1// SPDX-License-Identifier: GPL-2.0 OR MIT
2/*
3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24#include <linux/mutex.h>
25#include <linux/log2.h>
26#include <linux/sched.h>
27#include <linux/sched/mm.h>
28#include <linux/sched/task.h>
29#include <linux/mmu_context.h>
30#include <linux/slab.h>
31#include <linux/notifier.h>
32#include <linux/compat.h>
33#include <linux/mman.h>
34#include <linux/file.h>
35#include <linux/pm_runtime.h>
36#include "amdgpu_amdkfd.h"
37#include "amdgpu.h"
38
39struct mm_struct;
40
41#include "kfd_priv.h"
42#include "kfd_device_queue_manager.h"
43#include "kfd_svm.h"
44#include "kfd_smi_events.h"
45#include "kfd_debug.h"
46
47/*
48 * List of struct kfd_process (field kfd_process).
49 * Unique/indexed by mm_struct*
50 */
51DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
52DEFINE_MUTEX(kfd_processes_mutex);
53
54DEFINE_SRCU(kfd_processes_srcu);
55
56/* For process termination handling */
57static struct workqueue_struct *kfd_process_wq;
58
59/* Ordered, single-threaded workqueue for restoring evicted
60 * processes. Restoring multiple processes concurrently under memory
61 * pressure can lead to processes blocking each other from validating
62 * their BOs and result in a live-lock situation where processes
63 * remain evicted indefinitely.
64 */
65static struct workqueue_struct *kfd_restore_wq;
66
67static struct kfd_process *find_process(const struct task_struct *thread,
68					bool ref);
69static void kfd_process_ref_release(struct kref *ref);
70static struct kfd_process *create_process(const struct task_struct *thread);
71
72static void evict_process_worker(struct work_struct *work);
73static void restore_process_worker(struct work_struct *work);
74
75static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd);
76
77struct kfd_procfs_tree {
78	struct kobject *kobj;
79};
80
81static struct kfd_procfs_tree procfs;
82
83/*
84 * Structure for SDMA activity tracking
85 */
86struct kfd_sdma_activity_handler_workarea {
87	struct work_struct sdma_activity_work;
88	struct kfd_process_device *pdd;
89	uint64_t sdma_activity_counter;
90};
91
92struct temp_sdma_queue_list {
93	uint64_t __user *rptr;
94	uint64_t sdma_val;
95	unsigned int queue_id;
96	struct list_head list;
97};
98
99static void kfd_sdma_activity_worker(struct work_struct *work)
100{
101	struct kfd_sdma_activity_handler_workarea *workarea;
102	struct kfd_process_device *pdd;
103	uint64_t val;
104	struct mm_struct *mm;
105	struct queue *q;
106	struct qcm_process_device *qpd;
107	struct device_queue_manager *dqm;
108	int ret = 0;
109	struct temp_sdma_queue_list sdma_q_list;
110	struct temp_sdma_queue_list *sdma_q, *next;
111
112	workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
113				sdma_activity_work);
114
115	pdd = workarea->pdd;
116	if (!pdd)
117		return;
118	dqm = pdd->dev->dqm;
119	qpd = &pdd->qpd;
120	if (!dqm || !qpd)
121		return;
122	/*
123	 * Total SDMA activity is current SDMA activity + past SDMA activity
124	 * Past SDMA count is stored in pdd.
125	 * To get the current activity counters for all active SDMA queues,
126	 * we loop over all SDMA queues and get their counts from user-space.
127	 *
128	 * We cannot call get_user() with dqm_lock held as it can cause
129	 * a circular lock dependency situation. To read the SDMA stats,
130	 * we need to do the following:
131	 *
132	 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
133	 *    with dqm_lock/dqm_unlock().
134	 * 2. Call get_user() for each node in temporary list without dqm_lock.
135	 *    Save the SDMA count for each node and also add the count to the total
136	 *    SDMA count counter.
137	 *    Its possible, during this step, a few SDMA queue nodes got deleted
138	 *    from the qpd->queues_list.
139	 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
140	 *    If any node got deleted, its SDMA count would be captured in the sdma
141	 *    past activity counter. So subtract the SDMA counter stored in step 2
142	 *    for this node from the total SDMA count.
143	 */
144	INIT_LIST_HEAD(&sdma_q_list.list);
145
146	/*
147	 * Create the temp list of all SDMA queues
148	 */
149	dqm_lock(dqm);
150
151	list_for_each_entry(q, &qpd->queues_list, list) {
152		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
153		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
154			continue;
155
156		sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
157		if (!sdma_q) {
158			dqm_unlock(dqm);
159			goto cleanup;
160		}
161
162		INIT_LIST_HEAD(&sdma_q->list);
163		sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
164		sdma_q->queue_id = q->properties.queue_id;
165		list_add_tail(&sdma_q->list, &sdma_q_list.list);
166	}
167
168	/*
169	 * If the temp list is empty, then no SDMA queues nodes were found in
170	 * qpd->queues_list. Return the past activity count as the total sdma
171	 * count
172	 */
173	if (list_empty(&sdma_q_list.list)) {
174		workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
175		dqm_unlock(dqm);
176		return;
177	}
178
179	dqm_unlock(dqm);
180
181	/*
182	 * Get the usage count for each SDMA queue in temp_list.
183	 */
184	mm = get_task_mm(pdd->process->lead_thread);
185	if (!mm)
186		goto cleanup;
187
188	kthread_use_mm(mm);
189
190	list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
191		val = 0;
192		ret = read_sdma_queue_counter(sdma_q->rptr, &val);
193		if (ret) {
194			pr_debug("Failed to read SDMA queue active counter for queue id: %d",
195				 sdma_q->queue_id);
196		} else {
197			sdma_q->sdma_val = val;
198			workarea->sdma_activity_counter += val;
199		}
200	}
201
202	kthread_unuse_mm(mm);
203	mmput(mm);
204
205	/*
206	 * Do a second iteration over qpd_queues_list to check if any SDMA
207	 * nodes got deleted while fetching SDMA counter.
208	 */
209	dqm_lock(dqm);
210
211	workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
212
213	list_for_each_entry(q, &qpd->queues_list, list) {
214		if (list_empty(&sdma_q_list.list))
215			break;
216
217		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
218		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
219			continue;
220
221		list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
222			if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
223			     (sdma_q->queue_id == q->properties.queue_id)) {
224				list_del(&sdma_q->list);
225				kfree(sdma_q);
226				break;
227			}
228		}
229	}
230
231	dqm_unlock(dqm);
232
233	/*
234	 * If temp list is not empty, it implies some queues got deleted
235	 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
236	 * count for each node from the total SDMA count.
237	 */
238	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
239		workarea->sdma_activity_counter -= sdma_q->sdma_val;
240		list_del(&sdma_q->list);
241		kfree(sdma_q);
242	}
243
244	return;
245
246cleanup:
247	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
248		list_del(&sdma_q->list);
249		kfree(sdma_q);
250	}
251}
252
253/**
254 * kfd_get_cu_occupancy - Collect number of waves in-flight on this device
255 * by current process. Translates acquired wave count into number of compute units
256 * that are occupied.
257 *
258 * @attr: Handle of attribute that allows reporting of wave count. The attribute
259 * handle encapsulates GPU device it is associated with, thereby allowing collection
260 * of waves in flight, etc
261 * @buffer: Handle of user provided buffer updated with wave count
262 *
263 * Return: Number of bytes written to user buffer or an error value
264 */
265static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
266{
267	int cu_cnt;
268	int wave_cnt;
269	int max_waves_per_cu;
270	struct kfd_node *dev = NULL;
271	struct kfd_process *proc = NULL;
272	struct kfd_process_device *pdd = NULL;
273
274	pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
275	dev = pdd->dev;
276	if (dev->kfd2kgd->get_cu_occupancy == NULL)
277		return -EINVAL;
278
279	cu_cnt = 0;
280	proc = pdd->process;
281	if (pdd->qpd.queue_count == 0) {
282		pr_debug("Gpu-Id: %d has no active queues for process %d\n",
283			 dev->id, proc->pasid);
284		return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
285	}
286
287	/* Collect wave count from device if it supports */
288	wave_cnt = 0;
289	max_waves_per_cu = 0;
290	dev->kfd2kgd->get_cu_occupancy(dev->adev, proc->pasid, &wave_cnt,
291			&max_waves_per_cu, 0);
292
293	/* Translate wave count to number of compute units */
294	cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
295	return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
296}
297
298static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
299			       char *buffer)
300{
301	if (strcmp(attr->name, "pasid") == 0) {
302		struct kfd_process *p = container_of(attr, struct kfd_process,
303						     attr_pasid);
304
305		return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
306	} else if (strncmp(attr->name, "vram_", 5) == 0) {
307		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
308							      attr_vram);
309		return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage));
310	} else if (strncmp(attr->name, "sdma_", 5) == 0) {
311		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
312							      attr_sdma);
313		struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
314
315		INIT_WORK(&sdma_activity_work_handler.sdma_activity_work,
316					kfd_sdma_activity_worker);
317
318		sdma_activity_work_handler.pdd = pdd;
319		sdma_activity_work_handler.sdma_activity_counter = 0;
320
321		schedule_work(&sdma_activity_work_handler.sdma_activity_work);
322
323		flush_work(&sdma_activity_work_handler.sdma_activity_work);
324
325		return snprintf(buffer, PAGE_SIZE, "%llu\n",
326				(sdma_activity_work_handler.sdma_activity_counter)/
327				 SDMA_ACTIVITY_DIVISOR);
328	} else {
329		pr_err("Invalid attribute");
330		return -EINVAL;
331	}
332
333	return 0;
334}
335
336static void kfd_procfs_kobj_release(struct kobject *kobj)
337{
338	kfree(kobj);
339}
340
341static const struct sysfs_ops kfd_procfs_ops = {
342	.show = kfd_procfs_show,
343};
344
345static const struct kobj_type procfs_type = {
346	.release = kfd_procfs_kobj_release,
347	.sysfs_ops = &kfd_procfs_ops,
348};
349
350void kfd_procfs_init(void)
351{
352	int ret = 0;
353
354	procfs.kobj = kfd_alloc_struct(procfs.kobj);
355	if (!procfs.kobj)
356		return;
357
358	ret = kobject_init_and_add(procfs.kobj, &procfs_type,
359				   &kfd_device->kobj, "proc");
360	if (ret) {
361		pr_warn("Could not create procfs proc folder");
362		/* If we fail to create the procfs, clean up */
363		kfd_procfs_shutdown();
364	}
365}
366
367void kfd_procfs_shutdown(void)
368{
369	if (procfs.kobj) {
370		kobject_del(procfs.kobj);
371		kobject_put(procfs.kobj);
372		procfs.kobj = NULL;
373	}
374}
375
376static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
377				     struct attribute *attr, char *buffer)
378{
379	struct queue *q = container_of(kobj, struct queue, kobj);
380
381	if (!strcmp(attr->name, "size"))
382		return snprintf(buffer, PAGE_SIZE, "%llu",
383				q->properties.queue_size);
384	else if (!strcmp(attr->name, "type"))
385		return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
386	else if (!strcmp(attr->name, "gpuid"))
387		return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
388	else
389		pr_err("Invalid attribute");
390
391	return 0;
392}
393
394static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
395				     struct attribute *attr, char *buffer)
396{
397	if (strcmp(attr->name, "evicted_ms") == 0) {
398		struct kfd_process_device *pdd = container_of(attr,
399				struct kfd_process_device,
400				attr_evict);
401		uint64_t evict_jiffies;
402
403		evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
404
405		return snprintf(buffer,
406				PAGE_SIZE,
407				"%llu\n",
408				jiffies64_to_msecs(evict_jiffies));
409
410	/* Sysfs handle that gets CU occupancy is per device */
411	} else if (strcmp(attr->name, "cu_occupancy") == 0) {
412		return kfd_get_cu_occupancy(attr, buffer);
413	} else {
414		pr_err("Invalid attribute");
415	}
416
417	return 0;
418}
419
420static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
421				       struct attribute *attr, char *buf)
422{
423	struct kfd_process_device *pdd;
424
425	if (!strcmp(attr->name, "faults")) {
426		pdd = container_of(attr, struct kfd_process_device,
427				   attr_faults);
428		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
429	}
430	if (!strcmp(attr->name, "page_in")) {
431		pdd = container_of(attr, struct kfd_process_device,
432				   attr_page_in);
433		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
434	}
435	if (!strcmp(attr->name, "page_out")) {
436		pdd = container_of(attr, struct kfd_process_device,
437				   attr_page_out);
438		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
439	}
440	return 0;
441}
442
443static struct attribute attr_queue_size = {
444	.name = "size",
445	.mode = KFD_SYSFS_FILE_MODE
446};
447
448static struct attribute attr_queue_type = {
449	.name = "type",
450	.mode = KFD_SYSFS_FILE_MODE
451};
452
453static struct attribute attr_queue_gpuid = {
454	.name = "gpuid",
455	.mode = KFD_SYSFS_FILE_MODE
456};
457
458static struct attribute *procfs_queue_attrs[] = {
459	&attr_queue_size,
460	&attr_queue_type,
461	&attr_queue_gpuid,
462	NULL
463};
464ATTRIBUTE_GROUPS(procfs_queue);
465
466static const struct sysfs_ops procfs_queue_ops = {
467	.show = kfd_procfs_queue_show,
468};
469
470static const struct kobj_type procfs_queue_type = {
471	.sysfs_ops = &procfs_queue_ops,
472	.default_groups = procfs_queue_groups,
473};
474
475static const struct sysfs_ops procfs_stats_ops = {
476	.show = kfd_procfs_stats_show,
477};
478
479static const struct kobj_type procfs_stats_type = {
480	.sysfs_ops = &procfs_stats_ops,
481	.release = kfd_procfs_kobj_release,
482};
483
484static const struct sysfs_ops sysfs_counters_ops = {
485	.show = kfd_sysfs_counters_show,
486};
487
488static const struct kobj_type sysfs_counters_type = {
489	.sysfs_ops = &sysfs_counters_ops,
490	.release = kfd_procfs_kobj_release,
491};
492
493int kfd_procfs_add_queue(struct queue *q)
494{
495	struct kfd_process *proc;
496	int ret;
497
498	if (!q || !q->process)
499		return -EINVAL;
500	proc = q->process;
501
502	/* Create proc/<pid>/queues/<queue id> folder */
503	if (!proc->kobj_queues)
504		return -EFAULT;
505	ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
506			proc->kobj_queues, "%u", q->properties.queue_id);
507	if (ret < 0) {
508		pr_warn("Creating proc/<pid>/queues/%u failed",
509			q->properties.queue_id);
510		kobject_put(&q->kobj);
511		return ret;
512	}
513
514	return 0;
515}
516
517static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
518				 char *name)
519{
520	int ret;
521
522	if (!kobj || !attr || !name)
523		return;
524
525	attr->name = name;
526	attr->mode = KFD_SYSFS_FILE_MODE;
527	sysfs_attr_init(attr);
528
529	ret = sysfs_create_file(kobj, attr);
530	if (ret)
531		pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
532}
533
534static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
535{
536	int ret;
537	int i;
538	char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
539
540	if (!p || !p->kobj)
541		return;
542
543	/*
544	 * Create sysfs files for each GPU:
545	 * - proc/<pid>/stats_<gpuid>/
546	 * - proc/<pid>/stats_<gpuid>/evicted_ms
547	 * - proc/<pid>/stats_<gpuid>/cu_occupancy
548	 */
549	for (i = 0; i < p->n_pdds; i++) {
550		struct kfd_process_device *pdd = p->pdds[i];
551
552		snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
553				"stats_%u", pdd->dev->id);
554		pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
555		if (!pdd->kobj_stats)
556			return;
557
558		ret = kobject_init_and_add(pdd->kobj_stats,
559					   &procfs_stats_type,
560					   p->kobj,
561					   stats_dir_filename);
562
563		if (ret) {
564			pr_warn("Creating KFD proc/stats_%s folder failed",
565				stats_dir_filename);
566			kobject_put(pdd->kobj_stats);
567			pdd->kobj_stats = NULL;
568			return;
569		}
570
571		kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
572				      "evicted_ms");
573		/* Add sysfs file to report compute unit occupancy */
574		if (pdd->dev->kfd2kgd->get_cu_occupancy)
575			kfd_sysfs_create_file(pdd->kobj_stats,
576					      &pdd->attr_cu_occupancy,
577					      "cu_occupancy");
578	}
579}
580
581static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
582{
583	int ret = 0;
584	int i;
585	char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
586
587	if (!p || !p->kobj)
588		return;
589
590	/*
591	 * Create sysfs files for each GPU which supports SVM
592	 * - proc/<pid>/counters_<gpuid>/
593	 * - proc/<pid>/counters_<gpuid>/faults
594	 * - proc/<pid>/counters_<gpuid>/page_in
595	 * - proc/<pid>/counters_<gpuid>/page_out
596	 */
597	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
598		struct kfd_process_device *pdd = p->pdds[i];
599		struct kobject *kobj_counters;
600
601		snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
602			"counters_%u", pdd->dev->id);
603		kobj_counters = kfd_alloc_struct(kobj_counters);
604		if (!kobj_counters)
605			return;
606
607		ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
608					   p->kobj, counters_dir_filename);
609		if (ret) {
610			pr_warn("Creating KFD proc/%s folder failed",
611				counters_dir_filename);
612			kobject_put(kobj_counters);
613			return;
614		}
615
616		pdd->kobj_counters = kobj_counters;
617		kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
618				      "faults");
619		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
620				      "page_in");
621		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
622				      "page_out");
623	}
624}
625
626static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
627{
628	int i;
629
630	if (!p || !p->kobj)
631		return;
632
633	/*
634	 * Create sysfs files for each GPU:
635	 * - proc/<pid>/vram_<gpuid>
636	 * - proc/<pid>/sdma_<gpuid>
637	 */
638	for (i = 0; i < p->n_pdds; i++) {
639		struct kfd_process_device *pdd = p->pdds[i];
640
641		snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
642			 pdd->dev->id);
643		kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
644				      pdd->vram_filename);
645
646		snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
647			 pdd->dev->id);
648		kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
649					    pdd->sdma_filename);
650	}
651}
652
653void kfd_procfs_del_queue(struct queue *q)
654{
655	if (!q)
656		return;
657
658	kobject_del(&q->kobj);
659	kobject_put(&q->kobj);
660}
661
662int kfd_process_create_wq(void)
663{
664	if (!kfd_process_wq)
665		kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
666	if (!kfd_restore_wq)
667		kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0);
668
669	if (!kfd_process_wq || !kfd_restore_wq) {
670		kfd_process_destroy_wq();
671		return -ENOMEM;
672	}
673
674	return 0;
675}
676
677void kfd_process_destroy_wq(void)
678{
679	if (kfd_process_wq) {
680		destroy_workqueue(kfd_process_wq);
681		kfd_process_wq = NULL;
682	}
683	if (kfd_restore_wq) {
684		destroy_workqueue(kfd_restore_wq);
685		kfd_restore_wq = NULL;
686	}
687}
688
689static void kfd_process_free_gpuvm(struct kgd_mem *mem,
690			struct kfd_process_device *pdd, void **kptr)
691{
692	struct kfd_node *dev = pdd->dev;
693
694	if (kptr && *kptr) {
695		amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
696		*kptr = NULL;
697	}
698
699	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv);
700	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv,
701					       NULL);
702}
703
704/* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
705 *	This function should be only called right after the process
706 *	is created and when kfd_processes_mutex is still being held
707 *	to avoid concurrency. Because of that exclusiveness, we do
708 *	not need to take p->mutex.
709 */
710static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
711				   uint64_t gpu_va, uint32_t size,
712				   uint32_t flags, struct kgd_mem **mem, void **kptr)
713{
714	struct kfd_node *kdev = pdd->dev;
715	int err;
716
717	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size,
718						 pdd->drm_priv, mem, NULL,
719						 flags, false);
720	if (err)
721		goto err_alloc_mem;
722
723	err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem,
724			pdd->drm_priv);
725	if (err)
726		goto err_map_mem;
727
728	err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true);
729	if (err) {
730		pr_debug("Sync memory failed, wait interrupted by user signal\n");
731		goto sync_memory_failed;
732	}
733
734	if (kptr) {
735		err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(
736				(struct kgd_mem *)*mem, kptr, NULL);
737		if (err) {
738			pr_debug("Map GTT BO to kernel failed\n");
739			goto sync_memory_failed;
740		}
741	}
742
743	return err;
744
745sync_memory_failed:
746	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv);
747
748err_map_mem:
749	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv,
750					       NULL);
751err_alloc_mem:
752	*mem = NULL;
753	*kptr = NULL;
754	return err;
755}
756
757/* kfd_process_device_reserve_ib_mem - Reserve memory inside the
758 *	process for IB usage The memory reserved is for KFD to submit
759 *	IB to AMDGPU from kernel.  If the memory is reserved
760 *	successfully, ib_kaddr will have the CPU/kernel
761 *	address. Check ib_kaddr before accessing the memory.
762 */
763static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
764{
765	struct qcm_process_device *qpd = &pdd->qpd;
766	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
767			KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
768			KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
769			KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
770	struct kgd_mem *mem;
771	void *kaddr;
772	int ret;
773
774	if (qpd->ib_kaddr || !qpd->ib_base)
775		return 0;
776
777	/* ib_base is only set for dGPU */
778	ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
779				      &mem, &kaddr);
780	if (ret)
781		return ret;
782
783	qpd->ib_mem = mem;
784	qpd->ib_kaddr = kaddr;
785
786	return 0;
787}
788
789static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd)
790{
791	struct qcm_process_device *qpd = &pdd->qpd;
792
793	if (!qpd->ib_kaddr || !qpd->ib_base)
794		return;
795
796	kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr);
797}
798
799struct kfd_process *kfd_create_process(struct task_struct *thread)
800{
801	struct kfd_process *process;
802	int ret;
803
804	if (!(thread->mm && mmget_not_zero(thread->mm)))
805		return ERR_PTR(-EINVAL);
806
807	/* Only the pthreads threading model is supported. */
808	if (thread->group_leader->mm != thread->mm) {
809		mmput(thread->mm);
810		return ERR_PTR(-EINVAL);
811	}
812
813	/*
814	 * take kfd processes mutex before starting of process creation
815	 * so there won't be a case where two threads of the same process
816	 * create two kfd_process structures
817	 */
818	mutex_lock(&kfd_processes_mutex);
819
820	if (kfd_is_locked()) {
821		mutex_unlock(&kfd_processes_mutex);
822		pr_debug("KFD is locked! Cannot create process");
823		return ERR_PTR(-EINVAL);
824	}
825
826	/* A prior open of /dev/kfd could have already created the process. */
827	process = find_process(thread, false);
828	if (process) {
829		pr_debug("Process already found\n");
830	} else {
831		process = create_process(thread);
832		if (IS_ERR(process))
833			goto out;
834
835		if (!procfs.kobj)
836			goto out;
837
838		process->kobj = kfd_alloc_struct(process->kobj);
839		if (!process->kobj) {
840			pr_warn("Creating procfs kobject failed");
841			goto out;
842		}
843		ret = kobject_init_and_add(process->kobj, &procfs_type,
844					   procfs.kobj, "%d",
845					   (int)process->lead_thread->pid);
846		if (ret) {
847			pr_warn("Creating procfs pid directory failed");
848			kobject_put(process->kobj);
849			goto out;
850		}
851
852		kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
853				      "pasid");
854
855		process->kobj_queues = kobject_create_and_add("queues",
856							process->kobj);
857		if (!process->kobj_queues)
858			pr_warn("Creating KFD proc/queues folder failed");
859
860		kfd_procfs_add_sysfs_stats(process);
861		kfd_procfs_add_sysfs_files(process);
862		kfd_procfs_add_sysfs_counters(process);
863
864		init_waitqueue_head(&process->wait_irq_drain);
865	}
866out:
867	if (!IS_ERR(process))
868		kref_get(&process->ref);
869	mutex_unlock(&kfd_processes_mutex);
870	mmput(thread->mm);
871
872	return process;
873}
874
875struct kfd_process *kfd_get_process(const struct task_struct *thread)
876{
877	struct kfd_process *process;
878
879	if (!thread->mm)
880		return ERR_PTR(-EINVAL);
881
882	/* Only the pthreads threading model is supported. */
883	if (thread->group_leader->mm != thread->mm)
884		return ERR_PTR(-EINVAL);
885
886	process = find_process(thread, false);
887	if (!process)
888		return ERR_PTR(-EINVAL);
889
890	return process;
891}
892
893static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
894{
895	struct kfd_process *process;
896
897	hash_for_each_possible_rcu(kfd_processes_table, process,
898					kfd_processes, (uintptr_t)mm)
899		if (process->mm == mm)
900			return process;
901
902	return NULL;
903}
904
905static struct kfd_process *find_process(const struct task_struct *thread,
906					bool ref)
907{
908	struct kfd_process *p;
909	int idx;
910
911	idx = srcu_read_lock(&kfd_processes_srcu);
912	p = find_process_by_mm(thread->mm);
913	if (p && ref)
914		kref_get(&p->ref);
915	srcu_read_unlock(&kfd_processes_srcu, idx);
916
917	return p;
918}
919
920void kfd_unref_process(struct kfd_process *p)
921{
922	kref_put(&p->ref, kfd_process_ref_release);
923}
924
925/* This increments the process->ref counter. */
926struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid)
927{
928	struct task_struct *task = NULL;
929	struct kfd_process *p    = NULL;
930
931	if (!pid) {
932		task = current;
933		get_task_struct(task);
934	} else {
935		task = get_pid_task(pid, PIDTYPE_PID);
936	}
937
938	if (task) {
939		p = find_process(task, true);
940		put_task_struct(task);
941	}
942
943	return p;
944}
945
946static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
947{
948	struct kfd_process *p = pdd->process;
949	void *mem;
950	int id;
951	int i;
952
953	/*
954	 * Remove all handles from idr and release appropriate
955	 * local memory object
956	 */
957	idr_for_each_entry(&pdd->alloc_idr, mem, id) {
958
959		for (i = 0; i < p->n_pdds; i++) {
960			struct kfd_process_device *peer_pdd = p->pdds[i];
961
962			if (!peer_pdd->drm_priv)
963				continue;
964			amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
965				peer_pdd->dev->adev, mem, peer_pdd->drm_priv);
966		}
967
968		amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem,
969						       pdd->drm_priv, NULL);
970		kfd_process_device_remove_obj_handle(pdd, id);
971	}
972}
973
974/*
975 * Just kunmap and unpin signal BO here. It will be freed in
976 * kfd_process_free_outstanding_kfd_bos()
977 */
978static void kfd_process_kunmap_signal_bo(struct kfd_process *p)
979{
980	struct kfd_process_device *pdd;
981	struct kfd_node *kdev;
982	void *mem;
983
984	kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle));
985	if (!kdev)
986		return;
987
988	mutex_lock(&p->mutex);
989
990	pdd = kfd_get_process_device_data(kdev, p);
991	if (!pdd)
992		goto out;
993
994	mem = kfd_process_device_translate_handle(
995		pdd, GET_IDR_HANDLE(p->signal_handle));
996	if (!mem)
997		goto out;
998
999	amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
1000
1001out:
1002	mutex_unlock(&p->mutex);
1003}
1004
1005static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
1006{
1007	int i;
1008
1009	for (i = 0; i < p->n_pdds; i++)
1010		kfd_process_device_free_bos(p->pdds[i]);
1011}
1012
1013static void kfd_process_destroy_pdds(struct kfd_process *p)
1014{
1015	int i;
1016
1017	for (i = 0; i < p->n_pdds; i++) {
1018		struct kfd_process_device *pdd = p->pdds[i];
1019
1020		pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
1021				pdd->dev->id, p->pasid);
1022
1023		kfd_process_device_destroy_cwsr_dgpu(pdd);
1024		kfd_process_device_destroy_ib_mem(pdd);
1025
1026		if (pdd->drm_file) {
1027			amdgpu_amdkfd_gpuvm_release_process_vm(
1028					pdd->dev->adev, pdd->drm_priv);
1029			fput(pdd->drm_file);
1030		}
1031
1032		if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
1033			free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
1034				get_order(KFD_CWSR_TBA_TMA_SIZE));
1035
1036		idr_destroy(&pdd->alloc_idr);
1037
1038		kfd_free_process_doorbells(pdd->dev->kfd, pdd);
1039
1040		if (pdd->dev->kfd->shared_resources.enable_mes)
1041			amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev,
1042						   pdd->proc_ctx_bo);
1043		/*
1044		 * before destroying pdd, make sure to report availability
1045		 * for auto suspend
1046		 */
1047		if (pdd->runtime_inuse) {
1048			pm_runtime_mark_last_busy(adev_to_drm(pdd->dev->adev)->dev);
1049			pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev);
1050			pdd->runtime_inuse = false;
1051		}
1052
1053		kfree(pdd);
1054		p->pdds[i] = NULL;
1055	}
1056	p->n_pdds = 0;
1057}
1058
1059static void kfd_process_remove_sysfs(struct kfd_process *p)
1060{
1061	struct kfd_process_device *pdd;
1062	int i;
1063
1064	if (!p->kobj)
1065		return;
1066
1067	sysfs_remove_file(p->kobj, &p->attr_pasid);
1068	kobject_del(p->kobj_queues);
1069	kobject_put(p->kobj_queues);
1070	p->kobj_queues = NULL;
1071
1072	for (i = 0; i < p->n_pdds; i++) {
1073		pdd = p->pdds[i];
1074
1075		sysfs_remove_file(p->kobj, &pdd->attr_vram);
1076		sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1077
1078		sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1079		if (pdd->dev->kfd2kgd->get_cu_occupancy)
1080			sysfs_remove_file(pdd->kobj_stats,
1081					  &pdd->attr_cu_occupancy);
1082		kobject_del(pdd->kobj_stats);
1083		kobject_put(pdd->kobj_stats);
1084		pdd->kobj_stats = NULL;
1085	}
1086
1087	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1088		pdd = p->pdds[i];
1089
1090		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1091		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1092		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1093		kobject_del(pdd->kobj_counters);
1094		kobject_put(pdd->kobj_counters);
1095		pdd->kobj_counters = NULL;
1096	}
1097
1098	kobject_del(p->kobj);
1099	kobject_put(p->kobj);
1100	p->kobj = NULL;
1101}
1102
1103/* No process locking is needed in this function, because the process
1104 * is not findable any more. We must assume that no other thread is
1105 * using it any more, otherwise we couldn't safely free the process
1106 * structure in the end.
1107 */
1108static void kfd_process_wq_release(struct work_struct *work)
1109{
1110	struct kfd_process *p = container_of(work, struct kfd_process,
1111					     release_work);
1112
1113	kfd_process_dequeue_from_all_devices(p);
1114	pqm_uninit(&p->pqm);
1115
1116	/* Signal the eviction fence after user mode queues are
1117	 * destroyed. This allows any BOs to be freed without
1118	 * triggering pointless evictions or waiting for fences.
1119	 */
1120	dma_fence_signal(p->ef);
1121
1122	kfd_process_remove_sysfs(p);
1123
1124	kfd_process_kunmap_signal_bo(p);
1125	kfd_process_free_outstanding_kfd_bos(p);
1126	svm_range_list_fini(p);
1127
1128	kfd_process_destroy_pdds(p);
1129	dma_fence_put(p->ef);
1130
1131	kfd_event_free_process(p);
1132
1133	kfd_pasid_free(p->pasid);
1134	mutex_destroy(&p->mutex);
1135
1136	put_task_struct(p->lead_thread);
1137
1138	kfree(p);
1139}
1140
1141static void kfd_process_ref_release(struct kref *ref)
1142{
1143	struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1144
1145	INIT_WORK(&p->release_work, kfd_process_wq_release);
1146	queue_work(kfd_process_wq, &p->release_work);
1147}
1148
1149static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1150{
1151	int idx = srcu_read_lock(&kfd_processes_srcu);
1152	struct kfd_process *p = find_process_by_mm(mm);
1153
1154	srcu_read_unlock(&kfd_processes_srcu, idx);
1155
1156	return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1157}
1158
1159static void kfd_process_free_notifier(struct mmu_notifier *mn)
1160{
1161	kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1162}
1163
1164static void kfd_process_notifier_release_internal(struct kfd_process *p)
1165{
1166	int i;
1167
1168	cancel_delayed_work_sync(&p->eviction_work);
1169	cancel_delayed_work_sync(&p->restore_work);
1170
1171	for (i = 0; i < p->n_pdds; i++) {
1172		struct kfd_process_device *pdd = p->pdds[i];
1173
1174		/* re-enable GFX OFF since runtime enable with ttmp setup disabled it. */
1175		if (!kfd_dbg_is_rlc_restore_supported(pdd->dev) && p->runtime_info.ttmp_setup)
1176			amdgpu_gfx_off_ctrl(pdd->dev->adev, true);
1177	}
1178
1179	/* Indicate to other users that MM is no longer valid */
1180	p->mm = NULL;
1181	kfd_dbg_trap_disable(p);
1182
1183	if (atomic_read(&p->debugged_process_count) > 0) {
1184		struct kfd_process *target;
1185		unsigned int temp;
1186		int idx = srcu_read_lock(&kfd_processes_srcu);
1187
1188		hash_for_each_rcu(kfd_processes_table, temp, target, kfd_processes) {
1189			if (target->debugger_process && target->debugger_process == p) {
1190				mutex_lock_nested(&target->mutex, 1);
1191				kfd_dbg_trap_disable(target);
1192				mutex_unlock(&target->mutex);
1193				if (atomic_read(&p->debugged_process_count) == 0)
1194					break;
1195			}
1196		}
1197
1198		srcu_read_unlock(&kfd_processes_srcu, idx);
1199	}
1200
1201	mmu_notifier_put(&p->mmu_notifier);
1202}
1203
1204static void kfd_process_notifier_release(struct mmu_notifier *mn,
1205					struct mm_struct *mm)
1206{
1207	struct kfd_process *p;
1208
1209	/*
1210	 * The kfd_process structure can not be free because the
1211	 * mmu_notifier srcu is read locked
1212	 */
1213	p = container_of(mn, struct kfd_process, mmu_notifier);
1214	if (WARN_ON(p->mm != mm))
1215		return;
1216
1217	mutex_lock(&kfd_processes_mutex);
1218	/*
1219	 * Do early return if table is empty.
1220	 *
1221	 * This could potentially happen if this function is called concurrently
1222	 * by mmu_notifier and by kfd_cleanup_pocesses.
1223	 *
1224	 */
1225	if (hash_empty(kfd_processes_table)) {
1226		mutex_unlock(&kfd_processes_mutex);
1227		return;
1228	}
1229	hash_del_rcu(&p->kfd_processes);
1230	mutex_unlock(&kfd_processes_mutex);
1231	synchronize_srcu(&kfd_processes_srcu);
1232
1233	kfd_process_notifier_release_internal(p);
1234}
1235
1236static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1237	.release = kfd_process_notifier_release,
1238	.alloc_notifier = kfd_process_alloc_notifier,
1239	.free_notifier = kfd_process_free_notifier,
1240};
1241
1242/*
1243 * This code handles the case when driver is being unloaded before all
1244 * mm_struct are released.  We need to safely free the kfd_process and
1245 * avoid race conditions with mmu_notifier that might try to free them.
1246 *
1247 */
1248void kfd_cleanup_processes(void)
1249{
1250	struct kfd_process *p;
1251	struct hlist_node *p_temp;
1252	unsigned int temp;
1253	HLIST_HEAD(cleanup_list);
1254
1255	/*
1256	 * Move all remaining kfd_process from the process table to a
1257	 * temp list for processing.   Once done, callback from mmu_notifier
1258	 * release will not see the kfd_process in the table and do early return,
1259	 * avoiding double free issues.
1260	 */
1261	mutex_lock(&kfd_processes_mutex);
1262	hash_for_each_safe(kfd_processes_table, temp, p_temp, p, kfd_processes) {
1263		hash_del_rcu(&p->kfd_processes);
1264		synchronize_srcu(&kfd_processes_srcu);
1265		hlist_add_head(&p->kfd_processes, &cleanup_list);
1266	}
1267	mutex_unlock(&kfd_processes_mutex);
1268
1269	hlist_for_each_entry_safe(p, p_temp, &cleanup_list, kfd_processes)
1270		kfd_process_notifier_release_internal(p);
1271
1272	/*
1273	 * Ensures that all outstanding free_notifier get called, triggering
1274	 * the release of the kfd_process struct.
1275	 */
1276	mmu_notifier_synchronize();
1277}
1278
1279int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
1280{
1281	unsigned long  offset;
1282	int i;
1283
1284	if (p->has_cwsr)
1285		return 0;
1286
1287	for (i = 0; i < p->n_pdds; i++) {
1288		struct kfd_node *dev = p->pdds[i]->dev;
1289		struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1290
1291		if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1292			continue;
1293
1294		offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1295		qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1296			KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1297			MAP_SHARED, offset);
1298
1299		if (IS_ERR_VALUE(qpd->tba_addr)) {
1300			int err = qpd->tba_addr;
1301
1302			pr_err("Failure to set tba address. error %d.\n", err);
1303			qpd->tba_addr = 0;
1304			qpd->cwsr_kaddr = NULL;
1305			return err;
1306		}
1307
1308		memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1309
1310		kfd_process_set_trap_debug_flag(qpd, p->debug_trap_enabled);
1311
1312		qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1313		pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1314			qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1315	}
1316
1317	p->has_cwsr = true;
1318
1319	return 0;
1320}
1321
1322static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1323{
1324	struct kfd_node *dev = pdd->dev;
1325	struct qcm_process_device *qpd = &pdd->qpd;
1326	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1327			| KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1328			| KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1329	struct kgd_mem *mem;
1330	void *kaddr;
1331	int ret;
1332
1333	if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1334		return 0;
1335
1336	/* cwsr_base is only set for dGPU */
1337	ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1338				      KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr);
1339	if (ret)
1340		return ret;
1341
1342	qpd->cwsr_mem = mem;
1343	qpd->cwsr_kaddr = kaddr;
1344	qpd->tba_addr = qpd->cwsr_base;
1345
1346	memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1347
1348	kfd_process_set_trap_debug_flag(&pdd->qpd,
1349					pdd->process->debug_trap_enabled);
1350
1351	qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1352	pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1353		 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1354
1355	return 0;
1356}
1357
1358static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd)
1359{
1360	struct kfd_node *dev = pdd->dev;
1361	struct qcm_process_device *qpd = &pdd->qpd;
1362
1363	if (!dev->kfd->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base)
1364		return;
1365
1366	kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr);
1367}
1368
1369void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1370				  uint64_t tba_addr,
1371				  uint64_t tma_addr)
1372{
1373	if (qpd->cwsr_kaddr) {
1374		/* KFD trap handler is bound, record as second-level TBA/TMA
1375		 * in first-level TMA. First-level trap will jump to second.
1376		 */
1377		uint64_t *tma =
1378			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1379		tma[0] = tba_addr;
1380		tma[1] = tma_addr;
1381	} else {
1382		/* No trap handler bound, bind as first-level TBA/TMA. */
1383		qpd->tba_addr = tba_addr;
1384		qpd->tma_addr = tma_addr;
1385	}
1386}
1387
1388bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1389{
1390	int i;
1391
1392	/* On most GFXv9 GPUs, the retry mode in the SQ must match the
1393	 * boot time retry setting. Mixing processes with different
1394	 * XNACK/retry settings can hang the GPU.
1395	 *
1396	 * Different GPUs can have different noretry settings depending
1397	 * on HW bugs or limitations. We need to find at least one
1398	 * XNACK mode for this process that's compatible with all GPUs.
1399	 * Fortunately GPUs with retry enabled (noretry=0) can run code
1400	 * built for XNACK-off. On GFXv9 it may perform slower.
1401	 *
1402	 * Therefore applications built for XNACK-off can always be
1403	 * supported and will be our fallback if any GPU does not
1404	 * support retry.
1405	 */
1406	for (i = 0; i < p->n_pdds; i++) {
1407		struct kfd_node *dev = p->pdds[i]->dev;
1408
1409		/* Only consider GFXv9 and higher GPUs. Older GPUs don't
1410		 * support the SVM APIs and don't need to be considered
1411		 * for the XNACK mode selection.
1412		 */
1413		if (!KFD_IS_SOC15(dev))
1414			continue;
1415		/* Aldebaran can always support XNACK because it can support
1416		 * per-process XNACK mode selection. But let the dev->noretry
1417		 * setting still influence the default XNACK mode.
1418		 */
1419		if (supported && KFD_SUPPORT_XNACK_PER_PROCESS(dev))
1420			continue;
1421
1422		/* GFXv10 and later GPUs do not support shader preemption
1423		 * during page faults. This can lead to poor QoS for queue
1424		 * management and memory-manager-related preemptions or
1425		 * even deadlocks.
1426		 */
1427		if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
1428			return false;
1429
1430		if (dev->kfd->noretry)
1431			return false;
1432	}
1433
1434	return true;
1435}
1436
1437void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd,
1438				     bool enabled)
1439{
1440	if (qpd->cwsr_kaddr) {
1441		uint64_t *tma =
1442			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1443		tma[2] = enabled;
1444	}
1445}
1446
1447/*
1448 * On return the kfd_process is fully operational and will be freed when the
1449 * mm is released
1450 */
1451static struct kfd_process *create_process(const struct task_struct *thread)
1452{
1453	struct kfd_process *process;
1454	struct mmu_notifier *mn;
1455	int err = -ENOMEM;
1456
1457	process = kzalloc(sizeof(*process), GFP_KERNEL);
1458	if (!process)
1459		goto err_alloc_process;
1460
1461	kref_init(&process->ref);
1462	mutex_init(&process->mutex);
1463	process->mm = thread->mm;
1464	process->lead_thread = thread->group_leader;
1465	process->n_pdds = 0;
1466	process->queues_paused = false;
1467	INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1468	INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1469	process->last_restore_timestamp = get_jiffies_64();
1470	err = kfd_event_init_process(process);
1471	if (err)
1472		goto err_event_init;
1473	process->is_32bit_user_mode = in_compat_syscall();
1474	process->debug_trap_enabled = false;
1475	process->debugger_process = NULL;
1476	process->exception_enable_mask = 0;
1477	atomic_set(&process->debugged_process_count, 0);
1478	sema_init(&process->runtime_enable_sema, 0);
1479
1480	process->pasid = kfd_pasid_alloc();
1481	if (process->pasid == 0) {
1482		err = -ENOSPC;
1483		goto err_alloc_pasid;
1484	}
1485
1486	err = pqm_init(&process->pqm, process);
1487	if (err != 0)
1488		goto err_process_pqm_init;
1489
1490	/* init process apertures*/
1491	err = kfd_init_apertures(process);
1492	if (err != 0)
1493		goto err_init_apertures;
1494
1495	/* Check XNACK support after PDDs are created in kfd_init_apertures */
1496	process->xnack_enabled = kfd_process_xnack_mode(process, false);
1497
1498	err = svm_range_list_init(process);
1499	if (err)
1500		goto err_init_svm_range_list;
1501
1502	/* alloc_notifier needs to find the process in the hash table */
1503	hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1504			(uintptr_t)process->mm);
1505
1506	/* Avoid free_notifier to start kfd_process_wq_release if
1507	 * mmu_notifier_get failed because of pending signal.
1508	 */
1509	kref_get(&process->ref);
1510
1511	/* MMU notifier registration must be the last call that can fail
1512	 * because after this point we cannot unwind the process creation.
1513	 * After this point, mmu_notifier_put will trigger the cleanup by
1514	 * dropping the last process reference in the free_notifier.
1515	 */
1516	mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1517	if (IS_ERR(mn)) {
1518		err = PTR_ERR(mn);
1519		goto err_register_notifier;
1520	}
1521	BUG_ON(mn != &process->mmu_notifier);
1522
1523	kfd_unref_process(process);
1524	get_task_struct(process->lead_thread);
1525
1526	INIT_WORK(&process->debug_event_workarea, debug_event_write_work_handler);
1527
1528	return process;
1529
1530err_register_notifier:
1531	hash_del_rcu(&process->kfd_processes);
1532	svm_range_list_fini(process);
1533err_init_svm_range_list:
1534	kfd_process_free_outstanding_kfd_bos(process);
1535	kfd_process_destroy_pdds(process);
1536err_init_apertures:
1537	pqm_uninit(&process->pqm);
1538err_process_pqm_init:
1539	kfd_pasid_free(process->pasid);
1540err_alloc_pasid:
1541	kfd_event_free_process(process);
1542err_event_init:
1543	mutex_destroy(&process->mutex);
1544	kfree(process);
1545err_alloc_process:
1546	return ERR_PTR(err);
1547}
1548
1549struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev,
1550							struct kfd_process *p)
1551{
1552	int i;
1553
1554	for (i = 0; i < p->n_pdds; i++)
1555		if (p->pdds[i]->dev == dev)
1556			return p->pdds[i];
1557
1558	return NULL;
1559}
1560
1561struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev,
1562							struct kfd_process *p)
1563{
1564	struct kfd_process_device *pdd = NULL;
1565	int retval = 0;
1566
1567	if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1568		return NULL;
1569	pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1570	if (!pdd)
1571		return NULL;
1572
1573	pdd->dev = dev;
1574	INIT_LIST_HEAD(&pdd->qpd.queues_list);
1575	INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1576	pdd->qpd.dqm = dev->dqm;
1577	pdd->qpd.pqm = &p->pqm;
1578	pdd->qpd.evicted = 0;
1579	pdd->qpd.mapped_gws_queue = false;
1580	pdd->process = p;
1581	pdd->bound = PDD_UNBOUND;
1582	pdd->already_dequeued = false;
1583	pdd->runtime_inuse = false;
1584	pdd->vram_usage = 0;
1585	pdd->sdma_past_activity_counter = 0;
1586	pdd->user_gpu_id = dev->id;
1587	atomic64_set(&pdd->evict_duration_counter, 0);
1588
1589	if (dev->kfd->shared_resources.enable_mes) {
1590		retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev,
1591						AMDGPU_MES_PROC_CTX_SIZE,
1592						&pdd->proc_ctx_bo,
1593						&pdd->proc_ctx_gpu_addr,
1594						&pdd->proc_ctx_cpu_ptr,
1595						false);
1596		if (retval) {
1597			pr_err("failed to allocate process context bo\n");
1598			goto err_free_pdd;
1599		}
1600		memset(pdd->proc_ctx_cpu_ptr, 0, AMDGPU_MES_PROC_CTX_SIZE);
1601	}
1602
1603	p->pdds[p->n_pdds++] = pdd;
1604	if (kfd_dbg_is_per_vmid_supported(pdd->dev))
1605		pdd->spi_dbg_override = pdd->dev->kfd2kgd->disable_debug_trap(
1606							pdd->dev->adev,
1607							false,
1608							0);
1609
1610	/* Init idr used for memory handle translation */
1611	idr_init(&pdd->alloc_idr);
1612
1613	return pdd;
1614
1615err_free_pdd:
1616	kfree(pdd);
1617	return NULL;
1618}
1619
1620/**
1621 * kfd_process_device_init_vm - Initialize a VM for a process-device
1622 *
1623 * @pdd: The process-device
1624 * @drm_file: Optional pointer to a DRM file descriptor
1625 *
1626 * If @drm_file is specified, it will be used to acquire the VM from
1627 * that file descriptor. If successful, the @pdd takes ownership of
1628 * the file descriptor.
1629 *
1630 * If @drm_file is NULL, a new VM is created.
1631 *
1632 * Returns 0 on success, -errno on failure.
1633 */
1634int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1635			       struct file *drm_file)
1636{
1637	struct amdgpu_fpriv *drv_priv;
1638	struct amdgpu_vm *avm;
1639	struct kfd_process *p;
1640	struct kfd_node *dev;
1641	int ret;
1642
1643	if (!drm_file)
1644		return -EINVAL;
1645
1646	if (pdd->drm_priv)
1647		return -EBUSY;
1648
1649	ret = amdgpu_file_to_fpriv(drm_file, &drv_priv);
1650	if (ret)
1651		return ret;
1652	avm = &drv_priv->vm;
1653
1654	p = pdd->process;
1655	dev = pdd->dev;
1656
1657	ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, avm,
1658						     &p->kgd_process_info,
1659						     &p->ef);
1660	if (ret) {
1661		pr_err("Failed to create process VM object\n");
1662		return ret;
1663	}
1664	pdd->drm_priv = drm_file->private_data;
1665	atomic64_set(&pdd->tlb_seq, 0);
1666
1667	ret = kfd_process_device_reserve_ib_mem(pdd);
1668	if (ret)
1669		goto err_reserve_ib_mem;
1670	ret = kfd_process_device_init_cwsr_dgpu(pdd);
1671	if (ret)
1672		goto err_init_cwsr;
1673
1674	ret = amdgpu_amdkfd_gpuvm_set_vm_pasid(dev->adev, avm, p->pasid);
1675	if (ret)
1676		goto err_set_pasid;
1677
1678	pdd->drm_file = drm_file;
1679
1680	return 0;
1681
1682err_set_pasid:
1683	kfd_process_device_destroy_cwsr_dgpu(pdd);
1684err_init_cwsr:
1685	kfd_process_device_destroy_ib_mem(pdd);
1686err_reserve_ib_mem:
1687	pdd->drm_priv = NULL;
1688	amdgpu_amdkfd_gpuvm_destroy_cb(dev->adev, avm);
1689
1690	return ret;
1691}
1692
1693/*
1694 * Direct the IOMMU to bind the process (specifically the pasid->mm)
1695 * to the device.
1696 * Unbinding occurs when the process dies or the device is removed.
1697 *
1698 * Assumes that the process lock is held.
1699 */
1700struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev,
1701							struct kfd_process *p)
1702{
1703	struct kfd_process_device *pdd;
1704	int err;
1705
1706	pdd = kfd_get_process_device_data(dev, p);
1707	if (!pdd) {
1708		pr_err("Process device data doesn't exist\n");
1709		return ERR_PTR(-ENOMEM);
1710	}
1711
1712	if (!pdd->drm_priv)
1713		return ERR_PTR(-ENODEV);
1714
1715	/*
1716	 * signal runtime-pm system to auto resume and prevent
1717	 * further runtime suspend once device pdd is created until
1718	 * pdd is destroyed.
1719	 */
1720	if (!pdd->runtime_inuse) {
1721		err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev);
1722		if (err < 0) {
1723			pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev);
1724			return ERR_PTR(err);
1725		}
1726	}
1727
1728	/*
1729	 * make sure that runtime_usage counter is incremented just once
1730	 * per pdd
1731	 */
1732	pdd->runtime_inuse = true;
1733
1734	return pdd;
1735}
1736
1737/* Create specific handle mapped to mem from process local memory idr
1738 * Assumes that the process lock is held.
1739 */
1740int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1741					void *mem)
1742{
1743	return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1744}
1745
1746/* Translate specific handle from process local memory idr
1747 * Assumes that the process lock is held.
1748 */
1749void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1750					int handle)
1751{
1752	if (handle < 0)
1753		return NULL;
1754
1755	return idr_find(&pdd->alloc_idr, handle);
1756}
1757
1758/* Remove specific handle from process local memory idr
1759 * Assumes that the process lock is held.
1760 */
1761void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1762					int handle)
1763{
1764	if (handle >= 0)
1765		idr_remove(&pdd->alloc_idr, handle);
1766}
1767
1768/* This increments the process->ref counter. */
1769struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid)
1770{
1771	struct kfd_process *p, *ret_p = NULL;
1772	unsigned int temp;
1773
1774	int idx = srcu_read_lock(&kfd_processes_srcu);
1775
1776	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1777		if (p->pasid == pasid) {
1778			kref_get(&p->ref);
1779			ret_p = p;
1780			break;
1781		}
1782	}
1783
1784	srcu_read_unlock(&kfd_processes_srcu, idx);
1785
1786	return ret_p;
1787}
1788
1789/* This increments the process->ref counter. */
1790struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1791{
1792	struct kfd_process *p;
1793
1794	int idx = srcu_read_lock(&kfd_processes_srcu);
1795
1796	p = find_process_by_mm(mm);
1797	if (p)
1798		kref_get(&p->ref);
1799
1800	srcu_read_unlock(&kfd_processes_srcu, idx);
1801
1802	return p;
1803}
1804
1805/* kfd_process_evict_queues - Evict all user queues of a process
1806 *
1807 * Eviction is reference-counted per process-device. This means multiple
1808 * evictions from different sources can be nested safely.
1809 */
1810int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger)
1811{
1812	int r = 0;
1813	int i;
1814	unsigned int n_evicted = 0;
1815
1816	for (i = 0; i < p->n_pdds; i++) {
1817		struct kfd_process_device *pdd = p->pdds[i];
1818
1819		kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid,
1820					     trigger);
1821
1822		r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1823							    &pdd->qpd);
1824		/* evict return -EIO if HWS is hang or asic is resetting, in this case
1825		 * we would like to set all the queues to be in evicted state to prevent
1826		 * them been add back since they actually not be saved right now.
1827		 */
1828		if (r && r != -EIO) {
1829			pr_err("Failed to evict process queues\n");
1830			goto fail;
1831		}
1832		n_evicted++;
1833	}
1834
1835	return r;
1836
1837fail:
1838	/* To keep state consistent, roll back partial eviction by
1839	 * restoring queues
1840	 */
1841	for (i = 0; i < p->n_pdds; i++) {
1842		struct kfd_process_device *pdd = p->pdds[i];
1843
1844		if (n_evicted == 0)
1845			break;
1846
1847		kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1848
1849		if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1850							      &pdd->qpd))
1851			pr_err("Failed to restore queues\n");
1852
1853		n_evicted--;
1854	}
1855
1856	return r;
1857}
1858
1859/* kfd_process_restore_queues - Restore all user queues of a process */
1860int kfd_process_restore_queues(struct kfd_process *p)
1861{
1862	int r, ret = 0;
1863	int i;
1864
1865	for (i = 0; i < p->n_pdds; i++) {
1866		struct kfd_process_device *pdd = p->pdds[i];
1867
1868		kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1869
1870		r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1871							      &pdd->qpd);
1872		if (r) {
1873			pr_err("Failed to restore process queues\n");
1874			if (!ret)
1875				ret = r;
1876		}
1877	}
1878
1879	return ret;
1880}
1881
1882int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
1883{
1884	int i;
1885
1886	for (i = 0; i < p->n_pdds; i++)
1887		if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id)
1888			return i;
1889	return -EINVAL;
1890}
1891
1892int
1893kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node,
1894			    uint32_t *gpuid, uint32_t *gpuidx)
1895{
1896	int i;
1897
1898	for (i = 0; i < p->n_pdds; i++)
1899		if (p->pdds[i] && p->pdds[i]->dev == node) {
1900			*gpuid = p->pdds[i]->user_gpu_id;
1901			*gpuidx = i;
1902			return 0;
1903		}
1904	return -EINVAL;
1905}
1906
1907static void evict_process_worker(struct work_struct *work)
1908{
1909	int ret;
1910	struct kfd_process *p;
1911	struct delayed_work *dwork;
1912
1913	dwork = to_delayed_work(work);
1914
1915	/* Process termination destroys this worker thread. So during the
1916	 * lifetime of this thread, kfd_process p will be valid
1917	 */
1918	p = container_of(dwork, struct kfd_process, eviction_work);
1919	WARN_ONCE(p->last_eviction_seqno != p->ef->seqno,
1920		  "Eviction fence mismatch\n");
1921
1922	/* Narrow window of overlap between restore and evict work
1923	 * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos
1924	 * unreserves KFD BOs, it is possible to evicted again. But
1925	 * restore has few more steps of finish. So lets wait for any
1926	 * previous restore work to complete
1927	 */
1928	flush_delayed_work(&p->restore_work);
1929
1930	pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1931	ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM);
1932	if (!ret) {
1933		dma_fence_signal(p->ef);
1934		dma_fence_put(p->ef);
1935		p->ef = NULL;
1936		queue_delayed_work(kfd_restore_wq, &p->restore_work,
1937				msecs_to_jiffies(PROCESS_RESTORE_TIME_MS));
1938
1939		pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
1940	} else
1941		pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
1942}
1943
1944static void restore_process_worker(struct work_struct *work)
1945{
1946	struct delayed_work *dwork;
1947	struct kfd_process *p;
1948	int ret = 0;
1949
1950	dwork = to_delayed_work(work);
1951
1952	/* Process termination destroys this worker thread. So during the
1953	 * lifetime of this thread, kfd_process p will be valid
1954	 */
1955	p = container_of(dwork, struct kfd_process, restore_work);
1956	pr_debug("Started restoring pasid 0x%x\n", p->pasid);
1957
1958	/* Setting last_restore_timestamp before successful restoration.
1959	 * Otherwise this would have to be set by KGD (restore_process_bos)
1960	 * before KFD BOs are unreserved. If not, the process can be evicted
1961	 * again before the timestamp is set.
1962	 * If restore fails, the timestamp will be set again in the next
1963	 * attempt. This would mean that the minimum GPU quanta would be
1964	 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
1965	 * functions)
1966	 */
1967
1968	p->last_restore_timestamp = get_jiffies_64();
1969	/* VMs may not have been acquired yet during debugging. */
1970	if (p->kgd_process_info)
1971		ret = amdgpu_amdkfd_gpuvm_restore_process_bos(p->kgd_process_info,
1972							     &p->ef);
1973	if (ret) {
1974		pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
1975			 p->pasid, PROCESS_BACK_OFF_TIME_MS);
1976		ret = queue_delayed_work(kfd_restore_wq, &p->restore_work,
1977				msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS));
1978		WARN(!ret, "reschedule restore work failed\n");
1979		return;
1980	}
1981
1982	ret = kfd_process_restore_queues(p);
1983	if (!ret)
1984		pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
1985	else
1986		pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
1987}
1988
1989void kfd_suspend_all_processes(void)
1990{
1991	struct kfd_process *p;
1992	unsigned int temp;
1993	int idx = srcu_read_lock(&kfd_processes_srcu);
1994
1995	WARN(debug_evictions, "Evicting all processes");
1996	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1997		cancel_delayed_work_sync(&p->eviction_work);
1998		flush_delayed_work(&p->restore_work);
1999
2000		if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND))
2001			pr_err("Failed to suspend process 0x%x\n", p->pasid);
2002		dma_fence_signal(p->ef);
2003		dma_fence_put(p->ef);
2004		p->ef = NULL;
2005	}
2006	srcu_read_unlock(&kfd_processes_srcu, idx);
2007}
2008
2009int kfd_resume_all_processes(void)
2010{
2011	struct kfd_process *p;
2012	unsigned int temp;
2013	int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
2014
2015	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2016		if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) {
2017			pr_err("Restore process %d failed during resume\n",
2018			       p->pasid);
2019			ret = -EFAULT;
2020		}
2021	}
2022	srcu_read_unlock(&kfd_processes_srcu, idx);
2023	return ret;
2024}
2025
2026int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process,
2027			  struct vm_area_struct *vma)
2028{
2029	struct kfd_process_device *pdd;
2030	struct qcm_process_device *qpd;
2031
2032	if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
2033		pr_err("Incorrect CWSR mapping size.\n");
2034		return -EINVAL;
2035	}
2036
2037	pdd = kfd_get_process_device_data(dev, process);
2038	if (!pdd)
2039		return -EINVAL;
2040	qpd = &pdd->qpd;
2041
2042	qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2043					get_order(KFD_CWSR_TBA_TMA_SIZE));
2044	if (!qpd->cwsr_kaddr) {
2045		pr_err("Error allocating per process CWSR buffer.\n");
2046		return -ENOMEM;
2047	}
2048
2049	vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND
2050		| VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP);
2051	/* Mapping pages to user process */
2052	return remap_pfn_range(vma, vma->vm_start,
2053			       PFN_DOWN(__pa(qpd->cwsr_kaddr)),
2054			       KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
2055}
2056
2057void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type)
2058{
2059	struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
2060	uint64_t tlb_seq = amdgpu_vm_tlb_seq(vm);
2061	struct kfd_node *dev = pdd->dev;
2062	uint32_t xcc_mask = dev->xcc_mask;
2063	int xcc = 0;
2064
2065	/*
2066	 * It can be that we race and lose here, but that is extremely unlikely
2067	 * and the worst thing which could happen is that we flush the changes
2068	 * into the TLB once more which is harmless.
2069	 */
2070	if (atomic64_xchg(&pdd->tlb_seq, tlb_seq) == tlb_seq)
2071		return;
2072
2073	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
2074		/* Nothing to flush until a VMID is assigned, which
2075		 * only happens when the first queue is created.
2076		 */
2077		if (pdd->qpd.vmid)
2078			amdgpu_amdkfd_flush_gpu_tlb_vmid(dev->adev,
2079							pdd->qpd.vmid);
2080	} else {
2081		for_each_inst(xcc, xcc_mask)
2082			amdgpu_amdkfd_flush_gpu_tlb_pasid(
2083				dev->adev, pdd->process->pasid, type, xcc);
2084	}
2085}
2086
2087/* assumes caller holds process lock. */
2088int kfd_process_drain_interrupts(struct kfd_process_device *pdd)
2089{
2090	uint32_t irq_drain_fence[8];
2091	uint8_t node_id = 0;
2092	int r = 0;
2093
2094	if (!KFD_IS_SOC15(pdd->dev))
2095		return 0;
2096
2097	pdd->process->irq_drain_is_open = true;
2098
2099	memset(irq_drain_fence, 0, sizeof(irq_drain_fence));
2100	irq_drain_fence[0] = (KFD_IRQ_FENCE_SOURCEID << 8) |
2101							KFD_IRQ_FENCE_CLIENTID;
2102	irq_drain_fence[3] = pdd->process->pasid;
2103
2104	/*
2105	 * For GFX 9.4.3, send the NodeId also in IH cookie DW[3]
2106	 */
2107	if (KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 3)) {
2108		node_id = ffs(pdd->dev->interrupt_bitmap) - 1;
2109		irq_drain_fence[3] |= node_id << 16;
2110	}
2111
2112	/* ensure stale irqs scheduled KFD interrupts and send drain fence. */
2113	if (amdgpu_amdkfd_send_close_event_drain_irq(pdd->dev->adev,
2114						     irq_drain_fence)) {
2115		pdd->process->irq_drain_is_open = false;
2116		return 0;
2117	}
2118
2119	r = wait_event_interruptible(pdd->process->wait_irq_drain,
2120				     !READ_ONCE(pdd->process->irq_drain_is_open));
2121	if (r)
2122		pdd->process->irq_drain_is_open = false;
2123
2124	return r;
2125}
2126
2127void kfd_process_close_interrupt_drain(unsigned int pasid)
2128{
2129	struct kfd_process *p;
2130
2131	p = kfd_lookup_process_by_pasid(pasid);
2132
2133	if (!p)
2134		return;
2135
2136	WRITE_ONCE(p->irq_drain_is_open, false);
2137	wake_up_all(&p->wait_irq_drain);
2138	kfd_unref_process(p);
2139}
2140
2141struct send_exception_work_handler_workarea {
2142	struct work_struct work;
2143	struct kfd_process *p;
2144	unsigned int queue_id;
2145	uint64_t error_reason;
2146};
2147
2148static void send_exception_work_handler(struct work_struct *work)
2149{
2150	struct send_exception_work_handler_workarea *workarea;
2151	struct kfd_process *p;
2152	struct queue *q;
2153	struct mm_struct *mm;
2154	struct kfd_context_save_area_header __user *csa_header;
2155	uint64_t __user *err_payload_ptr;
2156	uint64_t cur_err;
2157	uint32_t ev_id;
2158
2159	workarea = container_of(work,
2160				struct send_exception_work_handler_workarea,
2161				work);
2162	p = workarea->p;
2163
2164	mm = get_task_mm(p->lead_thread);
2165
2166	if (!mm)
2167		return;
2168
2169	kthread_use_mm(mm);
2170
2171	q = pqm_get_user_queue(&p->pqm, workarea->queue_id);
2172
2173	if (!q)
2174		goto out;
2175
2176	csa_header = (void __user *)q->properties.ctx_save_restore_area_address;
2177
2178	get_user(err_payload_ptr, (uint64_t __user **)&csa_header->err_payload_addr);
2179	get_user(cur_err, err_payload_ptr);
2180	cur_err |= workarea->error_reason;
2181	put_user(cur_err, err_payload_ptr);
2182	get_user(ev_id, &csa_header->err_event_id);
2183
2184	kfd_set_event(p, ev_id);
2185
2186out:
2187	kthread_unuse_mm(mm);
2188	mmput(mm);
2189}
2190
2191int kfd_send_exception_to_runtime(struct kfd_process *p,
2192			unsigned int queue_id,
2193			uint64_t error_reason)
2194{
2195	struct send_exception_work_handler_workarea worker;
2196
2197	INIT_WORK_ONSTACK(&worker.work, send_exception_work_handler);
2198
2199	worker.p = p;
2200	worker.queue_id = queue_id;
2201	worker.error_reason = error_reason;
2202
2203	schedule_work(&worker.work);
2204	flush_work(&worker.work);
2205	destroy_work_on_stack(&worker.work);
2206
2207	return 0;
2208}
2209
2210struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id)
2211{
2212	int i;
2213
2214	if (gpu_id) {
2215		for (i = 0; i < p->n_pdds; i++) {
2216			struct kfd_process_device *pdd = p->pdds[i];
2217
2218			if (pdd->user_gpu_id == gpu_id)
2219				return pdd;
2220		}
2221	}
2222	return NULL;
2223}
2224
2225int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id)
2226{
2227	int i;
2228
2229	if (!actual_gpu_id)
2230		return 0;
2231
2232	for (i = 0; i < p->n_pdds; i++) {
2233		struct kfd_process_device *pdd = p->pdds[i];
2234
2235		if (pdd->dev->id == actual_gpu_id)
2236			return pdd->user_gpu_id;
2237	}
2238	return -EINVAL;
2239}
2240
2241#if defined(CONFIG_DEBUG_FS)
2242
2243int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
2244{
2245	struct kfd_process *p;
2246	unsigned int temp;
2247	int r = 0;
2248
2249	int idx = srcu_read_lock(&kfd_processes_srcu);
2250
2251	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2252		seq_printf(m, "Process %d PASID 0x%x:\n",
2253			   p->lead_thread->tgid, p->pasid);
2254
2255		mutex_lock(&p->mutex);
2256		r = pqm_debugfs_mqds(m, &p->pqm);
2257		mutex_unlock(&p->mutex);
2258
2259		if (r)
2260			break;
2261	}
2262
2263	srcu_read_unlock(&kfd_processes_srcu, idx);
2264
2265	return r;
2266}
2267
2268#endif
2269