1/*
2 * drm_irq.c IRQ and vblank support
3 *
4 * \author Rickard E. (Rik) Faith <faith@valinux.com>
5 * \author Gareth Hughes <gareth@valinux.com>
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
21 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
24 * OTHER DEALINGS IN THE SOFTWARE.
25 */
26
27#include <linux/export.h>
28#include <linux/kthread.h>
29#include <linux/moduleparam.h>
30
31#include <drm/drm_crtc.h>
32#include <drm/drm_drv.h>
33#include <drm/drm_framebuffer.h>
34#include <drm/drm_managed.h>
35#include <drm/drm_modeset_helper_vtables.h>
36#include <drm/drm_print.h>
37#include <drm/drm_vblank.h>
38
39#include "drm_internal.h"
40#include "drm_trace.h"
41
42/**
43 * DOC: vblank handling
44 *
45 * From the computer's perspective, every time the monitor displays
46 * a new frame the scanout engine has "scanned out" the display image
47 * from top to bottom, one row of pixels at a time. The current row
48 * of pixels is referred to as the current scanline.
49 *
50 * In addition to the display's visible area, there's usually a couple of
51 * extra scanlines which aren't actually displayed on the screen.
52 * These extra scanlines don't contain image data and are occasionally used
53 * for features like audio and infoframes. The region made up of these
54 * scanlines is referred to as the vertical blanking region, or vblank for
55 * short.
56 *
57 * For historical reference, the vertical blanking period was designed to
58 * give the electron gun (on CRTs) enough time to move back to the top of
59 * the screen to start scanning out the next frame. Similar for horizontal
60 * blanking periods. They were designed to give the electron gun enough
61 * time to move back to the other side of the screen to start scanning the
62 * next scanline.
63 *
64 * ::
65 *
66 *
67 *    physical →   ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽
68 *    top of      |                                        |
69 *    display     |                                        |
70 *                |               New frame                |
71 *                |                                        |
72 *                |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓|
73 *                |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~| ← Scanline,
74 *                |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓|   updates the
75 *                |                                        |   frame as it
76 *                |                                        |   travels down
77 *                |                                        |   ("scan out")
78 *                |               Old frame                |
79 *                |                                        |
80 *                |                                        |
81 *                |                                        |
82 *                |                                        |   physical
83 *                |                                        |   bottom of
84 *    vertical    |⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽| ← display
85 *    blanking    ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
86 *    region   →  ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
87 *                ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
88 *    start of →   ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽
89 *    new frame
90 *
91 * "Physical top of display" is the reference point for the high-precision/
92 * corrected timestamp.
93 *
94 * On a lot of display hardware, programming needs to take effect during the
95 * vertical blanking period so that settings like gamma, the image buffer
96 * buffer to be scanned out, etc. can safely be changed without showing
97 * any visual artifacts on the screen. In some unforgiving hardware, some of
98 * this programming has to both start and end in the same vblank. To help
99 * with the timing of the hardware programming, an interrupt is usually
100 * available to notify the driver when it can start the updating of registers.
101 * The interrupt is in this context named the vblank interrupt.
102 *
103 * The vblank interrupt may be fired at different points depending on the
104 * hardware. Some hardware implementations will fire the interrupt when the
105 * new frame start, other implementations will fire the interrupt at different
106 * points in time.
107 *
108 * Vertical blanking plays a major role in graphics rendering. To achieve
109 * tear-free display, users must synchronize page flips and/or rendering to
110 * vertical blanking. The DRM API offers ioctls to perform page flips
111 * synchronized to vertical blanking and wait for vertical blanking.
112 *
113 * The DRM core handles most of the vertical blanking management logic, which
114 * involves filtering out spurious interrupts, keeping race-free blanking
115 * counters, coping with counter wrap-around and resets and keeping use counts.
116 * It relies on the driver to generate vertical blanking interrupts and
117 * optionally provide a hardware vertical blanking counter.
118 *
119 * Drivers must initialize the vertical blanking handling core with a call to
120 * drm_vblank_init(). Minimally, a driver needs to implement
121 * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call
122 * drm_crtc_handle_vblank() in its vblank interrupt handler for working vblank
123 * support.
124 *
125 * Vertical blanking interrupts can be enabled by the DRM core or by drivers
126 * themselves (for instance to handle page flipping operations).  The DRM core
127 * maintains a vertical blanking use count to ensure that the interrupts are not
128 * disabled while a user still needs them. To increment the use count, drivers
129 * call drm_crtc_vblank_get() and release the vblank reference again with
130 * drm_crtc_vblank_put(). In between these two calls vblank interrupts are
131 * guaranteed to be enabled.
132 *
133 * On many hardware disabling the vblank interrupt cannot be done in a race-free
134 * manner, see &drm_driver.vblank_disable_immediate and
135 * &drm_driver.max_vblank_count. In that case the vblank core only disables the
136 * vblanks after a timer has expired, which can be configured through the
137 * ``vblankoffdelay`` module parameter.
138 *
139 * Drivers for hardware without support for vertical-blanking interrupts
140 * must not call drm_vblank_init(). For such drivers, atomic helpers will
141 * automatically generate fake vblank events as part of the display update.
142 * This functionality also can be controlled by the driver by enabling and
143 * disabling struct drm_crtc_state.no_vblank.
144 */
145
146/* Retry timestamp calculation up to 3 times to satisfy
147 * drm_timestamp_precision before giving up.
148 */
149#define DRM_TIMESTAMP_MAXRETRIES 3
150
151/* Threshold in nanoseconds for detection of redundant
152 * vblank irq in drm_handle_vblank(). 1 msec should be ok.
153 */
154#define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000
155
156static bool
157drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
158			  ktime_t *tvblank, bool in_vblank_irq);
159
160static unsigned int drm_timestamp_precision = 20;  /* Default to 20 usecs. */
161
162static int drm_vblank_offdelay = 5000;    /* Default to 5000 msecs. */
163
164module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600);
165module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600);
166MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)");
167MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]");
168
169static void store_vblank(struct drm_device *dev, unsigned int pipe,
170			 u32 vblank_count_inc,
171			 ktime_t t_vblank, u32 last)
172{
173	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
174
175	assert_spin_locked(&dev->vblank_time_lock);
176
177	vblank->last = last;
178
179	write_seqlock(&vblank->seqlock);
180	vblank->time = t_vblank;
181	atomic64_add(vblank_count_inc, &vblank->count);
182	write_sequnlock(&vblank->seqlock);
183}
184
185static u32 drm_max_vblank_count(struct drm_device *dev, unsigned int pipe)
186{
187	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
188
189	return vblank->max_vblank_count ?: dev->max_vblank_count;
190}
191
192/*
193 * "No hw counter" fallback implementation of .get_vblank_counter() hook,
194 * if there is no usable hardware frame counter available.
195 */
196static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe)
197{
198	drm_WARN_ON_ONCE(dev, drm_max_vblank_count(dev, pipe) != 0);
199	return 0;
200}
201
202static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe)
203{
204	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
205		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
206
207		if (drm_WARN_ON(dev, !crtc))
208			return 0;
209
210		if (crtc->funcs->get_vblank_counter)
211			return crtc->funcs->get_vblank_counter(crtc);
212	}
213#ifdef CONFIG_DRM_LEGACY
214	else if (dev->driver->get_vblank_counter) {
215		return dev->driver->get_vblank_counter(dev, pipe);
216	}
217#endif
218
219	return drm_vblank_no_hw_counter(dev, pipe);
220}
221
222/*
223 * Reset the stored timestamp for the current vblank count to correspond
224 * to the last vblank occurred.
225 *
226 * Only to be called from drm_crtc_vblank_on().
227 *
228 * Note: caller must hold &drm_device.vbl_lock since this reads & writes
229 * device vblank fields.
230 */
231static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe)
232{
233	u32 cur_vblank;
234	bool rc;
235	ktime_t t_vblank;
236	int count = DRM_TIMESTAMP_MAXRETRIES;
237
238	spin_lock(&dev->vblank_time_lock);
239
240	/*
241	 * sample the current counter to avoid random jumps
242	 * when drm_vblank_enable() applies the diff
243	 */
244	do {
245		cur_vblank = __get_vblank_counter(dev, pipe);
246		rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
247	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
248
249	/*
250	 * Only reinitialize corresponding vblank timestamp if high-precision query
251	 * available and didn't fail. Otherwise reinitialize delayed at next vblank
252	 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid.
253	 */
254	if (!rc)
255		t_vblank = 0;
256
257	/*
258	 * +1 to make sure user will never see the same
259	 * vblank counter value before and after a modeset
260	 */
261	store_vblank(dev, pipe, 1, t_vblank, cur_vblank);
262
263	spin_unlock(&dev->vblank_time_lock);
264}
265
266/*
267 * Call back into the driver to update the appropriate vblank counter
268 * (specified by @pipe).  Deal with wraparound, if it occurred, and
269 * update the last read value so we can deal with wraparound on the next
270 * call if necessary.
271 *
272 * Only necessary when going from off->on, to account for frames we
273 * didn't get an interrupt for.
274 *
275 * Note: caller must hold &drm_device.vbl_lock since this reads & writes
276 * device vblank fields.
277 */
278static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe,
279				    bool in_vblank_irq)
280{
281	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
282	u32 cur_vblank, diff;
283	bool rc;
284	ktime_t t_vblank;
285	int count = DRM_TIMESTAMP_MAXRETRIES;
286	int framedur_ns = vblank->framedur_ns;
287	u32 max_vblank_count = drm_max_vblank_count(dev, pipe);
288
289	/*
290	 * Interrupts were disabled prior to this call, so deal with counter
291	 * wrap if needed.
292	 * NOTE!  It's possible we lost a full dev->max_vblank_count + 1 events
293	 * here if the register is small or we had vblank interrupts off for
294	 * a long time.
295	 *
296	 * We repeat the hardware vblank counter & timestamp query until
297	 * we get consistent results. This to prevent races between gpu
298	 * updating its hardware counter while we are retrieving the
299	 * corresponding vblank timestamp.
300	 */
301	do {
302		cur_vblank = __get_vblank_counter(dev, pipe);
303		rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq);
304	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
305
306	if (max_vblank_count) {
307		/* trust the hw counter when it's around */
308		diff = (cur_vblank - vblank->last) & max_vblank_count;
309	} else if (rc && framedur_ns) {
310		u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
311
312		/*
313		 * Figure out how many vblanks we've missed based
314		 * on the difference in the timestamps and the
315		 * frame/field duration.
316		 */
317
318		drm_dbg_vbl(dev, "crtc %u: Calculating number of vblanks."
319			    " diff_ns = %lld, framedur_ns = %d)\n",
320			    pipe, (long long)diff_ns, framedur_ns);
321
322		diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
323
324		if (diff == 0 && in_vblank_irq)
325			drm_dbg_vbl(dev, "crtc %u: Redundant vblirq ignored\n",
326				    pipe);
327	} else {
328		/* some kind of default for drivers w/o accurate vbl timestamping */
329		diff = in_vblank_irq ? 1 : 0;
330	}
331
332	/*
333	 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset
334	 * interval? If so then vblank irqs keep running and it will likely
335	 * happen that the hardware vblank counter is not trustworthy as it
336	 * might reset at some point in that interval and vblank timestamps
337	 * are not trustworthy either in that interval. Iow. this can result
338	 * in a bogus diff >> 1 which must be avoided as it would cause
339	 * random large forward jumps of the software vblank counter.
340	 */
341	if (diff > 1 && (vblank->inmodeset & 0x2)) {
342		drm_dbg_vbl(dev,
343			    "clamping vblank bump to 1 on crtc %u: diffr=%u"
344			    " due to pre-modeset.\n", pipe, diff);
345		diff = 1;
346	}
347
348	drm_dbg_vbl(dev, "updating vblank count on crtc %u:"
349		    " current=%llu, diff=%u, hw=%u hw_last=%u\n",
350		    pipe, (unsigned long long)atomic64_read(&vblank->count),
351		    diff, cur_vblank, vblank->last);
352
353	if (diff == 0) {
354		drm_WARN_ON_ONCE(dev, cur_vblank != vblank->last);
355		return;
356	}
357
358	/*
359	 * Only reinitialize corresponding vblank timestamp if high-precision query
360	 * available and didn't fail, or we were called from the vblank interrupt.
361	 * Otherwise reinitialize delayed at next vblank interrupt and assign 0
362	 * for now, to mark the vblanktimestamp as invalid.
363	 */
364	if (!rc && !in_vblank_irq)
365		t_vblank = 0;
366
367	store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
368}
369
370u64 drm_vblank_count(struct drm_device *dev, unsigned int pipe)
371{
372	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
373	u64 count;
374
375	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
376		return 0;
377
378	count = atomic64_read(&vblank->count);
379
380	/*
381	 * This read barrier corresponds to the implicit write barrier of the
382	 * write seqlock in store_vblank(). Note that this is the only place
383	 * where we need an explicit barrier, since all other access goes
384	 * through drm_vblank_count_and_time(), which already has the required
385	 * read barrier curtesy of the read seqlock.
386	 */
387	smp_rmb();
388
389	return count;
390}
391
392/**
393 * drm_crtc_accurate_vblank_count - retrieve the master vblank counter
394 * @crtc: which counter to retrieve
395 *
396 * This function is similar to drm_crtc_vblank_count() but this function
397 * interpolates to handle a race with vblank interrupts using the high precision
398 * timestamping support.
399 *
400 * This is mostly useful for hardware that can obtain the scanout position, but
401 * doesn't have a hardware frame counter.
402 */
403u64 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc)
404{
405	struct drm_device *dev = crtc->dev;
406	unsigned int pipe = drm_crtc_index(crtc);
407	u64 vblank;
408	unsigned long flags;
409
410	drm_WARN_ONCE(dev, drm_debug_enabled(DRM_UT_VBL) &&
411		      !crtc->funcs->get_vblank_timestamp,
412		      "This function requires support for accurate vblank timestamps.");
413
414	spin_lock_irqsave(&dev->vblank_time_lock, flags);
415
416	drm_update_vblank_count(dev, pipe, false);
417	vblank = drm_vblank_count(dev, pipe);
418
419	spin_unlock_irqrestore(&dev->vblank_time_lock, flags);
420
421	return vblank;
422}
423EXPORT_SYMBOL(drm_crtc_accurate_vblank_count);
424
425static void __disable_vblank(struct drm_device *dev, unsigned int pipe)
426{
427	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
428		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
429
430		if (drm_WARN_ON(dev, !crtc))
431			return;
432
433		if (crtc->funcs->disable_vblank)
434			crtc->funcs->disable_vblank(crtc);
435	}
436#ifdef CONFIG_DRM_LEGACY
437	else {
438		dev->driver->disable_vblank(dev, pipe);
439	}
440#endif
441}
442
443/*
444 * Disable vblank irq's on crtc, make sure that last vblank count
445 * of hardware and corresponding consistent software vblank counter
446 * are preserved, even if there are any spurious vblank irq's after
447 * disable.
448 */
449void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe)
450{
451	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
452	unsigned long irqflags;
453
454	assert_spin_locked(&dev->vbl_lock);
455
456	/* Prevent vblank irq processing while disabling vblank irqs,
457	 * so no updates of timestamps or count can happen after we've
458	 * disabled. Needed to prevent races in case of delayed irq's.
459	 */
460	spin_lock_irqsave(&dev->vblank_time_lock, irqflags);
461
462	/*
463	 * Update vblank count and disable vblank interrupts only if the
464	 * interrupts were enabled. This avoids calling the ->disable_vblank()
465	 * operation in atomic context with the hardware potentially runtime
466	 * suspended.
467	 */
468	if (!vblank->enabled)
469		goto out;
470
471	/*
472	 * Update the count and timestamp to maintain the
473	 * appearance that the counter has been ticking all along until
474	 * this time. This makes the count account for the entire time
475	 * between drm_crtc_vblank_on() and drm_crtc_vblank_off().
476	 */
477	drm_update_vblank_count(dev, pipe, false);
478	__disable_vblank(dev, pipe);
479	vblank->enabled = false;
480
481out:
482	spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags);
483}
484
485static void vblank_disable_fn(struct timer_list *t)
486{
487	struct drm_vblank_crtc *vblank = from_timer(vblank, t, disable_timer);
488	struct drm_device *dev = vblank->dev;
489	unsigned int pipe = vblank->pipe;
490	unsigned long irqflags;
491
492	spin_lock_irqsave(&dev->vbl_lock, irqflags);
493	if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) {
494		drm_dbg_core(dev, "disabling vblank on crtc %u\n", pipe);
495		drm_vblank_disable_and_save(dev, pipe);
496	}
497	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
498}
499
500static void drm_vblank_init_release(struct drm_device *dev, void *ptr)
501{
502	struct drm_vblank_crtc *vblank = ptr;
503
504	drm_WARN_ON(dev, READ_ONCE(vblank->enabled) &&
505		    drm_core_check_feature(dev, DRIVER_MODESET));
506
507	drm_vblank_destroy_worker(vblank);
508	del_timer_sync(&vblank->disable_timer);
509}
510
511/**
512 * drm_vblank_init - initialize vblank support
513 * @dev: DRM device
514 * @num_crtcs: number of CRTCs supported by @dev
515 *
516 * This function initializes vblank support for @num_crtcs display pipelines.
517 * Cleanup is handled automatically through a cleanup function added with
518 * drmm_add_action_or_reset().
519 *
520 * Returns:
521 * Zero on success or a negative error code on failure.
522 */
523int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs)
524{
525	int ret;
526	unsigned int i;
527
528	spin_lock_init(&dev->vbl_lock);
529	spin_lock_init(&dev->vblank_time_lock);
530
531	dev->vblank = drmm_kcalloc(dev, num_crtcs, sizeof(*dev->vblank), GFP_KERNEL);
532	if (!dev->vblank)
533		return -ENOMEM;
534
535	dev->num_crtcs = num_crtcs;
536
537	for (i = 0; i < num_crtcs; i++) {
538		struct drm_vblank_crtc *vblank = &dev->vblank[i];
539
540		vblank->dev = dev;
541		vblank->pipe = i;
542		init_waitqueue_head(&vblank->queue);
543		timer_setup(&vblank->disable_timer, vblank_disable_fn, 0);
544		seqlock_init(&vblank->seqlock);
545
546		ret = drmm_add_action_or_reset(dev, drm_vblank_init_release,
547					       vblank);
548		if (ret)
549			return ret;
550
551		ret = drm_vblank_worker_init(vblank);
552		if (ret)
553			return ret;
554	}
555
556	return 0;
557}
558EXPORT_SYMBOL(drm_vblank_init);
559
560/**
561 * drm_dev_has_vblank - test if vblanking has been initialized for
562 *                      a device
563 * @dev: the device
564 *
565 * Drivers may call this function to test if vblank support is
566 * initialized for a device. For most hardware this means that vblanking
567 * can also be enabled.
568 *
569 * Atomic helpers use this function to initialize
570 * &drm_crtc_state.no_vblank. See also drm_atomic_helper_check_modeset().
571 *
572 * Returns:
573 * True if vblanking has been initialized for the given device, false
574 * otherwise.
575 */
576bool drm_dev_has_vblank(const struct drm_device *dev)
577{
578	return dev->num_crtcs != 0;
579}
580EXPORT_SYMBOL(drm_dev_has_vblank);
581
582/**
583 * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC
584 * @crtc: which CRTC's vblank waitqueue to retrieve
585 *
586 * This function returns a pointer to the vblank waitqueue for the CRTC.
587 * Drivers can use this to implement vblank waits using wait_event() and related
588 * functions.
589 */
590wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc)
591{
592	return &crtc->dev->vblank[drm_crtc_index(crtc)].queue;
593}
594EXPORT_SYMBOL(drm_crtc_vblank_waitqueue);
595
596
597/**
598 * drm_calc_timestamping_constants - calculate vblank timestamp constants
599 * @crtc: drm_crtc whose timestamp constants should be updated.
600 * @mode: display mode containing the scanout timings
601 *
602 * Calculate and store various constants which are later needed by vblank and
603 * swap-completion timestamping, e.g, by
604 * drm_crtc_vblank_helper_get_vblank_timestamp(). They are derived from
605 * CRTC's true scanout timing, so they take things like panel scaling or
606 * other adjustments into account.
607 */
608void drm_calc_timestamping_constants(struct drm_crtc *crtc,
609				     const struct drm_display_mode *mode)
610{
611	struct drm_device *dev = crtc->dev;
612	unsigned int pipe = drm_crtc_index(crtc);
613	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
614	int linedur_ns = 0, framedur_ns = 0;
615	int dotclock = mode->crtc_clock;
616
617	if (!drm_dev_has_vblank(dev))
618		return;
619
620	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
621		return;
622
623	/* Valid dotclock? */
624	if (dotclock > 0) {
625		int frame_size = mode->crtc_htotal * mode->crtc_vtotal;
626
627		/*
628		 * Convert scanline length in pixels and video
629		 * dot clock to line duration and frame duration
630		 * in nanoseconds:
631		 */
632		linedur_ns  = div_u64((u64) mode->crtc_htotal * 1000000, dotclock);
633		framedur_ns = div_u64((u64) frame_size * 1000000, dotclock);
634
635		/*
636		 * Fields of interlaced scanout modes are only half a frame duration.
637		 */
638		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
639			framedur_ns /= 2;
640	} else {
641		drm_err(dev, "crtc %u: Can't calculate constants, dotclock = 0!\n",
642			crtc->base.id);
643	}
644
645	vblank->linedur_ns  = linedur_ns;
646	vblank->framedur_ns = framedur_ns;
647	drm_mode_copy(&vblank->hwmode, mode);
648
649	drm_dbg_core(dev,
650		     "crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n",
651		     crtc->base.id, mode->crtc_htotal,
652		     mode->crtc_vtotal, mode->crtc_vdisplay);
653	drm_dbg_core(dev, "crtc %u: clock %d kHz framedur %d linedur %d\n",
654		     crtc->base.id, dotclock, framedur_ns, linedur_ns);
655}
656EXPORT_SYMBOL(drm_calc_timestamping_constants);
657
658/**
659 * drm_crtc_vblank_helper_get_vblank_timestamp_internal - precise vblank
660 *                                                        timestamp helper
661 * @crtc: CRTC whose vblank timestamp to retrieve
662 * @max_error: Desired maximum allowable error in timestamps (nanosecs)
663 *             On return contains true maximum error of timestamp
664 * @vblank_time: Pointer to time which should receive the timestamp
665 * @in_vblank_irq:
666 *     True when called from drm_crtc_handle_vblank().  Some drivers
667 *     need to apply some workarounds for gpu-specific vblank irq quirks
668 *     if flag is set.
669 * @get_scanout_position:
670 *     Callback function to retrieve the scanout position. See
671 *     @struct drm_crtc_helper_funcs.get_scanout_position.
672 *
673 * Implements calculation of exact vblank timestamps from given drm_display_mode
674 * timings and current video scanout position of a CRTC.
675 *
676 * The current implementation only handles standard video modes. For double scan
677 * and interlaced modes the driver is supposed to adjust the hardware mode
678 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
679 * match the scanout position reported.
680 *
681 * Note that atomic drivers must call drm_calc_timestamping_constants() before
682 * enabling a CRTC. The atomic helpers already take care of that in
683 * drm_atomic_helper_calc_timestamping_constants().
684 *
685 * Returns:
686 *
687 * Returns true on success, and false on failure, i.e. when no accurate
688 * timestamp could be acquired.
689 */
690bool
691drm_crtc_vblank_helper_get_vblank_timestamp_internal(
692	struct drm_crtc *crtc, int *max_error, ktime_t *vblank_time,
693	bool in_vblank_irq,
694	drm_vblank_get_scanout_position_func get_scanout_position)
695{
696	struct drm_device *dev = crtc->dev;
697	unsigned int pipe = crtc->index;
698	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
699	struct timespec64 ts_etime, ts_vblank_time;
700	ktime_t stime, etime;
701	bool vbl_status;
702	const struct drm_display_mode *mode;
703	int vpos, hpos, i;
704	int delta_ns, duration_ns;
705
706	if (pipe >= dev->num_crtcs) {
707		drm_err(dev, "Invalid crtc %u\n", pipe);
708		return false;
709	}
710
711	/* Scanout position query not supported? Should not happen. */
712	if (!get_scanout_position) {
713		drm_err(dev, "Called from CRTC w/o get_scanout_position()!?\n");
714		return false;
715	}
716
717	if (drm_drv_uses_atomic_modeset(dev))
718		mode = &vblank->hwmode;
719	else
720		mode = &crtc->hwmode;
721
722	/* If mode timing undefined, just return as no-op:
723	 * Happens during initial modesetting of a crtc.
724	 */
725	if (mode->crtc_clock == 0) {
726		drm_dbg_core(dev, "crtc %u: Noop due to uninitialized mode.\n",
727			     pipe);
728		drm_WARN_ON_ONCE(dev, drm_drv_uses_atomic_modeset(dev));
729		return false;
730	}
731
732	/* Get current scanout position with system timestamp.
733	 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times
734	 * if single query takes longer than max_error nanoseconds.
735	 *
736	 * This guarantees a tight bound on maximum error if
737	 * code gets preempted or delayed for some reason.
738	 */
739	for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) {
740		/*
741		 * Get vertical and horizontal scanout position vpos, hpos,
742		 * and bounding timestamps stime, etime, pre/post query.
743		 */
744		vbl_status = get_scanout_position(crtc, in_vblank_irq,
745						  &vpos, &hpos,
746						  &stime, &etime,
747						  mode);
748
749		/* Return as no-op if scanout query unsupported or failed. */
750		if (!vbl_status) {
751			drm_dbg_core(dev,
752				     "crtc %u : scanoutpos query failed.\n",
753				     pipe);
754			return false;
755		}
756
757		/* Compute uncertainty in timestamp of scanout position query. */
758		duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime);
759
760		/* Accept result with <  max_error nsecs timing uncertainty. */
761		if (duration_ns <= *max_error)
762			break;
763	}
764
765	/* Noisy system timing? */
766	if (i == DRM_TIMESTAMP_MAXRETRIES) {
767		drm_dbg_core(dev,
768			     "crtc %u: Noisy timestamp %d us > %d us [%d reps].\n",
769			     pipe, duration_ns / 1000, *max_error / 1000, i);
770	}
771
772	/* Return upper bound of timestamp precision error. */
773	*max_error = duration_ns;
774
775	/* Convert scanout position into elapsed time at raw_time query
776	 * since start of scanout at first display scanline. delta_ns
777	 * can be negative if start of scanout hasn't happened yet.
778	 */
779	delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos),
780			   mode->crtc_clock);
781
782	/* Subtract time delta from raw timestamp to get final
783	 * vblank_time timestamp for end of vblank.
784	 */
785	*vblank_time = ktime_sub_ns(etime, delta_ns);
786
787	if (!drm_debug_enabled(DRM_UT_VBL))
788		return true;
789
790	ts_etime = ktime_to_timespec64(etime);
791	ts_vblank_time = ktime_to_timespec64(*vblank_time);
792
793	drm_dbg_vbl(dev,
794		    "crtc %u : v p(%d,%d)@ %lld.%06ld -> %lld.%06ld [e %d us, %d rep]\n",
795		    pipe, hpos, vpos,
796		    (u64)ts_etime.tv_sec, ts_etime.tv_nsec / 1000,
797		    (u64)ts_vblank_time.tv_sec, ts_vblank_time.tv_nsec / 1000,
798		    duration_ns / 1000, i);
799
800	return true;
801}
802EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp_internal);
803
804/**
805 * drm_crtc_vblank_helper_get_vblank_timestamp - precise vblank timestamp
806 *                                               helper
807 * @crtc: CRTC whose vblank timestamp to retrieve
808 * @max_error: Desired maximum allowable error in timestamps (nanosecs)
809 *             On return contains true maximum error of timestamp
810 * @vblank_time: Pointer to time which should receive the timestamp
811 * @in_vblank_irq:
812 *     True when called from drm_crtc_handle_vblank().  Some drivers
813 *     need to apply some workarounds for gpu-specific vblank irq quirks
814 *     if flag is set.
815 *
816 * Implements calculation of exact vblank timestamps from given drm_display_mode
817 * timings and current video scanout position of a CRTC. This can be directly
818 * used as the &drm_crtc_funcs.get_vblank_timestamp implementation of a kms
819 * driver if &drm_crtc_helper_funcs.get_scanout_position is implemented.
820 *
821 * The current implementation only handles standard video modes. For double scan
822 * and interlaced modes the driver is supposed to adjust the hardware mode
823 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
824 * match the scanout position reported.
825 *
826 * Note that atomic drivers must call drm_calc_timestamping_constants() before
827 * enabling a CRTC. The atomic helpers already take care of that in
828 * drm_atomic_helper_calc_timestamping_constants().
829 *
830 * Returns:
831 *
832 * Returns true on success, and false on failure, i.e. when no accurate
833 * timestamp could be acquired.
834 */
835bool drm_crtc_vblank_helper_get_vblank_timestamp(struct drm_crtc *crtc,
836						 int *max_error,
837						 ktime_t *vblank_time,
838						 bool in_vblank_irq)
839{
840	return drm_crtc_vblank_helper_get_vblank_timestamp_internal(
841		crtc, max_error, vblank_time, in_vblank_irq,
842		crtc->helper_private->get_scanout_position);
843}
844EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp);
845
846/**
847 * drm_crtc_get_last_vbltimestamp - retrieve raw timestamp for the most
848 *                                  recent vblank interval
849 * @crtc: CRTC whose vblank timestamp to retrieve
850 * @tvblank: Pointer to target time which should receive the timestamp
851 * @in_vblank_irq:
852 *     True when called from drm_crtc_handle_vblank().  Some drivers
853 *     need to apply some workarounds for gpu-specific vblank irq quirks
854 *     if flag is set.
855 *
856 * Fetches the system timestamp corresponding to the time of the most recent
857 * vblank interval on specified CRTC. May call into kms-driver to
858 * compute the timestamp with a high-precision GPU specific method.
859 *
860 * Returns zero if timestamp originates from uncorrected do_gettimeofday()
861 * call, i.e., it isn't very precisely locked to the true vblank.
862 *
863 * Returns:
864 * True if timestamp is considered to be very precise, false otherwise.
865 */
866static bool
867drm_crtc_get_last_vbltimestamp(struct drm_crtc *crtc, ktime_t *tvblank,
868			       bool in_vblank_irq)
869{
870	bool ret = false;
871
872	/* Define requested maximum error on timestamps (nanoseconds). */
873	int max_error = (int) drm_timestamp_precision * 1000;
874
875	/* Query driver if possible and precision timestamping enabled. */
876	if (crtc && crtc->funcs->get_vblank_timestamp && max_error > 0) {
877		ret = crtc->funcs->get_vblank_timestamp(crtc, &max_error,
878							tvblank, in_vblank_irq);
879	}
880
881	/* GPU high precision timestamp query unsupported or failed.
882	 * Return current monotonic/gettimeofday timestamp as best estimate.
883	 */
884	if (!ret)
885		*tvblank = ktime_get();
886
887	return ret;
888}
889
890static bool
891drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
892			  ktime_t *tvblank, bool in_vblank_irq)
893{
894	struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
895
896	return drm_crtc_get_last_vbltimestamp(crtc, tvblank, in_vblank_irq);
897}
898
899/**
900 * drm_crtc_vblank_count - retrieve "cooked" vblank counter value
901 * @crtc: which counter to retrieve
902 *
903 * Fetches the "cooked" vblank count value that represents the number of
904 * vblank events since the system was booted, including lost events due to
905 * modesetting activity. Note that this timer isn't correct against a racing
906 * vblank interrupt (since it only reports the software vblank counter), see
907 * drm_crtc_accurate_vblank_count() for such use-cases.
908 *
909 * Note that for a given vblank counter value drm_crtc_handle_vblank()
910 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
911 * provide a barrier: Any writes done before calling
912 * drm_crtc_handle_vblank() will be visible to callers of the later
913 * functions, if the vblank count is the same or a later one.
914 *
915 * See also &drm_vblank_crtc.count.
916 *
917 * Returns:
918 * The software vblank counter.
919 */
920u64 drm_crtc_vblank_count(struct drm_crtc *crtc)
921{
922	return drm_vblank_count(crtc->dev, drm_crtc_index(crtc));
923}
924EXPORT_SYMBOL(drm_crtc_vblank_count);
925
926/**
927 * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the
928 *     system timestamp corresponding to that vblank counter value.
929 * @dev: DRM device
930 * @pipe: index of CRTC whose counter to retrieve
931 * @vblanktime: Pointer to ktime_t to receive the vblank timestamp.
932 *
933 * Fetches the "cooked" vblank count value that represents the number of
934 * vblank events since the system was booted, including lost events due to
935 * modesetting activity. Returns corresponding system timestamp of the time
936 * of the vblank interval that corresponds to the current vblank counter value.
937 *
938 * This is the legacy version of drm_crtc_vblank_count_and_time().
939 */
940static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe,
941				     ktime_t *vblanktime)
942{
943	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
944	u64 vblank_count;
945	unsigned int seq;
946
947	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) {
948		*vblanktime = 0;
949		return 0;
950	}
951
952	do {
953		seq = read_seqbegin(&vblank->seqlock);
954		vblank_count = atomic64_read(&vblank->count);
955		*vblanktime = vblank->time;
956	} while (read_seqretry(&vblank->seqlock, seq));
957
958	return vblank_count;
959}
960
961/**
962 * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value
963 *     and the system timestamp corresponding to that vblank counter value
964 * @crtc: which counter to retrieve
965 * @vblanktime: Pointer to time to receive the vblank timestamp.
966 *
967 * Fetches the "cooked" vblank count value that represents the number of
968 * vblank events since the system was booted, including lost events due to
969 * modesetting activity. Returns corresponding system timestamp of the time
970 * of the vblank interval that corresponds to the current vblank counter value.
971 *
972 * Note that for a given vblank counter value drm_crtc_handle_vblank()
973 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
974 * provide a barrier: Any writes done before calling
975 * drm_crtc_handle_vblank() will be visible to callers of the later
976 * functions, if the vblank count is the same or a later one.
977 *
978 * See also &drm_vblank_crtc.count.
979 */
980u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc,
981				   ktime_t *vblanktime)
982{
983	return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc),
984					 vblanktime);
985}
986EXPORT_SYMBOL(drm_crtc_vblank_count_and_time);
987
988/**
989 * drm_crtc_next_vblank_start - calculate the time of the next vblank
990 * @crtc: the crtc for which to calculate next vblank time
991 * @vblanktime: pointer to time to receive the next vblank timestamp.
992 *
993 * Calculate the expected time of the start of the next vblank period,
994 * based on time of previous vblank and frame duration
995 */
996int drm_crtc_next_vblank_start(struct drm_crtc *crtc, ktime_t *vblanktime)
997{
998	unsigned int pipe = drm_crtc_index(crtc);
999	struct drm_vblank_crtc *vblank;
1000	struct drm_display_mode *mode;
1001	u64 vblank_start;
1002
1003	if (!drm_dev_has_vblank(crtc->dev))
1004		return -EINVAL;
1005
1006	vblank = &crtc->dev->vblank[pipe];
1007	mode = &vblank->hwmode;
1008
1009	if (!vblank->framedur_ns || !vblank->linedur_ns)
1010		return -EINVAL;
1011
1012	if (!drm_crtc_get_last_vbltimestamp(crtc, vblanktime, false))
1013		return -EINVAL;
1014
1015	vblank_start = DIV_ROUND_DOWN_ULL(
1016			(u64)vblank->framedur_ns * mode->crtc_vblank_start,
1017			mode->crtc_vtotal);
1018	*vblanktime  = ktime_add(*vblanktime, ns_to_ktime(vblank_start));
1019
1020	return 0;
1021}
1022EXPORT_SYMBOL(drm_crtc_next_vblank_start);
1023
1024static void send_vblank_event(struct drm_device *dev,
1025		struct drm_pending_vblank_event *e,
1026		u64 seq, ktime_t now)
1027{
1028	struct timespec64 tv;
1029
1030	switch (e->event.base.type) {
1031	case DRM_EVENT_VBLANK:
1032	case DRM_EVENT_FLIP_COMPLETE:
1033		tv = ktime_to_timespec64(now);
1034		e->event.vbl.sequence = seq;
1035		/*
1036		 * e->event is a user space structure, with hardcoded unsigned
1037		 * 32-bit seconds/microseconds. This is safe as we always use
1038		 * monotonic timestamps since linux-4.15
1039		 */
1040		e->event.vbl.tv_sec = tv.tv_sec;
1041		e->event.vbl.tv_usec = tv.tv_nsec / 1000;
1042		break;
1043	case DRM_EVENT_CRTC_SEQUENCE:
1044		if (seq)
1045			e->event.seq.sequence = seq;
1046		e->event.seq.time_ns = ktime_to_ns(now);
1047		break;
1048	}
1049	trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq);
1050	/*
1051	 * Use the same timestamp for any associated fence signal to avoid
1052	 * mismatch in timestamps for vsync & fence events triggered by the
1053	 * same HW event. Frameworks like SurfaceFlinger in Android expects the
1054	 * retire-fence timestamp to match exactly with HW vsync as it uses it
1055	 * for its software vsync modeling.
1056	 */
1057	drm_send_event_timestamp_locked(dev, &e->base, now);
1058}
1059
1060/**
1061 * drm_crtc_arm_vblank_event - arm vblank event after pageflip
1062 * @crtc: the source CRTC of the vblank event
1063 * @e: the event to send
1064 *
1065 * A lot of drivers need to generate vblank events for the very next vblank
1066 * interrupt. For example when the page flip interrupt happens when the page
1067 * flip gets armed, but not when it actually executes within the next vblank
1068 * period. This helper function implements exactly the required vblank arming
1069 * behaviour.
1070 *
1071 * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an
1072 * atomic commit must ensure that the next vblank happens at exactly the same
1073 * time as the atomic commit is committed to the hardware. This function itself
1074 * does **not** protect against the next vblank interrupt racing with either this
1075 * function call or the atomic commit operation. A possible sequence could be:
1076 *
1077 * 1. Driver commits new hardware state into vblank-synchronized registers.
1078 * 2. A vblank happens, committing the hardware state. Also the corresponding
1079 *    vblank interrupt is fired off and fully processed by the interrupt
1080 *    handler.
1081 * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event().
1082 * 4. The event is only send out for the next vblank, which is wrong.
1083 *
1084 * An equivalent race can happen when the driver calls
1085 * drm_crtc_arm_vblank_event() before writing out the new hardware state.
1086 *
1087 * The only way to make this work safely is to prevent the vblank from firing
1088 * (and the hardware from committing anything else) until the entire atomic
1089 * commit sequence has run to completion. If the hardware does not have such a
1090 * feature (e.g. using a "go" bit), then it is unsafe to use this functions.
1091 * Instead drivers need to manually send out the event from their interrupt
1092 * handler by calling drm_crtc_send_vblank_event() and make sure that there's no
1093 * possible race with the hardware committing the atomic update.
1094 *
1095 * Caller must hold a vblank reference for the event @e acquired by a
1096 * drm_crtc_vblank_get(), which will be dropped when the next vblank arrives.
1097 */
1098void drm_crtc_arm_vblank_event(struct drm_crtc *crtc,
1099			       struct drm_pending_vblank_event *e)
1100{
1101	struct drm_device *dev = crtc->dev;
1102	unsigned int pipe = drm_crtc_index(crtc);
1103
1104	assert_spin_locked(&dev->event_lock);
1105
1106	e->pipe = pipe;
1107	e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1;
1108	list_add_tail(&e->base.link, &dev->vblank_event_list);
1109}
1110EXPORT_SYMBOL(drm_crtc_arm_vblank_event);
1111
1112/**
1113 * drm_crtc_send_vblank_event - helper to send vblank event after pageflip
1114 * @crtc: the source CRTC of the vblank event
1115 * @e: the event to send
1116 *
1117 * Updates sequence # and timestamp on event for the most recently processed
1118 * vblank, and sends it to userspace.  Caller must hold event lock.
1119 *
1120 * See drm_crtc_arm_vblank_event() for a helper which can be used in certain
1121 * situation, especially to send out events for atomic commit operations.
1122 */
1123void drm_crtc_send_vblank_event(struct drm_crtc *crtc,
1124				struct drm_pending_vblank_event *e)
1125{
1126	struct drm_device *dev = crtc->dev;
1127	u64 seq;
1128	unsigned int pipe = drm_crtc_index(crtc);
1129	ktime_t now;
1130
1131	if (drm_dev_has_vblank(dev)) {
1132		seq = drm_vblank_count_and_time(dev, pipe, &now);
1133	} else {
1134		seq = 0;
1135
1136		now = ktime_get();
1137	}
1138	e->pipe = pipe;
1139	send_vblank_event(dev, e, seq, now);
1140}
1141EXPORT_SYMBOL(drm_crtc_send_vblank_event);
1142
1143static int __enable_vblank(struct drm_device *dev, unsigned int pipe)
1144{
1145	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1146		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1147
1148		if (drm_WARN_ON(dev, !crtc))
1149			return 0;
1150
1151		if (crtc->funcs->enable_vblank)
1152			return crtc->funcs->enable_vblank(crtc);
1153	}
1154#ifdef CONFIG_DRM_LEGACY
1155	else if (dev->driver->enable_vblank) {
1156		return dev->driver->enable_vblank(dev, pipe);
1157	}
1158#endif
1159
1160	return -EINVAL;
1161}
1162
1163static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe)
1164{
1165	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1166	int ret = 0;
1167
1168	assert_spin_locked(&dev->vbl_lock);
1169
1170	spin_lock(&dev->vblank_time_lock);
1171
1172	if (!vblank->enabled) {
1173		/*
1174		 * Enable vblank irqs under vblank_time_lock protection.
1175		 * All vblank count & timestamp updates are held off
1176		 * until we are done reinitializing master counter and
1177		 * timestamps. Filtercode in drm_handle_vblank() will
1178		 * prevent double-accounting of same vblank interval.
1179		 */
1180		ret = __enable_vblank(dev, pipe);
1181		drm_dbg_core(dev, "enabling vblank on crtc %u, ret: %d\n",
1182			     pipe, ret);
1183		if (ret) {
1184			atomic_dec(&vblank->refcount);
1185		} else {
1186			drm_update_vblank_count(dev, pipe, 0);
1187			/* drm_update_vblank_count() includes a wmb so we just
1188			 * need to ensure that the compiler emits the write
1189			 * to mark the vblank as enabled after the call
1190			 * to drm_update_vblank_count().
1191			 */
1192			WRITE_ONCE(vblank->enabled, true);
1193		}
1194	}
1195
1196	spin_unlock(&dev->vblank_time_lock);
1197
1198	return ret;
1199}
1200
1201int drm_vblank_get(struct drm_device *dev, unsigned int pipe)
1202{
1203	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1204	unsigned long irqflags;
1205	int ret = 0;
1206
1207	if (!drm_dev_has_vblank(dev))
1208		return -EINVAL;
1209
1210	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1211		return -EINVAL;
1212
1213	spin_lock_irqsave(&dev->vbl_lock, irqflags);
1214	/* Going from 0->1 means we have to enable interrupts again */
1215	if (atomic_add_return(1, &vblank->refcount) == 1) {
1216		ret = drm_vblank_enable(dev, pipe);
1217	} else {
1218		if (!vblank->enabled) {
1219			atomic_dec(&vblank->refcount);
1220			ret = -EINVAL;
1221		}
1222	}
1223	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1224
1225	return ret;
1226}
1227
1228/**
1229 * drm_crtc_vblank_get - get a reference count on vblank events
1230 * @crtc: which CRTC to own
1231 *
1232 * Acquire a reference count on vblank events to avoid having them disabled
1233 * while in use.
1234 *
1235 * Returns:
1236 * Zero on success or a negative error code on failure.
1237 */
1238int drm_crtc_vblank_get(struct drm_crtc *crtc)
1239{
1240	return drm_vblank_get(crtc->dev, drm_crtc_index(crtc));
1241}
1242EXPORT_SYMBOL(drm_crtc_vblank_get);
1243
1244void drm_vblank_put(struct drm_device *dev, unsigned int pipe)
1245{
1246	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1247
1248	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1249		return;
1250
1251	if (drm_WARN_ON(dev, atomic_read(&vblank->refcount) == 0))
1252		return;
1253
1254	/* Last user schedules interrupt disable */
1255	if (atomic_dec_and_test(&vblank->refcount)) {
1256		if (drm_vblank_offdelay == 0)
1257			return;
1258		else if (drm_vblank_offdelay < 0)
1259			vblank_disable_fn(&vblank->disable_timer);
1260		else if (!dev->vblank_disable_immediate)
1261			mod_timer(&vblank->disable_timer,
1262				  jiffies + ((drm_vblank_offdelay * HZ)/1000));
1263	}
1264}
1265
1266/**
1267 * drm_crtc_vblank_put - give up ownership of vblank events
1268 * @crtc: which counter to give up
1269 *
1270 * Release ownership of a given vblank counter, turning off interrupts
1271 * if possible. Disable interrupts after drm_vblank_offdelay milliseconds.
1272 */
1273void drm_crtc_vblank_put(struct drm_crtc *crtc)
1274{
1275	drm_vblank_put(crtc->dev, drm_crtc_index(crtc));
1276}
1277EXPORT_SYMBOL(drm_crtc_vblank_put);
1278
1279/**
1280 * drm_wait_one_vblank - wait for one vblank
1281 * @dev: DRM device
1282 * @pipe: CRTC index
1283 *
1284 * This waits for one vblank to pass on @pipe, using the irq driver interfaces.
1285 * It is a failure to call this when the vblank irq for @pipe is disabled, e.g.
1286 * due to lack of driver support or because the crtc is off.
1287 *
1288 * This is the legacy version of drm_crtc_wait_one_vblank().
1289 */
1290void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe)
1291{
1292	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1293	int ret;
1294	u64 last;
1295
1296	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1297		return;
1298
1299	ret = drm_vblank_get(dev, pipe);
1300	if (drm_WARN(dev, ret, "vblank not available on crtc %i, ret=%i\n",
1301		     pipe, ret))
1302		return;
1303
1304	last = drm_vblank_count(dev, pipe);
1305
1306	ret = wait_event_timeout(vblank->queue,
1307				 last != drm_vblank_count(dev, pipe),
1308				 msecs_to_jiffies(100));
1309
1310	drm_WARN(dev, ret == 0, "vblank wait timed out on crtc %i\n", pipe);
1311
1312	drm_vblank_put(dev, pipe);
1313}
1314EXPORT_SYMBOL(drm_wait_one_vblank);
1315
1316/**
1317 * drm_crtc_wait_one_vblank - wait for one vblank
1318 * @crtc: DRM crtc
1319 *
1320 * This waits for one vblank to pass on @crtc, using the irq driver interfaces.
1321 * It is a failure to call this when the vblank irq for @crtc is disabled, e.g.
1322 * due to lack of driver support or because the crtc is off.
1323 */
1324void drm_crtc_wait_one_vblank(struct drm_crtc *crtc)
1325{
1326	drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc));
1327}
1328EXPORT_SYMBOL(drm_crtc_wait_one_vblank);
1329
1330/**
1331 * drm_crtc_vblank_off - disable vblank events on a CRTC
1332 * @crtc: CRTC in question
1333 *
1334 * Drivers can use this function to shut down the vblank interrupt handling when
1335 * disabling a crtc. This function ensures that the latest vblank frame count is
1336 * stored so that drm_vblank_on can restore it again.
1337 *
1338 * Drivers must use this function when the hardware vblank counter can get
1339 * reset, e.g. when suspending or disabling the @crtc in general.
1340 */
1341void drm_crtc_vblank_off(struct drm_crtc *crtc)
1342{
1343	struct drm_device *dev = crtc->dev;
1344	unsigned int pipe = drm_crtc_index(crtc);
1345	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1346	struct drm_pending_vblank_event *e, *t;
1347	ktime_t now;
1348	u64 seq;
1349
1350	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1351		return;
1352
1353	/*
1354	 * Grab event_lock early to prevent vblank work from being scheduled
1355	 * while we're in the middle of shutting down vblank interrupts
1356	 */
1357	spin_lock_irq(&dev->event_lock);
1358
1359	spin_lock(&dev->vbl_lock);
1360	drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n",
1361		    pipe, vblank->enabled, vblank->inmodeset);
1362
1363	/* Avoid redundant vblank disables without previous
1364	 * drm_crtc_vblank_on(). */
1365	if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset)
1366		drm_vblank_disable_and_save(dev, pipe);
1367
1368	wake_up(&vblank->queue);
1369
1370	/*
1371	 * Prevent subsequent drm_vblank_get() from re-enabling
1372	 * the vblank interrupt by bumping the refcount.
1373	 */
1374	if (!vblank->inmodeset) {
1375		atomic_inc(&vblank->refcount);
1376		vblank->inmodeset = 1;
1377	}
1378	spin_unlock(&dev->vbl_lock);
1379
1380	/* Send any queued vblank events, lest the natives grow disquiet */
1381	seq = drm_vblank_count_and_time(dev, pipe, &now);
1382
1383	list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1384		if (e->pipe != pipe)
1385			continue;
1386		drm_dbg_core(dev, "Sending premature vblank event on disable: "
1387			     "wanted %llu, current %llu\n",
1388			     e->sequence, seq);
1389		list_del(&e->base.link);
1390		drm_vblank_put(dev, pipe);
1391		send_vblank_event(dev, e, seq, now);
1392	}
1393
1394	/* Cancel any leftover pending vblank work */
1395	drm_vblank_cancel_pending_works(vblank);
1396
1397	spin_unlock_irq(&dev->event_lock);
1398
1399	/* Will be reset by the modeset helpers when re-enabling the crtc by
1400	 * calling drm_calc_timestamping_constants(). */
1401	vblank->hwmode.crtc_clock = 0;
1402
1403	/* Wait for any vblank work that's still executing to finish */
1404	drm_vblank_flush_worker(vblank);
1405}
1406EXPORT_SYMBOL(drm_crtc_vblank_off);
1407
1408/**
1409 * drm_crtc_vblank_reset - reset vblank state to off on a CRTC
1410 * @crtc: CRTC in question
1411 *
1412 * Drivers can use this function to reset the vblank state to off at load time.
1413 * Drivers should use this together with the drm_crtc_vblank_off() and
1414 * drm_crtc_vblank_on() functions. The difference compared to
1415 * drm_crtc_vblank_off() is that this function doesn't save the vblank counter
1416 * and hence doesn't need to call any driver hooks.
1417 *
1418 * This is useful for recovering driver state e.g. on driver load, or on resume.
1419 */
1420void drm_crtc_vblank_reset(struct drm_crtc *crtc)
1421{
1422	struct drm_device *dev = crtc->dev;
1423	unsigned int pipe = drm_crtc_index(crtc);
1424	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1425
1426	spin_lock_irq(&dev->vbl_lock);
1427	/*
1428	 * Prevent subsequent drm_vblank_get() from enabling the vblank
1429	 * interrupt by bumping the refcount.
1430	 */
1431	if (!vblank->inmodeset) {
1432		atomic_inc(&vblank->refcount);
1433		vblank->inmodeset = 1;
1434	}
1435	spin_unlock_irq(&dev->vbl_lock);
1436
1437	drm_WARN_ON(dev, !list_empty(&dev->vblank_event_list));
1438	drm_WARN_ON(dev, !list_empty(&vblank->pending_work));
1439}
1440EXPORT_SYMBOL(drm_crtc_vblank_reset);
1441
1442/**
1443 * drm_crtc_set_max_vblank_count - configure the hw max vblank counter value
1444 * @crtc: CRTC in question
1445 * @max_vblank_count: max hardware vblank counter value
1446 *
1447 * Update the maximum hardware vblank counter value for @crtc
1448 * at runtime. Useful for hardware where the operation of the
1449 * hardware vblank counter depends on the currently active
1450 * display configuration.
1451 *
1452 * For example, if the hardware vblank counter does not work
1453 * when a specific connector is active the maximum can be set
1454 * to zero. And when that specific connector isn't active the
1455 * maximum can again be set to the appropriate non-zero value.
1456 *
1457 * If used, must be called before drm_vblank_on().
1458 */
1459void drm_crtc_set_max_vblank_count(struct drm_crtc *crtc,
1460				   u32 max_vblank_count)
1461{
1462	struct drm_device *dev = crtc->dev;
1463	unsigned int pipe = drm_crtc_index(crtc);
1464	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1465
1466	drm_WARN_ON(dev, dev->max_vblank_count);
1467	drm_WARN_ON(dev, !READ_ONCE(vblank->inmodeset));
1468
1469	vblank->max_vblank_count = max_vblank_count;
1470}
1471EXPORT_SYMBOL(drm_crtc_set_max_vblank_count);
1472
1473/**
1474 * drm_crtc_vblank_on - enable vblank events on a CRTC
1475 * @crtc: CRTC in question
1476 *
1477 * This functions restores the vblank interrupt state captured with
1478 * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note
1479 * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be
1480 * unbalanced and so can also be unconditionally called in driver load code to
1481 * reflect the current hardware state of the crtc.
1482 */
1483void drm_crtc_vblank_on(struct drm_crtc *crtc)
1484{
1485	struct drm_device *dev = crtc->dev;
1486	unsigned int pipe = drm_crtc_index(crtc);
1487	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1488
1489	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1490		return;
1491
1492	spin_lock_irq(&dev->vbl_lock);
1493	drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n",
1494		    pipe, vblank->enabled, vblank->inmodeset);
1495
1496	/* Drop our private "prevent drm_vblank_get" refcount */
1497	if (vblank->inmodeset) {
1498		atomic_dec(&vblank->refcount);
1499		vblank->inmodeset = 0;
1500	}
1501
1502	drm_reset_vblank_timestamp(dev, pipe);
1503
1504	/*
1505	 * re-enable interrupts if there are users left, or the
1506	 * user wishes vblank interrupts to be enabled all the time.
1507	 */
1508	if (atomic_read(&vblank->refcount) != 0 || drm_vblank_offdelay == 0)
1509		drm_WARN_ON(dev, drm_vblank_enable(dev, pipe));
1510	spin_unlock_irq(&dev->vbl_lock);
1511}
1512EXPORT_SYMBOL(drm_crtc_vblank_on);
1513
1514static void drm_vblank_restore(struct drm_device *dev, unsigned int pipe)
1515{
1516	ktime_t t_vblank;
1517	struct drm_vblank_crtc *vblank;
1518	int framedur_ns;
1519	u64 diff_ns;
1520	u32 cur_vblank, diff = 1;
1521	int count = DRM_TIMESTAMP_MAXRETRIES;
1522	u32 max_vblank_count = drm_max_vblank_count(dev, pipe);
1523
1524	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1525		return;
1526
1527	assert_spin_locked(&dev->vbl_lock);
1528	assert_spin_locked(&dev->vblank_time_lock);
1529
1530	vblank = &dev->vblank[pipe];
1531	drm_WARN_ONCE(dev,
1532		      drm_debug_enabled(DRM_UT_VBL) && !vblank->framedur_ns,
1533		      "Cannot compute missed vblanks without frame duration\n");
1534	framedur_ns = vblank->framedur_ns;
1535
1536	do {
1537		cur_vblank = __get_vblank_counter(dev, pipe);
1538		drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
1539	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
1540
1541	diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
1542	if (framedur_ns)
1543		diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
1544
1545
1546	drm_dbg_vbl(dev,
1547		    "missed %d vblanks in %lld ns, frame duration=%d ns, hw_diff=%d\n",
1548		    diff, diff_ns, framedur_ns, cur_vblank - vblank->last);
1549	vblank->last = (cur_vblank - diff) & max_vblank_count;
1550}
1551
1552/**
1553 * drm_crtc_vblank_restore - estimate missed vblanks and update vblank count.
1554 * @crtc: CRTC in question
1555 *
1556 * Power manamement features can cause frame counter resets between vblank
1557 * disable and enable. Drivers can use this function in their
1558 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since
1559 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the
1560 * vblank counter.
1561 *
1562 * Note that drivers must have race-free high-precision timestamping support,
1563 * i.e.  &drm_crtc_funcs.get_vblank_timestamp must be hooked up and
1564 * &drm_driver.vblank_disable_immediate must be set to indicate the
1565 * time-stamping functions are race-free against vblank hardware counter
1566 * increments.
1567 */
1568void drm_crtc_vblank_restore(struct drm_crtc *crtc)
1569{
1570	WARN_ON_ONCE(!crtc->funcs->get_vblank_timestamp);
1571	WARN_ON_ONCE(!crtc->dev->vblank_disable_immediate);
1572
1573	drm_vblank_restore(crtc->dev, drm_crtc_index(crtc));
1574}
1575EXPORT_SYMBOL(drm_crtc_vblank_restore);
1576
1577static void drm_legacy_vblank_pre_modeset(struct drm_device *dev,
1578					  unsigned int pipe)
1579{
1580	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1581
1582	/* vblank is not initialized (IRQ not installed ?), or has been freed */
1583	if (!drm_dev_has_vblank(dev))
1584		return;
1585
1586	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1587		return;
1588
1589	/*
1590	 * To avoid all the problems that might happen if interrupts
1591	 * were enabled/disabled around or between these calls, we just
1592	 * have the kernel take a reference on the CRTC (just once though
1593	 * to avoid corrupting the count if multiple, mismatch calls occur),
1594	 * so that interrupts remain enabled in the interim.
1595	 */
1596	if (!vblank->inmodeset) {
1597		vblank->inmodeset = 0x1;
1598		if (drm_vblank_get(dev, pipe) == 0)
1599			vblank->inmodeset |= 0x2;
1600	}
1601}
1602
1603static void drm_legacy_vblank_post_modeset(struct drm_device *dev,
1604					   unsigned int pipe)
1605{
1606	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1607
1608	/* vblank is not initialized (IRQ not installed ?), or has been freed */
1609	if (!drm_dev_has_vblank(dev))
1610		return;
1611
1612	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1613		return;
1614
1615	if (vblank->inmodeset) {
1616		spin_lock_irq(&dev->vbl_lock);
1617		drm_reset_vblank_timestamp(dev, pipe);
1618		spin_unlock_irq(&dev->vbl_lock);
1619
1620		if (vblank->inmodeset & 0x2)
1621			drm_vblank_put(dev, pipe);
1622
1623		vblank->inmodeset = 0;
1624	}
1625}
1626
1627int drm_legacy_modeset_ctl_ioctl(struct drm_device *dev, void *data,
1628				 struct drm_file *file_priv)
1629{
1630	struct drm_modeset_ctl *modeset = data;
1631	unsigned int pipe;
1632
1633	/* If drm_vblank_init() hasn't been called yet, just no-op */
1634	if (!drm_dev_has_vblank(dev))
1635		return 0;
1636
1637	/* KMS drivers handle this internally */
1638	if (!drm_core_check_feature(dev, DRIVER_LEGACY))
1639		return 0;
1640
1641	pipe = modeset->crtc;
1642	if (pipe >= dev->num_crtcs)
1643		return -EINVAL;
1644
1645	switch (modeset->cmd) {
1646	case _DRM_PRE_MODESET:
1647		drm_legacy_vblank_pre_modeset(dev, pipe);
1648		break;
1649	case _DRM_POST_MODESET:
1650		drm_legacy_vblank_post_modeset(dev, pipe);
1651		break;
1652	default:
1653		return -EINVAL;
1654	}
1655
1656	return 0;
1657}
1658
1659static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe,
1660				  u64 req_seq,
1661				  union drm_wait_vblank *vblwait,
1662				  struct drm_file *file_priv)
1663{
1664	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1665	struct drm_pending_vblank_event *e;
1666	ktime_t now;
1667	u64 seq;
1668	int ret;
1669
1670	e = kzalloc(sizeof(*e), GFP_KERNEL);
1671	if (e == NULL) {
1672		ret = -ENOMEM;
1673		goto err_put;
1674	}
1675
1676	e->pipe = pipe;
1677	e->event.base.type = DRM_EVENT_VBLANK;
1678	e->event.base.length = sizeof(e->event.vbl);
1679	e->event.vbl.user_data = vblwait->request.signal;
1680	e->event.vbl.crtc_id = 0;
1681	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1682		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1683
1684		if (crtc)
1685			e->event.vbl.crtc_id = crtc->base.id;
1686	}
1687
1688	spin_lock_irq(&dev->event_lock);
1689
1690	/*
1691	 * drm_crtc_vblank_off() might have been called after we called
1692	 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
1693	 * vblank disable, so no need for further locking.  The reference from
1694	 * drm_vblank_get() protects against vblank disable from another source.
1695	 */
1696	if (!READ_ONCE(vblank->enabled)) {
1697		ret = -EINVAL;
1698		goto err_unlock;
1699	}
1700
1701	ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
1702					    &e->event.base);
1703
1704	if (ret)
1705		goto err_unlock;
1706
1707	seq = drm_vblank_count_and_time(dev, pipe, &now);
1708
1709	drm_dbg_core(dev, "event on vblank count %llu, current %llu, crtc %u\n",
1710		     req_seq, seq, pipe);
1711
1712	trace_drm_vblank_event_queued(file_priv, pipe, req_seq);
1713
1714	e->sequence = req_seq;
1715	if (drm_vblank_passed(seq, req_seq)) {
1716		drm_vblank_put(dev, pipe);
1717		send_vblank_event(dev, e, seq, now);
1718		vblwait->reply.sequence = seq;
1719	} else {
1720		/* drm_handle_vblank_events will call drm_vblank_put */
1721		list_add_tail(&e->base.link, &dev->vblank_event_list);
1722		vblwait->reply.sequence = req_seq;
1723	}
1724
1725	spin_unlock_irq(&dev->event_lock);
1726
1727	return 0;
1728
1729err_unlock:
1730	spin_unlock_irq(&dev->event_lock);
1731	kfree(e);
1732err_put:
1733	drm_vblank_put(dev, pipe);
1734	return ret;
1735}
1736
1737static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait)
1738{
1739	if (vblwait->request.sequence)
1740		return false;
1741
1742	return _DRM_VBLANK_RELATIVE ==
1743		(vblwait->request.type & (_DRM_VBLANK_TYPES_MASK |
1744					  _DRM_VBLANK_EVENT |
1745					  _DRM_VBLANK_NEXTONMISS));
1746}
1747
1748/*
1749 * Widen a 32-bit param to 64-bits.
1750 *
1751 * \param narrow 32-bit value (missing upper 32 bits)
1752 * \param near 64-bit value that should be 'close' to near
1753 *
1754 * This function returns a 64-bit value using the lower 32-bits from
1755 * 'narrow' and constructing the upper 32-bits so that the result is
1756 * as close as possible to 'near'.
1757 */
1758
1759static u64 widen_32_to_64(u32 narrow, u64 near)
1760{
1761	return near + (s32) (narrow - near);
1762}
1763
1764static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe,
1765				  struct drm_wait_vblank_reply *reply)
1766{
1767	ktime_t now;
1768	struct timespec64 ts;
1769
1770	/*
1771	 * drm_wait_vblank_reply is a UAPI structure that uses 'long'
1772	 * to store the seconds. This is safe as we always use monotonic
1773	 * timestamps since linux-4.15.
1774	 */
1775	reply->sequence = drm_vblank_count_and_time(dev, pipe, &now);
1776	ts = ktime_to_timespec64(now);
1777	reply->tval_sec = (u32)ts.tv_sec;
1778	reply->tval_usec = ts.tv_nsec / 1000;
1779}
1780
1781static bool drm_wait_vblank_supported(struct drm_device *dev)
1782{
1783#if IS_ENABLED(CONFIG_DRM_LEGACY)
1784	if (unlikely(drm_core_check_feature(dev, DRIVER_LEGACY)))
1785		return dev->irq_enabled;
1786#endif
1787	return drm_dev_has_vblank(dev);
1788}
1789
1790int drm_wait_vblank_ioctl(struct drm_device *dev, void *data,
1791			  struct drm_file *file_priv)
1792{
1793	struct drm_crtc *crtc;
1794	struct drm_vblank_crtc *vblank;
1795	union drm_wait_vblank *vblwait = data;
1796	int ret;
1797	u64 req_seq, seq;
1798	unsigned int pipe_index;
1799	unsigned int flags, pipe, high_pipe;
1800
1801	if (!drm_wait_vblank_supported(dev))
1802		return -EOPNOTSUPP;
1803
1804	if (vblwait->request.type & _DRM_VBLANK_SIGNAL)
1805		return -EINVAL;
1806
1807	if (vblwait->request.type &
1808	    ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1809	      _DRM_VBLANK_HIGH_CRTC_MASK)) {
1810		drm_dbg_core(dev,
1811			     "Unsupported type value 0x%x, supported mask 0x%x\n",
1812			     vblwait->request.type,
1813			     (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1814			      _DRM_VBLANK_HIGH_CRTC_MASK));
1815		return -EINVAL;
1816	}
1817
1818	flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK;
1819	high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK);
1820	if (high_pipe)
1821		pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT;
1822	else
1823		pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0;
1824
1825	/* Convert lease-relative crtc index into global crtc index */
1826	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1827		pipe = 0;
1828		drm_for_each_crtc(crtc, dev) {
1829			if (drm_lease_held(file_priv, crtc->base.id)) {
1830				if (pipe_index == 0)
1831					break;
1832				pipe_index--;
1833			}
1834			pipe++;
1835		}
1836	} else {
1837		pipe = pipe_index;
1838	}
1839
1840	if (pipe >= dev->num_crtcs)
1841		return -EINVAL;
1842
1843	vblank = &dev->vblank[pipe];
1844
1845	/* If the counter is currently enabled and accurate, short-circuit
1846	 * queries to return the cached timestamp of the last vblank.
1847	 */
1848	if (dev->vblank_disable_immediate &&
1849	    drm_wait_vblank_is_query(vblwait) &&
1850	    READ_ONCE(vblank->enabled)) {
1851		drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1852		return 0;
1853	}
1854
1855	ret = drm_vblank_get(dev, pipe);
1856	if (ret) {
1857		drm_dbg_core(dev,
1858			     "crtc %d failed to acquire vblank counter, %d\n",
1859			     pipe, ret);
1860		return ret;
1861	}
1862	seq = drm_vblank_count(dev, pipe);
1863
1864	switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) {
1865	case _DRM_VBLANK_RELATIVE:
1866		req_seq = seq + vblwait->request.sequence;
1867		vblwait->request.sequence = req_seq;
1868		vblwait->request.type &= ~_DRM_VBLANK_RELATIVE;
1869		break;
1870	case _DRM_VBLANK_ABSOLUTE:
1871		req_seq = widen_32_to_64(vblwait->request.sequence, seq);
1872		break;
1873	default:
1874		ret = -EINVAL;
1875		goto done;
1876	}
1877
1878	if ((flags & _DRM_VBLANK_NEXTONMISS) &&
1879	    drm_vblank_passed(seq, req_seq)) {
1880		req_seq = seq + 1;
1881		vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS;
1882		vblwait->request.sequence = req_seq;
1883	}
1884
1885	if (flags & _DRM_VBLANK_EVENT) {
1886		/* must hold on to the vblank ref until the event fires
1887		 * drm_vblank_put will be called asynchronously
1888		 */
1889		return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv);
1890	}
1891
1892	if (req_seq != seq) {
1893		int wait;
1894
1895		drm_dbg_core(dev, "waiting on vblank count %llu, crtc %u\n",
1896			     req_seq, pipe);
1897		wait = wait_event_interruptible_timeout(vblank->queue,
1898			drm_vblank_passed(drm_vblank_count(dev, pipe), req_seq) ||
1899				      !READ_ONCE(vblank->enabled),
1900			msecs_to_jiffies(3000));
1901
1902		switch (wait) {
1903		case 0:
1904			/* timeout */
1905			ret = -EBUSY;
1906			break;
1907		case -ERESTARTSYS:
1908			/* interrupted by signal */
1909			ret = -EINTR;
1910			break;
1911		default:
1912			ret = 0;
1913			break;
1914		}
1915	}
1916
1917	if (ret != -EINTR) {
1918		drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1919
1920		drm_dbg_core(dev, "crtc %d returning %u to client\n",
1921			     pipe, vblwait->reply.sequence);
1922	} else {
1923		drm_dbg_core(dev, "crtc %d vblank wait interrupted by signal\n",
1924			     pipe);
1925	}
1926
1927done:
1928	drm_vblank_put(dev, pipe);
1929	return ret;
1930}
1931
1932static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe)
1933{
1934	struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1935	bool high_prec = false;
1936	struct drm_pending_vblank_event *e, *t;
1937	ktime_t now;
1938	u64 seq;
1939
1940	assert_spin_locked(&dev->event_lock);
1941
1942	seq = drm_vblank_count_and_time(dev, pipe, &now);
1943
1944	list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1945		if (e->pipe != pipe)
1946			continue;
1947		if (!drm_vblank_passed(seq, e->sequence))
1948			continue;
1949
1950		drm_dbg_core(dev, "vblank event on %llu, current %llu\n",
1951			     e->sequence, seq);
1952
1953		list_del(&e->base.link);
1954		drm_vblank_put(dev, pipe);
1955		send_vblank_event(dev, e, seq, now);
1956	}
1957
1958	if (crtc && crtc->funcs->get_vblank_timestamp)
1959		high_prec = true;
1960
1961	trace_drm_vblank_event(pipe, seq, now, high_prec);
1962}
1963
1964/**
1965 * drm_handle_vblank - handle a vblank event
1966 * @dev: DRM device
1967 * @pipe: index of CRTC where this event occurred
1968 *
1969 * Drivers should call this routine in their vblank interrupt handlers to
1970 * update the vblank counter and send any signals that may be pending.
1971 *
1972 * This is the legacy version of drm_crtc_handle_vblank().
1973 */
1974bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe)
1975{
1976	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1977	unsigned long irqflags;
1978	bool disable_irq;
1979
1980	if (drm_WARN_ON_ONCE(dev, !drm_dev_has_vblank(dev)))
1981		return false;
1982
1983	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1984		return false;
1985
1986	spin_lock_irqsave(&dev->event_lock, irqflags);
1987
1988	/* Need timestamp lock to prevent concurrent execution with
1989	 * vblank enable/disable, as this would cause inconsistent
1990	 * or corrupted timestamps and vblank counts.
1991	 */
1992	spin_lock(&dev->vblank_time_lock);
1993
1994	/* Vblank irq handling disabled. Nothing to do. */
1995	if (!vblank->enabled) {
1996		spin_unlock(&dev->vblank_time_lock);
1997		spin_unlock_irqrestore(&dev->event_lock, irqflags);
1998		return false;
1999	}
2000
2001	drm_update_vblank_count(dev, pipe, true);
2002
2003	spin_unlock(&dev->vblank_time_lock);
2004
2005	wake_up(&vblank->queue);
2006
2007	/* With instant-off, we defer disabling the interrupt until after
2008	 * we finish processing the following vblank after all events have
2009	 * been signaled. The disable has to be last (after
2010	 * drm_handle_vblank_events) so that the timestamp is always accurate.
2011	 */
2012	disable_irq = (dev->vblank_disable_immediate &&
2013		       drm_vblank_offdelay > 0 &&
2014		       !atomic_read(&vblank->refcount));
2015
2016	drm_handle_vblank_events(dev, pipe);
2017	drm_handle_vblank_works(vblank);
2018
2019	spin_unlock_irqrestore(&dev->event_lock, irqflags);
2020
2021	if (disable_irq)
2022		vblank_disable_fn(&vblank->disable_timer);
2023
2024	return true;
2025}
2026EXPORT_SYMBOL(drm_handle_vblank);
2027
2028/**
2029 * drm_crtc_handle_vblank - handle a vblank event
2030 * @crtc: where this event occurred
2031 *
2032 * Drivers should call this routine in their vblank interrupt handlers to
2033 * update the vblank counter and send any signals that may be pending.
2034 *
2035 * This is the native KMS version of drm_handle_vblank().
2036 *
2037 * Note that for a given vblank counter value drm_crtc_handle_vblank()
2038 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
2039 * provide a barrier: Any writes done before calling
2040 * drm_crtc_handle_vblank() will be visible to callers of the later
2041 * functions, if the vblank count is the same or a later one.
2042 *
2043 * See also &drm_vblank_crtc.count.
2044 *
2045 * Returns:
2046 * True if the event was successfully handled, false on failure.
2047 */
2048bool drm_crtc_handle_vblank(struct drm_crtc *crtc)
2049{
2050	return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc));
2051}
2052EXPORT_SYMBOL(drm_crtc_handle_vblank);
2053
2054/*
2055 * Get crtc VBLANK count.
2056 *
2057 * \param dev DRM device
2058 * \param data user argument, pointing to a drm_crtc_get_sequence structure.
2059 * \param file_priv drm file private for the user's open file descriptor
2060 */
2061
2062int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data,
2063				struct drm_file *file_priv)
2064{
2065	struct drm_crtc *crtc;
2066	struct drm_vblank_crtc *vblank;
2067	int pipe;
2068	struct drm_crtc_get_sequence *get_seq = data;
2069	ktime_t now;
2070	bool vblank_enabled;
2071	int ret;
2072
2073	if (!drm_core_check_feature(dev, DRIVER_MODESET))
2074		return -EOPNOTSUPP;
2075
2076	if (!drm_dev_has_vblank(dev))
2077		return -EOPNOTSUPP;
2078
2079	crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id);
2080	if (!crtc)
2081		return -ENOENT;
2082
2083	pipe = drm_crtc_index(crtc);
2084
2085	vblank = &dev->vblank[pipe];
2086	vblank_enabled = dev->vblank_disable_immediate && READ_ONCE(vblank->enabled);
2087
2088	if (!vblank_enabled) {
2089		ret = drm_crtc_vblank_get(crtc);
2090		if (ret) {
2091			drm_dbg_core(dev,
2092				     "crtc %d failed to acquire vblank counter, %d\n",
2093				     pipe, ret);
2094			return ret;
2095		}
2096	}
2097	drm_modeset_lock(&crtc->mutex, NULL);
2098	if (crtc->state)
2099		get_seq->active = crtc->state->enable;
2100	else
2101		get_seq->active = crtc->enabled;
2102	drm_modeset_unlock(&crtc->mutex);
2103	get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now);
2104	get_seq->sequence_ns = ktime_to_ns(now);
2105	if (!vblank_enabled)
2106		drm_crtc_vblank_put(crtc);
2107	return 0;
2108}
2109
2110/*
2111 * Queue a event for VBLANK sequence
2112 *
2113 * \param dev DRM device
2114 * \param data user argument, pointing to a drm_crtc_queue_sequence structure.
2115 * \param file_priv drm file private for the user's open file descriptor
2116 */
2117
2118int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data,
2119				  struct drm_file *file_priv)
2120{
2121	struct drm_crtc *crtc;
2122	struct drm_vblank_crtc *vblank;
2123	int pipe;
2124	struct drm_crtc_queue_sequence *queue_seq = data;
2125	ktime_t now;
2126	struct drm_pending_vblank_event *e;
2127	u32 flags;
2128	u64 seq;
2129	u64 req_seq;
2130	int ret;
2131
2132	if (!drm_core_check_feature(dev, DRIVER_MODESET))
2133		return -EOPNOTSUPP;
2134
2135	if (!drm_dev_has_vblank(dev))
2136		return -EOPNOTSUPP;
2137
2138	crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id);
2139	if (!crtc)
2140		return -ENOENT;
2141
2142	flags = queue_seq->flags;
2143	/* Check valid flag bits */
2144	if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE|
2145		      DRM_CRTC_SEQUENCE_NEXT_ON_MISS))
2146		return -EINVAL;
2147
2148	pipe = drm_crtc_index(crtc);
2149
2150	vblank = &dev->vblank[pipe];
2151
2152	e = kzalloc(sizeof(*e), GFP_KERNEL);
2153	if (e == NULL)
2154		return -ENOMEM;
2155
2156	ret = drm_crtc_vblank_get(crtc);
2157	if (ret) {
2158		drm_dbg_core(dev,
2159			     "crtc %d failed to acquire vblank counter, %d\n",
2160			     pipe, ret);
2161		goto err_free;
2162	}
2163
2164	seq = drm_vblank_count_and_time(dev, pipe, &now);
2165	req_seq = queue_seq->sequence;
2166
2167	if (flags & DRM_CRTC_SEQUENCE_RELATIVE)
2168		req_seq += seq;
2169
2170	if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && drm_vblank_passed(seq, req_seq))
2171		req_seq = seq + 1;
2172
2173	e->pipe = pipe;
2174	e->event.base.type = DRM_EVENT_CRTC_SEQUENCE;
2175	e->event.base.length = sizeof(e->event.seq);
2176	e->event.seq.user_data = queue_seq->user_data;
2177
2178	spin_lock_irq(&dev->event_lock);
2179
2180	/*
2181	 * drm_crtc_vblank_off() might have been called after we called
2182	 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
2183	 * vblank disable, so no need for further locking.  The reference from
2184	 * drm_crtc_vblank_get() protects against vblank disable from another source.
2185	 */
2186	if (!READ_ONCE(vblank->enabled)) {
2187		ret = -EINVAL;
2188		goto err_unlock;
2189	}
2190
2191	ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
2192					    &e->event.base);
2193
2194	if (ret)
2195		goto err_unlock;
2196
2197	e->sequence = req_seq;
2198
2199	if (drm_vblank_passed(seq, req_seq)) {
2200		drm_crtc_vblank_put(crtc);
2201		send_vblank_event(dev, e, seq, now);
2202		queue_seq->sequence = seq;
2203	} else {
2204		/* drm_handle_vblank_events will call drm_vblank_put */
2205		list_add_tail(&e->base.link, &dev->vblank_event_list);
2206		queue_seq->sequence = req_seq;
2207	}
2208
2209	spin_unlock_irq(&dev->event_lock);
2210	return 0;
2211
2212err_unlock:
2213	spin_unlock_irq(&dev->event_lock);
2214	drm_crtc_vblank_put(crtc);
2215err_free:
2216	kfree(e);
2217	return ret;
2218}
2219
2220