1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2018, The Linux Foundation. All rights reserved.
4 * datasheet: https://www.ti.com/lit/ds/symlink/sn65dsi86.pdf
5 */
6
7#include <linux/atomic.h>
8#include <linux/auxiliary_bus.h>
9#include <linux/bitfield.h>
10#include <linux/bits.h>
11#include <linux/clk.h>
12#include <linux/debugfs.h>
13#include <linux/gpio/consumer.h>
14#include <linux/gpio/driver.h>
15#include <linux/i2c.h>
16#include <linux/iopoll.h>
17#include <linux/module.h>
18#include <linux/of_graph.h>
19#include <linux/pm_runtime.h>
20#include <linux/pwm.h>
21#include <linux/regmap.h>
22#include <linux/regulator/consumer.h>
23
24#include <asm/unaligned.h>
25
26#include <drm/display/drm_dp_aux_bus.h>
27#include <drm/display/drm_dp_helper.h>
28#include <drm/drm_atomic.h>
29#include <drm/drm_atomic_helper.h>
30#include <drm/drm_bridge.h>
31#include <drm/drm_bridge_connector.h>
32#include <drm/drm_edid.h>
33#include <drm/drm_mipi_dsi.h>
34#include <drm/drm_of.h>
35#include <drm/drm_panel.h>
36#include <drm/drm_print.h>
37#include <drm/drm_probe_helper.h>
38
39#define SN_DEVICE_REV_REG			0x08
40#define SN_DPPLL_SRC_REG			0x0A
41#define  DPPLL_CLK_SRC_DSICLK			BIT(0)
42#define  REFCLK_FREQ_MASK			GENMASK(3, 1)
43#define  REFCLK_FREQ(x)				((x) << 1)
44#define  DPPLL_SRC_DP_PLL_LOCK			BIT(7)
45#define SN_PLL_ENABLE_REG			0x0D
46#define SN_DSI_LANES_REG			0x10
47#define  CHA_DSI_LANES_MASK			GENMASK(4, 3)
48#define  CHA_DSI_LANES(x)			((x) << 3)
49#define SN_DSIA_CLK_FREQ_REG			0x12
50#define SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG	0x20
51#define SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG	0x24
52#define SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG	0x2C
53#define SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG	0x2D
54#define  CHA_HSYNC_POLARITY			BIT(7)
55#define SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG	0x30
56#define SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG	0x31
57#define  CHA_VSYNC_POLARITY			BIT(7)
58#define SN_CHA_HORIZONTAL_BACK_PORCH_REG	0x34
59#define SN_CHA_VERTICAL_BACK_PORCH_REG		0x36
60#define SN_CHA_HORIZONTAL_FRONT_PORCH_REG	0x38
61#define SN_CHA_VERTICAL_FRONT_PORCH_REG		0x3A
62#define SN_LN_ASSIGN_REG			0x59
63#define  LN_ASSIGN_WIDTH			2
64#define SN_ENH_FRAME_REG			0x5A
65#define  VSTREAM_ENABLE				BIT(3)
66#define  LN_POLRS_OFFSET			4
67#define  LN_POLRS_MASK				0xf0
68#define SN_DATA_FORMAT_REG			0x5B
69#define  BPP_18_RGB				BIT(0)
70#define SN_HPD_DISABLE_REG			0x5C
71#define  HPD_DISABLE				BIT(0)
72#define  HPD_DEBOUNCED_STATE			BIT(4)
73#define SN_GPIO_IO_REG				0x5E
74#define  SN_GPIO_INPUT_SHIFT			4
75#define  SN_GPIO_OUTPUT_SHIFT			0
76#define SN_GPIO_CTRL_REG			0x5F
77#define  SN_GPIO_MUX_INPUT			0
78#define  SN_GPIO_MUX_OUTPUT			1
79#define  SN_GPIO_MUX_SPECIAL			2
80#define  SN_GPIO_MUX_MASK			0x3
81#define SN_AUX_WDATA_REG(x)			(0x64 + (x))
82#define SN_AUX_ADDR_19_16_REG			0x74
83#define SN_AUX_ADDR_15_8_REG			0x75
84#define SN_AUX_ADDR_7_0_REG			0x76
85#define SN_AUX_ADDR_MASK			GENMASK(19, 0)
86#define SN_AUX_LENGTH_REG			0x77
87#define SN_AUX_CMD_REG				0x78
88#define  AUX_CMD_SEND				BIT(0)
89#define  AUX_CMD_REQ(x)				((x) << 4)
90#define SN_AUX_RDATA_REG(x)			(0x79 + (x))
91#define SN_SSC_CONFIG_REG			0x93
92#define  DP_NUM_LANES_MASK			GENMASK(5, 4)
93#define  DP_NUM_LANES(x)			((x) << 4)
94#define SN_DATARATE_CONFIG_REG			0x94
95#define  DP_DATARATE_MASK			GENMASK(7, 5)
96#define  DP_DATARATE(x)				((x) << 5)
97#define SN_TRAINING_SETTING_REG			0x95
98#define  SCRAMBLE_DISABLE			BIT(4)
99#define SN_ML_TX_MODE_REG			0x96
100#define  ML_TX_MAIN_LINK_OFF			0
101#define  ML_TX_NORMAL_MODE			BIT(0)
102#define SN_PWM_PRE_DIV_REG			0xA0
103#define SN_BACKLIGHT_SCALE_REG			0xA1
104#define  BACKLIGHT_SCALE_MAX			0xFFFF
105#define SN_BACKLIGHT_REG			0xA3
106#define SN_PWM_EN_INV_REG			0xA5
107#define  SN_PWM_INV_MASK			BIT(0)
108#define  SN_PWM_EN_MASK				BIT(1)
109#define SN_AUX_CMD_STATUS_REG			0xF4
110#define  AUX_IRQ_STATUS_AUX_RPLY_TOUT		BIT(3)
111#define  AUX_IRQ_STATUS_AUX_SHORT		BIT(5)
112#define  AUX_IRQ_STATUS_NAT_I2C_FAIL		BIT(6)
113
114#define MIN_DSI_CLK_FREQ_MHZ	40
115
116/* fudge factor required to account for 8b/10b encoding */
117#define DP_CLK_FUDGE_NUM	10
118#define DP_CLK_FUDGE_DEN	8
119
120/* Matches DP_AUX_MAX_PAYLOAD_BYTES (for now) */
121#define SN_AUX_MAX_PAYLOAD_BYTES	16
122
123#define SN_REGULATOR_SUPPLY_NUM		4
124
125#define SN_MAX_DP_LANES			4
126#define SN_NUM_GPIOS			4
127#define SN_GPIO_PHYSICAL_OFFSET		1
128
129#define SN_LINK_TRAINING_TRIES		10
130
131#define SN_PWM_GPIO_IDX			3 /* 4th GPIO */
132
133/**
134 * struct ti_sn65dsi86 - Platform data for ti-sn65dsi86 driver.
135 * @bridge_aux:   AUX-bus sub device for MIPI-to-eDP bridge functionality.
136 * @gpio_aux:     AUX-bus sub device for GPIO controller functionality.
137 * @aux_aux:      AUX-bus sub device for eDP AUX channel functionality.
138 * @pwm_aux:      AUX-bus sub device for PWM controller functionality.
139 *
140 * @dev:          Pointer to the top level (i2c) device.
141 * @regmap:       Regmap for accessing i2c.
142 * @aux:          Our aux channel.
143 * @bridge:       Our bridge.
144 * @connector:    Our connector.
145 * @host_node:    Remote DSI node.
146 * @dsi:          Our MIPI DSI source.
147 * @refclk:       Our reference clock.
148 * @next_bridge:  The bridge on the eDP side.
149 * @enable_gpio:  The GPIO we toggle to enable the bridge.
150 * @supplies:     Data for bulk enabling/disabling our regulators.
151 * @dp_lanes:     Count of dp_lanes we're using.
152 * @ln_assign:    Value to program to the LN_ASSIGN register.
153 * @ln_polrs:     Value for the 4-bit LN_POLRS field of SN_ENH_FRAME_REG.
154 * @comms_enabled: If true then communication over the aux channel is enabled.
155 * @comms_mutex:   Protects modification of comms_enabled.
156 *
157 * @gchip:        If we expose our GPIOs, this is used.
158 * @gchip_output: A cache of whether we've set GPIOs to output.  This
159 *                serves double-duty of keeping track of the direction and
160 *                also keeping track of whether we've incremented the
161 *                pm_runtime reference count for this pin, which we do
162 *                whenever a pin is configured as an output.  This is a
163 *                bitmap so we can do atomic ops on it without an extra
164 *                lock so concurrent users of our 4 GPIOs don't stomp on
165 *                each other's read-modify-write.
166 *
167 * @pchip:        pwm_chip if the PWM is exposed.
168 * @pwm_enabled:  Used to track if the PWM signal is currently enabled.
169 * @pwm_pin_busy: Track if GPIO4 is currently requested for GPIO or PWM.
170 * @pwm_refclk_freq: Cache for the reference clock input to the PWM.
171 */
172struct ti_sn65dsi86 {
173	struct auxiliary_device		*bridge_aux;
174	struct auxiliary_device		*gpio_aux;
175	struct auxiliary_device		*aux_aux;
176	struct auxiliary_device		*pwm_aux;
177
178	struct device			*dev;
179	struct regmap			*regmap;
180	struct drm_dp_aux		aux;
181	struct drm_bridge		bridge;
182	struct drm_connector		*connector;
183	struct device_node		*host_node;
184	struct mipi_dsi_device		*dsi;
185	struct clk			*refclk;
186	struct drm_bridge		*next_bridge;
187	struct gpio_desc		*enable_gpio;
188	struct regulator_bulk_data	supplies[SN_REGULATOR_SUPPLY_NUM];
189	int				dp_lanes;
190	u8				ln_assign;
191	u8				ln_polrs;
192	bool				comms_enabled;
193	struct mutex			comms_mutex;
194
195#if defined(CONFIG_OF_GPIO)
196	struct gpio_chip		gchip;
197	DECLARE_BITMAP(gchip_output, SN_NUM_GPIOS);
198#endif
199#if defined(CONFIG_PWM)
200	struct pwm_chip			pchip;
201	bool				pwm_enabled;
202	atomic_t			pwm_pin_busy;
203#endif
204	unsigned int			pwm_refclk_freq;
205};
206
207static const struct regmap_range ti_sn65dsi86_volatile_ranges[] = {
208	{ .range_min = 0, .range_max = 0xFF },
209};
210
211static const struct regmap_access_table ti_sn_bridge_volatile_table = {
212	.yes_ranges = ti_sn65dsi86_volatile_ranges,
213	.n_yes_ranges = ARRAY_SIZE(ti_sn65dsi86_volatile_ranges),
214};
215
216static const struct regmap_config ti_sn65dsi86_regmap_config = {
217	.reg_bits = 8,
218	.val_bits = 8,
219	.volatile_table = &ti_sn_bridge_volatile_table,
220	.cache_type = REGCACHE_NONE,
221	.max_register = 0xFF,
222};
223
224static int __maybe_unused ti_sn65dsi86_read_u16(struct ti_sn65dsi86 *pdata,
225						unsigned int reg, u16 *val)
226{
227	u8 buf[2];
228	int ret;
229
230	ret = regmap_bulk_read(pdata->regmap, reg, buf, ARRAY_SIZE(buf));
231	if (ret)
232		return ret;
233
234	*val = buf[0] | (buf[1] << 8);
235
236	return 0;
237}
238
239static void ti_sn65dsi86_write_u16(struct ti_sn65dsi86 *pdata,
240				   unsigned int reg, u16 val)
241{
242	u8 buf[2] = { val & 0xff, val >> 8 };
243
244	regmap_bulk_write(pdata->regmap, reg, buf, ARRAY_SIZE(buf));
245}
246
247static u32 ti_sn_bridge_get_dsi_freq(struct ti_sn65dsi86 *pdata)
248{
249	u32 bit_rate_khz, clk_freq_khz;
250	struct drm_display_mode *mode =
251		&pdata->bridge.encoder->crtc->state->adjusted_mode;
252
253	bit_rate_khz = mode->clock *
254			mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
255	clk_freq_khz = bit_rate_khz / (pdata->dsi->lanes * 2);
256
257	return clk_freq_khz;
258}
259
260/* clk frequencies supported by bridge in Hz in case derived from REFCLK pin */
261static const u32 ti_sn_bridge_refclk_lut[] = {
262	12000000,
263	19200000,
264	26000000,
265	27000000,
266	38400000,
267};
268
269/* clk frequencies supported by bridge in Hz in case derived from DACP/N pin */
270static const u32 ti_sn_bridge_dsiclk_lut[] = {
271	468000000,
272	384000000,
273	416000000,
274	486000000,
275	460800000,
276};
277
278static void ti_sn_bridge_set_refclk_freq(struct ti_sn65dsi86 *pdata)
279{
280	int i;
281	u32 refclk_rate;
282	const u32 *refclk_lut;
283	size_t refclk_lut_size;
284
285	if (pdata->refclk) {
286		refclk_rate = clk_get_rate(pdata->refclk);
287		refclk_lut = ti_sn_bridge_refclk_lut;
288		refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_refclk_lut);
289		clk_prepare_enable(pdata->refclk);
290	} else {
291		refclk_rate = ti_sn_bridge_get_dsi_freq(pdata) * 1000;
292		refclk_lut = ti_sn_bridge_dsiclk_lut;
293		refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_dsiclk_lut);
294	}
295
296	/* for i equals to refclk_lut_size means default frequency */
297	for (i = 0; i < refclk_lut_size; i++)
298		if (refclk_lut[i] == refclk_rate)
299			break;
300
301	/* avoid buffer overflow and "1" is the default rate in the datasheet. */
302	if (i >= refclk_lut_size)
303		i = 1;
304
305	regmap_update_bits(pdata->regmap, SN_DPPLL_SRC_REG, REFCLK_FREQ_MASK,
306			   REFCLK_FREQ(i));
307
308	/*
309	 * The PWM refclk is based on the value written to SN_DPPLL_SRC_REG,
310	 * regardless of its actual sourcing.
311	 */
312	pdata->pwm_refclk_freq = ti_sn_bridge_refclk_lut[i];
313}
314
315static void ti_sn65dsi86_enable_comms(struct ti_sn65dsi86 *pdata)
316{
317	mutex_lock(&pdata->comms_mutex);
318
319	/* configure bridge ref_clk */
320	ti_sn_bridge_set_refclk_freq(pdata);
321
322	/*
323	 * HPD on this bridge chip is a bit useless.  This is an eDP bridge
324	 * so the HPD is an internal signal that's only there to signal that
325	 * the panel is done powering up.  ...but the bridge chip debounces
326	 * this signal by between 100 ms and 400 ms (depending on process,
327	 * voltage, and temperate--I measured it at about 200 ms).  One
328	 * particular panel asserted HPD 84 ms after it was powered on meaning
329	 * that we saw HPD 284 ms after power on.  ...but the same panel said
330	 * that instead of looking at HPD you could just hardcode a delay of
331	 * 200 ms.  We'll assume that the panel driver will have the hardcoded
332	 * delay in its prepare and always disable HPD.
333	 *
334	 * If HPD somehow makes sense on some future panel we'll have to
335	 * change this to be conditional on someone specifying that HPD should
336	 * be used.
337	 */
338	regmap_update_bits(pdata->regmap, SN_HPD_DISABLE_REG, HPD_DISABLE,
339			   HPD_DISABLE);
340
341	pdata->comms_enabled = true;
342
343	mutex_unlock(&pdata->comms_mutex);
344}
345
346static void ti_sn65dsi86_disable_comms(struct ti_sn65dsi86 *pdata)
347{
348	mutex_lock(&pdata->comms_mutex);
349
350	pdata->comms_enabled = false;
351	clk_disable_unprepare(pdata->refclk);
352
353	mutex_unlock(&pdata->comms_mutex);
354}
355
356static int __maybe_unused ti_sn65dsi86_resume(struct device *dev)
357{
358	struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev);
359	int ret;
360
361	ret = regulator_bulk_enable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
362	if (ret) {
363		DRM_ERROR("failed to enable supplies %d\n", ret);
364		return ret;
365	}
366
367	/* td2: min 100 us after regulators before enabling the GPIO */
368	usleep_range(100, 110);
369
370	gpiod_set_value_cansleep(pdata->enable_gpio, 1);
371
372	/*
373	 * If we have a reference clock we can enable communication w/ the
374	 * panel (including the aux channel) w/out any need for an input clock
375	 * so we can do it in resume which lets us read the EDID before
376	 * pre_enable(). Without a reference clock we need the MIPI reference
377	 * clock so reading early doesn't work.
378	 */
379	if (pdata->refclk)
380		ti_sn65dsi86_enable_comms(pdata);
381
382	return ret;
383}
384
385static int __maybe_unused ti_sn65dsi86_suspend(struct device *dev)
386{
387	struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev);
388	int ret;
389
390	if (pdata->refclk)
391		ti_sn65dsi86_disable_comms(pdata);
392
393	gpiod_set_value_cansleep(pdata->enable_gpio, 0);
394
395	ret = regulator_bulk_disable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
396	if (ret)
397		DRM_ERROR("failed to disable supplies %d\n", ret);
398
399	return ret;
400}
401
402static const struct dev_pm_ops ti_sn65dsi86_pm_ops = {
403	SET_RUNTIME_PM_OPS(ti_sn65dsi86_suspend, ti_sn65dsi86_resume, NULL)
404	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
405				pm_runtime_force_resume)
406};
407
408static int status_show(struct seq_file *s, void *data)
409{
410	struct ti_sn65dsi86 *pdata = s->private;
411	unsigned int reg, val;
412
413	seq_puts(s, "STATUS REGISTERS:\n");
414
415	pm_runtime_get_sync(pdata->dev);
416
417	/* IRQ Status Registers, see Table 31 in datasheet */
418	for (reg = 0xf0; reg <= 0xf8; reg++) {
419		regmap_read(pdata->regmap, reg, &val);
420		seq_printf(s, "[0x%02x] = 0x%08x\n", reg, val);
421	}
422
423	pm_runtime_put_autosuspend(pdata->dev);
424
425	return 0;
426}
427
428DEFINE_SHOW_ATTRIBUTE(status);
429
430static void ti_sn65dsi86_debugfs_remove(void *data)
431{
432	debugfs_remove_recursive(data);
433}
434
435static void ti_sn65dsi86_debugfs_init(struct ti_sn65dsi86 *pdata)
436{
437	struct device *dev = pdata->dev;
438	struct dentry *debugfs;
439	int ret;
440
441	debugfs = debugfs_create_dir(dev_name(dev), NULL);
442
443	/*
444	 * We might get an error back if debugfs wasn't enabled in the kernel
445	 * so let's just silently return upon failure.
446	 */
447	if (IS_ERR_OR_NULL(debugfs))
448		return;
449
450	ret = devm_add_action_or_reset(dev, ti_sn65dsi86_debugfs_remove, debugfs);
451	if (ret)
452		return;
453
454	debugfs_create_file("status", 0600, debugfs, pdata, &status_fops);
455}
456
457/* -----------------------------------------------------------------------------
458 * Auxiliary Devices (*not* AUX)
459 */
460
461static void ti_sn65dsi86_uninit_aux(void *data)
462{
463	auxiliary_device_uninit(data);
464}
465
466static void ti_sn65dsi86_delete_aux(void *data)
467{
468	auxiliary_device_delete(data);
469}
470
471static void ti_sn65dsi86_aux_device_release(struct device *dev)
472{
473	struct auxiliary_device *aux = container_of(dev, struct auxiliary_device, dev);
474
475	kfree(aux);
476}
477
478static int ti_sn65dsi86_add_aux_device(struct ti_sn65dsi86 *pdata,
479				       struct auxiliary_device **aux_out,
480				       const char *name)
481{
482	struct device *dev = pdata->dev;
483	struct auxiliary_device *aux;
484	int ret;
485
486	aux = kzalloc(sizeof(*aux), GFP_KERNEL);
487	if (!aux)
488		return -ENOMEM;
489
490	aux->name = name;
491	aux->dev.parent = dev;
492	aux->dev.release = ti_sn65dsi86_aux_device_release;
493	device_set_of_node_from_dev(&aux->dev, dev);
494	ret = auxiliary_device_init(aux);
495	if (ret) {
496		kfree(aux);
497		return ret;
498	}
499	ret = devm_add_action_or_reset(dev, ti_sn65dsi86_uninit_aux, aux);
500	if (ret)
501		return ret;
502
503	ret = auxiliary_device_add(aux);
504	if (ret)
505		return ret;
506	ret = devm_add_action_or_reset(dev, ti_sn65dsi86_delete_aux, aux);
507	if (!ret)
508		*aux_out = aux;
509
510	return ret;
511}
512
513/* -----------------------------------------------------------------------------
514 * AUX Adapter
515 */
516
517static struct ti_sn65dsi86 *aux_to_ti_sn65dsi86(struct drm_dp_aux *aux)
518{
519	return container_of(aux, struct ti_sn65dsi86, aux);
520}
521
522static ssize_t ti_sn_aux_transfer(struct drm_dp_aux *aux,
523				  struct drm_dp_aux_msg *msg)
524{
525	struct ti_sn65dsi86 *pdata = aux_to_ti_sn65dsi86(aux);
526	u32 request = msg->request & ~(DP_AUX_I2C_MOT | DP_AUX_I2C_WRITE_STATUS_UPDATE);
527	u32 request_val = AUX_CMD_REQ(msg->request);
528	u8 *buf = msg->buffer;
529	unsigned int len = msg->size;
530	unsigned int short_len;
531	unsigned int val;
532	int ret;
533	u8 addr_len[SN_AUX_LENGTH_REG + 1 - SN_AUX_ADDR_19_16_REG];
534
535	if (len > SN_AUX_MAX_PAYLOAD_BYTES)
536		return -EINVAL;
537
538	pm_runtime_get_sync(pdata->dev);
539	mutex_lock(&pdata->comms_mutex);
540
541	/*
542	 * If someone tries to do a DDC over AUX transaction before pre_enable()
543	 * on a device without a dedicated reference clock then we just can't
544	 * do it. Fail right away. This prevents non-refclk users from reading
545	 * the EDID before enabling the panel but such is life.
546	 */
547	if (!pdata->comms_enabled) {
548		ret = -EIO;
549		goto exit;
550	}
551
552	switch (request) {
553	case DP_AUX_NATIVE_WRITE:
554	case DP_AUX_I2C_WRITE:
555	case DP_AUX_NATIVE_READ:
556	case DP_AUX_I2C_READ:
557		regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val);
558		/* Assume it's good */
559		msg->reply = 0;
560		break;
561	default:
562		ret = -EINVAL;
563		goto exit;
564	}
565
566	BUILD_BUG_ON(sizeof(addr_len) != sizeof(__be32));
567	put_unaligned_be32((msg->address & SN_AUX_ADDR_MASK) << 8 | len,
568			   addr_len);
569	regmap_bulk_write(pdata->regmap, SN_AUX_ADDR_19_16_REG, addr_len,
570			  ARRAY_SIZE(addr_len));
571
572	if (request == DP_AUX_NATIVE_WRITE || request == DP_AUX_I2C_WRITE)
573		regmap_bulk_write(pdata->regmap, SN_AUX_WDATA_REG(0), buf, len);
574
575	/* Clear old status bits before start so we don't get confused */
576	regmap_write(pdata->regmap, SN_AUX_CMD_STATUS_REG,
577		     AUX_IRQ_STATUS_NAT_I2C_FAIL |
578		     AUX_IRQ_STATUS_AUX_RPLY_TOUT |
579		     AUX_IRQ_STATUS_AUX_SHORT);
580
581	regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val | AUX_CMD_SEND);
582
583	/* Zero delay loop because i2c transactions are slow already */
584	ret = regmap_read_poll_timeout(pdata->regmap, SN_AUX_CMD_REG, val,
585				       !(val & AUX_CMD_SEND), 0, 50 * 1000);
586	if (ret)
587		goto exit;
588
589	ret = regmap_read(pdata->regmap, SN_AUX_CMD_STATUS_REG, &val);
590	if (ret)
591		goto exit;
592
593	if (val & AUX_IRQ_STATUS_AUX_RPLY_TOUT) {
594		/*
595		 * The hardware tried the message seven times per the DP spec
596		 * but it hit a timeout. We ignore defers here because they're
597		 * handled in hardware.
598		 */
599		ret = -ETIMEDOUT;
600		goto exit;
601	}
602
603	if (val & AUX_IRQ_STATUS_AUX_SHORT) {
604		ret = regmap_read(pdata->regmap, SN_AUX_LENGTH_REG, &short_len);
605		len = min(len, short_len);
606		if (ret)
607			goto exit;
608	} else if (val & AUX_IRQ_STATUS_NAT_I2C_FAIL) {
609		switch (request) {
610		case DP_AUX_I2C_WRITE:
611		case DP_AUX_I2C_READ:
612			msg->reply |= DP_AUX_I2C_REPLY_NACK;
613			break;
614		case DP_AUX_NATIVE_READ:
615		case DP_AUX_NATIVE_WRITE:
616			msg->reply |= DP_AUX_NATIVE_REPLY_NACK;
617			break;
618		}
619		len = 0;
620		goto exit;
621	}
622
623	if (request != DP_AUX_NATIVE_WRITE && request != DP_AUX_I2C_WRITE && len != 0)
624		ret = regmap_bulk_read(pdata->regmap, SN_AUX_RDATA_REG(0), buf, len);
625
626exit:
627	mutex_unlock(&pdata->comms_mutex);
628	pm_runtime_mark_last_busy(pdata->dev);
629	pm_runtime_put_autosuspend(pdata->dev);
630
631	if (ret)
632		return ret;
633	return len;
634}
635
636static int ti_sn_aux_wait_hpd_asserted(struct drm_dp_aux *aux, unsigned long wait_us)
637{
638	/*
639	 * The HPD in this chip is a bit useless (See comment in
640	 * ti_sn65dsi86_enable_comms) so if our driver is expected to wait
641	 * for HPD, we just assume it's asserted after the wait_us delay.
642	 *
643	 * In case we are asked to wait forever (wait_us=0) take conservative
644	 * 500ms delay.
645	 */
646	if (wait_us == 0)
647		wait_us = 500000;
648
649	usleep_range(wait_us, wait_us + 1000);
650
651	return 0;
652}
653
654static int ti_sn_aux_probe(struct auxiliary_device *adev,
655			   const struct auxiliary_device_id *id)
656{
657	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
658	int ret;
659
660	pdata->aux.name = "ti-sn65dsi86-aux";
661	pdata->aux.dev = &adev->dev;
662	pdata->aux.transfer = ti_sn_aux_transfer;
663	pdata->aux.wait_hpd_asserted = ti_sn_aux_wait_hpd_asserted;
664	drm_dp_aux_init(&pdata->aux);
665
666	ret = devm_of_dp_aux_populate_ep_devices(&pdata->aux);
667	if (ret)
668		return ret;
669
670	/*
671	 * The eDP to MIPI bridge parts don't work until the AUX channel is
672	 * setup so we don't add it in the main driver probe, we add it now.
673	 */
674	return ti_sn65dsi86_add_aux_device(pdata, &pdata->bridge_aux, "bridge");
675}
676
677static const struct auxiliary_device_id ti_sn_aux_id_table[] = {
678	{ .name = "ti_sn65dsi86.aux", },
679	{},
680};
681
682static struct auxiliary_driver ti_sn_aux_driver = {
683	.name = "aux",
684	.probe = ti_sn_aux_probe,
685	.id_table = ti_sn_aux_id_table,
686};
687
688/*------------------------------------------------------------------------------
689 * DRM Bridge
690 */
691
692static struct ti_sn65dsi86 *bridge_to_ti_sn65dsi86(struct drm_bridge *bridge)
693{
694	return container_of(bridge, struct ti_sn65dsi86, bridge);
695}
696
697static int ti_sn_attach_host(struct auxiliary_device *adev, struct ti_sn65dsi86 *pdata)
698{
699	int val;
700	struct mipi_dsi_host *host;
701	struct mipi_dsi_device *dsi;
702	struct device *dev = pdata->dev;
703	const struct mipi_dsi_device_info info = { .type = "ti_sn_bridge",
704						   .channel = 0,
705						   .node = NULL,
706	};
707
708	host = of_find_mipi_dsi_host_by_node(pdata->host_node);
709	if (!host)
710		return -EPROBE_DEFER;
711
712	dsi = devm_mipi_dsi_device_register_full(&adev->dev, host, &info);
713	if (IS_ERR(dsi))
714		return PTR_ERR(dsi);
715
716	/* TODO: setting to 4 MIPI lanes always for now */
717	dsi->lanes = 4;
718	dsi->format = MIPI_DSI_FMT_RGB888;
719	dsi->mode_flags = MIPI_DSI_MODE_VIDEO;
720
721	/* check if continuous dsi clock is required or not */
722	pm_runtime_get_sync(dev);
723	regmap_read(pdata->regmap, SN_DPPLL_SRC_REG, &val);
724	pm_runtime_put_autosuspend(dev);
725	if (!(val & DPPLL_CLK_SRC_DSICLK))
726		dsi->mode_flags |= MIPI_DSI_CLOCK_NON_CONTINUOUS;
727
728	pdata->dsi = dsi;
729
730	return devm_mipi_dsi_attach(&adev->dev, dsi);
731}
732
733static int ti_sn_bridge_attach(struct drm_bridge *bridge,
734			       enum drm_bridge_attach_flags flags)
735{
736	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
737	int ret;
738
739	pdata->aux.drm_dev = bridge->dev;
740	ret = drm_dp_aux_register(&pdata->aux);
741	if (ret < 0) {
742		drm_err(bridge->dev, "Failed to register DP AUX channel: %d\n", ret);
743		return ret;
744	}
745
746	/*
747	 * Attach the next bridge.
748	 * We never want the next bridge to *also* create a connector.
749	 */
750	ret = drm_bridge_attach(bridge->encoder, pdata->next_bridge,
751				&pdata->bridge, flags | DRM_BRIDGE_ATTACH_NO_CONNECTOR);
752	if (ret < 0)
753		goto err_initted_aux;
754
755	if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR)
756		return 0;
757
758	pdata->connector = drm_bridge_connector_init(pdata->bridge.dev,
759						     pdata->bridge.encoder);
760	if (IS_ERR(pdata->connector)) {
761		ret = PTR_ERR(pdata->connector);
762		goto err_initted_aux;
763	}
764
765	drm_connector_attach_encoder(pdata->connector, pdata->bridge.encoder);
766
767	return 0;
768
769err_initted_aux:
770	drm_dp_aux_unregister(&pdata->aux);
771	return ret;
772}
773
774static void ti_sn_bridge_detach(struct drm_bridge *bridge)
775{
776	drm_dp_aux_unregister(&bridge_to_ti_sn65dsi86(bridge)->aux);
777}
778
779static enum drm_mode_status
780ti_sn_bridge_mode_valid(struct drm_bridge *bridge,
781			const struct drm_display_info *info,
782			const struct drm_display_mode *mode)
783{
784	/* maximum supported resolution is 4K at 60 fps */
785	if (mode->clock > 594000)
786		return MODE_CLOCK_HIGH;
787
788	/*
789	 * The front and back porch registers are 8 bits, and pulse width
790	 * registers are 15 bits, so reject any modes with larger periods.
791	 */
792
793	if ((mode->hsync_start - mode->hdisplay) > 0xff)
794		return MODE_HBLANK_WIDE;
795
796	if ((mode->vsync_start - mode->vdisplay) > 0xff)
797		return MODE_VBLANK_WIDE;
798
799	if ((mode->hsync_end - mode->hsync_start) > 0x7fff)
800		return MODE_HSYNC_WIDE;
801
802	if ((mode->vsync_end - mode->vsync_start) > 0x7fff)
803		return MODE_VSYNC_WIDE;
804
805	if ((mode->htotal - mode->hsync_end) > 0xff)
806		return MODE_HBLANK_WIDE;
807
808	if ((mode->vtotal - mode->vsync_end) > 0xff)
809		return MODE_VBLANK_WIDE;
810
811	return MODE_OK;
812}
813
814static void ti_sn_bridge_atomic_disable(struct drm_bridge *bridge,
815					struct drm_bridge_state *old_bridge_state)
816{
817	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
818
819	/* disable video stream */
820	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE, 0);
821}
822
823static void ti_sn_bridge_set_dsi_rate(struct ti_sn65dsi86 *pdata)
824{
825	unsigned int bit_rate_mhz, clk_freq_mhz;
826	unsigned int val;
827	struct drm_display_mode *mode =
828		&pdata->bridge.encoder->crtc->state->adjusted_mode;
829
830	/* set DSIA clk frequency */
831	bit_rate_mhz = (mode->clock / 1000) *
832			mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
833	clk_freq_mhz = bit_rate_mhz / (pdata->dsi->lanes * 2);
834
835	/* for each increment in val, frequency increases by 5MHz */
836	val = (MIN_DSI_CLK_FREQ_MHZ / 5) +
837		(((clk_freq_mhz - MIN_DSI_CLK_FREQ_MHZ) / 5) & 0xFF);
838	regmap_write(pdata->regmap, SN_DSIA_CLK_FREQ_REG, val);
839}
840
841static unsigned int ti_sn_bridge_get_bpp(struct drm_connector *connector)
842{
843	if (connector->display_info.bpc <= 6)
844		return 18;
845	else
846		return 24;
847}
848
849/*
850 * LUT index corresponds to register value and
851 * LUT values corresponds to dp data rate supported
852 * by the bridge in Mbps unit.
853 */
854static const unsigned int ti_sn_bridge_dp_rate_lut[] = {
855	0, 1620, 2160, 2430, 2700, 3240, 4320, 5400
856};
857
858static int ti_sn_bridge_calc_min_dp_rate_idx(struct ti_sn65dsi86 *pdata, unsigned int bpp)
859{
860	unsigned int bit_rate_khz, dp_rate_mhz;
861	unsigned int i;
862	struct drm_display_mode *mode =
863		&pdata->bridge.encoder->crtc->state->adjusted_mode;
864
865	/* Calculate minimum bit rate based on our pixel clock. */
866	bit_rate_khz = mode->clock * bpp;
867
868	/* Calculate minimum DP data rate, taking 80% as per DP spec */
869	dp_rate_mhz = DIV_ROUND_UP(bit_rate_khz * DP_CLK_FUDGE_NUM,
870				   1000 * pdata->dp_lanes * DP_CLK_FUDGE_DEN);
871
872	for (i = 1; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut) - 1; i++)
873		if (ti_sn_bridge_dp_rate_lut[i] >= dp_rate_mhz)
874			break;
875
876	return i;
877}
878
879static unsigned int ti_sn_bridge_read_valid_rates(struct ti_sn65dsi86 *pdata)
880{
881	unsigned int valid_rates = 0;
882	unsigned int rate_per_200khz;
883	unsigned int rate_mhz;
884	u8 dpcd_val;
885	int ret;
886	int i, j;
887
888	ret = drm_dp_dpcd_readb(&pdata->aux, DP_EDP_DPCD_REV, &dpcd_val);
889	if (ret != 1) {
890		DRM_DEV_ERROR(pdata->dev,
891			      "Can't read eDP rev (%d), assuming 1.1\n", ret);
892		dpcd_val = DP_EDP_11;
893	}
894
895	if (dpcd_val >= DP_EDP_14) {
896		/* eDP 1.4 devices must provide a custom table */
897		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
898
899		ret = drm_dp_dpcd_read(&pdata->aux, DP_SUPPORTED_LINK_RATES,
900				       sink_rates, sizeof(sink_rates));
901
902		if (ret != sizeof(sink_rates)) {
903			DRM_DEV_ERROR(pdata->dev,
904				"Can't read supported rate table (%d)\n", ret);
905
906			/* By zeroing we'll fall back to DP_MAX_LINK_RATE. */
907			memset(sink_rates, 0, sizeof(sink_rates));
908		}
909
910		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
911			rate_per_200khz = le16_to_cpu(sink_rates[i]);
912
913			if (!rate_per_200khz)
914				break;
915
916			rate_mhz = rate_per_200khz * 200 / 1000;
917			for (j = 0;
918			     j < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
919			     j++) {
920				if (ti_sn_bridge_dp_rate_lut[j] == rate_mhz)
921					valid_rates |= BIT(j);
922			}
923		}
924
925		for (i = 0; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut); i++) {
926			if (valid_rates & BIT(i))
927				return valid_rates;
928		}
929		DRM_DEV_ERROR(pdata->dev,
930			      "No matching eDP rates in table; falling back\n");
931	}
932
933	/* On older versions best we can do is use DP_MAX_LINK_RATE */
934	ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LINK_RATE, &dpcd_val);
935	if (ret != 1) {
936		DRM_DEV_ERROR(pdata->dev,
937			      "Can't read max rate (%d); assuming 5.4 GHz\n",
938			      ret);
939		dpcd_val = DP_LINK_BW_5_4;
940	}
941
942	switch (dpcd_val) {
943	default:
944		DRM_DEV_ERROR(pdata->dev,
945			      "Unexpected max rate (%#x); assuming 5.4 GHz\n",
946			      (int)dpcd_val);
947		fallthrough;
948	case DP_LINK_BW_5_4:
949		valid_rates |= BIT(7);
950		fallthrough;
951	case DP_LINK_BW_2_7:
952		valid_rates |= BIT(4);
953		fallthrough;
954	case DP_LINK_BW_1_62:
955		valid_rates |= BIT(1);
956		break;
957	}
958
959	return valid_rates;
960}
961
962static void ti_sn_bridge_set_video_timings(struct ti_sn65dsi86 *pdata)
963{
964	struct drm_display_mode *mode =
965		&pdata->bridge.encoder->crtc->state->adjusted_mode;
966	u8 hsync_polarity = 0, vsync_polarity = 0;
967
968	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
969		hsync_polarity = CHA_HSYNC_POLARITY;
970	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
971		vsync_polarity = CHA_VSYNC_POLARITY;
972
973	ti_sn65dsi86_write_u16(pdata, SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG,
974			       mode->hdisplay);
975	ti_sn65dsi86_write_u16(pdata, SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG,
976			       mode->vdisplay);
977	regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG,
978		     (mode->hsync_end - mode->hsync_start) & 0xFF);
979	regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG,
980		     (((mode->hsync_end - mode->hsync_start) >> 8) & 0x7F) |
981		     hsync_polarity);
982	regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG,
983		     (mode->vsync_end - mode->vsync_start) & 0xFF);
984	regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG,
985		     (((mode->vsync_end - mode->vsync_start) >> 8) & 0x7F) |
986		     vsync_polarity);
987
988	regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_BACK_PORCH_REG,
989		     (mode->htotal - mode->hsync_end) & 0xFF);
990	regmap_write(pdata->regmap, SN_CHA_VERTICAL_BACK_PORCH_REG,
991		     (mode->vtotal - mode->vsync_end) & 0xFF);
992
993	regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_FRONT_PORCH_REG,
994		     (mode->hsync_start - mode->hdisplay) & 0xFF);
995	regmap_write(pdata->regmap, SN_CHA_VERTICAL_FRONT_PORCH_REG,
996		     (mode->vsync_start - mode->vdisplay) & 0xFF);
997
998	usleep_range(10000, 10500); /* 10ms delay recommended by spec */
999}
1000
1001static unsigned int ti_sn_get_max_lanes(struct ti_sn65dsi86 *pdata)
1002{
1003	u8 data;
1004	int ret;
1005
1006	ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LANE_COUNT, &data);
1007	if (ret != 1) {
1008		DRM_DEV_ERROR(pdata->dev,
1009			      "Can't read lane count (%d); assuming 4\n", ret);
1010		return 4;
1011	}
1012
1013	return data & DP_LANE_COUNT_MASK;
1014}
1015
1016static int ti_sn_link_training(struct ti_sn65dsi86 *pdata, int dp_rate_idx,
1017			       const char **last_err_str)
1018{
1019	unsigned int val;
1020	int ret;
1021	int i;
1022
1023	/* set dp clk frequency value */
1024	regmap_update_bits(pdata->regmap, SN_DATARATE_CONFIG_REG,
1025			   DP_DATARATE_MASK, DP_DATARATE(dp_rate_idx));
1026
1027	/* enable DP PLL */
1028	regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 1);
1029
1030	ret = regmap_read_poll_timeout(pdata->regmap, SN_DPPLL_SRC_REG, val,
1031				       val & DPPLL_SRC_DP_PLL_LOCK, 1000,
1032				       50 * 1000);
1033	if (ret) {
1034		*last_err_str = "DP_PLL_LOCK polling failed";
1035		goto exit;
1036	}
1037
1038	/*
1039	 * We'll try to link train several times.  As part of link training
1040	 * the bridge chip will write DP_SET_POWER_D0 to DP_SET_POWER.  If
1041	 * the panel isn't ready quite it might respond NAK here which means
1042	 * we need to try again.
1043	 */
1044	for (i = 0; i < SN_LINK_TRAINING_TRIES; i++) {
1045		/* Semi auto link training mode */
1046		regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0x0A);
1047		ret = regmap_read_poll_timeout(pdata->regmap, SN_ML_TX_MODE_REG, val,
1048					       val == ML_TX_MAIN_LINK_OFF ||
1049					       val == ML_TX_NORMAL_MODE, 1000,
1050					       500 * 1000);
1051		if (ret) {
1052			*last_err_str = "Training complete polling failed";
1053		} else if (val == ML_TX_MAIN_LINK_OFF) {
1054			*last_err_str = "Link training failed, link is off";
1055			ret = -EIO;
1056			continue;
1057		}
1058
1059		break;
1060	}
1061
1062	/* If we saw quite a few retries, add a note about it */
1063	if (!ret && i > SN_LINK_TRAINING_TRIES / 2)
1064		DRM_DEV_INFO(pdata->dev, "Link training needed %d retries\n", i);
1065
1066exit:
1067	/* Disable the PLL if we failed */
1068	if (ret)
1069		regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
1070
1071	return ret;
1072}
1073
1074static void ti_sn_bridge_atomic_enable(struct drm_bridge *bridge,
1075				       struct drm_bridge_state *old_bridge_state)
1076{
1077	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1078	struct drm_connector *connector;
1079	const char *last_err_str = "No supported DP rate";
1080	unsigned int valid_rates;
1081	int dp_rate_idx;
1082	unsigned int val;
1083	int ret = -EINVAL;
1084	int max_dp_lanes;
1085	unsigned int bpp;
1086
1087	connector = drm_atomic_get_new_connector_for_encoder(old_bridge_state->base.state,
1088							     bridge->encoder);
1089	if (!connector) {
1090		dev_err_ratelimited(pdata->dev, "Could not get the connector\n");
1091		return;
1092	}
1093
1094	max_dp_lanes = ti_sn_get_max_lanes(pdata);
1095	pdata->dp_lanes = min(pdata->dp_lanes, max_dp_lanes);
1096
1097	/* DSI_A lane config */
1098	val = CHA_DSI_LANES(SN_MAX_DP_LANES - pdata->dsi->lanes);
1099	regmap_update_bits(pdata->regmap, SN_DSI_LANES_REG,
1100			   CHA_DSI_LANES_MASK, val);
1101
1102	regmap_write(pdata->regmap, SN_LN_ASSIGN_REG, pdata->ln_assign);
1103	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, LN_POLRS_MASK,
1104			   pdata->ln_polrs << LN_POLRS_OFFSET);
1105
1106	/* set dsi clk frequency value */
1107	ti_sn_bridge_set_dsi_rate(pdata);
1108
1109	/*
1110	 * The SN65DSI86 only supports ASSR Display Authentication method and
1111	 * this method is enabled for eDP panels. An eDP panel must support this
1112	 * authentication method. We need to enable this method in the eDP panel
1113	 * at DisplayPort address 0x0010A prior to link training.
1114	 *
1115	 * As only ASSR is supported by SN65DSI86, for full DisplayPort displays
1116	 * we need to disable the scrambler.
1117	 */
1118	if (pdata->bridge.type == DRM_MODE_CONNECTOR_eDP) {
1119		drm_dp_dpcd_writeb(&pdata->aux, DP_EDP_CONFIGURATION_SET,
1120				   DP_ALTERNATE_SCRAMBLER_RESET_ENABLE);
1121
1122		regmap_update_bits(pdata->regmap, SN_TRAINING_SETTING_REG,
1123				   SCRAMBLE_DISABLE, 0);
1124	} else {
1125		regmap_update_bits(pdata->regmap, SN_TRAINING_SETTING_REG,
1126				   SCRAMBLE_DISABLE, SCRAMBLE_DISABLE);
1127	}
1128
1129	bpp = ti_sn_bridge_get_bpp(connector);
1130	/* Set the DP output format (18 bpp or 24 bpp) */
1131	val = bpp == 18 ? BPP_18_RGB : 0;
1132	regmap_update_bits(pdata->regmap, SN_DATA_FORMAT_REG, BPP_18_RGB, val);
1133
1134	/* DP lane config */
1135	val = DP_NUM_LANES(min(pdata->dp_lanes, 3));
1136	regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK,
1137			   val);
1138
1139	valid_rates = ti_sn_bridge_read_valid_rates(pdata);
1140
1141	/* Train until we run out of rates */
1142	for (dp_rate_idx = ti_sn_bridge_calc_min_dp_rate_idx(pdata, bpp);
1143	     dp_rate_idx < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
1144	     dp_rate_idx++) {
1145		if (!(valid_rates & BIT(dp_rate_idx)))
1146			continue;
1147
1148		ret = ti_sn_link_training(pdata, dp_rate_idx, &last_err_str);
1149		if (!ret)
1150			break;
1151	}
1152	if (ret) {
1153		DRM_DEV_ERROR(pdata->dev, "%s (%d)\n", last_err_str, ret);
1154		return;
1155	}
1156
1157	/* config video parameters */
1158	ti_sn_bridge_set_video_timings(pdata);
1159
1160	/* enable video stream */
1161	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE,
1162			   VSTREAM_ENABLE);
1163}
1164
1165static void ti_sn_bridge_atomic_pre_enable(struct drm_bridge *bridge,
1166					   struct drm_bridge_state *old_bridge_state)
1167{
1168	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1169
1170	pm_runtime_get_sync(pdata->dev);
1171
1172	if (!pdata->refclk)
1173		ti_sn65dsi86_enable_comms(pdata);
1174
1175	/* td7: min 100 us after enable before DSI data */
1176	usleep_range(100, 110);
1177}
1178
1179static void ti_sn_bridge_atomic_post_disable(struct drm_bridge *bridge,
1180					     struct drm_bridge_state *old_bridge_state)
1181{
1182	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1183
1184	/* semi auto link training mode OFF */
1185	regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0);
1186	/* Num lanes to 0 as per power sequencing in data sheet */
1187	regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK, 0);
1188	/* disable DP PLL */
1189	regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
1190
1191	if (!pdata->refclk)
1192		ti_sn65dsi86_disable_comms(pdata);
1193
1194	pm_runtime_put_sync(pdata->dev);
1195}
1196
1197static enum drm_connector_status ti_sn_bridge_detect(struct drm_bridge *bridge)
1198{
1199	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1200	int val = 0;
1201
1202	pm_runtime_get_sync(pdata->dev);
1203	regmap_read(pdata->regmap, SN_HPD_DISABLE_REG, &val);
1204	pm_runtime_put_autosuspend(pdata->dev);
1205
1206	return val & HPD_DEBOUNCED_STATE ? connector_status_connected
1207					 : connector_status_disconnected;
1208}
1209
1210static struct edid *ti_sn_bridge_get_edid(struct drm_bridge *bridge,
1211					  struct drm_connector *connector)
1212{
1213	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1214
1215	return drm_get_edid(connector, &pdata->aux.ddc);
1216}
1217
1218static const struct drm_bridge_funcs ti_sn_bridge_funcs = {
1219	.attach = ti_sn_bridge_attach,
1220	.detach = ti_sn_bridge_detach,
1221	.mode_valid = ti_sn_bridge_mode_valid,
1222	.get_edid = ti_sn_bridge_get_edid,
1223	.detect = ti_sn_bridge_detect,
1224	.atomic_pre_enable = ti_sn_bridge_atomic_pre_enable,
1225	.atomic_enable = ti_sn_bridge_atomic_enable,
1226	.atomic_disable = ti_sn_bridge_atomic_disable,
1227	.atomic_post_disable = ti_sn_bridge_atomic_post_disable,
1228	.atomic_reset = drm_atomic_helper_bridge_reset,
1229	.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
1230	.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
1231};
1232
1233static void ti_sn_bridge_parse_lanes(struct ti_sn65dsi86 *pdata,
1234				     struct device_node *np)
1235{
1236	u32 lane_assignments[SN_MAX_DP_LANES] = { 0, 1, 2, 3 };
1237	u32 lane_polarities[SN_MAX_DP_LANES] = { };
1238	struct device_node *endpoint;
1239	u8 ln_assign = 0;
1240	u8 ln_polrs = 0;
1241	int dp_lanes;
1242	int i;
1243
1244	/*
1245	 * Read config from the device tree about lane remapping and lane
1246	 * polarities.  These are optional and we assume identity map and
1247	 * normal polarity if nothing is specified.  It's OK to specify just
1248	 * data-lanes but not lane-polarities but not vice versa.
1249	 *
1250	 * Error checking is light (we just make sure we don't crash or
1251	 * buffer overrun) and we assume dts is well formed and specifying
1252	 * mappings that the hardware supports.
1253	 */
1254	endpoint = of_graph_get_endpoint_by_regs(np, 1, -1);
1255	dp_lanes = drm_of_get_data_lanes_count(endpoint, 1, SN_MAX_DP_LANES);
1256	if (dp_lanes > 0) {
1257		of_property_read_u32_array(endpoint, "data-lanes",
1258					   lane_assignments, dp_lanes);
1259		of_property_read_u32_array(endpoint, "lane-polarities",
1260					   lane_polarities, dp_lanes);
1261	} else {
1262		dp_lanes = SN_MAX_DP_LANES;
1263	}
1264	of_node_put(endpoint);
1265
1266	/*
1267	 * Convert into register format.  Loop over all lanes even if
1268	 * data-lanes had fewer elements so that we nicely initialize
1269	 * the LN_ASSIGN register.
1270	 */
1271	for (i = SN_MAX_DP_LANES - 1; i >= 0; i--) {
1272		ln_assign = ln_assign << LN_ASSIGN_WIDTH | lane_assignments[i];
1273		ln_polrs = ln_polrs << 1 | lane_polarities[i];
1274	}
1275
1276	/* Stash in our struct for when we power on */
1277	pdata->dp_lanes = dp_lanes;
1278	pdata->ln_assign = ln_assign;
1279	pdata->ln_polrs = ln_polrs;
1280}
1281
1282static int ti_sn_bridge_parse_dsi_host(struct ti_sn65dsi86 *pdata)
1283{
1284	struct device_node *np = pdata->dev->of_node;
1285
1286	pdata->host_node = of_graph_get_remote_node(np, 0, 0);
1287
1288	if (!pdata->host_node) {
1289		DRM_ERROR("remote dsi host node not found\n");
1290		return -ENODEV;
1291	}
1292
1293	return 0;
1294}
1295
1296static int ti_sn_bridge_probe(struct auxiliary_device *adev,
1297			      const struct auxiliary_device_id *id)
1298{
1299	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1300	struct device_node *np = pdata->dev->of_node;
1301	int ret;
1302
1303	pdata->next_bridge = devm_drm_of_get_bridge(&adev->dev, np, 1, 0);
1304	if (IS_ERR(pdata->next_bridge))
1305		return dev_err_probe(&adev->dev, PTR_ERR(pdata->next_bridge),
1306				     "failed to create panel bridge\n");
1307
1308	ti_sn_bridge_parse_lanes(pdata, np);
1309
1310	ret = ti_sn_bridge_parse_dsi_host(pdata);
1311	if (ret)
1312		return ret;
1313
1314	pdata->bridge.funcs = &ti_sn_bridge_funcs;
1315	pdata->bridge.of_node = np;
1316	pdata->bridge.type = pdata->next_bridge->type == DRM_MODE_CONNECTOR_DisplayPort
1317			   ? DRM_MODE_CONNECTOR_DisplayPort : DRM_MODE_CONNECTOR_eDP;
1318
1319	if (pdata->bridge.type == DRM_MODE_CONNECTOR_DisplayPort)
1320		pdata->bridge.ops = DRM_BRIDGE_OP_EDID | DRM_BRIDGE_OP_DETECT;
1321
1322	drm_bridge_add(&pdata->bridge);
1323
1324	ret = ti_sn_attach_host(adev, pdata);
1325	if (ret) {
1326		dev_err_probe(&adev->dev, ret, "failed to attach dsi host\n");
1327		goto err_remove_bridge;
1328	}
1329
1330	return 0;
1331
1332err_remove_bridge:
1333	drm_bridge_remove(&pdata->bridge);
1334	return ret;
1335}
1336
1337static void ti_sn_bridge_remove(struct auxiliary_device *adev)
1338{
1339	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1340
1341	if (!pdata)
1342		return;
1343
1344	drm_bridge_remove(&pdata->bridge);
1345
1346	of_node_put(pdata->host_node);
1347}
1348
1349static const struct auxiliary_device_id ti_sn_bridge_id_table[] = {
1350	{ .name = "ti_sn65dsi86.bridge", },
1351	{},
1352};
1353
1354static struct auxiliary_driver ti_sn_bridge_driver = {
1355	.name = "bridge",
1356	.probe = ti_sn_bridge_probe,
1357	.remove = ti_sn_bridge_remove,
1358	.id_table = ti_sn_bridge_id_table,
1359};
1360
1361/* -----------------------------------------------------------------------------
1362 * PWM Controller
1363 */
1364#if defined(CONFIG_PWM)
1365static int ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata)
1366{
1367	return atomic_xchg(&pdata->pwm_pin_busy, 1) ? -EBUSY : 0;
1368}
1369
1370static void ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata)
1371{
1372	atomic_set(&pdata->pwm_pin_busy, 0);
1373}
1374
1375static struct ti_sn65dsi86 *pwm_chip_to_ti_sn_bridge(struct pwm_chip *chip)
1376{
1377	return container_of(chip, struct ti_sn65dsi86, pchip);
1378}
1379
1380static int ti_sn_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm)
1381{
1382	struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1383
1384	return ti_sn_pwm_pin_request(pdata);
1385}
1386
1387static void ti_sn_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm)
1388{
1389	struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1390
1391	ti_sn_pwm_pin_release(pdata);
1392}
1393
1394/*
1395 * Limitations:
1396 * - The PWM signal is not driven when the chip is powered down, or in its
1397 *   reset state and the driver does not implement the "suspend state"
1398 *   described in the documentation. In order to save power, state->enabled is
1399 *   interpreted as denoting if the signal is expected to be valid, and is used
1400 *   to determine if the chip needs to be kept powered.
1401 * - Changing both period and duty_cycle is not done atomically, neither is the
1402 *   multi-byte register updates, so the output might briefly be undefined
1403 *   during update.
1404 */
1405static int ti_sn_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
1406			   const struct pwm_state *state)
1407{
1408	struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1409	unsigned int pwm_en_inv;
1410	unsigned int backlight;
1411	unsigned int pre_div;
1412	unsigned int scale;
1413	u64 period_max;
1414	u64 period;
1415	int ret;
1416
1417	if (!pdata->pwm_enabled) {
1418		ret = pm_runtime_get_sync(pdata->dev);
1419		if (ret < 0) {
1420			pm_runtime_put_sync(pdata->dev);
1421			return ret;
1422		}
1423	}
1424
1425	if (state->enabled) {
1426		if (!pdata->pwm_enabled) {
1427			/*
1428			 * The chip might have been powered down while we
1429			 * didn't hold a PM runtime reference, so mux in the
1430			 * PWM function on the GPIO pin again.
1431			 */
1432			ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1433						 SN_GPIO_MUX_MASK << (2 * SN_PWM_GPIO_IDX),
1434						 SN_GPIO_MUX_SPECIAL << (2 * SN_PWM_GPIO_IDX));
1435			if (ret) {
1436				dev_err(pdata->dev, "failed to mux in PWM function\n");
1437				goto out;
1438			}
1439		}
1440
1441		/*
1442		 * Per the datasheet the PWM frequency is given by:
1443		 *
1444		 *                          REFCLK_FREQ
1445		 *   PWM_FREQ = -----------------------------------
1446		 *               PWM_PRE_DIV * BACKLIGHT_SCALE + 1
1447		 *
1448		 * However, after careful review the author is convinced that
1449		 * the documentation has lost some parenthesis around
1450		 * "BACKLIGHT_SCALE + 1".
1451		 *
1452		 * With the period T_pwm = 1/PWM_FREQ this can be written:
1453		 *
1454		 *   T_pwm * REFCLK_FREQ = PWM_PRE_DIV * (BACKLIGHT_SCALE + 1)
1455		 *
1456		 * In order to keep BACKLIGHT_SCALE within its 16 bits,
1457		 * PWM_PRE_DIV must be:
1458		 *
1459		 *                     T_pwm * REFCLK_FREQ
1460		 *   PWM_PRE_DIV >= -------------------------
1461		 *                   BACKLIGHT_SCALE_MAX + 1
1462		 *
1463		 * To simplify the search and to favour higher resolution of
1464		 * the duty cycle over accuracy of the period, the lowest
1465		 * possible PWM_PRE_DIV is used. Finally the scale is
1466		 * calculated as:
1467		 *
1468		 *                      T_pwm * REFCLK_FREQ
1469		 *   BACKLIGHT_SCALE = ---------------------- - 1
1470		 *                          PWM_PRE_DIV
1471		 *
1472		 * Here T_pwm is represented in seconds, so appropriate scaling
1473		 * to nanoseconds is necessary.
1474		 */
1475
1476		/* Minimum T_pwm is 1 / REFCLK_FREQ */
1477		if (state->period <= NSEC_PER_SEC / pdata->pwm_refclk_freq) {
1478			ret = -EINVAL;
1479			goto out;
1480		}
1481
1482		/*
1483		 * Maximum T_pwm is 255 * (65535 + 1) / REFCLK_FREQ
1484		 * Limit period to this to avoid overflows
1485		 */
1486		period_max = div_u64((u64)NSEC_PER_SEC * 255 * (65535 + 1),
1487				     pdata->pwm_refclk_freq);
1488		period = min(state->period, period_max);
1489
1490		pre_div = DIV64_U64_ROUND_UP(period * pdata->pwm_refclk_freq,
1491					     (u64)NSEC_PER_SEC * (BACKLIGHT_SCALE_MAX + 1));
1492		scale = div64_u64(period * pdata->pwm_refclk_freq, (u64)NSEC_PER_SEC * pre_div) - 1;
1493
1494		/*
1495		 * The documentation has the duty ratio given as:
1496		 *
1497		 *     duty          BACKLIGHT
1498		 *   ------- = ---------------------
1499		 *    period    BACKLIGHT_SCALE + 1
1500		 *
1501		 * Solve for BACKLIGHT, substituting BACKLIGHT_SCALE according
1502		 * to definition above and adjusting for nanosecond
1503		 * representation of duty cycle gives us:
1504		 */
1505		backlight = div64_u64(state->duty_cycle * pdata->pwm_refclk_freq,
1506				      (u64)NSEC_PER_SEC * pre_div);
1507		if (backlight > scale)
1508			backlight = scale;
1509
1510		ret = regmap_write(pdata->regmap, SN_PWM_PRE_DIV_REG, pre_div);
1511		if (ret) {
1512			dev_err(pdata->dev, "failed to update PWM_PRE_DIV\n");
1513			goto out;
1514		}
1515
1516		ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_SCALE_REG, scale);
1517		ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_REG, backlight);
1518	}
1519
1520	pwm_en_inv = FIELD_PREP(SN_PWM_EN_MASK, state->enabled) |
1521		     FIELD_PREP(SN_PWM_INV_MASK, state->polarity == PWM_POLARITY_INVERSED);
1522	ret = regmap_write(pdata->regmap, SN_PWM_EN_INV_REG, pwm_en_inv);
1523	if (ret) {
1524		dev_err(pdata->dev, "failed to update PWM_EN/PWM_INV\n");
1525		goto out;
1526	}
1527
1528	pdata->pwm_enabled = state->enabled;
1529out:
1530
1531	if (!pdata->pwm_enabled)
1532		pm_runtime_put_sync(pdata->dev);
1533
1534	return ret;
1535}
1536
1537static int ti_sn_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
1538			       struct pwm_state *state)
1539{
1540	struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1541	unsigned int pwm_en_inv;
1542	unsigned int pre_div;
1543	u16 backlight;
1544	u16 scale;
1545	int ret;
1546
1547	ret = regmap_read(pdata->regmap, SN_PWM_EN_INV_REG, &pwm_en_inv);
1548	if (ret)
1549		return ret;
1550
1551	ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_SCALE_REG, &scale);
1552	if (ret)
1553		return ret;
1554
1555	ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_REG, &backlight);
1556	if (ret)
1557		return ret;
1558
1559	ret = regmap_read(pdata->regmap, SN_PWM_PRE_DIV_REG, &pre_div);
1560	if (ret)
1561		return ret;
1562
1563	state->enabled = FIELD_GET(SN_PWM_EN_MASK, pwm_en_inv);
1564	if (FIELD_GET(SN_PWM_INV_MASK, pwm_en_inv))
1565		state->polarity = PWM_POLARITY_INVERSED;
1566	else
1567		state->polarity = PWM_POLARITY_NORMAL;
1568
1569	state->period = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pre_div * (scale + 1),
1570					 pdata->pwm_refclk_freq);
1571	state->duty_cycle = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pre_div * backlight,
1572					     pdata->pwm_refclk_freq);
1573
1574	if (state->duty_cycle > state->period)
1575		state->duty_cycle = state->period;
1576
1577	return 0;
1578}
1579
1580static const struct pwm_ops ti_sn_pwm_ops = {
1581	.request = ti_sn_pwm_request,
1582	.free = ti_sn_pwm_free,
1583	.apply = ti_sn_pwm_apply,
1584	.get_state = ti_sn_pwm_get_state,
1585	.owner = THIS_MODULE,
1586};
1587
1588static int ti_sn_pwm_probe(struct auxiliary_device *adev,
1589			   const struct auxiliary_device_id *id)
1590{
1591	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1592
1593	pdata->pchip.dev = pdata->dev;
1594	pdata->pchip.ops = &ti_sn_pwm_ops;
1595	pdata->pchip.npwm = 1;
1596	pdata->pchip.of_xlate = of_pwm_single_xlate;
1597	pdata->pchip.of_pwm_n_cells = 1;
1598
1599	return pwmchip_add(&pdata->pchip);
1600}
1601
1602static void ti_sn_pwm_remove(struct auxiliary_device *adev)
1603{
1604	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1605
1606	pwmchip_remove(&pdata->pchip);
1607
1608	if (pdata->pwm_enabled)
1609		pm_runtime_put_sync(pdata->dev);
1610}
1611
1612static const struct auxiliary_device_id ti_sn_pwm_id_table[] = {
1613	{ .name = "ti_sn65dsi86.pwm", },
1614	{},
1615};
1616
1617static struct auxiliary_driver ti_sn_pwm_driver = {
1618	.name = "pwm",
1619	.probe = ti_sn_pwm_probe,
1620	.remove = ti_sn_pwm_remove,
1621	.id_table = ti_sn_pwm_id_table,
1622};
1623
1624static int __init ti_sn_pwm_register(void)
1625{
1626	return auxiliary_driver_register(&ti_sn_pwm_driver);
1627}
1628
1629static void ti_sn_pwm_unregister(void)
1630{
1631	auxiliary_driver_unregister(&ti_sn_pwm_driver);
1632}
1633
1634#else
1635static inline int ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata) { return 0; }
1636static inline void ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata) {}
1637
1638static inline int ti_sn_pwm_register(void) { return 0; }
1639static inline void ti_sn_pwm_unregister(void) {}
1640#endif
1641
1642/* -----------------------------------------------------------------------------
1643 * GPIO Controller
1644 */
1645#if defined(CONFIG_OF_GPIO)
1646
1647static int tn_sn_bridge_of_xlate(struct gpio_chip *chip,
1648				 const struct of_phandle_args *gpiospec,
1649				 u32 *flags)
1650{
1651	if (WARN_ON(gpiospec->args_count < chip->of_gpio_n_cells))
1652		return -EINVAL;
1653
1654	if (gpiospec->args[0] > chip->ngpio || gpiospec->args[0] < 1)
1655		return -EINVAL;
1656
1657	if (flags)
1658		*flags = gpiospec->args[1];
1659
1660	return gpiospec->args[0] - SN_GPIO_PHYSICAL_OFFSET;
1661}
1662
1663static int ti_sn_bridge_gpio_get_direction(struct gpio_chip *chip,
1664					   unsigned int offset)
1665{
1666	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1667
1668	/*
1669	 * We already have to keep track of the direction because we use
1670	 * that to figure out whether we've powered the device.  We can
1671	 * just return that rather than (maybe) powering up the device
1672	 * to ask its direction.
1673	 */
1674	return test_bit(offset, pdata->gchip_output) ?
1675		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1676}
1677
1678static int ti_sn_bridge_gpio_get(struct gpio_chip *chip, unsigned int offset)
1679{
1680	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1681	unsigned int val;
1682	int ret;
1683
1684	/*
1685	 * When the pin is an input we don't forcibly keep the bridge
1686	 * powered--we just power it on to read the pin.  NOTE: part of
1687	 * the reason this works is that the bridge defaults (when
1688	 * powered back on) to all 4 GPIOs being configured as GPIO input.
1689	 * Also note that if something else is keeping the chip powered the
1690	 * pm_runtime functions are lightweight increments of a refcount.
1691	 */
1692	pm_runtime_get_sync(pdata->dev);
1693	ret = regmap_read(pdata->regmap, SN_GPIO_IO_REG, &val);
1694	pm_runtime_put_autosuspend(pdata->dev);
1695
1696	if (ret)
1697		return ret;
1698
1699	return !!(val & BIT(SN_GPIO_INPUT_SHIFT + offset));
1700}
1701
1702static void ti_sn_bridge_gpio_set(struct gpio_chip *chip, unsigned int offset,
1703				  int val)
1704{
1705	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1706	int ret;
1707
1708	if (!test_bit(offset, pdata->gchip_output)) {
1709		dev_err(pdata->dev, "Ignoring GPIO set while input\n");
1710		return;
1711	}
1712
1713	val &= 1;
1714	ret = regmap_update_bits(pdata->regmap, SN_GPIO_IO_REG,
1715				 BIT(SN_GPIO_OUTPUT_SHIFT + offset),
1716				 val << (SN_GPIO_OUTPUT_SHIFT + offset));
1717	if (ret)
1718		dev_warn(pdata->dev,
1719			 "Failed to set bridge GPIO %u: %d\n", offset, ret);
1720}
1721
1722static int ti_sn_bridge_gpio_direction_input(struct gpio_chip *chip,
1723					     unsigned int offset)
1724{
1725	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1726	int shift = offset * 2;
1727	int ret;
1728
1729	if (!test_and_clear_bit(offset, pdata->gchip_output))
1730		return 0;
1731
1732	ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1733				 SN_GPIO_MUX_MASK << shift,
1734				 SN_GPIO_MUX_INPUT << shift);
1735	if (ret) {
1736		set_bit(offset, pdata->gchip_output);
1737		return ret;
1738	}
1739
1740	/*
1741	 * NOTE: if nobody else is powering the device this may fully power
1742	 * it off and when it comes back it will have lost all state, but
1743	 * that's OK because the default is input and we're now an input.
1744	 */
1745	pm_runtime_put_autosuspend(pdata->dev);
1746
1747	return 0;
1748}
1749
1750static int ti_sn_bridge_gpio_direction_output(struct gpio_chip *chip,
1751					      unsigned int offset, int val)
1752{
1753	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1754	int shift = offset * 2;
1755	int ret;
1756
1757	if (test_and_set_bit(offset, pdata->gchip_output))
1758		return 0;
1759
1760	pm_runtime_get_sync(pdata->dev);
1761
1762	/* Set value first to avoid glitching */
1763	ti_sn_bridge_gpio_set(chip, offset, val);
1764
1765	/* Set direction */
1766	ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1767				 SN_GPIO_MUX_MASK << shift,
1768				 SN_GPIO_MUX_OUTPUT << shift);
1769	if (ret) {
1770		clear_bit(offset, pdata->gchip_output);
1771		pm_runtime_put_autosuspend(pdata->dev);
1772	}
1773
1774	return ret;
1775}
1776
1777static int ti_sn_bridge_gpio_request(struct gpio_chip *chip, unsigned int offset)
1778{
1779	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1780
1781	if (offset == SN_PWM_GPIO_IDX)
1782		return ti_sn_pwm_pin_request(pdata);
1783
1784	return 0;
1785}
1786
1787static void ti_sn_bridge_gpio_free(struct gpio_chip *chip, unsigned int offset)
1788{
1789	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1790
1791	/* We won't keep pm_runtime if we're input, so switch there on free */
1792	ti_sn_bridge_gpio_direction_input(chip, offset);
1793
1794	if (offset == SN_PWM_GPIO_IDX)
1795		ti_sn_pwm_pin_release(pdata);
1796}
1797
1798static const char * const ti_sn_bridge_gpio_names[SN_NUM_GPIOS] = {
1799	"GPIO1", "GPIO2", "GPIO3", "GPIO4"
1800};
1801
1802static int ti_sn_gpio_probe(struct auxiliary_device *adev,
1803			    const struct auxiliary_device_id *id)
1804{
1805	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1806	int ret;
1807
1808	/* Only init if someone is going to use us as a GPIO controller */
1809	if (!of_property_read_bool(pdata->dev->of_node, "gpio-controller"))
1810		return 0;
1811
1812	pdata->gchip.label = dev_name(pdata->dev);
1813	pdata->gchip.parent = pdata->dev;
1814	pdata->gchip.owner = THIS_MODULE;
1815	pdata->gchip.of_xlate = tn_sn_bridge_of_xlate;
1816	pdata->gchip.of_gpio_n_cells = 2;
1817	pdata->gchip.request = ti_sn_bridge_gpio_request;
1818	pdata->gchip.free = ti_sn_bridge_gpio_free;
1819	pdata->gchip.get_direction = ti_sn_bridge_gpio_get_direction;
1820	pdata->gchip.direction_input = ti_sn_bridge_gpio_direction_input;
1821	pdata->gchip.direction_output = ti_sn_bridge_gpio_direction_output;
1822	pdata->gchip.get = ti_sn_bridge_gpio_get;
1823	pdata->gchip.set = ti_sn_bridge_gpio_set;
1824	pdata->gchip.can_sleep = true;
1825	pdata->gchip.names = ti_sn_bridge_gpio_names;
1826	pdata->gchip.ngpio = SN_NUM_GPIOS;
1827	pdata->gchip.base = -1;
1828	ret = devm_gpiochip_add_data(&adev->dev, &pdata->gchip, pdata);
1829	if (ret)
1830		dev_err(pdata->dev, "can't add gpio chip\n");
1831
1832	return ret;
1833}
1834
1835static const struct auxiliary_device_id ti_sn_gpio_id_table[] = {
1836	{ .name = "ti_sn65dsi86.gpio", },
1837	{},
1838};
1839
1840MODULE_DEVICE_TABLE(auxiliary, ti_sn_gpio_id_table);
1841
1842static struct auxiliary_driver ti_sn_gpio_driver = {
1843	.name = "gpio",
1844	.probe = ti_sn_gpio_probe,
1845	.id_table = ti_sn_gpio_id_table,
1846};
1847
1848static int __init ti_sn_gpio_register(void)
1849{
1850	return auxiliary_driver_register(&ti_sn_gpio_driver);
1851}
1852
1853static void ti_sn_gpio_unregister(void)
1854{
1855	auxiliary_driver_unregister(&ti_sn_gpio_driver);
1856}
1857
1858#else
1859
1860static inline int ti_sn_gpio_register(void) { return 0; }
1861static inline void ti_sn_gpio_unregister(void) {}
1862
1863#endif
1864
1865/* -----------------------------------------------------------------------------
1866 * Probe & Remove
1867 */
1868
1869static void ti_sn65dsi86_runtime_disable(void *data)
1870{
1871	pm_runtime_dont_use_autosuspend(data);
1872	pm_runtime_disable(data);
1873}
1874
1875static int ti_sn65dsi86_parse_regulators(struct ti_sn65dsi86 *pdata)
1876{
1877	unsigned int i;
1878	const char * const ti_sn_bridge_supply_names[] = {
1879		"vcca", "vcc", "vccio", "vpll",
1880	};
1881
1882	for (i = 0; i < SN_REGULATOR_SUPPLY_NUM; i++)
1883		pdata->supplies[i].supply = ti_sn_bridge_supply_names[i];
1884
1885	return devm_regulator_bulk_get(pdata->dev, SN_REGULATOR_SUPPLY_NUM,
1886				       pdata->supplies);
1887}
1888
1889static int ti_sn65dsi86_probe(struct i2c_client *client)
1890{
1891	struct device *dev = &client->dev;
1892	struct ti_sn65dsi86 *pdata;
1893	int ret;
1894
1895	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
1896		DRM_ERROR("device doesn't support I2C\n");
1897		return -ENODEV;
1898	}
1899
1900	pdata = devm_kzalloc(dev, sizeof(struct ti_sn65dsi86), GFP_KERNEL);
1901	if (!pdata)
1902		return -ENOMEM;
1903	dev_set_drvdata(dev, pdata);
1904	pdata->dev = dev;
1905
1906	mutex_init(&pdata->comms_mutex);
1907
1908	pdata->regmap = devm_regmap_init_i2c(client,
1909					     &ti_sn65dsi86_regmap_config);
1910	if (IS_ERR(pdata->regmap))
1911		return dev_err_probe(dev, PTR_ERR(pdata->regmap),
1912				     "regmap i2c init failed\n");
1913
1914	pdata->enable_gpio = devm_gpiod_get_optional(dev, "enable",
1915						     GPIOD_OUT_LOW);
1916	if (IS_ERR(pdata->enable_gpio))
1917		return dev_err_probe(dev, PTR_ERR(pdata->enable_gpio),
1918				     "failed to get enable gpio from DT\n");
1919
1920	ret = ti_sn65dsi86_parse_regulators(pdata);
1921	if (ret)
1922		return dev_err_probe(dev, ret, "failed to parse regulators\n");
1923
1924	pdata->refclk = devm_clk_get_optional(dev, "refclk");
1925	if (IS_ERR(pdata->refclk))
1926		return dev_err_probe(dev, PTR_ERR(pdata->refclk),
1927				     "failed to get reference clock\n");
1928
1929	pm_runtime_enable(dev);
1930	pm_runtime_set_autosuspend_delay(pdata->dev, 500);
1931	pm_runtime_use_autosuspend(pdata->dev);
1932	ret = devm_add_action_or_reset(dev, ti_sn65dsi86_runtime_disable, dev);
1933	if (ret)
1934		return ret;
1935
1936	ti_sn65dsi86_debugfs_init(pdata);
1937
1938	/*
1939	 * Break ourselves up into a collection of aux devices. The only real
1940	 * motiviation here is to solve the chicken-and-egg problem of probe
1941	 * ordering. The bridge wants the panel to be there when it probes.
1942	 * The panel wants its HPD GPIO (provided by sn65dsi86 on some boards)
1943	 * when it probes. The panel and maybe backlight might want the DDC
1944	 * bus or the pwm_chip. Having sub-devices allows the some sub devices
1945	 * to finish probing even if others return -EPROBE_DEFER and gets us
1946	 * around the problems.
1947	 */
1948
1949	if (IS_ENABLED(CONFIG_OF_GPIO)) {
1950		ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->gpio_aux, "gpio");
1951		if (ret)
1952			return ret;
1953	}
1954
1955	if (IS_ENABLED(CONFIG_PWM)) {
1956		ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->pwm_aux, "pwm");
1957		if (ret)
1958			return ret;
1959	}
1960
1961	/*
1962	 * NOTE: At the end of the AUX channel probe we'll add the aux device
1963	 * for the bridge. This is because the bridge can't be used until the
1964	 * AUX channel is there and this is a very simple solution to the
1965	 * dependency problem.
1966	 */
1967	return ti_sn65dsi86_add_aux_device(pdata, &pdata->aux_aux, "aux");
1968}
1969
1970static struct i2c_device_id ti_sn65dsi86_id[] = {
1971	{ "ti,sn65dsi86", 0},
1972	{},
1973};
1974MODULE_DEVICE_TABLE(i2c, ti_sn65dsi86_id);
1975
1976static const struct of_device_id ti_sn65dsi86_match_table[] = {
1977	{.compatible = "ti,sn65dsi86"},
1978	{},
1979};
1980MODULE_DEVICE_TABLE(of, ti_sn65dsi86_match_table);
1981
1982static struct i2c_driver ti_sn65dsi86_driver = {
1983	.driver = {
1984		.name = "ti_sn65dsi86",
1985		.of_match_table = ti_sn65dsi86_match_table,
1986		.pm = &ti_sn65dsi86_pm_ops,
1987	},
1988	.probe = ti_sn65dsi86_probe,
1989	.id_table = ti_sn65dsi86_id,
1990};
1991
1992static int __init ti_sn65dsi86_init(void)
1993{
1994	int ret;
1995
1996	ret = i2c_add_driver(&ti_sn65dsi86_driver);
1997	if (ret)
1998		return ret;
1999
2000	ret = ti_sn_gpio_register();
2001	if (ret)
2002		goto err_main_was_registered;
2003
2004	ret = ti_sn_pwm_register();
2005	if (ret)
2006		goto err_gpio_was_registered;
2007
2008	ret = auxiliary_driver_register(&ti_sn_aux_driver);
2009	if (ret)
2010		goto err_pwm_was_registered;
2011
2012	ret = auxiliary_driver_register(&ti_sn_bridge_driver);
2013	if (ret)
2014		goto err_aux_was_registered;
2015
2016	return 0;
2017
2018err_aux_was_registered:
2019	auxiliary_driver_unregister(&ti_sn_aux_driver);
2020err_pwm_was_registered:
2021	ti_sn_pwm_unregister();
2022err_gpio_was_registered:
2023	ti_sn_gpio_unregister();
2024err_main_was_registered:
2025	i2c_del_driver(&ti_sn65dsi86_driver);
2026
2027	return ret;
2028}
2029module_init(ti_sn65dsi86_init);
2030
2031static void __exit ti_sn65dsi86_exit(void)
2032{
2033	auxiliary_driver_unregister(&ti_sn_bridge_driver);
2034	auxiliary_driver_unregister(&ti_sn_aux_driver);
2035	ti_sn_pwm_unregister();
2036	ti_sn_gpio_unregister();
2037	i2c_del_driver(&ti_sn65dsi86_driver);
2038}
2039module_exit(ti_sn65dsi86_exit);
2040
2041MODULE_AUTHOR("Sandeep Panda <spanda@codeaurora.org>");
2042MODULE_DESCRIPTION("sn65dsi86 DSI to eDP bridge driver");
2043MODULE_LICENSE("GPL v2");
2044