xref: /kernel/linux/linux-6.6/drivers/gpu/drm/drm_mm.c (revision 62306a36)
1/**************************************************************************
2 *
3 * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA.
4 * Copyright 2016 Intel Corporation
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25 * USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 *
28 **************************************************************************/
29
30/*
31 * Generic simple memory manager implementation. Intended to be used as a base
32 * class implementation for more advanced memory managers.
33 *
34 * Note that the algorithm used is quite simple and there might be substantial
35 * performance gains if a smarter free list is implemented. Currently it is
36 * just an unordered stack of free regions. This could easily be improved if
37 * an RB-tree is used instead. At least if we expect heavy fragmentation.
38 *
39 * Aligned allocations can also see improvement.
40 *
41 * Authors:
42 * Thomas Hellström <thomas-at-tungstengraphics-dot-com>
43 */
44
45#include <linux/export.h>
46#include <linux/interval_tree_generic.h>
47#include <linux/seq_file.h>
48#include <linux/slab.h>
49#include <linux/stacktrace.h>
50
51#include <drm/drm_mm.h>
52
53/**
54 * DOC: Overview
55 *
56 * drm_mm provides a simple range allocator. The drivers are free to use the
57 * resource allocator from the linux core if it suits them, the upside of drm_mm
58 * is that it's in the DRM core. Which means that it's easier to extend for
59 * some of the crazier special purpose needs of gpus.
60 *
61 * The main data struct is &drm_mm, allocations are tracked in &drm_mm_node.
62 * Drivers are free to embed either of them into their own suitable
63 * datastructures. drm_mm itself will not do any memory allocations of its own,
64 * so if drivers choose not to embed nodes they need to still allocate them
65 * themselves.
66 *
67 * The range allocator also supports reservation of preallocated blocks. This is
68 * useful for taking over initial mode setting configurations from the firmware,
69 * where an object needs to be created which exactly matches the firmware's
70 * scanout target. As long as the range is still free it can be inserted anytime
71 * after the allocator is initialized, which helps with avoiding looped
72 * dependencies in the driver load sequence.
73 *
74 * drm_mm maintains a stack of most recently freed holes, which of all
75 * simplistic datastructures seems to be a fairly decent approach to clustering
76 * allocations and avoiding too much fragmentation. This means free space
77 * searches are O(num_holes). Given that all the fancy features drm_mm supports
78 * something better would be fairly complex and since gfx thrashing is a fairly
79 * steep cliff not a real concern. Removing a node again is O(1).
80 *
81 * drm_mm supports a few features: Alignment and range restrictions can be
82 * supplied. Furthermore every &drm_mm_node has a color value (which is just an
83 * opaque unsigned long) which in conjunction with a driver callback can be used
84 * to implement sophisticated placement restrictions. The i915 DRM driver uses
85 * this to implement guard pages between incompatible caching domains in the
86 * graphics TT.
87 *
88 * Two behaviors are supported for searching and allocating: bottom-up and
89 * top-down. The default is bottom-up. Top-down allocation can be used if the
90 * memory area has different restrictions, or just to reduce fragmentation.
91 *
92 * Finally iteration helpers to walk all nodes and all holes are provided as are
93 * some basic allocator dumpers for debugging.
94 *
95 * Note that this range allocator is not thread-safe, drivers need to protect
96 * modifications with their own locking. The idea behind this is that for a full
97 * memory manager additional data needs to be protected anyway, hence internal
98 * locking would be fully redundant.
99 */
100
101#ifdef CONFIG_DRM_DEBUG_MM
102#include <linux/stackdepot.h>
103
104#define STACKDEPTH 32
105#define BUFSZ 4096
106
107static noinline void save_stack(struct drm_mm_node *node)
108{
109	unsigned long entries[STACKDEPTH];
110	unsigned int n;
111
112	n = stack_trace_save(entries, ARRAY_SIZE(entries), 1);
113
114	/* May be called under spinlock, so avoid sleeping */
115	node->stack = stack_depot_save(entries, n, GFP_NOWAIT);
116}
117
118static void show_leaks(struct drm_mm *mm)
119{
120	struct drm_mm_node *node;
121	char *buf;
122
123	buf = kmalloc(BUFSZ, GFP_KERNEL);
124	if (!buf)
125		return;
126
127	list_for_each_entry(node, drm_mm_nodes(mm), node_list) {
128		if (!node->stack) {
129			DRM_ERROR("node [%08llx + %08llx]: unknown owner\n",
130				  node->start, node->size);
131			continue;
132		}
133
134		stack_depot_snprint(node->stack, buf, BUFSZ, 0);
135		DRM_ERROR("node [%08llx + %08llx]: inserted at\n%s",
136			  node->start, node->size, buf);
137	}
138
139	kfree(buf);
140}
141
142#undef STACKDEPTH
143#undef BUFSZ
144#else
145static void save_stack(struct drm_mm_node *node) { }
146static void show_leaks(struct drm_mm *mm) { }
147#endif
148
149#define START(node) ((node)->start)
150#define LAST(node)  ((node)->start + (node)->size - 1)
151
152INTERVAL_TREE_DEFINE(struct drm_mm_node, rb,
153		     u64, __subtree_last,
154		     START, LAST, static inline, drm_mm_interval_tree)
155
156struct drm_mm_node *
157__drm_mm_interval_first(const struct drm_mm *mm, u64 start, u64 last)
158{
159	return drm_mm_interval_tree_iter_first((struct rb_root_cached *)&mm->interval_tree,
160					       start, last) ?: (struct drm_mm_node *)&mm->head_node;
161}
162EXPORT_SYMBOL(__drm_mm_interval_first);
163
164static void drm_mm_interval_tree_add_node(struct drm_mm_node *hole_node,
165					  struct drm_mm_node *node)
166{
167	struct drm_mm *mm = hole_node->mm;
168	struct rb_node **link, *rb;
169	struct drm_mm_node *parent;
170	bool leftmost;
171
172	node->__subtree_last = LAST(node);
173
174	if (drm_mm_node_allocated(hole_node)) {
175		rb = &hole_node->rb;
176		while (rb) {
177			parent = rb_entry(rb, struct drm_mm_node, rb);
178			if (parent->__subtree_last >= node->__subtree_last)
179				break;
180
181			parent->__subtree_last = node->__subtree_last;
182			rb = rb_parent(rb);
183		}
184
185		rb = &hole_node->rb;
186		link = &hole_node->rb.rb_right;
187		leftmost = false;
188	} else {
189		rb = NULL;
190		link = &mm->interval_tree.rb_root.rb_node;
191		leftmost = true;
192	}
193
194	while (*link) {
195		rb = *link;
196		parent = rb_entry(rb, struct drm_mm_node, rb);
197		if (parent->__subtree_last < node->__subtree_last)
198			parent->__subtree_last = node->__subtree_last;
199		if (node->start < parent->start) {
200			link = &parent->rb.rb_left;
201		} else {
202			link = &parent->rb.rb_right;
203			leftmost = false;
204		}
205	}
206
207	rb_link_node(&node->rb, rb, link);
208	rb_insert_augmented_cached(&node->rb, &mm->interval_tree, leftmost,
209				   &drm_mm_interval_tree_augment);
210}
211
212#define HOLE_SIZE(NODE) ((NODE)->hole_size)
213#define HOLE_ADDR(NODE) (__drm_mm_hole_node_start(NODE))
214
215static u64 rb_to_hole_size(struct rb_node *rb)
216{
217	return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size;
218}
219
220static void insert_hole_size(struct rb_root_cached *root,
221			     struct drm_mm_node *node)
222{
223	struct rb_node **link = &root->rb_root.rb_node, *rb = NULL;
224	u64 x = node->hole_size;
225	bool first = true;
226
227	while (*link) {
228		rb = *link;
229		if (x > rb_to_hole_size(rb)) {
230			link = &rb->rb_left;
231		} else {
232			link = &rb->rb_right;
233			first = false;
234		}
235	}
236
237	rb_link_node(&node->rb_hole_size, rb, link);
238	rb_insert_color_cached(&node->rb_hole_size, root, first);
239}
240
241RB_DECLARE_CALLBACKS_MAX(static, augment_callbacks,
242			 struct drm_mm_node, rb_hole_addr,
243			 u64, subtree_max_hole, HOLE_SIZE)
244
245static void insert_hole_addr(struct rb_root *root, struct drm_mm_node *node)
246{
247	struct rb_node **link = &root->rb_node, *rb_parent = NULL;
248	u64 start = HOLE_ADDR(node), subtree_max_hole = node->subtree_max_hole;
249	struct drm_mm_node *parent;
250
251	while (*link) {
252		rb_parent = *link;
253		parent = rb_entry(rb_parent, struct drm_mm_node, rb_hole_addr);
254		if (parent->subtree_max_hole < subtree_max_hole)
255			parent->subtree_max_hole = subtree_max_hole;
256		if (start < HOLE_ADDR(parent))
257			link = &parent->rb_hole_addr.rb_left;
258		else
259			link = &parent->rb_hole_addr.rb_right;
260	}
261
262	rb_link_node(&node->rb_hole_addr, rb_parent, link);
263	rb_insert_augmented(&node->rb_hole_addr, root, &augment_callbacks);
264}
265
266static void add_hole(struct drm_mm_node *node)
267{
268	struct drm_mm *mm = node->mm;
269
270	node->hole_size =
271		__drm_mm_hole_node_end(node) - __drm_mm_hole_node_start(node);
272	node->subtree_max_hole = node->hole_size;
273	DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
274
275	insert_hole_size(&mm->holes_size, node);
276	insert_hole_addr(&mm->holes_addr, node);
277
278	list_add(&node->hole_stack, &mm->hole_stack);
279}
280
281static void rm_hole(struct drm_mm_node *node)
282{
283	DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
284
285	list_del(&node->hole_stack);
286	rb_erase_cached(&node->rb_hole_size, &node->mm->holes_size);
287	rb_erase_augmented(&node->rb_hole_addr, &node->mm->holes_addr,
288			   &augment_callbacks);
289	node->hole_size = 0;
290	node->subtree_max_hole = 0;
291
292	DRM_MM_BUG_ON(drm_mm_hole_follows(node));
293}
294
295static inline struct drm_mm_node *rb_hole_size_to_node(struct rb_node *rb)
296{
297	return rb_entry_safe(rb, struct drm_mm_node, rb_hole_size);
298}
299
300static inline struct drm_mm_node *rb_hole_addr_to_node(struct rb_node *rb)
301{
302	return rb_entry_safe(rb, struct drm_mm_node, rb_hole_addr);
303}
304
305static struct drm_mm_node *best_hole(struct drm_mm *mm, u64 size)
306{
307	struct rb_node *rb = mm->holes_size.rb_root.rb_node;
308	struct drm_mm_node *best = NULL;
309
310	do {
311		struct drm_mm_node *node =
312			rb_entry(rb, struct drm_mm_node, rb_hole_size);
313
314		if (size <= node->hole_size) {
315			best = node;
316			rb = rb->rb_right;
317		} else {
318			rb = rb->rb_left;
319		}
320	} while (rb);
321
322	return best;
323}
324
325static bool usable_hole_addr(struct rb_node *rb, u64 size)
326{
327	return rb && rb_hole_addr_to_node(rb)->subtree_max_hole >= size;
328}
329
330static struct drm_mm_node *find_hole_addr(struct drm_mm *mm, u64 addr, u64 size)
331{
332	struct rb_node *rb = mm->holes_addr.rb_node;
333	struct drm_mm_node *node = NULL;
334
335	while (rb) {
336		u64 hole_start;
337
338		if (!usable_hole_addr(rb, size))
339			break;
340
341		node = rb_hole_addr_to_node(rb);
342		hole_start = __drm_mm_hole_node_start(node);
343
344		if (addr < hole_start)
345			rb = node->rb_hole_addr.rb_left;
346		else if (addr > hole_start + node->hole_size)
347			rb = node->rb_hole_addr.rb_right;
348		else
349			break;
350	}
351
352	return node;
353}
354
355static struct drm_mm_node *
356first_hole(struct drm_mm *mm,
357	   u64 start, u64 end, u64 size,
358	   enum drm_mm_insert_mode mode)
359{
360	switch (mode) {
361	default:
362	case DRM_MM_INSERT_BEST:
363		return best_hole(mm, size);
364
365	case DRM_MM_INSERT_LOW:
366		return find_hole_addr(mm, start, size);
367
368	case DRM_MM_INSERT_HIGH:
369		return find_hole_addr(mm, end, size);
370
371	case DRM_MM_INSERT_EVICT:
372		return list_first_entry_or_null(&mm->hole_stack,
373						struct drm_mm_node,
374						hole_stack);
375	}
376}
377
378/**
379 * DECLARE_NEXT_HOLE_ADDR - macro to declare next hole functions
380 * @name: name of function to declare
381 * @first: first rb member to traverse (either rb_left or rb_right).
382 * @last: last rb member to traverse (either rb_right or rb_left).
383 *
384 * This macro declares a function to return the next hole of the addr rb tree.
385 * While traversing the tree we take the searched size into account and only
386 * visit branches with potential big enough holes.
387 */
388
389#define DECLARE_NEXT_HOLE_ADDR(name, first, last)			\
390static struct drm_mm_node *name(struct drm_mm_node *entry, u64 size)	\
391{									\
392	struct rb_node *parent, *node = &entry->rb_hole_addr;		\
393									\
394	if (!entry || RB_EMPTY_NODE(node))				\
395		return NULL;						\
396									\
397	if (usable_hole_addr(node->first, size)) {			\
398		node = node->first;					\
399		while (usable_hole_addr(node->last, size))		\
400			node = node->last;				\
401		return rb_hole_addr_to_node(node);			\
402	}								\
403									\
404	while ((parent = rb_parent(node)) && node == parent->first)	\
405		node = parent;						\
406									\
407	return rb_hole_addr_to_node(parent);				\
408}
409
410DECLARE_NEXT_HOLE_ADDR(next_hole_high_addr, rb_left, rb_right)
411DECLARE_NEXT_HOLE_ADDR(next_hole_low_addr, rb_right, rb_left)
412
413static struct drm_mm_node *
414next_hole(struct drm_mm *mm,
415	  struct drm_mm_node *node,
416	  u64 size,
417	  enum drm_mm_insert_mode mode)
418{
419	switch (mode) {
420	default:
421	case DRM_MM_INSERT_BEST:
422		return rb_hole_size_to_node(rb_prev(&node->rb_hole_size));
423
424	case DRM_MM_INSERT_LOW:
425		return next_hole_low_addr(node, size);
426
427	case DRM_MM_INSERT_HIGH:
428		return next_hole_high_addr(node, size);
429
430	case DRM_MM_INSERT_EVICT:
431		node = list_next_entry(node, hole_stack);
432		return &node->hole_stack == &mm->hole_stack ? NULL : node;
433	}
434}
435
436/**
437 * drm_mm_reserve_node - insert an pre-initialized node
438 * @mm: drm_mm allocator to insert @node into
439 * @node: drm_mm_node to insert
440 *
441 * This functions inserts an already set-up &drm_mm_node into the allocator,
442 * meaning that start, size and color must be set by the caller. All other
443 * fields must be cleared to 0. This is useful to initialize the allocator with
444 * preallocated objects which must be set-up before the range allocator can be
445 * set-up, e.g. when taking over a firmware framebuffer.
446 *
447 * Returns:
448 * 0 on success, -ENOSPC if there's no hole where @node is.
449 */
450int drm_mm_reserve_node(struct drm_mm *mm, struct drm_mm_node *node)
451{
452	struct drm_mm_node *hole;
453	u64 hole_start, hole_end;
454	u64 adj_start, adj_end;
455	u64 end;
456
457	end = node->start + node->size;
458	if (unlikely(end <= node->start))
459		return -ENOSPC;
460
461	/* Find the relevant hole to add our node to */
462	hole = find_hole_addr(mm, node->start, 0);
463	if (!hole)
464		return -ENOSPC;
465
466	adj_start = hole_start = __drm_mm_hole_node_start(hole);
467	adj_end = hole_end = hole_start + hole->hole_size;
468
469	if (mm->color_adjust)
470		mm->color_adjust(hole, node->color, &adj_start, &adj_end);
471
472	if (adj_start > node->start || adj_end < end)
473		return -ENOSPC;
474
475	node->mm = mm;
476
477	__set_bit(DRM_MM_NODE_ALLOCATED_BIT, &node->flags);
478	list_add(&node->node_list, &hole->node_list);
479	drm_mm_interval_tree_add_node(hole, node);
480	node->hole_size = 0;
481
482	rm_hole(hole);
483	if (node->start > hole_start)
484		add_hole(hole);
485	if (end < hole_end)
486		add_hole(node);
487
488	save_stack(node);
489	return 0;
490}
491EXPORT_SYMBOL(drm_mm_reserve_node);
492
493static u64 rb_to_hole_size_or_zero(struct rb_node *rb)
494{
495	return rb ? rb_to_hole_size(rb) : 0;
496}
497
498/**
499 * drm_mm_insert_node_in_range - ranged search for space and insert @node
500 * @mm: drm_mm to allocate from
501 * @node: preallocate node to insert
502 * @size: size of the allocation
503 * @alignment: alignment of the allocation
504 * @color: opaque tag value to use for this node
505 * @range_start: start of the allowed range for this node
506 * @range_end: end of the allowed range for this node
507 * @mode: fine-tune the allocation search and placement
508 *
509 * The preallocated @node must be cleared to 0.
510 *
511 * Returns:
512 * 0 on success, -ENOSPC if there's no suitable hole.
513 */
514int drm_mm_insert_node_in_range(struct drm_mm * const mm,
515				struct drm_mm_node * const node,
516				u64 size, u64 alignment,
517				unsigned long color,
518				u64 range_start, u64 range_end,
519				enum drm_mm_insert_mode mode)
520{
521	struct drm_mm_node *hole;
522	u64 remainder_mask;
523	bool once;
524
525	DRM_MM_BUG_ON(range_start > range_end);
526
527	if (unlikely(size == 0 || range_end - range_start < size))
528		return -ENOSPC;
529
530	if (rb_to_hole_size_or_zero(rb_first_cached(&mm->holes_size)) < size)
531		return -ENOSPC;
532
533	if (alignment <= 1)
534		alignment = 0;
535
536	once = mode & DRM_MM_INSERT_ONCE;
537	mode &= ~DRM_MM_INSERT_ONCE;
538
539	remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
540	for (hole = first_hole(mm, range_start, range_end, size, mode);
541	     hole;
542	     hole = once ? NULL : next_hole(mm, hole, size, mode)) {
543		u64 hole_start = __drm_mm_hole_node_start(hole);
544		u64 hole_end = hole_start + hole->hole_size;
545		u64 adj_start, adj_end;
546		u64 col_start, col_end;
547
548		if (mode == DRM_MM_INSERT_LOW && hole_start >= range_end)
549			break;
550
551		if (mode == DRM_MM_INSERT_HIGH && hole_end <= range_start)
552			break;
553
554		col_start = hole_start;
555		col_end = hole_end;
556		if (mm->color_adjust)
557			mm->color_adjust(hole, color, &col_start, &col_end);
558
559		adj_start = max(col_start, range_start);
560		adj_end = min(col_end, range_end);
561
562		if (adj_end <= adj_start || adj_end - adj_start < size)
563			continue;
564
565		if (mode == DRM_MM_INSERT_HIGH)
566			adj_start = adj_end - size;
567
568		if (alignment) {
569			u64 rem;
570
571			if (likely(remainder_mask))
572				rem = adj_start & remainder_mask;
573			else
574				div64_u64_rem(adj_start, alignment, &rem);
575			if (rem) {
576				adj_start -= rem;
577				if (mode != DRM_MM_INSERT_HIGH)
578					adj_start += alignment;
579
580				if (adj_start < max(col_start, range_start) ||
581				    min(col_end, range_end) - adj_start < size)
582					continue;
583
584				if (adj_end <= adj_start ||
585				    adj_end - adj_start < size)
586					continue;
587			}
588		}
589
590		node->mm = mm;
591		node->size = size;
592		node->start = adj_start;
593		node->color = color;
594		node->hole_size = 0;
595
596		__set_bit(DRM_MM_NODE_ALLOCATED_BIT, &node->flags);
597		list_add(&node->node_list, &hole->node_list);
598		drm_mm_interval_tree_add_node(hole, node);
599
600		rm_hole(hole);
601		if (adj_start > hole_start)
602			add_hole(hole);
603		if (adj_start + size < hole_end)
604			add_hole(node);
605
606		save_stack(node);
607		return 0;
608	}
609
610	return -ENOSPC;
611}
612EXPORT_SYMBOL(drm_mm_insert_node_in_range);
613
614static inline bool drm_mm_node_scanned_block(const struct drm_mm_node *node)
615{
616	return test_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags);
617}
618
619/**
620 * drm_mm_remove_node - Remove a memory node from the allocator.
621 * @node: drm_mm_node to remove
622 *
623 * This just removes a node from its drm_mm allocator. The node does not need to
624 * be cleared again before it can be re-inserted into this or any other drm_mm
625 * allocator. It is a bug to call this function on a unallocated node.
626 */
627void drm_mm_remove_node(struct drm_mm_node *node)
628{
629	struct drm_mm *mm = node->mm;
630	struct drm_mm_node *prev_node;
631
632	DRM_MM_BUG_ON(!drm_mm_node_allocated(node));
633	DRM_MM_BUG_ON(drm_mm_node_scanned_block(node));
634
635	prev_node = list_prev_entry(node, node_list);
636
637	if (drm_mm_hole_follows(node))
638		rm_hole(node);
639
640	drm_mm_interval_tree_remove(node, &mm->interval_tree);
641	list_del(&node->node_list);
642
643	if (drm_mm_hole_follows(prev_node))
644		rm_hole(prev_node);
645	add_hole(prev_node);
646
647	clear_bit_unlock(DRM_MM_NODE_ALLOCATED_BIT, &node->flags);
648}
649EXPORT_SYMBOL(drm_mm_remove_node);
650
651/**
652 * drm_mm_replace_node - move an allocation from @old to @new
653 * @old: drm_mm_node to remove from the allocator
654 * @new: drm_mm_node which should inherit @old's allocation
655 *
656 * This is useful for when drivers embed the drm_mm_node structure and hence
657 * can't move allocations by reassigning pointers. It's a combination of remove
658 * and insert with the guarantee that the allocation start will match.
659 */
660void drm_mm_replace_node(struct drm_mm_node *old, struct drm_mm_node *new)
661{
662	struct drm_mm *mm = old->mm;
663
664	DRM_MM_BUG_ON(!drm_mm_node_allocated(old));
665
666	*new = *old;
667
668	__set_bit(DRM_MM_NODE_ALLOCATED_BIT, &new->flags);
669	list_replace(&old->node_list, &new->node_list);
670	rb_replace_node_cached(&old->rb, &new->rb, &mm->interval_tree);
671
672	if (drm_mm_hole_follows(old)) {
673		list_replace(&old->hole_stack, &new->hole_stack);
674		rb_replace_node_cached(&old->rb_hole_size,
675				       &new->rb_hole_size,
676				       &mm->holes_size);
677		rb_replace_node(&old->rb_hole_addr,
678				&new->rb_hole_addr,
679				&mm->holes_addr);
680	}
681
682	clear_bit_unlock(DRM_MM_NODE_ALLOCATED_BIT, &old->flags);
683}
684EXPORT_SYMBOL(drm_mm_replace_node);
685
686/**
687 * DOC: lru scan roster
688 *
689 * Very often GPUs need to have continuous allocations for a given object. When
690 * evicting objects to make space for a new one it is therefore not most
691 * efficient when we simply start to select all objects from the tail of an LRU
692 * until there's a suitable hole: Especially for big objects or nodes that
693 * otherwise have special allocation constraints there's a good chance we evict
694 * lots of (smaller) objects unnecessarily.
695 *
696 * The DRM range allocator supports this use-case through the scanning
697 * interfaces. First a scan operation needs to be initialized with
698 * drm_mm_scan_init() or drm_mm_scan_init_with_range(). The driver adds
699 * objects to the roster, probably by walking an LRU list, but this can be
700 * freely implemented. Eviction candidates are added using
701 * drm_mm_scan_add_block() until a suitable hole is found or there are no
702 * further evictable objects. Eviction roster metadata is tracked in &struct
703 * drm_mm_scan.
704 *
705 * The driver must walk through all objects again in exactly the reverse
706 * order to restore the allocator state. Note that while the allocator is used
707 * in the scan mode no other operation is allowed.
708 *
709 * Finally the driver evicts all objects selected (drm_mm_scan_remove_block()
710 * reported true) in the scan, and any overlapping nodes after color adjustment
711 * (drm_mm_scan_color_evict()). Adding and removing an object is O(1), and
712 * since freeing a node is also O(1) the overall complexity is
713 * O(scanned_objects). So like the free stack which needs to be walked before a
714 * scan operation even begins this is linear in the number of objects. It
715 * doesn't seem to hurt too badly.
716 */
717
718/**
719 * drm_mm_scan_init_with_range - initialize range-restricted lru scanning
720 * @scan: scan state
721 * @mm: drm_mm to scan
722 * @size: size of the allocation
723 * @alignment: alignment of the allocation
724 * @color: opaque tag value to use for the allocation
725 * @start: start of the allowed range for the allocation
726 * @end: end of the allowed range for the allocation
727 * @mode: fine-tune the allocation search and placement
728 *
729 * This simply sets up the scanning routines with the parameters for the desired
730 * hole.
731 *
732 * Warning:
733 * As long as the scan list is non-empty, no other operations than
734 * adding/removing nodes to/from the scan list are allowed.
735 */
736void drm_mm_scan_init_with_range(struct drm_mm_scan *scan,
737				 struct drm_mm *mm,
738				 u64 size,
739				 u64 alignment,
740				 unsigned long color,
741				 u64 start,
742				 u64 end,
743				 enum drm_mm_insert_mode mode)
744{
745	DRM_MM_BUG_ON(start >= end);
746	DRM_MM_BUG_ON(!size || size > end - start);
747	DRM_MM_BUG_ON(mm->scan_active);
748
749	scan->mm = mm;
750
751	if (alignment <= 1)
752		alignment = 0;
753
754	scan->color = color;
755	scan->alignment = alignment;
756	scan->remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
757	scan->size = size;
758	scan->mode = mode;
759
760	DRM_MM_BUG_ON(end <= start);
761	scan->range_start = start;
762	scan->range_end = end;
763
764	scan->hit_start = U64_MAX;
765	scan->hit_end = 0;
766}
767EXPORT_SYMBOL(drm_mm_scan_init_with_range);
768
769/**
770 * drm_mm_scan_add_block - add a node to the scan list
771 * @scan: the active drm_mm scanner
772 * @node: drm_mm_node to add
773 *
774 * Add a node to the scan list that might be freed to make space for the desired
775 * hole.
776 *
777 * Returns:
778 * True if a hole has been found, false otherwise.
779 */
780bool drm_mm_scan_add_block(struct drm_mm_scan *scan,
781			   struct drm_mm_node *node)
782{
783	struct drm_mm *mm = scan->mm;
784	struct drm_mm_node *hole;
785	u64 hole_start, hole_end;
786	u64 col_start, col_end;
787	u64 adj_start, adj_end;
788
789	DRM_MM_BUG_ON(node->mm != mm);
790	DRM_MM_BUG_ON(!drm_mm_node_allocated(node));
791	DRM_MM_BUG_ON(drm_mm_node_scanned_block(node));
792	__set_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags);
793	mm->scan_active++;
794
795	/* Remove this block from the node_list so that we enlarge the hole
796	 * (distance between the end of our previous node and the start of
797	 * or next), without poisoning the link so that we can restore it
798	 * later in drm_mm_scan_remove_block().
799	 */
800	hole = list_prev_entry(node, node_list);
801	DRM_MM_BUG_ON(list_next_entry(hole, node_list) != node);
802	__list_del_entry(&node->node_list);
803
804	hole_start = __drm_mm_hole_node_start(hole);
805	hole_end = __drm_mm_hole_node_end(hole);
806
807	col_start = hole_start;
808	col_end = hole_end;
809	if (mm->color_adjust)
810		mm->color_adjust(hole, scan->color, &col_start, &col_end);
811
812	adj_start = max(col_start, scan->range_start);
813	adj_end = min(col_end, scan->range_end);
814	if (adj_end <= adj_start || adj_end - adj_start < scan->size)
815		return false;
816
817	if (scan->mode == DRM_MM_INSERT_HIGH)
818		adj_start = adj_end - scan->size;
819
820	if (scan->alignment) {
821		u64 rem;
822
823		if (likely(scan->remainder_mask))
824			rem = adj_start & scan->remainder_mask;
825		else
826			div64_u64_rem(adj_start, scan->alignment, &rem);
827		if (rem) {
828			adj_start -= rem;
829			if (scan->mode != DRM_MM_INSERT_HIGH)
830				adj_start += scan->alignment;
831			if (adj_start < max(col_start, scan->range_start) ||
832			    min(col_end, scan->range_end) - adj_start < scan->size)
833				return false;
834
835			if (adj_end <= adj_start ||
836			    adj_end - adj_start < scan->size)
837				return false;
838		}
839	}
840
841	scan->hit_start = adj_start;
842	scan->hit_end = adj_start + scan->size;
843
844	DRM_MM_BUG_ON(scan->hit_start >= scan->hit_end);
845	DRM_MM_BUG_ON(scan->hit_start < hole_start);
846	DRM_MM_BUG_ON(scan->hit_end > hole_end);
847
848	return true;
849}
850EXPORT_SYMBOL(drm_mm_scan_add_block);
851
852/**
853 * drm_mm_scan_remove_block - remove a node from the scan list
854 * @scan: the active drm_mm scanner
855 * @node: drm_mm_node to remove
856 *
857 * Nodes **must** be removed in exactly the reverse order from the scan list as
858 * they have been added (e.g. using list_add() as they are added and then
859 * list_for_each() over that eviction list to remove), otherwise the internal
860 * state of the memory manager will be corrupted.
861 *
862 * When the scan list is empty, the selected memory nodes can be freed. An
863 * immediately following drm_mm_insert_node_in_range_generic() or one of the
864 * simpler versions of that function with !DRM_MM_SEARCH_BEST will then return
865 * the just freed block (because it's at the top of the free_stack list).
866 *
867 * Returns:
868 * True if this block should be evicted, false otherwise. Will always
869 * return false when no hole has been found.
870 */
871bool drm_mm_scan_remove_block(struct drm_mm_scan *scan,
872			      struct drm_mm_node *node)
873{
874	struct drm_mm_node *prev_node;
875
876	DRM_MM_BUG_ON(node->mm != scan->mm);
877	DRM_MM_BUG_ON(!drm_mm_node_scanned_block(node));
878	__clear_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags);
879
880	DRM_MM_BUG_ON(!node->mm->scan_active);
881	node->mm->scan_active--;
882
883	/* During drm_mm_scan_add_block() we decoupled this node leaving
884	 * its pointers intact. Now that the caller is walking back along
885	 * the eviction list we can restore this block into its rightful
886	 * place on the full node_list. To confirm that the caller is walking
887	 * backwards correctly we check that prev_node->next == node->next,
888	 * i.e. both believe the same node should be on the other side of the
889	 * hole.
890	 */
891	prev_node = list_prev_entry(node, node_list);
892	DRM_MM_BUG_ON(list_next_entry(prev_node, node_list) !=
893		      list_next_entry(node, node_list));
894	list_add(&node->node_list, &prev_node->node_list);
895
896	return (node->start + node->size > scan->hit_start &&
897		node->start < scan->hit_end);
898}
899EXPORT_SYMBOL(drm_mm_scan_remove_block);
900
901/**
902 * drm_mm_scan_color_evict - evict overlapping nodes on either side of hole
903 * @scan: drm_mm scan with target hole
904 *
905 * After completing an eviction scan and removing the selected nodes, we may
906 * need to remove a few more nodes from either side of the target hole if
907 * mm.color_adjust is being used.
908 *
909 * Returns:
910 * A node to evict, or NULL if there are no overlapping nodes.
911 */
912struct drm_mm_node *drm_mm_scan_color_evict(struct drm_mm_scan *scan)
913{
914	struct drm_mm *mm = scan->mm;
915	struct drm_mm_node *hole;
916	u64 hole_start, hole_end;
917
918	DRM_MM_BUG_ON(list_empty(&mm->hole_stack));
919
920	if (!mm->color_adjust)
921		return NULL;
922
923	/*
924	 * The hole found during scanning should ideally be the first element
925	 * in the hole_stack list, but due to side-effects in the driver it
926	 * may not be.
927	 */
928	list_for_each_entry(hole, &mm->hole_stack, hole_stack) {
929		hole_start = __drm_mm_hole_node_start(hole);
930		hole_end = hole_start + hole->hole_size;
931
932		if (hole_start <= scan->hit_start &&
933		    hole_end >= scan->hit_end)
934			break;
935	}
936
937	/* We should only be called after we found the hole previously */
938	DRM_MM_BUG_ON(&hole->hole_stack == &mm->hole_stack);
939	if (unlikely(&hole->hole_stack == &mm->hole_stack))
940		return NULL;
941
942	DRM_MM_BUG_ON(hole_start > scan->hit_start);
943	DRM_MM_BUG_ON(hole_end < scan->hit_end);
944
945	mm->color_adjust(hole, scan->color, &hole_start, &hole_end);
946	if (hole_start > scan->hit_start)
947		return hole;
948	if (hole_end < scan->hit_end)
949		return list_next_entry(hole, node_list);
950
951	return NULL;
952}
953EXPORT_SYMBOL(drm_mm_scan_color_evict);
954
955/**
956 * drm_mm_init - initialize a drm-mm allocator
957 * @mm: the drm_mm structure to initialize
958 * @start: start of the range managed by @mm
959 * @size: end of the range managed by @mm
960 *
961 * Note that @mm must be cleared to 0 before calling this function.
962 */
963void drm_mm_init(struct drm_mm *mm, u64 start, u64 size)
964{
965	DRM_MM_BUG_ON(start + size <= start);
966
967	mm->color_adjust = NULL;
968
969	INIT_LIST_HEAD(&mm->hole_stack);
970	mm->interval_tree = RB_ROOT_CACHED;
971	mm->holes_size = RB_ROOT_CACHED;
972	mm->holes_addr = RB_ROOT;
973
974	/* Clever trick to avoid a special case in the free hole tracking. */
975	INIT_LIST_HEAD(&mm->head_node.node_list);
976	mm->head_node.flags = 0;
977	mm->head_node.mm = mm;
978	mm->head_node.start = start + size;
979	mm->head_node.size = -size;
980	add_hole(&mm->head_node);
981
982	mm->scan_active = 0;
983
984#ifdef CONFIG_DRM_DEBUG_MM
985	stack_depot_init();
986#endif
987}
988EXPORT_SYMBOL(drm_mm_init);
989
990/**
991 * drm_mm_takedown - clean up a drm_mm allocator
992 * @mm: drm_mm allocator to clean up
993 *
994 * Note that it is a bug to call this function on an allocator which is not
995 * clean.
996 */
997void drm_mm_takedown(struct drm_mm *mm)
998{
999	if (WARN(!drm_mm_clean(mm),
1000		 "Memory manager not clean during takedown.\n"))
1001		show_leaks(mm);
1002}
1003EXPORT_SYMBOL(drm_mm_takedown);
1004
1005static u64 drm_mm_dump_hole(struct drm_printer *p, const struct drm_mm_node *entry)
1006{
1007	u64 start, size;
1008
1009	size = entry->hole_size;
1010	if (size) {
1011		start = drm_mm_hole_node_start(entry);
1012		drm_printf(p, "%#018llx-%#018llx: %llu: free\n",
1013			   start, start + size, size);
1014	}
1015
1016	return size;
1017}
1018/**
1019 * drm_mm_print - print allocator state
1020 * @mm: drm_mm allocator to print
1021 * @p: DRM printer to use
1022 */
1023void drm_mm_print(const struct drm_mm *mm, struct drm_printer *p)
1024{
1025	const struct drm_mm_node *entry;
1026	u64 total_used = 0, total_free = 0, total = 0;
1027
1028	total_free += drm_mm_dump_hole(p, &mm->head_node);
1029
1030	drm_mm_for_each_node(entry, mm) {
1031		drm_printf(p, "%#018llx-%#018llx: %llu: used\n", entry->start,
1032			   entry->start + entry->size, entry->size);
1033		total_used += entry->size;
1034		total_free += drm_mm_dump_hole(p, entry);
1035	}
1036	total = total_free + total_used;
1037
1038	drm_printf(p, "total: %llu, used %llu free %llu\n", total,
1039		   total_used, total_free);
1040}
1041EXPORT_SYMBOL(drm_mm_print);
1042