1/*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Keith Packard <keithp@keithp.com>
25 *
26 */
27
28#include <linux/i2c.h>
29#include <linux/module.h>
30#include <linux/slab.h>
31
32#include <drm/display/drm_dp_helper.h>
33#include <drm/drm_crtc.h>
34#include <drm/drm_crtc_helper.h>
35#include <drm/drm_edid.h>
36#include <drm/drm_modeset_helper_vtables.h>
37#include <drm/drm_simple_kms_helper.h>
38
39#include "gma_display.h"
40#include "psb_drv.h"
41#include "psb_intel_drv.h"
42#include "psb_intel_reg.h"
43
44/**
45 * struct i2c_algo_dp_aux_data - driver interface structure for i2c over dp
46 * 				 aux algorithm
47 * @running: set by the algo indicating whether an i2c is ongoing or whether
48 * 	     the i2c bus is quiescent
49 * @address: i2c target address for the currently ongoing transfer
50 * @aux_ch: driver callback to transfer a single byte of the i2c payload
51 */
52struct i2c_algo_dp_aux_data {
53	bool running;
54	u16 address;
55	int (*aux_ch) (struct i2c_adapter *adapter,
56		       int mode, uint8_t write_byte,
57		       uint8_t *read_byte);
58};
59
60/* Run a single AUX_CH I2C transaction, writing/reading data as necessary */
61static int
62i2c_algo_dp_aux_transaction(struct i2c_adapter *adapter, int mode,
63			    uint8_t write_byte, uint8_t *read_byte)
64{
65	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
66	int ret;
67
68	ret = (*algo_data->aux_ch)(adapter, mode,
69				   write_byte, read_byte);
70	return ret;
71}
72
73/*
74 * I2C over AUX CH
75 */
76
77/*
78 * Send the address. If the I2C link is running, this 'restarts'
79 * the connection with the new address, this is used for doing
80 * a write followed by a read (as needed for DDC)
81 */
82static int
83i2c_algo_dp_aux_address(struct i2c_adapter *adapter, u16 address, bool reading)
84{
85	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
86	int mode = MODE_I2C_START;
87
88	if (reading)
89		mode |= MODE_I2C_READ;
90	else
91		mode |= MODE_I2C_WRITE;
92	algo_data->address = address;
93	algo_data->running = true;
94	return i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL);
95}
96
97/*
98 * Stop the I2C transaction. This closes out the link, sending
99 * a bare address packet with the MOT bit turned off
100 */
101static void
102i2c_algo_dp_aux_stop(struct i2c_adapter *adapter, bool reading)
103{
104	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
105	int mode = MODE_I2C_STOP;
106
107	if (reading)
108		mode |= MODE_I2C_READ;
109	else
110		mode |= MODE_I2C_WRITE;
111	if (algo_data->running) {
112		(void) i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL);
113		algo_data->running = false;
114	}
115}
116
117/*
118 * Write a single byte to the current I2C address, the
119 * I2C link must be running or this returns -EIO
120 */
121static int
122i2c_algo_dp_aux_put_byte(struct i2c_adapter *adapter, u8 byte)
123{
124	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
125
126	if (!algo_data->running)
127		return -EIO;
128
129	return i2c_algo_dp_aux_transaction(adapter, MODE_I2C_WRITE, byte, NULL);
130}
131
132/*
133 * Read a single byte from the current I2C address, the
134 * I2C link must be running or this returns -EIO
135 */
136static int
137i2c_algo_dp_aux_get_byte(struct i2c_adapter *adapter, u8 *byte_ret)
138{
139	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
140
141	if (!algo_data->running)
142		return -EIO;
143
144	return i2c_algo_dp_aux_transaction(adapter, MODE_I2C_READ, 0, byte_ret);
145}
146
147static int
148i2c_algo_dp_aux_xfer(struct i2c_adapter *adapter,
149		     struct i2c_msg *msgs,
150		     int num)
151{
152	int ret = 0;
153	bool reading = false;
154	int m;
155	int b;
156
157	for (m = 0; m < num; m++) {
158		u16 len = msgs[m].len;
159		u8 *buf = msgs[m].buf;
160		reading = (msgs[m].flags & I2C_M_RD) != 0;
161		ret = i2c_algo_dp_aux_address(adapter, msgs[m].addr, reading);
162		if (ret < 0)
163			break;
164		if (reading) {
165			for (b = 0; b < len; b++) {
166				ret = i2c_algo_dp_aux_get_byte(adapter, &buf[b]);
167				if (ret < 0)
168					break;
169			}
170		} else {
171			for (b = 0; b < len; b++) {
172				ret = i2c_algo_dp_aux_put_byte(adapter, buf[b]);
173				if (ret < 0)
174					break;
175			}
176		}
177		if (ret < 0)
178			break;
179	}
180	if (ret >= 0)
181		ret = num;
182	i2c_algo_dp_aux_stop(adapter, reading);
183	DRM_DEBUG_KMS("dp_aux_xfer return %d\n", ret);
184	return ret;
185}
186
187static u32
188i2c_algo_dp_aux_functionality(struct i2c_adapter *adapter)
189{
190	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
191	       I2C_FUNC_SMBUS_READ_BLOCK_DATA |
192	       I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
193	       I2C_FUNC_10BIT_ADDR;
194}
195
196static const struct i2c_algorithm i2c_dp_aux_algo = {
197	.master_xfer	= i2c_algo_dp_aux_xfer,
198	.functionality	= i2c_algo_dp_aux_functionality,
199};
200
201static void
202i2c_dp_aux_reset_bus(struct i2c_adapter *adapter)
203{
204	(void) i2c_algo_dp_aux_address(adapter, 0, false);
205	(void) i2c_algo_dp_aux_stop(adapter, false);
206}
207
208static int
209i2c_dp_aux_prepare_bus(struct i2c_adapter *adapter)
210{
211	adapter->algo = &i2c_dp_aux_algo;
212	adapter->retries = 3;
213	i2c_dp_aux_reset_bus(adapter);
214	return 0;
215}
216
217/*
218 * FIXME: This is the old dp aux helper, gma500 is the last driver that needs to
219 * be ported over to the new helper code in drm_dp_helper.c like i915 or radeon.
220 */
221static int
222i2c_dp_aux_add_bus(struct i2c_adapter *adapter)
223{
224	int error;
225
226	error = i2c_dp_aux_prepare_bus(adapter);
227	if (error)
228		return error;
229	error = i2c_add_adapter(adapter);
230	return error;
231}
232
233#define _wait_for(COND, MS, W) ({ \
234        unsigned long timeout__ = jiffies + msecs_to_jiffies(MS);       \
235        int ret__ = 0;                                                  \
236        while (! (COND)) {                                              \
237                if (time_after(jiffies, timeout__)) {                   \
238                        ret__ = -ETIMEDOUT;                             \
239                        break;                                          \
240                }                                                       \
241                if (W && !in_dbg_master()) msleep(W);                   \
242        }                                                               \
243        ret__;                                                          \
244})
245
246#define wait_for(COND, MS) _wait_for(COND, MS, 1)
247
248#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
249
250#define DP_LINK_CONFIGURATION_SIZE	9
251
252#define CDV_FAST_LINK_TRAIN	1
253
254struct cdv_intel_dp {
255	uint32_t output_reg;
256	uint32_t DP;
257	uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
258	bool has_audio;
259	int force_audio;
260	uint32_t color_range;
261	uint8_t link_bw;
262	uint8_t lane_count;
263	uint8_t dpcd[4];
264	struct gma_encoder *encoder;
265	struct i2c_adapter adapter;
266	struct i2c_algo_dp_aux_data algo;
267	uint8_t	train_set[4];
268	uint8_t link_status[DP_LINK_STATUS_SIZE];
269	int panel_power_up_delay;
270	int panel_power_down_delay;
271	int panel_power_cycle_delay;
272	int backlight_on_delay;
273	int backlight_off_delay;
274	struct drm_display_mode *panel_fixed_mode;  /* for eDP */
275	bool panel_on;
276};
277
278struct ddi_regoff {
279	uint32_t	PreEmph1;
280	uint32_t	PreEmph2;
281	uint32_t	VSwing1;
282	uint32_t	VSwing2;
283	uint32_t	VSwing3;
284	uint32_t	VSwing4;
285	uint32_t	VSwing5;
286};
287
288static struct ddi_regoff ddi_DP_train_table[] = {
289	{.PreEmph1 = 0x812c, .PreEmph2 = 0x8124, .VSwing1 = 0x8154,
290	.VSwing2 = 0x8148, .VSwing3 = 0x814C, .VSwing4 = 0x8150,
291	.VSwing5 = 0x8158,},
292	{.PreEmph1 = 0x822c, .PreEmph2 = 0x8224, .VSwing1 = 0x8254,
293	.VSwing2 = 0x8248, .VSwing3 = 0x824C, .VSwing4 = 0x8250,
294	.VSwing5 = 0x8258,},
295};
296
297static uint32_t dp_vswing_premph_table[] = {
298        0x55338954,	0x4000,
299        0x554d8954,	0x2000,
300        0x55668954,	0,
301        0x559ac0d4,	0x6000,
302};
303/**
304 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
305 * @encoder: GMA encoder struct
306 *
307 * If a CPU or PCH DP output is attached to an eDP panel, this function
308 * will return true, and false otherwise.
309 */
310static bool is_edp(struct gma_encoder *encoder)
311{
312	return encoder->type == INTEL_OUTPUT_EDP;
313}
314
315
316static void cdv_intel_dp_start_link_train(struct gma_encoder *encoder);
317static void cdv_intel_dp_complete_link_train(struct gma_encoder *encoder);
318static void cdv_intel_dp_link_down(struct gma_encoder *encoder);
319
320static int
321cdv_intel_dp_max_lane_count(struct gma_encoder *encoder)
322{
323	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
324	int max_lane_count = 4;
325
326	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
327		max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
328		switch (max_lane_count) {
329		case 1: case 2: case 4:
330			break;
331		default:
332			max_lane_count = 4;
333		}
334	}
335	return max_lane_count;
336}
337
338static int
339cdv_intel_dp_max_link_bw(struct gma_encoder *encoder)
340{
341	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
342	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
343
344	switch (max_link_bw) {
345	case DP_LINK_BW_1_62:
346	case DP_LINK_BW_2_7:
347		break;
348	default:
349		max_link_bw = DP_LINK_BW_1_62;
350		break;
351	}
352	return max_link_bw;
353}
354
355static int
356cdv_intel_dp_link_clock(uint8_t link_bw)
357{
358	if (link_bw == DP_LINK_BW_2_7)
359		return 270000;
360	else
361		return 162000;
362}
363
364static int
365cdv_intel_dp_link_required(int pixel_clock, int bpp)
366{
367	return (pixel_clock * bpp + 7) / 8;
368}
369
370static int
371cdv_intel_dp_max_data_rate(int max_link_clock, int max_lanes)
372{
373	return (max_link_clock * max_lanes * 19) / 20;
374}
375
376static void cdv_intel_edp_panel_vdd_on(struct gma_encoder *intel_encoder)
377{
378	struct drm_device *dev = intel_encoder->base.dev;
379	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
380	u32 pp;
381
382	if (intel_dp->panel_on) {
383		DRM_DEBUG_KMS("Skip VDD on because of panel on\n");
384		return;
385	}
386	DRM_DEBUG_KMS("\n");
387
388	pp = REG_READ(PP_CONTROL);
389
390	pp |= EDP_FORCE_VDD;
391	REG_WRITE(PP_CONTROL, pp);
392	REG_READ(PP_CONTROL);
393	msleep(intel_dp->panel_power_up_delay);
394}
395
396static void cdv_intel_edp_panel_vdd_off(struct gma_encoder *intel_encoder)
397{
398	struct drm_device *dev = intel_encoder->base.dev;
399	u32 pp;
400
401	DRM_DEBUG_KMS("\n");
402	pp = REG_READ(PP_CONTROL);
403
404	pp &= ~EDP_FORCE_VDD;
405	REG_WRITE(PP_CONTROL, pp);
406	REG_READ(PP_CONTROL);
407
408}
409
410/* Returns true if the panel was already on when called */
411static bool cdv_intel_edp_panel_on(struct gma_encoder *intel_encoder)
412{
413	struct drm_device *dev = intel_encoder->base.dev;
414	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
415	u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_NONE;
416
417	if (intel_dp->panel_on)
418		return true;
419
420	DRM_DEBUG_KMS("\n");
421	pp = REG_READ(PP_CONTROL);
422	pp &= ~PANEL_UNLOCK_MASK;
423
424	pp |= (PANEL_UNLOCK_REGS | POWER_TARGET_ON);
425	REG_WRITE(PP_CONTROL, pp);
426	REG_READ(PP_CONTROL);
427
428	if (wait_for(((REG_READ(PP_STATUS) & idle_on_mask) == idle_on_mask), 1000)) {
429		DRM_DEBUG_KMS("Error in Powering up eDP panel, status %x\n", REG_READ(PP_STATUS));
430		intel_dp->panel_on = false;
431	} else
432		intel_dp->panel_on = true;
433	msleep(intel_dp->panel_power_up_delay);
434
435	return false;
436}
437
438static void cdv_intel_edp_panel_off (struct gma_encoder *intel_encoder)
439{
440	struct drm_device *dev = intel_encoder->base.dev;
441	u32 pp, idle_off_mask = PP_ON ;
442	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
443
444	DRM_DEBUG_KMS("\n");
445
446	pp = REG_READ(PP_CONTROL);
447
448	if ((pp & POWER_TARGET_ON) == 0)
449		return;
450
451	intel_dp->panel_on = false;
452	pp &= ~PANEL_UNLOCK_MASK;
453	/* ILK workaround: disable reset around power sequence */
454
455	pp &= ~POWER_TARGET_ON;
456	pp &= ~EDP_FORCE_VDD;
457	pp &= ~EDP_BLC_ENABLE;
458	REG_WRITE(PP_CONTROL, pp);
459	REG_READ(PP_CONTROL);
460	DRM_DEBUG_KMS("PP_STATUS %x\n", REG_READ(PP_STATUS));
461
462	if (wait_for((REG_READ(PP_STATUS) & idle_off_mask) == 0, 1000)) {
463		DRM_DEBUG_KMS("Error in turning off Panel\n");
464	}
465
466	msleep(intel_dp->panel_power_cycle_delay);
467	DRM_DEBUG_KMS("Over\n");
468}
469
470static void cdv_intel_edp_backlight_on (struct gma_encoder *intel_encoder)
471{
472	struct drm_device *dev = intel_encoder->base.dev;
473	u32 pp;
474
475	DRM_DEBUG_KMS("\n");
476	/*
477	 * If we enable the backlight right away following a panel power
478	 * on, we may see slight flicker as the panel syncs with the eDP
479	 * link.  So delay a bit to make sure the image is solid before
480	 * allowing it to appear.
481	 */
482	msleep(300);
483	pp = REG_READ(PP_CONTROL);
484
485	pp |= EDP_BLC_ENABLE;
486	REG_WRITE(PP_CONTROL, pp);
487	gma_backlight_enable(dev);
488}
489
490static void cdv_intel_edp_backlight_off (struct gma_encoder *intel_encoder)
491{
492	struct drm_device *dev = intel_encoder->base.dev;
493	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
494	u32 pp;
495
496	DRM_DEBUG_KMS("\n");
497	gma_backlight_disable(dev);
498	msleep(10);
499	pp = REG_READ(PP_CONTROL);
500
501	pp &= ~EDP_BLC_ENABLE;
502	REG_WRITE(PP_CONTROL, pp);
503	msleep(intel_dp->backlight_off_delay);
504}
505
506static enum drm_mode_status
507cdv_intel_dp_mode_valid(struct drm_connector *connector,
508		    struct drm_display_mode *mode)
509{
510	struct gma_encoder *encoder = gma_attached_encoder(connector);
511	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
512	int max_link_clock = cdv_intel_dp_link_clock(cdv_intel_dp_max_link_bw(encoder));
513	int max_lanes = cdv_intel_dp_max_lane_count(encoder);
514	struct drm_psb_private *dev_priv = to_drm_psb_private(connector->dev);
515
516	if (is_edp(encoder) && intel_dp->panel_fixed_mode) {
517		if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
518			return MODE_PANEL;
519		if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
520			return MODE_PANEL;
521	}
522
523	/* only refuse the mode on non eDP since we have seen some weird eDP panels
524	   which are outside spec tolerances but somehow work by magic */
525	if (!is_edp(encoder) &&
526	    (cdv_intel_dp_link_required(mode->clock, dev_priv->edp.bpp)
527	     > cdv_intel_dp_max_data_rate(max_link_clock, max_lanes)))
528		return MODE_CLOCK_HIGH;
529
530	if (is_edp(encoder)) {
531	    if (cdv_intel_dp_link_required(mode->clock, 24)
532	     	> cdv_intel_dp_max_data_rate(max_link_clock, max_lanes))
533		return MODE_CLOCK_HIGH;
534
535	}
536	if (mode->clock < 10000)
537		return MODE_CLOCK_LOW;
538
539	return MODE_OK;
540}
541
542static uint32_t
543pack_aux(uint8_t *src, int src_bytes)
544{
545	int	i;
546	uint32_t v = 0;
547
548	if (src_bytes > 4)
549		src_bytes = 4;
550	for (i = 0; i < src_bytes; i++)
551		v |= ((uint32_t) src[i]) << ((3-i) * 8);
552	return v;
553}
554
555static void
556unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
557{
558	int i;
559	if (dst_bytes > 4)
560		dst_bytes = 4;
561	for (i = 0; i < dst_bytes; i++)
562		dst[i] = src >> ((3-i) * 8);
563}
564
565static int
566cdv_intel_dp_aux_ch(struct gma_encoder *encoder,
567		uint8_t *send, int send_bytes,
568		uint8_t *recv, int recv_size)
569{
570	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
571	uint32_t output_reg = intel_dp->output_reg;
572	struct drm_device *dev = encoder->base.dev;
573	uint32_t ch_ctl = output_reg + 0x10;
574	uint32_t ch_data = ch_ctl + 4;
575	int i;
576	int recv_bytes;
577	uint32_t status;
578	uint32_t aux_clock_divider;
579	int try, precharge;
580
581	/* The clock divider is based off the hrawclk,
582	 * and would like to run at 2MHz. So, take the
583	 * hrawclk value and divide by 2 and use that
584	 * On CDV platform it uses 200MHz as hrawclk.
585	 *
586	 */
587	aux_clock_divider = 200 / 2;
588
589	precharge = 4;
590	if (is_edp(encoder))
591		precharge = 10;
592
593	if (REG_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
594		DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
595			  REG_READ(ch_ctl));
596		return -EBUSY;
597	}
598
599	/* Must try at least 3 times according to DP spec */
600	for (try = 0; try < 5; try++) {
601		/* Load the send data into the aux channel data registers */
602		for (i = 0; i < send_bytes; i += 4)
603			REG_WRITE(ch_data + i,
604				   pack_aux(send + i, send_bytes - i));
605
606		/* Send the command and wait for it to complete */
607		REG_WRITE(ch_ctl,
608			   DP_AUX_CH_CTL_SEND_BUSY |
609			   DP_AUX_CH_CTL_TIME_OUT_400us |
610			   (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
611			   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
612			   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
613			   DP_AUX_CH_CTL_DONE |
614			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
615			   DP_AUX_CH_CTL_RECEIVE_ERROR);
616		for (;;) {
617			status = REG_READ(ch_ctl);
618			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
619				break;
620			udelay(100);
621		}
622
623		/* Clear done status and any errors */
624		REG_WRITE(ch_ctl,
625			   status |
626			   DP_AUX_CH_CTL_DONE |
627			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
628			   DP_AUX_CH_CTL_RECEIVE_ERROR);
629		if (status & DP_AUX_CH_CTL_DONE)
630			break;
631	}
632
633	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
634		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
635		return -EBUSY;
636	}
637
638	/* Check for timeout or receive error.
639	 * Timeouts occur when the sink is not connected
640	 */
641	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
642		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
643		return -EIO;
644	}
645
646	/* Timeouts occur when the device isn't connected, so they're
647	 * "normal" -- don't fill the kernel log with these */
648	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
649		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
650		return -ETIMEDOUT;
651	}
652
653	/* Unload any bytes sent back from the other side */
654	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
655		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
656	if (recv_bytes > recv_size)
657		recv_bytes = recv_size;
658
659	for (i = 0; i < recv_bytes; i += 4)
660		unpack_aux(REG_READ(ch_data + i),
661			   recv + i, recv_bytes - i);
662
663	return recv_bytes;
664}
665
666/* Write data to the aux channel in native mode */
667static int
668cdv_intel_dp_aux_native_write(struct gma_encoder *encoder,
669			  uint16_t address, uint8_t *send, int send_bytes)
670{
671	int ret;
672	uint8_t	msg[20];
673	int msg_bytes;
674	uint8_t	ack;
675
676	if (send_bytes > 16)
677		return -1;
678	msg[0] = DP_AUX_NATIVE_WRITE << 4;
679	msg[1] = address >> 8;
680	msg[2] = address & 0xff;
681	msg[3] = send_bytes - 1;
682	memcpy(&msg[4], send, send_bytes);
683	msg_bytes = send_bytes + 4;
684	for (;;) {
685		ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes, &ack, 1);
686		if (ret < 0)
687			return ret;
688		ack >>= 4;
689		if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK)
690			break;
691		else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
692			udelay(100);
693		else
694			return -EIO;
695	}
696	return send_bytes;
697}
698
699/* Write a single byte to the aux channel in native mode */
700static int
701cdv_intel_dp_aux_native_write_1(struct gma_encoder *encoder,
702			    uint16_t address, uint8_t byte)
703{
704	return cdv_intel_dp_aux_native_write(encoder, address, &byte, 1);
705}
706
707/* read bytes from a native aux channel */
708static int
709cdv_intel_dp_aux_native_read(struct gma_encoder *encoder,
710			 uint16_t address, uint8_t *recv, int recv_bytes)
711{
712	uint8_t msg[4];
713	int msg_bytes;
714	uint8_t reply[20];
715	int reply_bytes;
716	uint8_t ack;
717	int ret;
718
719	msg[0] = DP_AUX_NATIVE_READ << 4;
720	msg[1] = address >> 8;
721	msg[2] = address & 0xff;
722	msg[3] = recv_bytes - 1;
723
724	msg_bytes = 4;
725	reply_bytes = recv_bytes + 1;
726
727	for (;;) {
728		ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes,
729				      reply, reply_bytes);
730		if (ret == 0)
731			return -EPROTO;
732		if (ret < 0)
733			return ret;
734		ack = reply[0] >> 4;
735		if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK) {
736			memcpy(recv, reply + 1, ret - 1);
737			return ret - 1;
738		}
739		else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
740			udelay(100);
741		else
742			return -EIO;
743	}
744}
745
746static int
747cdv_intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
748		    uint8_t write_byte, uint8_t *read_byte)
749{
750	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
751	struct cdv_intel_dp *intel_dp = container_of(adapter,
752						struct cdv_intel_dp,
753						adapter);
754	struct gma_encoder *encoder = intel_dp->encoder;
755	uint16_t address = algo_data->address;
756	uint8_t msg[5];
757	uint8_t reply[2];
758	unsigned retry;
759	int msg_bytes;
760	int reply_bytes;
761	int ret;
762
763	/* Set up the command byte */
764	if (mode & MODE_I2C_READ)
765		msg[0] = DP_AUX_I2C_READ << 4;
766	else
767		msg[0] = DP_AUX_I2C_WRITE << 4;
768
769	if (!(mode & MODE_I2C_STOP))
770		msg[0] |= DP_AUX_I2C_MOT << 4;
771
772	msg[1] = address >> 8;
773	msg[2] = address;
774
775	switch (mode) {
776	case MODE_I2C_WRITE:
777		msg[3] = 0;
778		msg[4] = write_byte;
779		msg_bytes = 5;
780		reply_bytes = 1;
781		break;
782	case MODE_I2C_READ:
783		msg[3] = 0;
784		msg_bytes = 4;
785		reply_bytes = 2;
786		break;
787	default:
788		msg_bytes = 3;
789		reply_bytes = 1;
790		break;
791	}
792
793	for (retry = 0; retry < 5; retry++) {
794		ret = cdv_intel_dp_aux_ch(encoder,
795				      msg, msg_bytes,
796				      reply, reply_bytes);
797		if (ret < 0) {
798			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
799			return ret;
800		}
801
802		switch ((reply[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK) {
803		case DP_AUX_NATIVE_REPLY_ACK:
804			/* I2C-over-AUX Reply field is only valid
805			 * when paired with AUX ACK.
806			 */
807			break;
808		case DP_AUX_NATIVE_REPLY_NACK:
809			DRM_DEBUG_KMS("aux_ch native nack\n");
810			return -EREMOTEIO;
811		case DP_AUX_NATIVE_REPLY_DEFER:
812			udelay(100);
813			continue;
814		default:
815			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
816				  reply[0]);
817			return -EREMOTEIO;
818		}
819
820		switch ((reply[0] >> 4) & DP_AUX_I2C_REPLY_MASK) {
821		case DP_AUX_I2C_REPLY_ACK:
822			if (mode == MODE_I2C_READ) {
823				*read_byte = reply[1];
824			}
825			return reply_bytes - 1;
826		case DP_AUX_I2C_REPLY_NACK:
827			DRM_DEBUG_KMS("aux_i2c nack\n");
828			return -EREMOTEIO;
829		case DP_AUX_I2C_REPLY_DEFER:
830			DRM_DEBUG_KMS("aux_i2c defer\n");
831			udelay(100);
832			break;
833		default:
834			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
835			return -EREMOTEIO;
836		}
837	}
838
839	DRM_ERROR("too many retries, giving up\n");
840	return -EREMOTEIO;
841}
842
843static int
844cdv_intel_dp_i2c_init(struct gma_connector *connector,
845		      struct gma_encoder *encoder, const char *name)
846{
847	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
848	int ret;
849
850	DRM_DEBUG_KMS("i2c_init %s\n", name);
851
852	intel_dp->algo.running = false;
853	intel_dp->algo.address = 0;
854	intel_dp->algo.aux_ch = cdv_intel_dp_i2c_aux_ch;
855
856	memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
857	intel_dp->adapter.owner = THIS_MODULE;
858	intel_dp->adapter.class = I2C_CLASS_DDC;
859	strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
860	intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
861	intel_dp->adapter.algo_data = &intel_dp->algo;
862	intel_dp->adapter.dev.parent = connector->base.kdev;
863
864	if (is_edp(encoder))
865		cdv_intel_edp_panel_vdd_on(encoder);
866	ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
867	if (is_edp(encoder))
868		cdv_intel_edp_panel_vdd_off(encoder);
869
870	return ret;
871}
872
873static void cdv_intel_fixed_panel_mode(struct drm_display_mode *fixed_mode,
874	struct drm_display_mode *adjusted_mode)
875{
876	adjusted_mode->hdisplay = fixed_mode->hdisplay;
877	adjusted_mode->hsync_start = fixed_mode->hsync_start;
878	adjusted_mode->hsync_end = fixed_mode->hsync_end;
879	adjusted_mode->htotal = fixed_mode->htotal;
880
881	adjusted_mode->vdisplay = fixed_mode->vdisplay;
882	adjusted_mode->vsync_start = fixed_mode->vsync_start;
883	adjusted_mode->vsync_end = fixed_mode->vsync_end;
884	adjusted_mode->vtotal = fixed_mode->vtotal;
885
886	adjusted_mode->clock = fixed_mode->clock;
887
888	drm_mode_set_crtcinfo(adjusted_mode, CRTC_INTERLACE_HALVE_V);
889}
890
891static bool
892cdv_intel_dp_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode,
893		    struct drm_display_mode *adjusted_mode)
894{
895	struct drm_psb_private *dev_priv = to_drm_psb_private(encoder->dev);
896	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
897	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
898	int lane_count, clock;
899	int max_lane_count = cdv_intel_dp_max_lane_count(intel_encoder);
900	int max_clock = cdv_intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0;
901	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
902	int refclock = mode->clock;
903	int bpp = 24;
904
905	if (is_edp(intel_encoder) && intel_dp->panel_fixed_mode) {
906		cdv_intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
907		refclock = intel_dp->panel_fixed_mode->clock;
908		bpp = dev_priv->edp.bpp;
909	}
910
911	for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
912		for (clock = max_clock; clock >= 0; clock--) {
913			int link_avail = cdv_intel_dp_max_data_rate(cdv_intel_dp_link_clock(bws[clock]), lane_count);
914
915			if (cdv_intel_dp_link_required(refclock, bpp) <= link_avail) {
916				intel_dp->link_bw = bws[clock];
917				intel_dp->lane_count = lane_count;
918				adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
919				DRM_DEBUG_KMS("Display port link bw %02x lane "
920						"count %d clock %d\n",
921				       intel_dp->link_bw, intel_dp->lane_count,
922				       adjusted_mode->clock);
923				return true;
924			}
925		}
926	}
927	if (is_edp(intel_encoder)) {
928		/* okay we failed just pick the highest */
929		intel_dp->lane_count = max_lane_count;
930		intel_dp->link_bw = bws[max_clock];
931		adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
932		DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
933			      "count %d clock %d\n",
934			      intel_dp->link_bw, intel_dp->lane_count,
935			      adjusted_mode->clock);
936
937		return true;
938	}
939	return false;
940}
941
942struct cdv_intel_dp_m_n {
943	uint32_t	tu;
944	uint32_t	gmch_m;
945	uint32_t	gmch_n;
946	uint32_t	link_m;
947	uint32_t	link_n;
948};
949
950static void
951cdv_intel_reduce_ratio(uint32_t *num, uint32_t *den)
952{
953	/*
954	while (*num > 0xffffff || *den > 0xffffff) {
955		*num >>= 1;
956		*den >>= 1;
957	}*/
958	uint64_t value, m;
959	m = *num;
960	value = m * (0x800000);
961	m = do_div(value, *den);
962	*num = value;
963	*den = 0x800000;
964}
965
966static void
967cdv_intel_dp_compute_m_n(int bpp,
968		     int nlanes,
969		     int pixel_clock,
970		     int link_clock,
971		     struct cdv_intel_dp_m_n *m_n)
972{
973	m_n->tu = 64;
974	m_n->gmch_m = (pixel_clock * bpp + 7) >> 3;
975	m_n->gmch_n = link_clock * nlanes;
976	cdv_intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
977	m_n->link_m = pixel_clock;
978	m_n->link_n = link_clock;
979	cdv_intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
980}
981
982void
983cdv_intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
984		 struct drm_display_mode *adjusted_mode)
985{
986	struct drm_device *dev = crtc->dev;
987	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
988	struct drm_mode_config *mode_config = &dev->mode_config;
989	struct drm_encoder *encoder;
990	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
991	int lane_count = 4, bpp = 24;
992	struct cdv_intel_dp_m_n m_n;
993	int pipe = gma_crtc->pipe;
994
995	/*
996	 * Find the lane count in the intel_encoder private
997	 */
998	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
999		struct gma_encoder *intel_encoder;
1000		struct cdv_intel_dp *intel_dp;
1001
1002		if (encoder->crtc != crtc)
1003			continue;
1004
1005		intel_encoder = to_gma_encoder(encoder);
1006		intel_dp = intel_encoder->dev_priv;
1007		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
1008			lane_count = intel_dp->lane_count;
1009			break;
1010		} else if (is_edp(intel_encoder)) {
1011			lane_count = intel_dp->lane_count;
1012			bpp = dev_priv->edp.bpp;
1013			break;
1014		}
1015	}
1016
1017	/*
1018	 * Compute the GMCH and Link ratios. The '3' here is
1019	 * the number of bytes_per_pixel post-LUT, which we always
1020	 * set up for 8-bits of R/G/B, or 3 bytes total.
1021	 */
1022	cdv_intel_dp_compute_m_n(bpp, lane_count,
1023			     mode->clock, adjusted_mode->clock, &m_n);
1024
1025	{
1026		REG_WRITE(PIPE_GMCH_DATA_M(pipe),
1027			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
1028			   m_n.gmch_m);
1029		REG_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
1030		REG_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
1031		REG_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
1032	}
1033}
1034
1035static void
1036cdv_intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
1037		  struct drm_display_mode *adjusted_mode)
1038{
1039	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1040	struct drm_crtc *crtc = encoder->crtc;
1041	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
1042	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1043	struct drm_device *dev = encoder->dev;
1044
1045	intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1046	intel_dp->DP |= intel_dp->color_range;
1047
1048	if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1049		intel_dp->DP |= DP_SYNC_HS_HIGH;
1050	if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1051		intel_dp->DP |= DP_SYNC_VS_HIGH;
1052
1053	intel_dp->DP |= DP_LINK_TRAIN_OFF;
1054
1055	switch (intel_dp->lane_count) {
1056	case 1:
1057		intel_dp->DP |= DP_PORT_WIDTH_1;
1058		break;
1059	case 2:
1060		intel_dp->DP |= DP_PORT_WIDTH_2;
1061		break;
1062	case 4:
1063		intel_dp->DP |= DP_PORT_WIDTH_4;
1064		break;
1065	}
1066	if (intel_dp->has_audio)
1067		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1068
1069	memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
1070	intel_dp->link_configuration[0] = intel_dp->link_bw;
1071	intel_dp->link_configuration[1] = intel_dp->lane_count;
1072
1073	/*
1074	 * Check for DPCD version > 1.1 and enhanced framing support
1075	 */
1076	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
1077	    (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
1078		intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
1079		intel_dp->DP |= DP_ENHANCED_FRAMING;
1080	}
1081
1082	/* CPT DP's pipe select is decided in TRANS_DP_CTL */
1083	if (gma_crtc->pipe == 1)
1084		intel_dp->DP |= DP_PIPEB_SELECT;
1085
1086	REG_WRITE(intel_dp->output_reg, (intel_dp->DP | DP_PORT_EN));
1087	DRM_DEBUG_KMS("DP expected reg is %x\n", intel_dp->DP);
1088	if (is_edp(intel_encoder)) {
1089		uint32_t pfit_control;
1090		cdv_intel_edp_panel_on(intel_encoder);
1091
1092		if (mode->hdisplay != adjusted_mode->hdisplay ||
1093			    mode->vdisplay != adjusted_mode->vdisplay)
1094			pfit_control = PFIT_ENABLE;
1095		else
1096			pfit_control = 0;
1097
1098		pfit_control |= gma_crtc->pipe << PFIT_PIPE_SHIFT;
1099
1100		REG_WRITE(PFIT_CONTROL, pfit_control);
1101	}
1102}
1103
1104
1105/* If the sink supports it, try to set the power state appropriately */
1106static void cdv_intel_dp_sink_dpms(struct gma_encoder *encoder, int mode)
1107{
1108	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1109	int ret, i;
1110
1111	/* Should have a valid DPCD by this point */
1112	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1113		return;
1114
1115	if (mode != DRM_MODE_DPMS_ON) {
1116		ret = cdv_intel_dp_aux_native_write_1(encoder, DP_SET_POWER,
1117						  DP_SET_POWER_D3);
1118		if (ret != 1)
1119			DRM_DEBUG_DRIVER("failed to write sink power state\n");
1120	} else {
1121		/*
1122		 * When turning on, we need to retry for 1ms to give the sink
1123		 * time to wake up.
1124		 */
1125		for (i = 0; i < 3; i++) {
1126			ret = cdv_intel_dp_aux_native_write_1(encoder,
1127							  DP_SET_POWER,
1128							  DP_SET_POWER_D0);
1129			if (ret == 1)
1130				break;
1131			udelay(1000);
1132		}
1133	}
1134}
1135
1136static void cdv_intel_dp_prepare(struct drm_encoder *encoder)
1137{
1138	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1139	int edp = is_edp(intel_encoder);
1140
1141	if (edp) {
1142		cdv_intel_edp_backlight_off(intel_encoder);
1143		cdv_intel_edp_panel_off(intel_encoder);
1144		cdv_intel_edp_panel_vdd_on(intel_encoder);
1145        }
1146	/* Wake up the sink first */
1147	cdv_intel_dp_sink_dpms(intel_encoder, DRM_MODE_DPMS_ON);
1148	cdv_intel_dp_link_down(intel_encoder);
1149	if (edp)
1150		cdv_intel_edp_panel_vdd_off(intel_encoder);
1151}
1152
1153static void cdv_intel_dp_commit(struct drm_encoder *encoder)
1154{
1155	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1156	int edp = is_edp(intel_encoder);
1157
1158	if (edp)
1159		cdv_intel_edp_panel_on(intel_encoder);
1160	cdv_intel_dp_start_link_train(intel_encoder);
1161	cdv_intel_dp_complete_link_train(intel_encoder);
1162	if (edp)
1163		cdv_intel_edp_backlight_on(intel_encoder);
1164}
1165
1166static void
1167cdv_intel_dp_dpms(struct drm_encoder *encoder, int mode)
1168{
1169	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1170	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1171	struct drm_device *dev = encoder->dev;
1172	uint32_t dp_reg = REG_READ(intel_dp->output_reg);
1173	int edp = is_edp(intel_encoder);
1174
1175	if (mode != DRM_MODE_DPMS_ON) {
1176		if (edp) {
1177			cdv_intel_edp_backlight_off(intel_encoder);
1178			cdv_intel_edp_panel_vdd_on(intel_encoder);
1179		}
1180		cdv_intel_dp_sink_dpms(intel_encoder, mode);
1181		cdv_intel_dp_link_down(intel_encoder);
1182		if (edp) {
1183			cdv_intel_edp_panel_vdd_off(intel_encoder);
1184			cdv_intel_edp_panel_off(intel_encoder);
1185		}
1186	} else {
1187        	if (edp)
1188			cdv_intel_edp_panel_on(intel_encoder);
1189		cdv_intel_dp_sink_dpms(intel_encoder, mode);
1190		if (!(dp_reg & DP_PORT_EN)) {
1191			cdv_intel_dp_start_link_train(intel_encoder);
1192			cdv_intel_dp_complete_link_train(intel_encoder);
1193		}
1194		if (edp)
1195        		cdv_intel_edp_backlight_on(intel_encoder);
1196	}
1197}
1198
1199/*
1200 * Native read with retry for link status and receiver capability reads for
1201 * cases where the sink may still be asleep.
1202 */
1203static bool
1204cdv_intel_dp_aux_native_read_retry(struct gma_encoder *encoder, uint16_t address,
1205			       uint8_t *recv, int recv_bytes)
1206{
1207	int ret, i;
1208
1209	/*
1210	 * Sinks are *supposed* to come up within 1ms from an off state,
1211	 * but we're also supposed to retry 3 times per the spec.
1212	 */
1213	for (i = 0; i < 3; i++) {
1214		ret = cdv_intel_dp_aux_native_read(encoder, address, recv,
1215					       recv_bytes);
1216		if (ret == recv_bytes)
1217			return true;
1218		udelay(1000);
1219	}
1220
1221	return false;
1222}
1223
1224/*
1225 * Fetch AUX CH registers 0x202 - 0x207 which contain
1226 * link status information
1227 */
1228static bool
1229cdv_intel_dp_get_link_status(struct gma_encoder *encoder)
1230{
1231	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1232	return cdv_intel_dp_aux_native_read_retry(encoder,
1233					      DP_LANE0_1_STATUS,
1234					      intel_dp->link_status,
1235					      DP_LINK_STATUS_SIZE);
1236}
1237
1238static uint8_t
1239cdv_intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1240		     int r)
1241{
1242	return link_status[r - DP_LANE0_1_STATUS];
1243}
1244
1245static uint8_t
1246cdv_intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
1247				 int lane)
1248{
1249	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1250	int	    s = ((lane & 1) ?
1251			 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1252			 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1253	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1254
1255	return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1256}
1257
1258static uint8_t
1259cdv_intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
1260				      int lane)
1261{
1262	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1263	int	    s = ((lane & 1) ?
1264			 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1265			 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1266	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1267
1268	return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1269}
1270
1271#define CDV_DP_VOLTAGE_MAX	    DP_TRAIN_VOLTAGE_SWING_LEVEL_3
1272
1273static void
1274cdv_intel_get_adjust_train(struct gma_encoder *encoder)
1275{
1276	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1277	uint8_t v = 0;
1278	uint8_t p = 0;
1279	int lane;
1280
1281	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1282		uint8_t this_v = cdv_intel_get_adjust_request_voltage(intel_dp->link_status, lane);
1283		uint8_t this_p = cdv_intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
1284
1285		if (this_v > v)
1286			v = this_v;
1287		if (this_p > p)
1288			p = this_p;
1289	}
1290
1291	if (v >= CDV_DP_VOLTAGE_MAX)
1292		v = CDV_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1293
1294	if (p == DP_TRAIN_PRE_EMPHASIS_MASK)
1295		p |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1296
1297	for (lane = 0; lane < 4; lane++)
1298		intel_dp->train_set[lane] = v | p;
1299}
1300
1301
1302static uint8_t
1303cdv_intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1304		      int lane)
1305{
1306	int i = DP_LANE0_1_STATUS + (lane >> 1);
1307	int s = (lane & 1) * 4;
1308	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1309
1310	return (l >> s) & 0xf;
1311}
1312
1313/* Check for clock recovery is done on all channels */
1314static bool
1315cdv_intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1316{
1317	int lane;
1318	uint8_t lane_status;
1319
1320	for (lane = 0; lane < lane_count; lane++) {
1321		lane_status = cdv_intel_get_lane_status(link_status, lane);
1322		if ((lane_status & DP_LANE_CR_DONE) == 0)
1323			return false;
1324	}
1325	return true;
1326}
1327
1328/* Check to see if channel eq is done on all channels */
1329#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1330			 DP_LANE_CHANNEL_EQ_DONE|\
1331			 DP_LANE_SYMBOL_LOCKED)
1332static bool
1333cdv_intel_channel_eq_ok(struct gma_encoder *encoder)
1334{
1335	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1336	uint8_t lane_align;
1337	uint8_t lane_status;
1338	int lane;
1339
1340	lane_align = cdv_intel_dp_link_status(intel_dp->link_status,
1341					  DP_LANE_ALIGN_STATUS_UPDATED);
1342	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1343		return false;
1344	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1345		lane_status = cdv_intel_get_lane_status(intel_dp->link_status, lane);
1346		if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1347			return false;
1348	}
1349	return true;
1350}
1351
1352static bool
1353cdv_intel_dp_set_link_train(struct gma_encoder *encoder,
1354			uint32_t dp_reg_value,
1355			uint8_t dp_train_pat)
1356{
1357	struct drm_device *dev = encoder->base.dev;
1358	int ret;
1359	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1360
1361	REG_WRITE(intel_dp->output_reg, dp_reg_value);
1362	REG_READ(intel_dp->output_reg);
1363
1364	ret = cdv_intel_dp_aux_native_write_1(encoder,
1365				    DP_TRAINING_PATTERN_SET,
1366				    dp_train_pat);
1367
1368	if (ret != 1) {
1369		DRM_DEBUG_KMS("Failure in setting link pattern %x\n",
1370				dp_train_pat);
1371		return false;
1372	}
1373
1374	return true;
1375}
1376
1377
1378static bool
1379cdv_intel_dplink_set_level(struct gma_encoder *encoder,
1380			uint8_t dp_train_pat)
1381{
1382	int ret;
1383	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1384
1385	ret = cdv_intel_dp_aux_native_write(encoder,
1386					DP_TRAINING_LANE0_SET,
1387					intel_dp->train_set,
1388					intel_dp->lane_count);
1389
1390	if (ret != intel_dp->lane_count) {
1391		DRM_DEBUG_KMS("Failure in setting level %d, lane_cnt= %d\n",
1392				intel_dp->train_set[0], intel_dp->lane_count);
1393		return false;
1394	}
1395	return true;
1396}
1397
1398static void
1399cdv_intel_dp_set_vswing_premph(struct gma_encoder *encoder, uint8_t signal_level)
1400{
1401	struct drm_device *dev = encoder->base.dev;
1402	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1403	struct ddi_regoff *ddi_reg;
1404	int vswing, premph, index;
1405
1406	if (intel_dp->output_reg == DP_B)
1407		ddi_reg = &ddi_DP_train_table[0];
1408	else
1409		ddi_reg = &ddi_DP_train_table[1];
1410
1411	vswing = (signal_level & DP_TRAIN_VOLTAGE_SWING_MASK);
1412	premph = ((signal_level & DP_TRAIN_PRE_EMPHASIS_MASK)) >>
1413				DP_TRAIN_PRE_EMPHASIS_SHIFT;
1414
1415	if (vswing + premph > 3)
1416		return;
1417#ifdef CDV_FAST_LINK_TRAIN
1418	return;
1419#endif
1420	DRM_DEBUG_KMS("Test2\n");
1421	//return ;
1422	cdv_sb_reset(dev);
1423	/* ;Swing voltage programming
1424        ;gfx_dpio_set_reg(0xc058, 0x0505313A) */
1425	cdv_sb_write(dev, ddi_reg->VSwing5, 0x0505313A);
1426
1427	/* ;gfx_dpio_set_reg(0x8154, 0x43406055) */
1428	cdv_sb_write(dev, ddi_reg->VSwing1, 0x43406055);
1429
1430	/* ;gfx_dpio_set_reg(0x8148, 0x55338954)
1431	 * The VSwing_PreEmph table is also considered based on the vswing/premp
1432	 */
1433	index = (vswing + premph) * 2;
1434	if (premph == 1 && vswing == 1) {
1435		cdv_sb_write(dev, ddi_reg->VSwing2, 0x055738954);
1436	} else
1437		cdv_sb_write(dev, ddi_reg->VSwing2, dp_vswing_premph_table[index]);
1438
1439	/* ;gfx_dpio_set_reg(0x814c, 0x40802040) */
1440	if ((vswing + premph) == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)
1441		cdv_sb_write(dev, ddi_reg->VSwing3, 0x70802040);
1442	else
1443		cdv_sb_write(dev, ddi_reg->VSwing3, 0x40802040);
1444
1445	/* ;gfx_dpio_set_reg(0x8150, 0x2b405555) */
1446	/* cdv_sb_write(dev, ddi_reg->VSwing4, 0x2b405555); */
1447
1448	/* ;gfx_dpio_set_reg(0x8154, 0xc3406055) */
1449	cdv_sb_write(dev, ddi_reg->VSwing1, 0xc3406055);
1450
1451	/* ;Pre emphasis programming
1452	 * ;gfx_dpio_set_reg(0xc02c, 0x1f030040)
1453	 */
1454	cdv_sb_write(dev, ddi_reg->PreEmph1, 0x1f030040);
1455
1456	/* ;gfx_dpio_set_reg(0x8124, 0x00004000) */
1457	index = 2 * premph + 1;
1458	cdv_sb_write(dev, ddi_reg->PreEmph2, dp_vswing_premph_table[index]);
1459	return;
1460}
1461
1462
1463/* Enable corresponding port and start training pattern 1 */
1464static void
1465cdv_intel_dp_start_link_train(struct gma_encoder *encoder)
1466{
1467	struct drm_device *dev = encoder->base.dev;
1468	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1469	int i;
1470	uint8_t voltage;
1471	bool clock_recovery = false;
1472	int tries;
1473	u32 reg;
1474	uint32_t DP = intel_dp->DP;
1475
1476	DP |= DP_PORT_EN;
1477	DP &= ~DP_LINK_TRAIN_MASK;
1478
1479	reg = DP;
1480	reg |= DP_LINK_TRAIN_PAT_1;
1481	/* Enable output, wait for it to become active */
1482	REG_WRITE(intel_dp->output_reg, reg);
1483	REG_READ(intel_dp->output_reg);
1484	gma_wait_for_vblank(dev);
1485
1486	DRM_DEBUG_KMS("Link config\n");
1487	/* Write the link configuration data */
1488	cdv_intel_dp_aux_native_write(encoder, DP_LINK_BW_SET,
1489				  intel_dp->link_configuration,
1490				  2);
1491
1492	memset(intel_dp->train_set, 0, 4);
1493	voltage = 0;
1494	tries = 0;
1495	clock_recovery = false;
1496
1497	DRM_DEBUG_KMS("Start train\n");
1498	reg = DP | DP_LINK_TRAIN_PAT_1;
1499
1500	for (;;) {
1501		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1502		DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1503				intel_dp->train_set[0],
1504				intel_dp->link_configuration[0],
1505				intel_dp->link_configuration[1]);
1506
1507		if (!cdv_intel_dp_set_link_train(encoder, reg, DP_TRAINING_PATTERN_1)) {
1508			DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 1\n");
1509		}
1510		cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1511		/* Set training pattern 1 */
1512
1513		cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_1);
1514
1515		udelay(200);
1516		if (!cdv_intel_dp_get_link_status(encoder))
1517			break;
1518
1519		DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1520				intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1521				intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1522
1523		if (cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1524			DRM_DEBUG_KMS("PT1 train is done\n");
1525			clock_recovery = true;
1526			break;
1527		}
1528
1529		/* Check to see if we've tried the max voltage */
1530		for (i = 0; i < intel_dp->lane_count; i++)
1531			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1532				break;
1533		if (i == intel_dp->lane_count)
1534			break;
1535
1536		/* Check to see if we've tried the same voltage 5 times */
1537		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1538			++tries;
1539			if (tries == 5)
1540				break;
1541		} else
1542			tries = 0;
1543		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1544
1545		/* Compute new intel_dp->train_set as requested by target */
1546		cdv_intel_get_adjust_train(encoder);
1547
1548	}
1549
1550	if (!clock_recovery) {
1551		DRM_DEBUG_KMS("failure in DP patter 1 training, train set %x\n", intel_dp->train_set[0]);
1552	}
1553
1554	intel_dp->DP = DP;
1555}
1556
1557static void
1558cdv_intel_dp_complete_link_train(struct gma_encoder *encoder)
1559{
1560	struct drm_device *dev = encoder->base.dev;
1561	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1562	int tries, cr_tries;
1563	u32 reg;
1564	uint32_t DP = intel_dp->DP;
1565
1566	/* channel equalization */
1567	tries = 0;
1568	cr_tries = 0;
1569
1570	DRM_DEBUG_KMS("\n");
1571	reg = DP | DP_LINK_TRAIN_PAT_2;
1572
1573	for (;;) {
1574
1575		DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1576				intel_dp->train_set[0],
1577				intel_dp->link_configuration[0],
1578				intel_dp->link_configuration[1]);
1579        	/* channel eq pattern */
1580
1581		if (!cdv_intel_dp_set_link_train(encoder, reg,
1582					     DP_TRAINING_PATTERN_2)) {
1583			DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 2\n");
1584		}
1585		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1586
1587		if (cr_tries > 5) {
1588			DRM_ERROR("failed to train DP, aborting\n");
1589			cdv_intel_dp_link_down(encoder);
1590			break;
1591		}
1592
1593		cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1594
1595		cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_2);
1596
1597		udelay(1000);
1598		if (!cdv_intel_dp_get_link_status(encoder))
1599			break;
1600
1601		DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1602				intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1603				intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1604
1605		/* Make sure clock is still ok */
1606		if (!cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1607			cdv_intel_dp_start_link_train(encoder);
1608			cr_tries++;
1609			continue;
1610		}
1611
1612		if (cdv_intel_channel_eq_ok(encoder)) {
1613			DRM_DEBUG_KMS("PT2 train is done\n");
1614			break;
1615		}
1616
1617		/* Try 5 times, then try clock recovery if that fails */
1618		if (tries > 5) {
1619			cdv_intel_dp_link_down(encoder);
1620			cdv_intel_dp_start_link_train(encoder);
1621			tries = 0;
1622			cr_tries++;
1623			continue;
1624		}
1625
1626		/* Compute new intel_dp->train_set as requested by target */
1627		cdv_intel_get_adjust_train(encoder);
1628		++tries;
1629
1630	}
1631
1632	reg = DP | DP_LINK_TRAIN_OFF;
1633
1634	REG_WRITE(intel_dp->output_reg, reg);
1635	REG_READ(intel_dp->output_reg);
1636	cdv_intel_dp_aux_native_write_1(encoder,
1637				    DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1638}
1639
1640static void
1641cdv_intel_dp_link_down(struct gma_encoder *encoder)
1642{
1643	struct drm_device *dev = encoder->base.dev;
1644	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1645	uint32_t DP = intel_dp->DP;
1646
1647	if ((REG_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1648		return;
1649
1650	DRM_DEBUG_KMS("\n");
1651
1652
1653	{
1654		DP &= ~DP_LINK_TRAIN_MASK;
1655		REG_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1656	}
1657	REG_READ(intel_dp->output_reg);
1658
1659	msleep(17);
1660
1661	REG_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1662	REG_READ(intel_dp->output_reg);
1663}
1664
1665static enum drm_connector_status cdv_dp_detect(struct gma_encoder *encoder)
1666{
1667	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1668	enum drm_connector_status status;
1669
1670	status = connector_status_disconnected;
1671	if (cdv_intel_dp_aux_native_read(encoder, 0x000, intel_dp->dpcd,
1672				     sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
1673	{
1674		if (intel_dp->dpcd[DP_DPCD_REV] != 0)
1675			status = connector_status_connected;
1676	}
1677	if (status == connector_status_connected)
1678		DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
1679			intel_dp->dpcd[0], intel_dp->dpcd[1],
1680			intel_dp->dpcd[2], intel_dp->dpcd[3]);
1681	return status;
1682}
1683
1684/*
1685 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1686 *
1687 * \return true if DP port is connected.
1688 * \return false if DP port is disconnected.
1689 */
1690static enum drm_connector_status
1691cdv_intel_dp_detect(struct drm_connector *connector, bool force)
1692{
1693	struct gma_encoder *encoder = gma_attached_encoder(connector);
1694	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1695	enum drm_connector_status status;
1696	struct edid *edid = NULL;
1697	int edp = is_edp(encoder);
1698
1699	intel_dp->has_audio = false;
1700
1701	if (edp)
1702		cdv_intel_edp_panel_vdd_on(encoder);
1703	status = cdv_dp_detect(encoder);
1704	if (status != connector_status_connected) {
1705		if (edp)
1706			cdv_intel_edp_panel_vdd_off(encoder);
1707		return status;
1708        }
1709
1710	if (intel_dp->force_audio) {
1711		intel_dp->has_audio = intel_dp->force_audio > 0;
1712	} else {
1713		edid = drm_get_edid(connector, &intel_dp->adapter);
1714		if (edid) {
1715			intel_dp->has_audio = drm_detect_monitor_audio(edid);
1716			kfree(edid);
1717		}
1718	}
1719	if (edp)
1720		cdv_intel_edp_panel_vdd_off(encoder);
1721
1722	return connector_status_connected;
1723}
1724
1725static int cdv_intel_dp_get_modes(struct drm_connector *connector)
1726{
1727	struct gma_encoder *intel_encoder = gma_attached_encoder(connector);
1728	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1729	struct edid *edid = NULL;
1730	int ret = 0;
1731	int edp = is_edp(intel_encoder);
1732
1733
1734	edid = drm_get_edid(connector, &intel_dp->adapter);
1735	if (edid) {
1736		drm_connector_update_edid_property(connector, edid);
1737		ret = drm_add_edid_modes(connector, edid);
1738		kfree(edid);
1739	}
1740
1741	if (is_edp(intel_encoder)) {
1742		struct drm_device *dev = connector->dev;
1743		struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
1744
1745		cdv_intel_edp_panel_vdd_off(intel_encoder);
1746		if (ret) {
1747			if (edp && !intel_dp->panel_fixed_mode) {
1748				struct drm_display_mode *newmode;
1749				list_for_each_entry(newmode, &connector->probed_modes,
1750					    head) {
1751					if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
1752						intel_dp->panel_fixed_mode =
1753							drm_mode_duplicate(dev, newmode);
1754						break;
1755					}
1756				}
1757			}
1758
1759			return ret;
1760		}
1761		if (!intel_dp->panel_fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
1762			intel_dp->panel_fixed_mode =
1763				drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
1764			if (intel_dp->panel_fixed_mode) {
1765				intel_dp->panel_fixed_mode->type |=
1766					DRM_MODE_TYPE_PREFERRED;
1767			}
1768		}
1769		if (intel_dp->panel_fixed_mode != NULL) {
1770			struct drm_display_mode *mode;
1771			mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
1772			drm_mode_probed_add(connector, mode);
1773			return 1;
1774		}
1775	}
1776
1777	return ret;
1778}
1779
1780static bool
1781cdv_intel_dp_detect_audio(struct drm_connector *connector)
1782{
1783	struct gma_encoder *encoder = gma_attached_encoder(connector);
1784	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1785	struct edid *edid;
1786	bool has_audio = false;
1787	int edp = is_edp(encoder);
1788
1789	if (edp)
1790		cdv_intel_edp_panel_vdd_on(encoder);
1791
1792	edid = drm_get_edid(connector, &intel_dp->adapter);
1793	if (edid) {
1794		has_audio = drm_detect_monitor_audio(edid);
1795		kfree(edid);
1796	}
1797	if (edp)
1798		cdv_intel_edp_panel_vdd_off(encoder);
1799
1800	return has_audio;
1801}
1802
1803static int
1804cdv_intel_dp_set_property(struct drm_connector *connector,
1805		      struct drm_property *property,
1806		      uint64_t val)
1807{
1808	struct drm_psb_private *dev_priv = to_drm_psb_private(connector->dev);
1809	struct gma_encoder *encoder = gma_attached_encoder(connector);
1810	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1811	int ret;
1812
1813	ret = drm_object_property_set_value(&connector->base, property, val);
1814	if (ret)
1815		return ret;
1816
1817	if (property == dev_priv->force_audio_property) {
1818		int i = val;
1819		bool has_audio;
1820
1821		if (i == intel_dp->force_audio)
1822			return 0;
1823
1824		intel_dp->force_audio = i;
1825
1826		if (i == 0)
1827			has_audio = cdv_intel_dp_detect_audio(connector);
1828		else
1829			has_audio = i > 0;
1830
1831		if (has_audio == intel_dp->has_audio)
1832			return 0;
1833
1834		intel_dp->has_audio = has_audio;
1835		goto done;
1836	}
1837
1838	if (property == dev_priv->broadcast_rgb_property) {
1839		if (val == !!intel_dp->color_range)
1840			return 0;
1841
1842		intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
1843		goto done;
1844	}
1845
1846	return -EINVAL;
1847
1848done:
1849	if (encoder->base.crtc) {
1850		struct drm_crtc *crtc = encoder->base.crtc;
1851		drm_crtc_helper_set_mode(crtc, &crtc->mode,
1852					 crtc->x, crtc->y,
1853					 crtc->primary->fb);
1854	}
1855
1856	return 0;
1857}
1858
1859static void
1860cdv_intel_dp_destroy(struct drm_connector *connector)
1861{
1862	struct gma_connector *gma_connector = to_gma_connector(connector);
1863	struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
1864	struct cdv_intel_dp *intel_dp = gma_encoder->dev_priv;
1865
1866	if (is_edp(gma_encoder)) {
1867	/*	cdv_intel_panel_destroy_backlight(connector->dev); */
1868		kfree(intel_dp->panel_fixed_mode);
1869		intel_dp->panel_fixed_mode = NULL;
1870	}
1871	i2c_del_adapter(&intel_dp->adapter);
1872	drm_connector_cleanup(connector);
1873	kfree(gma_connector);
1874}
1875
1876static const struct drm_encoder_helper_funcs cdv_intel_dp_helper_funcs = {
1877	.dpms = cdv_intel_dp_dpms,
1878	.mode_fixup = cdv_intel_dp_mode_fixup,
1879	.prepare = cdv_intel_dp_prepare,
1880	.mode_set = cdv_intel_dp_mode_set,
1881	.commit = cdv_intel_dp_commit,
1882};
1883
1884static const struct drm_connector_funcs cdv_intel_dp_connector_funcs = {
1885	.dpms = drm_helper_connector_dpms,
1886	.detect = cdv_intel_dp_detect,
1887	.fill_modes = drm_helper_probe_single_connector_modes,
1888	.set_property = cdv_intel_dp_set_property,
1889	.destroy = cdv_intel_dp_destroy,
1890};
1891
1892static const struct drm_connector_helper_funcs cdv_intel_dp_connector_helper_funcs = {
1893	.get_modes = cdv_intel_dp_get_modes,
1894	.mode_valid = cdv_intel_dp_mode_valid,
1895	.best_encoder = gma_best_encoder,
1896};
1897
1898static void cdv_intel_dp_add_properties(struct drm_connector *connector)
1899{
1900	cdv_intel_attach_force_audio_property(connector);
1901	cdv_intel_attach_broadcast_rgb_property(connector);
1902}
1903
1904/* check the VBT to see whether the eDP is on DP-D port */
1905static bool cdv_intel_dpc_is_edp(struct drm_device *dev)
1906{
1907	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
1908	struct child_device_config *p_child;
1909	int i;
1910
1911	if (!dev_priv->child_dev_num)
1912		return false;
1913
1914	for (i = 0; i < dev_priv->child_dev_num; i++) {
1915		p_child = dev_priv->child_dev + i;
1916
1917		if (p_child->dvo_port == PORT_IDPC &&
1918		    p_child->device_type == DEVICE_TYPE_eDP)
1919			return true;
1920	}
1921	return false;
1922}
1923
1924/* Cedarview display clock gating
1925
1926   We need this disable dot get correct behaviour while enabling
1927   DP/eDP. TODO - investigate if we can turn it back to normality
1928   after enabling */
1929static void cdv_disable_intel_clock_gating(struct drm_device *dev)
1930{
1931	u32 reg_value;
1932	reg_value = REG_READ(DSPCLK_GATE_D);
1933
1934	reg_value |= (DPUNIT_PIPEB_GATE_DISABLE |
1935			DPUNIT_PIPEA_GATE_DISABLE |
1936			DPCUNIT_CLOCK_GATE_DISABLE |
1937			DPLSUNIT_CLOCK_GATE_DISABLE |
1938			DPOUNIT_CLOCK_GATE_DISABLE |
1939			DPIOUNIT_CLOCK_GATE_DISABLE);
1940
1941	REG_WRITE(DSPCLK_GATE_D, reg_value);
1942
1943	udelay(500);
1944}
1945
1946void
1947cdv_intel_dp_init(struct drm_device *dev, struct psb_intel_mode_device *mode_dev, int output_reg)
1948{
1949	struct gma_encoder *gma_encoder;
1950	struct gma_connector *gma_connector;
1951	struct drm_connector *connector;
1952	struct drm_encoder *encoder;
1953	struct cdv_intel_dp *intel_dp;
1954	const char *name = NULL;
1955	int type = DRM_MODE_CONNECTOR_DisplayPort;
1956
1957	gma_encoder = kzalloc(sizeof(struct gma_encoder), GFP_KERNEL);
1958	if (!gma_encoder)
1959		return;
1960        gma_connector = kzalloc(sizeof(struct gma_connector), GFP_KERNEL);
1961        if (!gma_connector)
1962                goto err_connector;
1963	intel_dp = kzalloc(sizeof(struct cdv_intel_dp), GFP_KERNEL);
1964	if (!intel_dp)
1965	        goto err_priv;
1966
1967	if ((output_reg == DP_C) && cdv_intel_dpc_is_edp(dev))
1968		type = DRM_MODE_CONNECTOR_eDP;
1969
1970	connector = &gma_connector->base;
1971	encoder = &gma_encoder->base;
1972
1973	drm_connector_init(dev, connector, &cdv_intel_dp_connector_funcs, type);
1974	drm_simple_encoder_init(dev, encoder, DRM_MODE_ENCODER_TMDS);
1975
1976	gma_connector_attach_encoder(gma_connector, gma_encoder);
1977
1978	if (type == DRM_MODE_CONNECTOR_DisplayPort)
1979		gma_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
1980        else
1981		gma_encoder->type = INTEL_OUTPUT_EDP;
1982
1983
1984	gma_encoder->dev_priv=intel_dp;
1985	intel_dp->encoder = gma_encoder;
1986	intel_dp->output_reg = output_reg;
1987
1988	drm_encoder_helper_add(encoder, &cdv_intel_dp_helper_funcs);
1989	drm_connector_helper_add(connector, &cdv_intel_dp_connector_helper_funcs);
1990
1991	connector->polled = DRM_CONNECTOR_POLL_HPD;
1992	connector->interlace_allowed = false;
1993	connector->doublescan_allowed = false;
1994
1995	/* Set up the DDC bus. */
1996	switch (output_reg) {
1997		case DP_B:
1998			name = "DPDDC-B";
1999			gma_encoder->ddi_select = (DP_MASK | DDI0_SELECT);
2000			break;
2001		case DP_C:
2002			name = "DPDDC-C";
2003			gma_encoder->ddi_select = (DP_MASK | DDI1_SELECT);
2004			break;
2005	}
2006
2007	cdv_disable_intel_clock_gating(dev);
2008
2009	cdv_intel_dp_i2c_init(gma_connector, gma_encoder, name);
2010        /* FIXME:fail check */
2011	cdv_intel_dp_add_properties(connector);
2012
2013	if (is_edp(gma_encoder)) {
2014		int ret;
2015		struct edp_power_seq cur;
2016                u32 pp_on, pp_off, pp_div;
2017		u32 pwm_ctrl;
2018
2019		pp_on = REG_READ(PP_CONTROL);
2020		pp_on &= ~PANEL_UNLOCK_MASK;
2021	        pp_on |= PANEL_UNLOCK_REGS;
2022
2023		REG_WRITE(PP_CONTROL, pp_on);
2024
2025		pwm_ctrl = REG_READ(BLC_PWM_CTL2);
2026		pwm_ctrl |= PWM_PIPE_B;
2027		REG_WRITE(BLC_PWM_CTL2, pwm_ctrl);
2028
2029                pp_on = REG_READ(PP_ON_DELAYS);
2030                pp_off = REG_READ(PP_OFF_DELAYS);
2031                pp_div = REG_READ(PP_DIVISOR);
2032
2033		/* Pull timing values out of registers */
2034                cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2035                        PANEL_POWER_UP_DELAY_SHIFT;
2036
2037                cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2038                        PANEL_LIGHT_ON_DELAY_SHIFT;
2039
2040                cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2041                        PANEL_LIGHT_OFF_DELAY_SHIFT;
2042
2043                cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2044                        PANEL_POWER_DOWN_DELAY_SHIFT;
2045
2046                cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2047                               PANEL_POWER_CYCLE_DELAY_SHIFT);
2048
2049                DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2050                              cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2051
2052
2053		intel_dp->panel_power_up_delay = cur.t1_t3 / 10;
2054                intel_dp->backlight_on_delay = cur.t8 / 10;
2055                intel_dp->backlight_off_delay = cur.t9 / 10;
2056                intel_dp->panel_power_down_delay = cur.t10 / 10;
2057                intel_dp->panel_power_cycle_delay = (cur.t11_t12 - 1) * 100;
2058
2059                DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2060                              intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2061                              intel_dp->panel_power_cycle_delay);
2062
2063                DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2064                              intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2065
2066
2067		cdv_intel_edp_panel_vdd_on(gma_encoder);
2068		ret = cdv_intel_dp_aux_native_read(gma_encoder, DP_DPCD_REV,
2069					       intel_dp->dpcd,
2070					       sizeof(intel_dp->dpcd));
2071		cdv_intel_edp_panel_vdd_off(gma_encoder);
2072		if (ret <= 0) {
2073			/* if this fails, presume the device is a ghost */
2074			DRM_INFO("failed to retrieve link info, disabling eDP\n");
2075			drm_encoder_cleanup(encoder);
2076			cdv_intel_dp_destroy(connector);
2077			goto err_connector;
2078		} else {
2079        		DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
2080				intel_dp->dpcd[0], intel_dp->dpcd[1],
2081				intel_dp->dpcd[2], intel_dp->dpcd[3]);
2082
2083		}
2084		/* The CDV reference driver moves pnale backlight setup into the displays that
2085		   have a backlight: this is a good idea and one we should probably adopt, however
2086		   we need to migrate all the drivers before we can do that */
2087                /*cdv_intel_panel_setup_backlight(dev); */
2088	}
2089	return;
2090
2091err_priv:
2092	kfree(gma_connector);
2093err_connector:
2094	kfree(gma_encoder);
2095}
2096