size;
2982
2983	oprom = pci_map_rom(pdev, &size);
2984	if (!oprom)
2985		return NULL;
2986
2987	/* Scour memory looking for the VBT signature. */
2988	for (i = 0; i + 4 < size; i += 4) {
2989		if (ioread32(oprom + i) != *((const u32 *)"$VBT"))
2990			continue;
2991
2992		p = oprom + i;
2993		size -= i;
2994		break;
2995	}
2996
2997	if (!p)
2998		goto err_unmap_oprom;
2999
3000	if (sizeof(struct vbt_header) > size) {
3001		drm_dbg(&i915->drm, "VBT header incomplete\n");
3002		goto err_unmap_oprom;
3003	}
3004
3005	vbt_size = ioread16(p + offsetof(struct vbt_header, vbt_size));
3006	if (vbt_size > size) {
3007		drm_dbg(&i915->drm,
3008			"VBT incomplete (vbt_size overflows)\n");
3009		goto err_unmap_oprom;
3010	}
3011
3012	/* The rest will be validated by intel_bios_is_valid_vbt() */
3013	vbt = kmalloc(vbt_size, GFP_KERNEL);
3014	if (!vbt)
3015		goto err_unmap_oprom;
3016
3017	memcpy_fromio(vbt, p, vbt_size);
3018
3019	if (!intel_bios_is_valid_vbt(vbt, vbt_size))
3020		goto err_free_vbt;
3021
3022	pci_unmap_rom(pdev, oprom);
3023
3024	drm_dbg_kms(&i915->drm, "Found valid VBT in PCI ROM\n");
3025
3026	return vbt;
3027
3028err_free_vbt:
3029	kfree(vbt);
3030err_unmap_oprom:
3031	pci_unmap_rom(pdev, oprom);
3032
3033	return NULL;
3034}
3035
3036/**
3037 * intel_bios_init - find VBT and initialize settings from the BIOS
3038 * @i915: i915 device instance
3039 *
3040 * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT
3041 * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also
3042 * initialize some defaults if the VBT is not present at all.
3043 */
3044void intel_bios_init(struct drm_i915_private *i915)
3045{
3046	const struct vbt_header *vbt = i915->display.opregion.vbt;
3047	struct vbt_header *oprom_vbt = NULL;
3048	const struct bdb_header *bdb;
3049
3050	INIT_LIST_HEAD(&i915->display.vbt.display_devices);
3051	INIT_LIST_HEAD(&i915->display.vbt.bdb_blocks);
3052
3053	if (!HAS_DISPLAY(i915)) {
3054		drm_dbg_kms(&i915->drm,
3055			    "Skipping VBT init due to disabled display.\n");
3056		return;
3057	}
3058
3059	init_vbt_defaults(i915);
3060
3061	/*
3062	 * If the OpRegion does not have VBT, look in SPI flash through MMIO or
3063	 * PCI mapping
3064	 */
3065	if (!vbt && IS_DGFX(i915)) {
3066		oprom_vbt = spi_oprom_get_vbt(i915);
3067		vbt = oprom_vbt;
3068	}
3069
3070	if (!vbt) {
3071		oprom_vbt = oprom_get_vbt(i915);
3072		vbt = oprom_vbt;
3073	}
3074
3075	if (!vbt)
3076		goto out;
3077
3078	bdb = get_bdb_header(vbt);
3079	i915->display.vbt.version = bdb->version;
3080
3081	drm_dbg_kms(&i915->drm,
3082		    "VBT signature \"%.*s\", BDB version %d\n",
3083		    (int)sizeof(vbt->signature), vbt->signature, i915->display.vbt.version);
3084
3085	init_bdb_blocks(i915, bdb);
3086
3087	/* Grab useful general definitions */
3088	parse_general_features(i915);
3089	parse_general_definitions(i915);
3090	parse_driver_features(i915);
3091
3092	/* Depends on child device list */
3093	parse_compression_parameters(i915);
3094
3095out:
3096	if (!vbt) {
3097		drm_info(&i915->drm,
3098			 "Failed to find VBIOS tables (VBT)\n");
3099		init_vbt_missing_defaults(i915);
3100	}
3101
3102	/* Further processing on pre-parsed or generated child device data */
3103	parse_sdvo_device_mapping(i915);
3104	parse_ddi_ports(i915);
3105
3106	kfree(oprom_vbt);
3107}
3108
3109static void intel_bios_init_panel(struct drm_i915_private *i915,
3110				  struct intel_panel *panel,
3111				  const struct intel_bios_encoder_data *devdata,
3112				  const struct drm_edid *drm_edid,
3113				  bool use_fallback)
3114{
3115	/* already have it? */
3116	if (panel->vbt.panel_type >= 0) {
3117		drm_WARN_ON(&i915->drm, !use_fallback);
3118		return;
3119	}
3120
3121	panel->vbt.panel_type = get_panel_type(i915, devdata,
3122					       drm_edid, use_fallback);
3123	if (panel->vbt.panel_type < 0) {
3124		drm_WARN_ON(&i915->drm, use_fallback);
3125		return;
3126	}
3127
3128	init_vbt_panel_defaults(panel);
3129
3130	parse_panel_options(i915, panel);
3131	parse_generic_dtd(i915, panel);
3132	parse_lfp_data(i915, panel);
3133	parse_lfp_backlight(i915, panel);
3134	parse_sdvo_panel_data(i915, panel);
3135	parse_panel_driver_features(i915, panel);
3136	parse_power_conservation_features(i915, panel);
3137	parse_edp(i915, panel);
3138	parse_psr(i915, panel);
3139	parse_mipi_config(i915, panel);
3140	parse_mipi_sequence(i915, panel);
3141}
3142
3143void intel_bios_init_panel_early(struct drm_i915_private *i915,
3144				 struct intel_panel *panel,
3145				 const struct intel_bios_encoder_data *devdata)
3146{
3147	intel_bios_init_panel(i915, panel, devdata, NULL, false);
3148}
3149
3150void intel_bios_init_panel_late(struct drm_i915_private *i915,
3151				struct intel_panel *panel,
3152				const struct intel_bios_encoder_data *devdata,
3153				const struct drm_edid *drm_edid)
3154{
3155	intel_bios_init_panel(i915, panel, devdata, drm_edid, true);
3156}
3157
3158/**
3159 * intel_bios_driver_remove - Free any resources allocated by intel_bios_init()
3160 * @i915: i915 device instance
3161 */
3162void intel_bios_driver_remove(struct drm_i915_private *i915)
3163{
3164	struct intel_bios_encoder_data *devdata, *nd;
3165	struct bdb_block_entry *entry, *ne;
3166
3167	list_for_each_entry_safe(devdata, nd, &i915->display.vbt.display_devices, node) {
3168		list_del(&devdata->node);
3169		kfree(devdata->dsc);
3170		kfree(devdata);
3171	}
3172
3173	list_for_each_entry_safe(entry, ne, &i915->display.vbt.bdb_blocks, node) {
3174		list_del(&entry->node);
3175		kfree(entry);
3176	}
3177}
3178
3179void intel_bios_fini_panel(struct intel_panel *panel)
3180{
3181	kfree(panel->vbt.sdvo_lvds_vbt_mode);
3182	panel->vbt.sdvo_lvds_vbt_mode = NULL;
3183	kfree(panel->vbt.lfp_lvds_vbt_mode);
3184	panel->vbt.lfp_lvds_vbt_mode = NULL;
3185	kfree(panel->vbt.dsi.data);
3186	panel->vbt.dsi.data = NULL;
3187	kfree(panel->vbt.dsi.pps);
3188	panel->vbt.dsi.pps = NULL;
3189	kfree(panel->vbt.dsi.config);
3190	panel->vbt.dsi.config = NULL;
3191	kfree(panel->vbt.dsi.deassert_seq);
3192	panel->vbt.dsi.deassert_seq = NULL;
3193}
3194
3195/**
3196 * intel_bios_is_tv_present - is integrated TV present in VBT
3197 * @i915: i915 device instance
3198 *
3199 * Return true if TV is present. If no child devices were parsed from VBT,
3200 * assume TV is present.
3201 */
3202bool intel_bios_is_tv_present(struct drm_i915_private *i915)
3203{
3204	const struct intel_bios_encoder_data *devdata;
3205
3206	if (!i915->display.vbt.int_tv_support)
3207		return false;
3208
3209	if (list_empty(&i915->display.vbt.display_devices))
3210		return true;
3211
3212	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3213		const struct child_device_config *child = &devdata->child;
3214
3215		/*
3216		 * If the device type is not TV, continue.
3217		 */
3218		switch (child->device_type) {
3219		case DEVICE_TYPE_INT_TV:
3220		case DEVICE_TYPE_TV:
3221		case DEVICE_TYPE_TV_SVIDEO_COMPOSITE:
3222			break;
3223		default:
3224			continue;
3225		}
3226		/* Only when the addin_offset is non-zero, it is regarded
3227		 * as present.
3228		 */
3229		if (child->addin_offset)
3230			return true;
3231	}
3232
3233	return false;
3234}
3235
3236/**
3237 * intel_bios_is_lvds_present - is LVDS present in VBT
3238 * @i915:	i915 device instance
3239 * @i2c_pin:	i2c pin for LVDS if present
3240 *
3241 * Return true if LVDS is present. If no child devices were parsed from VBT,
3242 * assume LVDS is present.
3243 */
3244bool intel_bios_is_lvds_present(struct drm_i915_private *i915, u8 *i2c_pin)
3245{
3246	const struct intel_bios_encoder_data *devdata;
3247
3248	if (list_empty(&i915->display.vbt.display_devices))
3249		return true;
3250
3251	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3252		const struct child_device_config *child = &devdata->child;
3253
3254		/* If the device type is not LFP, continue.
3255		 * We have to check both the new identifiers as well as the
3256		 * old for compatibility with some BIOSes.
3257		 */
3258		if (child->device_type != DEVICE_TYPE_INT_LFP &&
3259		    child->device_type != DEVICE_TYPE_LFP)
3260			continue;
3261
3262		if (intel_gmbus_is_valid_pin(i915, child->i2c_pin))
3263			*i2c_pin = child->i2c_pin;
3264
3265		/* However, we cannot trust the BIOS writers to populate
3266		 * the VBT correctly.  Since LVDS requires additional
3267		 * information from AIM blocks, a non-zero addin offset is
3268		 * a good indicator that the LVDS is actually present.
3269		 */
3270		if (child->addin_offset)
3271			return true;
3272
3273		/* But even then some BIOS writers perform some black magic
3274		 * and instantiate the device without reference to any
3275		 * additional data.  Trust that if the VBT was written into
3276		 * the OpRegion then they have validated the LVDS's existence.
3277		 */
3278		if (i915->display.opregion.vbt)
3279			return true;
3280	}
3281
3282	return false;
3283}
3284
3285/**
3286 * intel_bios_is_port_present - is the specified digital port present
3287 * @i915:	i915 device instance
3288 * @port:	port to check
3289 *
3290 * Return true if the device in %port is present.
3291 */
3292bool intel_bios_is_port_present(struct drm_i915_private *i915, enum port port)
3293{
3294	const struct intel_bios_encoder_data *devdata;
3295
3296	if (WARN_ON(!has_ddi_port_info(i915)))
3297		return true;
3298
3299	if (!is_port_valid(i915, port))
3300		return false;
3301
3302	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3303		const struct child_device_config *child = &devdata->child;
3304
3305		if (dvo_port_to_port(i915, child->dvo_port) == port)
3306			return true;
3307	}
3308
3309	return false;
3310}
3311
3312bool intel_bios_encoder_supports_dp_dual_mode(const struct intel_bios_encoder_data *devdata)
3313{
3314	const struct child_device_config *child = &devdata->child;
3315
3316	if (!intel_bios_encoder_supports_dp(devdata) ||
3317	    !intel_bios_encoder_supports_hdmi(devdata))
3318		return false;
3319
3320	if (dvo_port_type(child->dvo_port) == DVO_PORT_DPA)
3321		return true;
3322
3323	/* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */
3324	if (dvo_port_type(child->dvo_port) == DVO_PORT_HDMIA &&
3325	    child->aux_channel != 0)
3326		return true;
3327
3328	return false;
3329}
3330
3331/**
3332 * intel_bios_is_dsi_present - is DSI present in VBT
3333 * @i915:	i915 device instance
3334 * @port:	port for DSI if present
3335 *
3336 * Return true if DSI is present, and return the port in %port.
3337 */
3338bool intel_bios_is_dsi_present(struct drm_i915_private *i915,
3339			       enum port *port)
3340{
3341	const struct intel_bios_encoder_data *devdata;
3342
3343	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3344		const struct child_device_config *child = &devdata->child;
3345		u8 dvo_port = child->dvo_port;
3346
3347		if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
3348			continue;
3349
3350		if (dsi_dvo_port_to_port(i915, dvo_port) == PORT_NONE) {
3351			drm_dbg_kms(&i915->drm,
3352				    "VBT has unsupported DSI port %c\n",
3353				    port_name(dvo_port - DVO_PORT_MIPIA));
3354			continue;
3355		}
3356
3357		if (port)
3358			*port = dsi_dvo_port_to_port(i915, dvo_port);
3359		return true;
3360	}
3361
3362	return false;
3363}
3364
3365static void fill_dsc(struct intel_crtc_state *crtc_state,
3366		     struct dsc_compression_parameters_entry *dsc,
3367		     int dsc_max_bpc)
3368{
3369	struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
3370	int bpc = 8;
3371
3372	vdsc_cfg->dsc_version_major = dsc->version_major;
3373	vdsc_cfg->dsc_version_minor = dsc->version_minor;
3374
3375	if (dsc->support_12bpc && dsc_max_bpc >= 12)
3376		bpc = 12;
3377	else if (dsc->support_10bpc && dsc_max_bpc >= 10)
3378		bpc = 10;
3379	else if (dsc->support_8bpc && dsc_max_bpc >= 8)
3380		bpc = 8;
3381	else
3382		DRM_DEBUG_KMS("VBT: Unsupported BPC %d for DCS\n",
3383			      dsc_max_bpc);
3384
3385	crtc_state->pipe_bpp = bpc * 3;
3386
3387	crtc_state->dsc.compressed_bpp = min(crtc_state->pipe_bpp,
3388					     VBT_DSC_MAX_BPP(dsc->max_bpp));
3389
3390	/*
3391	 * FIXME: This is ugly, and slice count should take DSC engine
3392	 * throughput etc. into account.
3393	 *
3394	 * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices.
3395	 */
3396	if (dsc->slices_per_line & BIT(2)) {
3397		crtc_state->dsc.slice_count = 4;
3398	} else if (dsc->slices_per_line & BIT(1)) {
3399		crtc_state->dsc.slice_count = 2;
3400	} else {
3401		/* FIXME */
3402		if (!(dsc->slices_per_line & BIT(0)))
3403			DRM_DEBUG_KMS("VBT: Unsupported DSC slice count for DSI\n");
3404
3405		crtc_state->dsc.slice_count = 1;
3406	}
3407
3408	if (crtc_state->hw.adjusted_mode.crtc_hdisplay %
3409	    crtc_state->dsc.slice_count != 0)
3410		DRM_DEBUG_KMS("VBT: DSC hdisplay %d not divisible by slice count %d\n",
3411			      crtc_state->hw.adjusted_mode.crtc_hdisplay,
3412			      crtc_state->dsc.slice_count);
3413
3414	/*
3415	 * The VBT rc_buffer_block_size and rc_buffer_size definitions
3416	 * correspond to DP 1.4 DPCD offsets 0x62 and 0x63.
3417	 */
3418	vdsc_cfg->rc_model_size = drm_dsc_dp_rc_buffer_size(dsc->rc_buffer_block_size,
3419							    dsc->rc_buffer_size);
3420
3421	/* FIXME: DSI spec says bpc + 1 for this one */
3422	vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth);
3423
3424	vdsc_cfg->block_pred_enable = dsc->block_prediction_enable;
3425
3426	vdsc_cfg->slice_height = dsc->slice_height;
3427}
3428
3429/* FIXME: initially DSI specific */
3430bool intel_bios_get_dsc_params(struct intel_encoder *encoder,
3431			       struct intel_crtc_state *crtc_state,
3432			       int dsc_max_bpc)
3433{
3434	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3435	const struct intel_bios_encoder_data *devdata;
3436
3437	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3438		const struct child_device_config *child = &devdata->child;
3439
3440		if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
3441			continue;
3442
3443		if (dsi_dvo_port_to_port(i915, child->dvo_port) == encoder->port) {
3444			if (!devdata->dsc)
3445				return false;
3446
3447			if (crtc_state)
3448				fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc);
3449
3450			return true;
3451		}
3452	}
3453
3454	return false;
3455}
3456
3457static const u8 adlp_aux_ch_map[] = {
3458	[AUX_CH_A] = DP_AUX_A,
3459	[AUX_CH_B] = DP_AUX_B,
3460	[AUX_CH_C] = DP_AUX_C,
3461	[AUX_CH_D_XELPD] = DP_AUX_D,
3462	[AUX_CH_E_XELPD] = DP_AUX_E,
3463	[AUX_CH_USBC1] = DP_AUX_F,
3464	[AUX_CH_USBC2] = DP_AUX_G,
3465	[AUX_CH_USBC3] = DP_AUX_H,
3466	[AUX_CH_USBC4] = DP_AUX_I,
3467};
3468
3469/*
3470 * ADL-S VBT uses PHY based mapping. Combo PHYs A,B,C,D,E
3471 * map to DDI A,TC1,TC2,TC3,TC4 respectively.
3472 */
3473static const u8 adls_aux_ch_map[] = {
3474	[AUX_CH_A] = DP_AUX_A,
3475	[AUX_CH_USBC1] = DP_AUX_B,
3476	[AUX_CH_USBC2] = DP_AUX_C,
3477	[AUX_CH_USBC3] = DP_AUX_D,
3478	[AUX_CH_USBC4] = DP_AUX_E,
3479};
3480
3481/*
3482 * RKL/DG1 VBT uses PHY based mapping. Combo PHYs A,B,C,D
3483 * map to DDI A,B,TC1,TC2 respectively.
3484 */
3485static const u8 rkl_aux_ch_map[] = {
3486	[AUX_CH_A] = DP_AUX_A,
3487	[AUX_CH_B] = DP_AUX_B,
3488	[AUX_CH_USBC1] = DP_AUX_C,
3489	[AUX_CH_USBC2] = DP_AUX_D,
3490};
3491
3492static const u8 direct_aux_ch_map[] = {
3493	[AUX_CH_A] = DP_AUX_A,
3494	[AUX_CH_B] = DP_AUX_B,
3495	[AUX_CH_C] = DP_AUX_C,
3496	[AUX_CH_D] = DP_AUX_D, /* aka AUX_CH_USBC1 */
3497	[AUX_CH_E] = DP_AUX_E, /* aka AUX_CH_USBC2 */
3498	[AUX_CH_F] = DP_AUX_F, /* aka AUX_CH_USBC3 */
3499	[AUX_CH_G] = DP_AUX_G, /* aka AUX_CH_USBC4 */
3500	[AUX_CH_H] = DP_AUX_H, /* aka AUX_CH_USBC5 */
3501	[AUX_CH_I] = DP_AUX_I, /* aka AUX_CH_USBC6 */
3502};
3503
3504static enum aux_ch map_aux_ch(struct drm_i915_private *i915, u8 aux_channel)
3505{
3506	const u8 *aux_ch_map;
3507	int i, n_entries;
3508
3509	if (DISPLAY_VER(i915) >= 13) {
3510		aux_ch_map = adlp_aux_ch_map;
3511		n_entries = ARRAY_SIZE(adlp_aux_ch_map);
3512	} else if (IS_ALDERLAKE_S(i915)) {
3513		aux_ch_map = adls_aux_ch_map;
3514		n_entries = ARRAY_SIZE(adls_aux_ch_map);
3515	} else if (IS_DG1(i915) || IS_ROCKETLAKE(i915)) {
3516		aux_ch_map = rkl_aux_ch_map;
3517		n_entries = ARRAY_SIZE(rkl_aux_ch_map);
3518	} else {
3519		aux_ch_map = direct_aux_ch_map;
3520		n_entries = ARRAY_SIZE(direct_aux_ch_map);
3521	}
3522
3523	for (i = 0; i < n_entries; i++) {
3524		if (aux_ch_map[i] == aux_channel)
3525			return i;
3526	}
3527
3528	drm_dbg_kms(&i915->drm,
3529		    "Ignoring alternate AUX CH: VBT claims AUX 0x%x, which is not valid for this platform\n",
3530		    aux_channel);
3531
3532	return AUX_CH_NONE;
3533}
3534
3535enum aux_ch intel_bios_dp_aux_ch(const struct intel_bios_encoder_data *devdata)
3536{
3537	if (!devdata || !devdata->child.aux_channel)
3538		return AUX_CH_NONE;
3539
3540	return map_aux_ch(devdata->i915, devdata->child.aux_channel);
3541}
3542
3543bool intel_bios_dp_has_shared_aux_ch(const struct intel_bios_encoder_data *devdata)
3544{
3545	struct drm_i915_private *i915;
3546	u8 aux_channel;
3547	int count = 0;
3548
3549	if (!devdata || !devdata->child.aux_channel)
3550		return false;
3551
3552	i915 = devdata->i915;
3553	aux_channel = devdata->child.aux_channel;
3554
3555	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3556		if (intel_bios_encoder_supports_dp(devdata) &&
3557		    aux_channel == devdata->child.aux_channel)
3558			count++;
3559	}
3560
3561	return count > 1;
3562}
3563
3564int intel_bios_dp_boost_level(const struct intel_bios_encoder_data *devdata)
3565{
3566	if (!devdata || devdata->i915->display.vbt.version < 196 || !devdata->child.iboost)
3567		return 0;
3568
3569	return translate_iboost(devdata->child.dp_iboost_level);
3570}
3571
3572int intel_bios_hdmi_boost_level(const struct intel_bios_encoder_data *devdata)
3573{
3574	if (!devdata || devdata->i915->display.vbt.version < 196 || !devdata->child.iboost)
3575		return 0;
3576
3577	return translate_iboost(devdata->child.hdmi_iboost_level);
3578}
3579
3580int intel_bios_hdmi_ddc_pin(const struct intel_bios_encoder_data *devdata)
3581{
3582	if (!devdata || !devdata->child.ddc_pin)
3583		return 0;
3584
3585	return map_ddc_pin(devdata->i915, devdata->child.ddc_pin);
3586}
3587
3588bool intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data *devdata)
3589{
3590	return devdata->i915->display.vbt.version >= 195 && devdata->child.dp_usb_type_c;
3591}
3592
3593bool intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data *devdata)
3594{
3595	return devdata->i915->display.vbt.version >= 209 && devdata->child.tbt;
3596}
3597
3598bool intel_bios_encoder_lane_reversal(const struct intel_bios_encoder_data *devdata)
3599{
3600	return devdata && devdata->child.lane_reversal;
3601}
3602
3603bool intel_bios_encoder_hpd_invert(const struct intel_bios_encoder_data *devdata)
3604{
3605	return devdata && devdata->child.hpd_invert;
3606}
3607
3608const struct intel_bios_encoder_data *
3609intel_bios_encoder_data_lookup(struct drm_i915_private *i915, enum port port)
3610{
3611	struct intel_bios_encoder_data *devdata;
3612
3613	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3614		if (intel_bios_encoder_port(devdata) == port)
3615			return devdata;
3616	}
3617
3618	return NULL;
3619}
3620
3621void intel_bios_for_each_encoder(struct drm_i915_private *i915,
3622				 void (*func)(struct drm_i915_private *i915,
3623					      const struct intel_bios_encoder_data *devdata))
3624{
3625	struct intel_bios_encoder_data *devdata;
3626
3627	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node)
3628		func(i915, devdata);
3629}
3630