1/*
2 * Copyright 2009 Jerome Glisse.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
23 * of the Software.
24 *
25 */
26/*
27 * Authors:
28 *    Jerome Glisse <glisse@freedesktop.org>
29 *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30 *    Dave Airlie
31 */
32
33#include <linux/dma-mapping.h>
34#include <linux/iommu.h>
35#include <linux/pagemap.h>
36#include <linux/sched/task.h>
37#include <linux/sched/mm.h>
38#include <linux/seq_file.h>
39#include <linux/slab.h>
40#include <linux/swap.h>
41#include <linux/dma-buf.h>
42#include <linux/sizes.h>
43#include <linux/module.h>
44
45#include <drm/drm_drv.h>
46#include <drm/ttm/ttm_bo.h>
47#include <drm/ttm/ttm_placement.h>
48#include <drm/ttm/ttm_range_manager.h>
49#include <drm/ttm/ttm_tt.h>
50
51#include <drm/amdgpu_drm.h>
52
53#include "amdgpu.h"
54#include "amdgpu_object.h"
55#include "amdgpu_trace.h"
56#include "amdgpu_amdkfd.h"
57#include "amdgpu_sdma.h"
58#include "amdgpu_ras.h"
59#include "amdgpu_hmm.h"
60#include "amdgpu_atomfirmware.h"
61#include "amdgpu_res_cursor.h"
62#include "bif/bif_4_1_d.h"
63
64MODULE_IMPORT_NS(DMA_BUF);
65
66#define AMDGPU_TTM_VRAM_MAX_DW_READ	((size_t)128)
67
68static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
69				   struct ttm_tt *ttm,
70				   struct ttm_resource *bo_mem);
71static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
72				      struct ttm_tt *ttm);
73
74static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
75				    unsigned int type,
76				    uint64_t size_in_page)
77{
78	return ttm_range_man_init(&adev->mman.bdev, type,
79				  false, size_in_page);
80}
81
82/**
83 * amdgpu_evict_flags - Compute placement flags
84 *
85 * @bo: The buffer object to evict
86 * @placement: Possible destination(s) for evicted BO
87 *
88 * Fill in placement data when ttm_bo_evict() is called
89 */
90static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
91				struct ttm_placement *placement)
92{
93	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
94	struct amdgpu_bo *abo;
95	static const struct ttm_place placements = {
96		.fpfn = 0,
97		.lpfn = 0,
98		.mem_type = TTM_PL_SYSTEM,
99		.flags = 0
100	};
101
102	/* Don't handle scatter gather BOs */
103	if (bo->type == ttm_bo_type_sg) {
104		placement->num_placement = 0;
105		placement->num_busy_placement = 0;
106		return;
107	}
108
109	/* Object isn't an AMDGPU object so ignore */
110	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
111		placement->placement = &placements;
112		placement->busy_placement = &placements;
113		placement->num_placement = 1;
114		placement->num_busy_placement = 1;
115		return;
116	}
117
118	abo = ttm_to_amdgpu_bo(bo);
119	if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
120		placement->num_placement = 0;
121		placement->num_busy_placement = 0;
122		return;
123	}
124
125	switch (bo->resource->mem_type) {
126	case AMDGPU_PL_GDS:
127	case AMDGPU_PL_GWS:
128	case AMDGPU_PL_OA:
129	case AMDGPU_PL_DOORBELL:
130		placement->num_placement = 0;
131		placement->num_busy_placement = 0;
132		return;
133
134	case TTM_PL_VRAM:
135		if (!adev->mman.buffer_funcs_enabled) {
136			/* Move to system memory */
137			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
138		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
139			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
140			   amdgpu_bo_in_cpu_visible_vram(abo)) {
141
142			/* Try evicting to the CPU inaccessible part of VRAM
143			 * first, but only set GTT as busy placement, so this
144			 * BO will be evicted to GTT rather than causing other
145			 * BOs to be evicted from VRAM
146			 */
147			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
148							AMDGPU_GEM_DOMAIN_GTT |
149							AMDGPU_GEM_DOMAIN_CPU);
150			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
151			abo->placements[0].lpfn = 0;
152			abo->placement.busy_placement = &abo->placements[1];
153			abo->placement.num_busy_placement = 1;
154		} else {
155			/* Move to GTT memory */
156			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
157							AMDGPU_GEM_DOMAIN_CPU);
158		}
159		break;
160	case TTM_PL_TT:
161	case AMDGPU_PL_PREEMPT:
162	default:
163		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
164		break;
165	}
166	*placement = abo->placement;
167}
168
169/**
170 * amdgpu_ttm_map_buffer - Map memory into the GART windows
171 * @bo: buffer object to map
172 * @mem: memory object to map
173 * @mm_cur: range to map
174 * @window: which GART window to use
175 * @ring: DMA ring to use for the copy
176 * @tmz: if we should setup a TMZ enabled mapping
177 * @size: in number of bytes to map, out number of bytes mapped
178 * @addr: resulting address inside the MC address space
179 *
180 * Setup one of the GART windows to access a specific piece of memory or return
181 * the physical address for local memory.
182 */
183static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
184				 struct ttm_resource *mem,
185				 struct amdgpu_res_cursor *mm_cur,
186				 unsigned int window, struct amdgpu_ring *ring,
187				 bool tmz, uint64_t *size, uint64_t *addr)
188{
189	struct amdgpu_device *adev = ring->adev;
190	unsigned int offset, num_pages, num_dw, num_bytes;
191	uint64_t src_addr, dst_addr;
192	struct amdgpu_job *job;
193	void *cpu_addr;
194	uint64_t flags;
195	unsigned int i;
196	int r;
197
198	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
199	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
200
201	if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
202		return -EINVAL;
203
204	/* Map only what can't be accessed directly */
205	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
206		*addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
207			mm_cur->start;
208		return 0;
209	}
210
211
212	/*
213	 * If start begins at an offset inside the page, then adjust the size
214	 * and addr accordingly
215	 */
216	offset = mm_cur->start & ~PAGE_MASK;
217
218	num_pages = PFN_UP(*size + offset);
219	num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
220
221	*size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
222
223	*addr = adev->gmc.gart_start;
224	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
225		AMDGPU_GPU_PAGE_SIZE;
226	*addr += offset;
227
228	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
229	num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
230
231	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
232				     AMDGPU_FENCE_OWNER_UNDEFINED,
233				     num_dw * 4 + num_bytes,
234				     AMDGPU_IB_POOL_DELAYED, &job);
235	if (r)
236		return r;
237
238	src_addr = num_dw * 4;
239	src_addr += job->ibs[0].gpu_addr;
240
241	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
242	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
243	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
244				dst_addr, num_bytes, false);
245
246	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
247	WARN_ON(job->ibs[0].length_dw > num_dw);
248
249	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
250	if (tmz)
251		flags |= AMDGPU_PTE_TMZ;
252
253	cpu_addr = &job->ibs[0].ptr[num_dw];
254
255	if (mem->mem_type == TTM_PL_TT) {
256		dma_addr_t *dma_addr;
257
258		dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
259		amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
260	} else {
261		dma_addr_t dma_address;
262
263		dma_address = mm_cur->start;
264		dma_address += adev->vm_manager.vram_base_offset;
265
266		for (i = 0; i < num_pages; ++i) {
267			amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
268					flags, cpu_addr);
269			dma_address += PAGE_SIZE;
270		}
271	}
272
273	dma_fence_put(amdgpu_job_submit(job));
274	return 0;
275}
276
277/**
278 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
279 * @adev: amdgpu device
280 * @src: buffer/address where to read from
281 * @dst: buffer/address where to write to
282 * @size: number of bytes to copy
283 * @tmz: if a secure copy should be used
284 * @resv: resv object to sync to
285 * @f: Returns the last fence if multiple jobs are submitted.
286 *
287 * The function copies @size bytes from {src->mem + src->offset} to
288 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
289 * move and different for a BO to BO copy.
290 *
291 */
292int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
293			       const struct amdgpu_copy_mem *src,
294			       const struct amdgpu_copy_mem *dst,
295			       uint64_t size, bool tmz,
296			       struct dma_resv *resv,
297			       struct dma_fence **f)
298{
299	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
300	struct amdgpu_res_cursor src_mm, dst_mm;
301	struct dma_fence *fence = NULL;
302	int r = 0;
303
304	if (!adev->mman.buffer_funcs_enabled) {
305		DRM_ERROR("Trying to move memory with ring turned off.\n");
306		return -EINVAL;
307	}
308
309	amdgpu_res_first(src->mem, src->offset, size, &src_mm);
310	amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
311
312	mutex_lock(&adev->mman.gtt_window_lock);
313	while (src_mm.remaining) {
314		uint64_t from, to, cur_size;
315		struct dma_fence *next;
316
317		/* Never copy more than 256MiB at once to avoid a timeout */
318		cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
319
320		/* Map src to window 0 and dst to window 1. */
321		r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
322					  0, ring, tmz, &cur_size, &from);
323		if (r)
324			goto error;
325
326		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
327					  1, ring, tmz, &cur_size, &to);
328		if (r)
329			goto error;
330
331		r = amdgpu_copy_buffer(ring, from, to, cur_size,
332				       resv, &next, false, true, tmz);
333		if (r)
334			goto error;
335
336		dma_fence_put(fence);
337		fence = next;
338
339		amdgpu_res_next(&src_mm, cur_size);
340		amdgpu_res_next(&dst_mm, cur_size);
341	}
342error:
343	mutex_unlock(&adev->mman.gtt_window_lock);
344	if (f)
345		*f = dma_fence_get(fence);
346	dma_fence_put(fence);
347	return r;
348}
349
350/*
351 * amdgpu_move_blit - Copy an entire buffer to another buffer
352 *
353 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
354 * help move buffers to and from VRAM.
355 */
356static int amdgpu_move_blit(struct ttm_buffer_object *bo,
357			    bool evict,
358			    struct ttm_resource *new_mem,
359			    struct ttm_resource *old_mem)
360{
361	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
362	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
363	struct amdgpu_copy_mem src, dst;
364	struct dma_fence *fence = NULL;
365	int r;
366
367	src.bo = bo;
368	dst.bo = bo;
369	src.mem = old_mem;
370	dst.mem = new_mem;
371	src.offset = 0;
372	dst.offset = 0;
373
374	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
375				       new_mem->size,
376				       amdgpu_bo_encrypted(abo),
377				       bo->base.resv, &fence);
378	if (r)
379		goto error;
380
381	/* clear the space being freed */
382	if (old_mem->mem_type == TTM_PL_VRAM &&
383	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
384		struct dma_fence *wipe_fence = NULL;
385
386		r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence,
387					false);
388		if (r) {
389			goto error;
390		} else if (wipe_fence) {
391			dma_fence_put(fence);
392			fence = wipe_fence;
393		}
394	}
395
396	/* Always block for VM page tables before committing the new location */
397	if (bo->type == ttm_bo_type_kernel)
398		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
399	else
400		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
401	dma_fence_put(fence);
402	return r;
403
404error:
405	if (fence)
406		dma_fence_wait(fence, false);
407	dma_fence_put(fence);
408	return r;
409}
410
411/*
412 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
413 *
414 * Called by amdgpu_bo_move()
415 */
416static bool amdgpu_mem_visible(struct amdgpu_device *adev,
417			       struct ttm_resource *mem)
418{
419	u64 mem_size = (u64)mem->size;
420	struct amdgpu_res_cursor cursor;
421	u64 end;
422
423	if (mem->mem_type == TTM_PL_SYSTEM ||
424	    mem->mem_type == TTM_PL_TT)
425		return true;
426	if (mem->mem_type != TTM_PL_VRAM)
427		return false;
428
429	amdgpu_res_first(mem, 0, mem_size, &cursor);
430	end = cursor.start + cursor.size;
431	while (cursor.remaining) {
432		amdgpu_res_next(&cursor, cursor.size);
433
434		if (!cursor.remaining)
435			break;
436
437		/* ttm_resource_ioremap only supports contiguous memory */
438		if (end != cursor.start)
439			return false;
440
441		end = cursor.start + cursor.size;
442	}
443
444	return end <= adev->gmc.visible_vram_size;
445}
446
447/*
448 * amdgpu_bo_move - Move a buffer object to a new memory location
449 *
450 * Called by ttm_bo_handle_move_mem()
451 */
452static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
453			  struct ttm_operation_ctx *ctx,
454			  struct ttm_resource *new_mem,
455			  struct ttm_place *hop)
456{
457	struct amdgpu_device *adev;
458	struct amdgpu_bo *abo;
459	struct ttm_resource *old_mem = bo->resource;
460	int r;
461
462	if (new_mem->mem_type == TTM_PL_TT ||
463	    new_mem->mem_type == AMDGPU_PL_PREEMPT) {
464		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
465		if (r)
466			return r;
467	}
468
469	abo = ttm_to_amdgpu_bo(bo);
470	adev = amdgpu_ttm_adev(bo->bdev);
471
472	if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
473			 bo->ttm == NULL)) {
474		ttm_bo_move_null(bo, new_mem);
475		goto out;
476	}
477	if (old_mem->mem_type == TTM_PL_SYSTEM &&
478	    (new_mem->mem_type == TTM_PL_TT ||
479	     new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
480		ttm_bo_move_null(bo, new_mem);
481		goto out;
482	}
483	if ((old_mem->mem_type == TTM_PL_TT ||
484	     old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
485	    new_mem->mem_type == TTM_PL_SYSTEM) {
486		r = ttm_bo_wait_ctx(bo, ctx);
487		if (r)
488			return r;
489
490		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
491		ttm_resource_free(bo, &bo->resource);
492		ttm_bo_assign_mem(bo, new_mem);
493		goto out;
494	}
495
496	if (old_mem->mem_type == AMDGPU_PL_GDS ||
497	    old_mem->mem_type == AMDGPU_PL_GWS ||
498	    old_mem->mem_type == AMDGPU_PL_OA ||
499	    old_mem->mem_type == AMDGPU_PL_DOORBELL ||
500	    new_mem->mem_type == AMDGPU_PL_GDS ||
501	    new_mem->mem_type == AMDGPU_PL_GWS ||
502	    new_mem->mem_type == AMDGPU_PL_OA ||
503	    new_mem->mem_type == AMDGPU_PL_DOORBELL) {
504		/* Nothing to save here */
505		ttm_bo_move_null(bo, new_mem);
506		goto out;
507	}
508
509	if (bo->type == ttm_bo_type_device &&
510	    new_mem->mem_type == TTM_PL_VRAM &&
511	    old_mem->mem_type != TTM_PL_VRAM) {
512		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
513		 * accesses the BO after it's moved.
514		 */
515		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
516	}
517
518	if (adev->mman.buffer_funcs_enabled) {
519		if (((old_mem->mem_type == TTM_PL_SYSTEM &&
520		      new_mem->mem_type == TTM_PL_VRAM) ||
521		     (old_mem->mem_type == TTM_PL_VRAM &&
522		      new_mem->mem_type == TTM_PL_SYSTEM))) {
523			hop->fpfn = 0;
524			hop->lpfn = 0;
525			hop->mem_type = TTM_PL_TT;
526			hop->flags = TTM_PL_FLAG_TEMPORARY;
527			return -EMULTIHOP;
528		}
529
530		r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
531	} else {
532		r = -ENODEV;
533	}
534
535	if (r) {
536		/* Check that all memory is CPU accessible */
537		if (!amdgpu_mem_visible(adev, old_mem) ||
538		    !amdgpu_mem_visible(adev, new_mem)) {
539			pr_err("Move buffer fallback to memcpy unavailable\n");
540			return r;
541		}
542
543		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
544		if (r)
545			return r;
546	}
547
548	trace_amdgpu_bo_move(abo, new_mem->mem_type, old_mem->mem_type);
549out:
550	/* update statistics */
551	atomic64_add(bo->base.size, &adev->num_bytes_moved);
552	amdgpu_bo_move_notify(bo, evict);
553	return 0;
554}
555
556/*
557 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
558 *
559 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
560 */
561static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
562				     struct ttm_resource *mem)
563{
564	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
565	size_t bus_size = (size_t)mem->size;
566
567	switch (mem->mem_type) {
568	case TTM_PL_SYSTEM:
569		/* system memory */
570		return 0;
571	case TTM_PL_TT:
572	case AMDGPU_PL_PREEMPT:
573		break;
574	case TTM_PL_VRAM:
575		mem->bus.offset = mem->start << PAGE_SHIFT;
576		/* check if it's visible */
577		if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
578			return -EINVAL;
579
580		if (adev->mman.aper_base_kaddr &&
581		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
582			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
583					mem->bus.offset;
584
585		mem->bus.offset += adev->gmc.aper_base;
586		mem->bus.is_iomem = true;
587		break;
588	case AMDGPU_PL_DOORBELL:
589		mem->bus.offset = mem->start << PAGE_SHIFT;
590		mem->bus.offset += adev->doorbell.base;
591		mem->bus.is_iomem = true;
592		mem->bus.caching = ttm_uncached;
593		break;
594	default:
595		return -EINVAL;
596	}
597	return 0;
598}
599
600static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
601					   unsigned long page_offset)
602{
603	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
604	struct amdgpu_res_cursor cursor;
605
606	amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
607			 &cursor);
608
609	if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
610		return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
611
612	return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
613}
614
615/**
616 * amdgpu_ttm_domain_start - Returns GPU start address
617 * @adev: amdgpu device object
618 * @type: type of the memory
619 *
620 * Returns:
621 * GPU start address of a memory domain
622 */
623
624uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
625{
626	switch (type) {
627	case TTM_PL_TT:
628		return adev->gmc.gart_start;
629	case TTM_PL_VRAM:
630		return adev->gmc.vram_start;
631	}
632
633	return 0;
634}
635
636/*
637 * TTM backend functions.
638 */
639struct amdgpu_ttm_tt {
640	struct ttm_tt	ttm;
641	struct drm_gem_object	*gobj;
642	u64			offset;
643	uint64_t		userptr;
644	struct task_struct	*usertask;
645	uint32_t		userflags;
646	bool			bound;
647	int32_t			pool_id;
648};
649
650#define ttm_to_amdgpu_ttm_tt(ptr)	container_of(ptr, struct amdgpu_ttm_tt, ttm)
651
652#ifdef CONFIG_DRM_AMDGPU_USERPTR
653/*
654 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
655 * memory and start HMM tracking CPU page table update
656 *
657 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
658 * once afterwards to stop HMM tracking
659 */
660int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
661				 struct hmm_range **range)
662{
663	struct ttm_tt *ttm = bo->tbo.ttm;
664	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
665	unsigned long start = gtt->userptr;
666	struct vm_area_struct *vma;
667	struct mm_struct *mm;
668	bool readonly;
669	int r = 0;
670
671	/* Make sure get_user_pages_done() can cleanup gracefully */
672	*range = NULL;
673
674	mm = bo->notifier.mm;
675	if (unlikely(!mm)) {
676		DRM_DEBUG_DRIVER("BO is not registered?\n");
677		return -EFAULT;
678	}
679
680	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
681		return -ESRCH;
682
683	mmap_read_lock(mm);
684	vma = vma_lookup(mm, start);
685	if (unlikely(!vma)) {
686		r = -EFAULT;
687		goto out_unlock;
688	}
689	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
690		vma->vm_file)) {
691		r = -EPERM;
692		goto out_unlock;
693	}
694
695	readonly = amdgpu_ttm_tt_is_readonly(ttm);
696	r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
697				       readonly, NULL, pages, range);
698out_unlock:
699	mmap_read_unlock(mm);
700	if (r)
701		pr_debug("failed %d to get user pages 0x%lx\n", r, start);
702
703	mmput(mm);
704
705	return r;
706}
707
708/* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
709 */
710void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
711				      struct hmm_range *range)
712{
713	struct amdgpu_ttm_tt *gtt = (void *)ttm;
714
715	if (gtt && gtt->userptr && range)
716		amdgpu_hmm_range_get_pages_done(range);
717}
718
719/*
720 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
721 * Check if the pages backing this ttm range have been invalidated
722 *
723 * Returns: true if pages are still valid
724 */
725bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
726				       struct hmm_range *range)
727{
728	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
729
730	if (!gtt || !gtt->userptr || !range)
731		return false;
732
733	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
734		gtt->userptr, ttm->num_pages);
735
736	WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
737
738	return !amdgpu_hmm_range_get_pages_done(range);
739}
740#endif
741
742/*
743 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
744 *
745 * Called by amdgpu_cs_list_validate(). This creates the page list
746 * that backs user memory and will ultimately be mapped into the device
747 * address space.
748 */
749void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
750{
751	unsigned long i;
752
753	for (i = 0; i < ttm->num_pages; ++i)
754		ttm->pages[i] = pages ? pages[i] : NULL;
755}
756
757/*
758 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
759 *
760 * Called by amdgpu_ttm_backend_bind()
761 **/
762static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
763				     struct ttm_tt *ttm)
764{
765	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
766	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
767	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
768	enum dma_data_direction direction = write ?
769		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
770	int r;
771
772	/* Allocate an SG array and squash pages into it */
773	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
774				      (u64)ttm->num_pages << PAGE_SHIFT,
775				      GFP_KERNEL);
776	if (r)
777		goto release_sg;
778
779	/* Map SG to device */
780	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
781	if (r)
782		goto release_sg;
783
784	/* convert SG to linear array of pages and dma addresses */
785	drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
786				       ttm->num_pages);
787
788	return 0;
789
790release_sg:
791	kfree(ttm->sg);
792	ttm->sg = NULL;
793	return r;
794}
795
796/*
797 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
798 */
799static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
800					struct ttm_tt *ttm)
801{
802	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
803	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
804	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
805	enum dma_data_direction direction = write ?
806		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
807
808	/* double check that we don't free the table twice */
809	if (!ttm->sg || !ttm->sg->sgl)
810		return;
811
812	/* unmap the pages mapped to the device */
813	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
814	sg_free_table(ttm->sg);
815}
816
817/*
818 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
819 * MQDn+CtrlStackn where n is the number of XCCs per partition.
820 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
821 * and uses memory type default, UC. The rest of pages_per_xcc are
822 * Ctrl stack and modify their memory type to NC.
823 */
824static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
825				struct ttm_tt *ttm, uint64_t flags)
826{
827	struct amdgpu_ttm_tt *gtt = (void *)ttm;
828	uint64_t total_pages = ttm->num_pages;
829	int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
830	uint64_t page_idx, pages_per_xcc;
831	int i;
832	uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) |
833			AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
834
835	pages_per_xcc = total_pages;
836	do_div(pages_per_xcc, num_xcc);
837
838	for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
839		/* MQD page: use default flags */
840		amdgpu_gart_bind(adev,
841				gtt->offset + (page_idx << PAGE_SHIFT),
842				1, &gtt->ttm.dma_address[page_idx], flags);
843		/*
844		 * Ctrl pages - modify the memory type to NC (ctrl_flags) from
845		 * the second page of the BO onward.
846		 */
847		amdgpu_gart_bind(adev,
848				gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
849				pages_per_xcc - 1,
850				&gtt->ttm.dma_address[page_idx + 1],
851				ctrl_flags);
852	}
853}
854
855static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
856				 struct ttm_buffer_object *tbo,
857				 uint64_t flags)
858{
859	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
860	struct ttm_tt *ttm = tbo->ttm;
861	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
862
863	if (amdgpu_bo_encrypted(abo))
864		flags |= AMDGPU_PTE_TMZ;
865
866	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
867		amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
868	} else {
869		amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
870				 gtt->ttm.dma_address, flags);
871	}
872}
873
874/*
875 * amdgpu_ttm_backend_bind - Bind GTT memory
876 *
877 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
878 * This handles binding GTT memory to the device address space.
879 */
880static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
881				   struct ttm_tt *ttm,
882				   struct ttm_resource *bo_mem)
883{
884	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
885	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
886	uint64_t flags;
887	int r;
888
889	if (!bo_mem)
890		return -EINVAL;
891
892	if (gtt->bound)
893		return 0;
894
895	if (gtt->userptr) {
896		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
897		if (r) {
898			DRM_ERROR("failed to pin userptr\n");
899			return r;
900		}
901	} else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
902		if (!ttm->sg) {
903			struct dma_buf_attachment *attach;
904			struct sg_table *sgt;
905
906			attach = gtt->gobj->import_attach;
907			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
908			if (IS_ERR(sgt))
909				return PTR_ERR(sgt);
910
911			ttm->sg = sgt;
912		}
913
914		drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
915					       ttm->num_pages);
916	}
917
918	if (!ttm->num_pages) {
919		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
920		     ttm->num_pages, bo_mem, ttm);
921	}
922
923	if (bo_mem->mem_type != TTM_PL_TT ||
924	    !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
925		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
926		return 0;
927	}
928
929	/* compute PTE flags relevant to this BO memory */
930	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
931
932	/* bind pages into GART page tables */
933	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
934	amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
935			 gtt->ttm.dma_address, flags);
936	gtt->bound = true;
937	return 0;
938}
939
940/*
941 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
942 * through AGP or GART aperture.
943 *
944 * If bo is accessible through AGP aperture, then use AGP aperture
945 * to access bo; otherwise allocate logical space in GART aperture
946 * and map bo to GART aperture.
947 */
948int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
949{
950	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
951	struct ttm_operation_ctx ctx = { false, false };
952	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
953	struct ttm_placement placement;
954	struct ttm_place placements;
955	struct ttm_resource *tmp;
956	uint64_t addr, flags;
957	int r;
958
959	if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
960		return 0;
961
962	addr = amdgpu_gmc_agp_addr(bo);
963	if (addr != AMDGPU_BO_INVALID_OFFSET) {
964		bo->resource->start = addr >> PAGE_SHIFT;
965		return 0;
966	}
967
968	/* allocate GART space */
969	placement.num_placement = 1;
970	placement.placement = &placements;
971	placement.num_busy_placement = 1;
972	placement.busy_placement = &placements;
973	placements.fpfn = 0;
974	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
975	placements.mem_type = TTM_PL_TT;
976	placements.flags = bo->resource->placement;
977
978	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
979	if (unlikely(r))
980		return r;
981
982	/* compute PTE flags for this buffer object */
983	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
984
985	/* Bind pages */
986	gtt->offset = (u64)tmp->start << PAGE_SHIFT;
987	amdgpu_ttm_gart_bind(adev, bo, flags);
988	amdgpu_gart_invalidate_tlb(adev);
989	ttm_resource_free(bo, &bo->resource);
990	ttm_bo_assign_mem(bo, tmp);
991
992	return 0;
993}
994
995/*
996 * amdgpu_ttm_recover_gart - Rebind GTT pages
997 *
998 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
999 * rebind GTT pages during a GPU reset.
1000 */
1001void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1002{
1003	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1004	uint64_t flags;
1005
1006	if (!tbo->ttm)
1007		return;
1008
1009	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1010	amdgpu_ttm_gart_bind(adev, tbo, flags);
1011}
1012
1013/*
1014 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1015 *
1016 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1017 * ttm_tt_destroy().
1018 */
1019static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1020				      struct ttm_tt *ttm)
1021{
1022	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1023	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1024
1025	/* if the pages have userptr pinning then clear that first */
1026	if (gtt->userptr) {
1027		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1028	} else if (ttm->sg && gtt->gobj->import_attach) {
1029		struct dma_buf_attachment *attach;
1030
1031		attach = gtt->gobj->import_attach;
1032		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1033		ttm->sg = NULL;
1034	}
1035
1036	if (!gtt->bound)
1037		return;
1038
1039	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1040		return;
1041
1042	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1043	amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1044	gtt->bound = false;
1045}
1046
1047static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1048				       struct ttm_tt *ttm)
1049{
1050	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1051
1052	if (gtt->usertask)
1053		put_task_struct(gtt->usertask);
1054
1055	ttm_tt_fini(&gtt->ttm);
1056	kfree(gtt);
1057}
1058
1059/**
1060 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1061 *
1062 * @bo: The buffer object to create a GTT ttm_tt object around
1063 * @page_flags: Page flags to be added to the ttm_tt object
1064 *
1065 * Called by ttm_tt_create().
1066 */
1067static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1068					   uint32_t page_flags)
1069{
1070	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1071	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1072	struct amdgpu_ttm_tt *gtt;
1073	enum ttm_caching caching;
1074
1075	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1076	if (!gtt)
1077		return NULL;
1078
1079	gtt->gobj = &bo->base;
1080	if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1081		gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1082	else
1083		gtt->pool_id = abo->xcp_id;
1084
1085	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1086		caching = ttm_write_combined;
1087	else
1088		caching = ttm_cached;
1089
1090	/* allocate space for the uninitialized page entries */
1091	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1092		kfree(gtt);
1093		return NULL;
1094	}
1095	return &gtt->ttm;
1096}
1097
1098/*
1099 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1100 *
1101 * Map the pages of a ttm_tt object to an address space visible
1102 * to the underlying device.
1103 */
1104static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1105				  struct ttm_tt *ttm,
1106				  struct ttm_operation_ctx *ctx)
1107{
1108	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1109	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1110	struct ttm_pool *pool;
1111	pgoff_t i;
1112	int ret;
1113
1114	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1115	if (gtt->userptr) {
1116		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1117		if (!ttm->sg)
1118			return -ENOMEM;
1119		return 0;
1120	}
1121
1122	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1123		return 0;
1124
1125	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1126		pool = &adev->mman.ttm_pools[gtt->pool_id];
1127	else
1128		pool = &adev->mman.bdev.pool;
1129	ret = ttm_pool_alloc(pool, ttm, ctx);
1130	if (ret)
1131		return ret;
1132
1133	for (i = 0; i < ttm->num_pages; ++i)
1134		ttm->pages[i]->mapping = bdev->dev_mapping;
1135
1136	return 0;
1137}
1138
1139/*
1140 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1141 *
1142 * Unmaps pages of a ttm_tt object from the device address space and
1143 * unpopulates the page array backing it.
1144 */
1145static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1146				     struct ttm_tt *ttm)
1147{
1148	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1149	struct amdgpu_device *adev;
1150	struct ttm_pool *pool;
1151	pgoff_t i;
1152
1153	amdgpu_ttm_backend_unbind(bdev, ttm);
1154
1155	if (gtt->userptr) {
1156		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1157		kfree(ttm->sg);
1158		ttm->sg = NULL;
1159		return;
1160	}
1161
1162	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1163		return;
1164
1165	for (i = 0; i < ttm->num_pages; ++i)
1166		ttm->pages[i]->mapping = NULL;
1167
1168	adev = amdgpu_ttm_adev(bdev);
1169
1170	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1171		pool = &adev->mman.ttm_pools[gtt->pool_id];
1172	else
1173		pool = &adev->mman.bdev.pool;
1174
1175	return ttm_pool_free(pool, ttm);
1176}
1177
1178/**
1179 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1180 * task
1181 *
1182 * @tbo: The ttm_buffer_object that contains the userptr
1183 * @user_addr:  The returned value
1184 */
1185int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1186			      uint64_t *user_addr)
1187{
1188	struct amdgpu_ttm_tt *gtt;
1189
1190	if (!tbo->ttm)
1191		return -EINVAL;
1192
1193	gtt = (void *)tbo->ttm;
1194	*user_addr = gtt->userptr;
1195	return 0;
1196}
1197
1198/**
1199 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1200 * task
1201 *
1202 * @bo: The ttm_buffer_object to bind this userptr to
1203 * @addr:  The address in the current tasks VM space to use
1204 * @flags: Requirements of userptr object.
1205 *
1206 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1207 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1208 * initialize GPU VM for a KFD process.
1209 */
1210int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1211			      uint64_t addr, uint32_t flags)
1212{
1213	struct amdgpu_ttm_tt *gtt;
1214
1215	if (!bo->ttm) {
1216		/* TODO: We want a separate TTM object type for userptrs */
1217		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1218		if (bo->ttm == NULL)
1219			return -ENOMEM;
1220	}
1221
1222	/* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1223	bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1224
1225	gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1226	gtt->userptr = addr;
1227	gtt->userflags = flags;
1228
1229	if (gtt->usertask)
1230		put_task_struct(gtt->usertask);
1231	gtt->usertask = current->group_leader;
1232	get_task_struct(gtt->usertask);
1233
1234	return 0;
1235}
1236
1237/*
1238 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1239 */
1240struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1241{
1242	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1243
1244	if (gtt == NULL)
1245		return NULL;
1246
1247	if (gtt->usertask == NULL)
1248		return NULL;
1249
1250	return gtt->usertask->mm;
1251}
1252
1253/*
1254 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1255 * address range for the current task.
1256 *
1257 */
1258bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1259				  unsigned long end, unsigned long *userptr)
1260{
1261	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1262	unsigned long size;
1263
1264	if (gtt == NULL || !gtt->userptr)
1265		return false;
1266
1267	/* Return false if no part of the ttm_tt object lies within
1268	 * the range
1269	 */
1270	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1271	if (gtt->userptr > end || gtt->userptr + size <= start)
1272		return false;
1273
1274	if (userptr)
1275		*userptr = gtt->userptr;
1276	return true;
1277}
1278
1279/*
1280 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1281 */
1282bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1283{
1284	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1285
1286	if (gtt == NULL || !gtt->userptr)
1287		return false;
1288
1289	return true;
1290}
1291
1292/*
1293 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1294 */
1295bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1296{
1297	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1298
1299	if (gtt == NULL)
1300		return false;
1301
1302	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1303}
1304
1305/**
1306 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1307 *
1308 * @ttm: The ttm_tt object to compute the flags for
1309 * @mem: The memory registry backing this ttm_tt object
1310 *
1311 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1312 */
1313uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1314{
1315	uint64_t flags = 0;
1316
1317	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1318		flags |= AMDGPU_PTE_VALID;
1319
1320	if (mem && (mem->mem_type == TTM_PL_TT ||
1321		    mem->mem_type == AMDGPU_PL_DOORBELL ||
1322		    mem->mem_type == AMDGPU_PL_PREEMPT)) {
1323		flags |= AMDGPU_PTE_SYSTEM;
1324
1325		if (ttm->caching == ttm_cached)
1326			flags |= AMDGPU_PTE_SNOOPED;
1327	}
1328
1329	if (mem && mem->mem_type == TTM_PL_VRAM &&
1330			mem->bus.caching == ttm_cached)
1331		flags |= AMDGPU_PTE_SNOOPED;
1332
1333	return flags;
1334}
1335
1336/**
1337 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1338 *
1339 * @adev: amdgpu_device pointer
1340 * @ttm: The ttm_tt object to compute the flags for
1341 * @mem: The memory registry backing this ttm_tt object
1342 *
1343 * Figure out the flags to use for a VM PTE (Page Table Entry).
1344 */
1345uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1346				 struct ttm_resource *mem)
1347{
1348	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1349
1350	flags |= adev->gart.gart_pte_flags;
1351	flags |= AMDGPU_PTE_READABLE;
1352
1353	if (!amdgpu_ttm_tt_is_readonly(ttm))
1354		flags |= AMDGPU_PTE_WRITEABLE;
1355
1356	return flags;
1357}
1358
1359/*
1360 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1361 * object.
1362 *
1363 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1364 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1365 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1366 * used to clean out a memory space.
1367 */
1368static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1369					    const struct ttm_place *place)
1370{
1371	struct dma_resv_iter resv_cursor;
1372	struct dma_fence *f;
1373
1374	if (!amdgpu_bo_is_amdgpu_bo(bo))
1375		return ttm_bo_eviction_valuable(bo, place);
1376
1377	/* Swapout? */
1378	if (bo->resource->mem_type == TTM_PL_SYSTEM)
1379		return true;
1380
1381	if (bo->type == ttm_bo_type_kernel &&
1382	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1383		return false;
1384
1385	/* If bo is a KFD BO, check if the bo belongs to the current process.
1386	 * If true, then return false as any KFD process needs all its BOs to
1387	 * be resident to run successfully
1388	 */
1389	dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1390				DMA_RESV_USAGE_BOOKKEEP, f) {
1391		if (amdkfd_fence_check_mm(f, current->mm))
1392			return false;
1393	}
1394
1395	/* Preemptible BOs don't own system resources managed by the
1396	 * driver (pages, VRAM, GART space). They point to resources
1397	 * owned by someone else (e.g. pageable memory in user mode
1398	 * or a DMABuf). They are used in a preemptible context so we
1399	 * can guarantee no deadlocks and good QoS in case of MMU
1400	 * notifiers or DMABuf move notifiers from the resource owner.
1401	 */
1402	if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1403		return false;
1404
1405	if (bo->resource->mem_type == TTM_PL_TT &&
1406	    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1407		return false;
1408
1409	return ttm_bo_eviction_valuable(bo, place);
1410}
1411
1412static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1413				      void *buf, size_t size, bool write)
1414{
1415	while (size) {
1416		uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1417		uint64_t bytes = 4 - (pos & 0x3);
1418		uint32_t shift = (pos & 0x3) * 8;
1419		uint32_t mask = 0xffffffff << shift;
1420		uint32_t value = 0;
1421
1422		if (size < bytes) {
1423			mask &= 0xffffffff >> (bytes - size) * 8;
1424			bytes = size;
1425		}
1426
1427		if (mask != 0xffffffff) {
1428			amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1429			if (write) {
1430				value &= ~mask;
1431				value |= (*(uint32_t *)buf << shift) & mask;
1432				amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1433			} else {
1434				value = (value & mask) >> shift;
1435				memcpy(buf, &value, bytes);
1436			}
1437		} else {
1438			amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1439		}
1440
1441		pos += bytes;
1442		buf += bytes;
1443		size -= bytes;
1444	}
1445}
1446
1447static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1448					unsigned long offset, void *buf,
1449					int len, int write)
1450{
1451	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1452	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1453	struct amdgpu_res_cursor src_mm;
1454	struct amdgpu_job *job;
1455	struct dma_fence *fence;
1456	uint64_t src_addr, dst_addr;
1457	unsigned int num_dw;
1458	int r, idx;
1459
1460	if (len != PAGE_SIZE)
1461		return -EINVAL;
1462
1463	if (!adev->mman.sdma_access_ptr)
1464		return -EACCES;
1465
1466	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1467		return -ENODEV;
1468
1469	if (write)
1470		memcpy(adev->mman.sdma_access_ptr, buf, len);
1471
1472	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1473	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
1474				     AMDGPU_FENCE_OWNER_UNDEFINED,
1475				     num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1476				     &job);
1477	if (r)
1478		goto out;
1479
1480	amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1481	src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1482		src_mm.start;
1483	dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1484	if (write)
1485		swap(src_addr, dst_addr);
1486
1487	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1488				PAGE_SIZE, false);
1489
1490	amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1491	WARN_ON(job->ibs[0].length_dw > num_dw);
1492
1493	fence = amdgpu_job_submit(job);
1494
1495	if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1496		r = -ETIMEDOUT;
1497	dma_fence_put(fence);
1498
1499	if (!(r || write))
1500		memcpy(buf, adev->mman.sdma_access_ptr, len);
1501out:
1502	drm_dev_exit(idx);
1503	return r;
1504}
1505
1506/**
1507 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1508 *
1509 * @bo:  The buffer object to read/write
1510 * @offset:  Offset into buffer object
1511 * @buf:  Secondary buffer to write/read from
1512 * @len: Length in bytes of access
1513 * @write:  true if writing
1514 *
1515 * This is used to access VRAM that backs a buffer object via MMIO
1516 * access for debugging purposes.
1517 */
1518static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1519				    unsigned long offset, void *buf, int len,
1520				    int write)
1521{
1522	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1523	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1524	struct amdgpu_res_cursor cursor;
1525	int ret = 0;
1526
1527	if (bo->resource->mem_type != TTM_PL_VRAM)
1528		return -EIO;
1529
1530	if (amdgpu_device_has_timeouts_enabled(adev) &&
1531			!amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1532		return len;
1533
1534	amdgpu_res_first(bo->resource, offset, len, &cursor);
1535	while (cursor.remaining) {
1536		size_t count, size = cursor.size;
1537		loff_t pos = cursor.start;
1538
1539		count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1540		size -= count;
1541		if (size) {
1542			/* using MM to access rest vram and handle un-aligned address */
1543			pos += count;
1544			buf += count;
1545			amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1546		}
1547
1548		ret += cursor.size;
1549		buf += cursor.size;
1550		amdgpu_res_next(&cursor, cursor.size);
1551	}
1552
1553	return ret;
1554}
1555
1556static void
1557amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1558{
1559	amdgpu_bo_move_notify(bo, false);
1560}
1561
1562static struct ttm_device_funcs amdgpu_bo_driver = {
1563	.ttm_tt_create = &amdgpu_ttm_tt_create,
1564	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1565	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1566	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1567	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1568	.evict_flags = &amdgpu_evict_flags,
1569	.move = &amdgpu_bo_move,
1570	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1571	.release_notify = &amdgpu_bo_release_notify,
1572	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1573	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1574	.access_memory = &amdgpu_ttm_access_memory,
1575};
1576
1577/*
1578 * Firmware Reservation functions
1579 */
1580/**
1581 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1582 *
1583 * @adev: amdgpu_device pointer
1584 *
1585 * free fw reserved vram if it has been reserved.
1586 */
1587static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1588{
1589	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1590		NULL, &adev->mman.fw_vram_usage_va);
1591}
1592
1593/*
1594 * Driver Reservation functions
1595 */
1596/**
1597 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1598 *
1599 * @adev: amdgpu_device pointer
1600 *
1601 * free drv reserved vram if it has been reserved.
1602 */
1603static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1604{
1605	amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1606						  NULL,
1607						  &adev->mman.drv_vram_usage_va);
1608}
1609
1610/**
1611 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1612 *
1613 * @adev: amdgpu_device pointer
1614 *
1615 * create bo vram reservation from fw.
1616 */
1617static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1618{
1619	uint64_t vram_size = adev->gmc.visible_vram_size;
1620
1621	adev->mman.fw_vram_usage_va = NULL;
1622	adev->mman.fw_vram_usage_reserved_bo = NULL;
1623
1624	if (adev->mman.fw_vram_usage_size == 0 ||
1625	    adev->mman.fw_vram_usage_size > vram_size)
1626		return 0;
1627
1628	return amdgpu_bo_create_kernel_at(adev,
1629					  adev->mman.fw_vram_usage_start_offset,
1630					  adev->mman.fw_vram_usage_size,
1631					  &adev->mman.fw_vram_usage_reserved_bo,
1632					  &adev->mman.fw_vram_usage_va);
1633}
1634
1635/**
1636 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1637 *
1638 * @adev: amdgpu_device pointer
1639 *
1640 * create bo vram reservation from drv.
1641 */
1642static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1643{
1644	u64 vram_size = adev->gmc.visible_vram_size;
1645
1646	adev->mman.drv_vram_usage_va = NULL;
1647	adev->mman.drv_vram_usage_reserved_bo = NULL;
1648
1649	if (adev->mman.drv_vram_usage_size == 0 ||
1650	    adev->mman.drv_vram_usage_size > vram_size)
1651		return 0;
1652
1653	return amdgpu_bo_create_kernel_at(adev,
1654					  adev->mman.drv_vram_usage_start_offset,
1655					  adev->mman.drv_vram_usage_size,
1656					  &adev->mman.drv_vram_usage_reserved_bo,
1657					  &adev->mman.drv_vram_usage_va);
1658}
1659
1660/*
1661 * Memoy training reservation functions
1662 */
1663
1664/**
1665 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1666 *
1667 * @adev: amdgpu_device pointer
1668 *
1669 * free memory training reserved vram if it has been reserved.
1670 */
1671static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1672{
1673	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1674
1675	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1676	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1677	ctx->c2p_bo = NULL;
1678
1679	return 0;
1680}
1681
1682static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1683						uint32_t reserve_size)
1684{
1685	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1686
1687	memset(ctx, 0, sizeof(*ctx));
1688
1689	ctx->c2p_train_data_offset =
1690		ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1691	ctx->p2c_train_data_offset =
1692		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1693	ctx->train_data_size =
1694		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1695
1696	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1697			ctx->train_data_size,
1698			ctx->p2c_train_data_offset,
1699			ctx->c2p_train_data_offset);
1700}
1701
1702/*
1703 * reserve TMR memory at the top of VRAM which holds
1704 * IP Discovery data and is protected by PSP.
1705 */
1706static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1707{
1708	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1709	bool mem_train_support = false;
1710	uint32_t reserve_size = 0;
1711	int ret;
1712
1713	if (adev->bios && !amdgpu_sriov_vf(adev)) {
1714		if (amdgpu_atomfirmware_mem_training_supported(adev))
1715			mem_train_support = true;
1716		else
1717			DRM_DEBUG("memory training does not support!\n");
1718	}
1719
1720	/*
1721	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1722	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1723	 *
1724	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1725	 * discovery data and G6 memory training data respectively
1726	 */
1727	if (adev->bios)
1728		reserve_size =
1729			amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1730
1731	if (!adev->bios && adev->ip_versions[GC_HWIP][0] == IP_VERSION(9, 4, 3))
1732		reserve_size = max(reserve_size, (uint32_t)280 << 20);
1733	else if (!reserve_size)
1734		reserve_size = DISCOVERY_TMR_OFFSET;
1735
1736	if (mem_train_support) {
1737		/* reserve vram for mem train according to TMR location */
1738		amdgpu_ttm_training_data_block_init(adev, reserve_size);
1739		ret = amdgpu_bo_create_kernel_at(adev,
1740						 ctx->c2p_train_data_offset,
1741						 ctx->train_data_size,
1742						 &ctx->c2p_bo,
1743						 NULL);
1744		if (ret) {
1745			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1746			amdgpu_ttm_training_reserve_vram_fini(adev);
1747			return ret;
1748		}
1749		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1750	}
1751
1752	if (!adev->gmc.is_app_apu) {
1753		ret = amdgpu_bo_create_kernel_at(
1754			adev, adev->gmc.real_vram_size - reserve_size,
1755			reserve_size, &adev->mman.fw_reserved_memory, NULL);
1756		if (ret) {
1757			DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1758			amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1759					      NULL, NULL);
1760			return ret;
1761		}
1762	} else {
1763		DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1764	}
1765
1766	return 0;
1767}
1768
1769static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1770{
1771	int i;
1772
1773	if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1774		return 0;
1775
1776	adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1777				       sizeof(*adev->mman.ttm_pools),
1778				       GFP_KERNEL);
1779	if (!adev->mman.ttm_pools)
1780		return -ENOMEM;
1781
1782	for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1783		ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1784			      adev->gmc.mem_partitions[i].numa.node,
1785			      false, false);
1786	}
1787	return 0;
1788}
1789
1790static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1791{
1792	int i;
1793
1794	if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1795		return;
1796
1797	for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1798		ttm_pool_fini(&adev->mman.ttm_pools[i]);
1799
1800	kfree(adev->mman.ttm_pools);
1801	adev->mman.ttm_pools = NULL;
1802}
1803
1804/*
1805 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1806 * gtt/vram related fields.
1807 *
1808 * This initializes all of the memory space pools that the TTM layer
1809 * will need such as the GTT space (system memory mapped to the device),
1810 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1811 * can be mapped per VMID.
1812 */
1813int amdgpu_ttm_init(struct amdgpu_device *adev)
1814{
1815	uint64_t gtt_size;
1816	int r;
1817
1818	mutex_init(&adev->mman.gtt_window_lock);
1819
1820	/* No others user of address space so set it to 0 */
1821	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1822			       adev_to_drm(adev)->anon_inode->i_mapping,
1823			       adev_to_drm(adev)->vma_offset_manager,
1824			       adev->need_swiotlb,
1825			       dma_addressing_limited(adev->dev));
1826	if (r) {
1827		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1828		return r;
1829	}
1830
1831	r = amdgpu_ttm_pools_init(adev);
1832	if (r) {
1833		DRM_ERROR("failed to init ttm pools(%d).\n", r);
1834		return r;
1835	}
1836	adev->mman.initialized = true;
1837
1838	/* Initialize VRAM pool with all of VRAM divided into pages */
1839	r = amdgpu_vram_mgr_init(adev);
1840	if (r) {
1841		DRM_ERROR("Failed initializing VRAM heap.\n");
1842		return r;
1843	}
1844
1845	/* Change the size here instead of the init above so only lpfn is affected */
1846	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1847#ifdef CONFIG_64BIT
1848#ifdef CONFIG_X86
1849	if (adev->gmc.xgmi.connected_to_cpu)
1850		adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1851				adev->gmc.visible_vram_size);
1852
1853	else if (adev->gmc.is_app_apu)
1854		DRM_DEBUG_DRIVER(
1855			"No need to ioremap when real vram size is 0\n");
1856	else
1857#endif
1858		adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1859				adev->gmc.visible_vram_size);
1860#endif
1861
1862	/*
1863	 *The reserved vram for firmware must be pinned to the specified
1864	 *place on the VRAM, so reserve it early.
1865	 */
1866	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1867	if (r)
1868		return r;
1869
1870	/*
1871	 *The reserved vram for driver must be pinned to the specified
1872	 *place on the VRAM, so reserve it early.
1873	 */
1874	r = amdgpu_ttm_drv_reserve_vram_init(adev);
1875	if (r)
1876		return r;
1877
1878	/*
1879	 * only NAVI10 and onwards ASIC support for IP discovery.
1880	 * If IP discovery enabled, a block of memory should be
1881	 * reserved for IP discovey.
1882	 */
1883	if (adev->mman.discovery_bin) {
1884		r = amdgpu_ttm_reserve_tmr(adev);
1885		if (r)
1886			return r;
1887	}
1888
1889	/* allocate memory as required for VGA
1890	 * This is used for VGA emulation and pre-OS scanout buffers to
1891	 * avoid display artifacts while transitioning between pre-OS
1892	 * and driver.
1893	 */
1894	if (!adev->gmc.is_app_apu) {
1895		r = amdgpu_bo_create_kernel_at(adev, 0,
1896					       adev->mman.stolen_vga_size,
1897					       &adev->mman.stolen_vga_memory,
1898					       NULL);
1899		if (r)
1900			return r;
1901
1902		r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1903					       adev->mman.stolen_extended_size,
1904					       &adev->mman.stolen_extended_memory,
1905					       NULL);
1906
1907		if (r)
1908			return r;
1909
1910		r = amdgpu_bo_create_kernel_at(adev,
1911					       adev->mman.stolen_reserved_offset,
1912					       adev->mman.stolen_reserved_size,
1913					       &adev->mman.stolen_reserved_memory,
1914					       NULL);
1915		if (r)
1916			return r;
1917	} else {
1918		DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1919	}
1920
1921	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1922		 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
1923
1924	/* Compute GTT size, either based on TTM limit
1925	 * or whatever the user passed on module init.
1926	 */
1927	if (amdgpu_gtt_size == -1)
1928		gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
1929	else
1930		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1931
1932	/* Initialize GTT memory pool */
1933	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1934	if (r) {
1935		DRM_ERROR("Failed initializing GTT heap.\n");
1936		return r;
1937	}
1938	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1939		 (unsigned int)(gtt_size / (1024 * 1024)));
1940
1941	/* Initiailize doorbell pool on PCI BAR */
1942	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
1943	if (r) {
1944		DRM_ERROR("Failed initializing doorbell heap.\n");
1945		return r;
1946	}
1947
1948	/* Create a boorbell page for kernel usages */
1949	r = amdgpu_doorbell_create_kernel_doorbells(adev);
1950	if (r) {
1951		DRM_ERROR("Failed to initialize kernel doorbells.\n");
1952		return r;
1953	}
1954
1955	/* Initialize preemptible memory pool */
1956	r = amdgpu_preempt_mgr_init(adev);
1957	if (r) {
1958		DRM_ERROR("Failed initializing PREEMPT heap.\n");
1959		return r;
1960	}
1961
1962	/* Initialize various on-chip memory pools */
1963	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1964	if (r) {
1965		DRM_ERROR("Failed initializing GDS heap.\n");
1966		return r;
1967	}
1968
1969	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1970	if (r) {
1971		DRM_ERROR("Failed initializing gws heap.\n");
1972		return r;
1973	}
1974
1975	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1976	if (r) {
1977		DRM_ERROR("Failed initializing oa heap.\n");
1978		return r;
1979	}
1980	if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
1981				AMDGPU_GEM_DOMAIN_GTT,
1982				&adev->mman.sdma_access_bo, NULL,
1983				&adev->mman.sdma_access_ptr))
1984		DRM_WARN("Debug VRAM access will use slowpath MM access\n");
1985
1986	return 0;
1987}
1988
1989/*
1990 * amdgpu_ttm_fini - De-initialize the TTM memory pools
1991 */
1992void amdgpu_ttm_fini(struct amdgpu_device *adev)
1993{
1994	int idx;
1995
1996	if (!adev->mman.initialized)
1997		return;
1998
1999	amdgpu_ttm_pools_fini(adev);
2000
2001	amdgpu_ttm_training_reserve_vram_fini(adev);
2002	/* return the stolen vga memory back to VRAM */
2003	if (!adev->gmc.is_app_apu) {
2004		amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2005		amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2006		/* return the FW reserved memory back to VRAM */
2007		amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
2008				      NULL);
2009		if (adev->mman.stolen_reserved_size)
2010			amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
2011					      NULL, NULL);
2012	}
2013	amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
2014					&adev->mman.sdma_access_ptr);
2015	amdgpu_ttm_fw_reserve_vram_fini(adev);
2016	amdgpu_ttm_drv_reserve_vram_fini(adev);
2017
2018	if (drm_dev_enter(adev_to_drm(adev), &idx)) {
2019
2020		if (adev->mman.aper_base_kaddr)
2021			iounmap(adev->mman.aper_base_kaddr);
2022		adev->mman.aper_base_kaddr = NULL;
2023
2024		drm_dev_exit(idx);
2025	}
2026
2027	amdgpu_vram_mgr_fini(adev);
2028	amdgpu_gtt_mgr_fini(adev);
2029	amdgpu_preempt_mgr_fini(adev);
2030	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2031	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2032	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2033	ttm_device_fini(&adev->mman.bdev);
2034	adev->mman.initialized = false;
2035	DRM_INFO("amdgpu: ttm finalized\n");
2036}
2037
2038/**
2039 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2040 *
2041 * @adev: amdgpu_device pointer
2042 * @enable: true when we can use buffer functions.
2043 *
2044 * Enable/disable use of buffer functions during suspend/resume. This should
2045 * only be called at bootup or when userspace isn't running.
2046 */
2047void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2048{
2049	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2050	uint64_t size;
2051	int r;
2052
2053	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2054	    adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2055		return;
2056
2057	if (enable) {
2058		struct amdgpu_ring *ring;
2059		struct drm_gpu_scheduler *sched;
2060
2061		ring = adev->mman.buffer_funcs_ring;
2062		sched = &ring->sched;
2063		r = drm_sched_entity_init(&adev->mman.high_pr,
2064					  DRM_SCHED_PRIORITY_KERNEL, &sched,
2065					  1, NULL);
2066		if (r) {
2067			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2068				  r);
2069			return;
2070		}
2071
2072		r = drm_sched_entity_init(&adev->mman.low_pr,
2073					  DRM_SCHED_PRIORITY_NORMAL, &sched,
2074					  1, NULL);
2075		if (r) {
2076			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2077				  r);
2078			goto error_free_entity;
2079		}
2080	} else {
2081		drm_sched_entity_destroy(&adev->mman.high_pr);
2082		drm_sched_entity_destroy(&adev->mman.low_pr);
2083		dma_fence_put(man->move);
2084		man->move = NULL;
2085	}
2086
2087	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
2088	if (enable)
2089		size = adev->gmc.real_vram_size;
2090	else
2091		size = adev->gmc.visible_vram_size;
2092	man->size = size;
2093	adev->mman.buffer_funcs_enabled = enable;
2094
2095	return;
2096
2097error_free_entity:
2098	drm_sched_entity_destroy(&adev->mman.high_pr);
2099}
2100
2101static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2102				  bool direct_submit,
2103				  unsigned int num_dw,
2104				  struct dma_resv *resv,
2105				  bool vm_needs_flush,
2106				  struct amdgpu_job **job,
2107				  bool delayed)
2108{
2109	enum amdgpu_ib_pool_type pool = direct_submit ?
2110		AMDGPU_IB_POOL_DIRECT :
2111		AMDGPU_IB_POOL_DELAYED;
2112	int r;
2113	struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2114						    &adev->mman.high_pr;
2115	r = amdgpu_job_alloc_with_ib(adev, entity,
2116				     AMDGPU_FENCE_OWNER_UNDEFINED,
2117				     num_dw * 4, pool, job);
2118	if (r)
2119		return r;
2120
2121	if (vm_needs_flush) {
2122		(*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2123							adev->gmc.pdb0_bo :
2124							adev->gart.bo);
2125		(*job)->vm_needs_flush = true;
2126	}
2127	if (!resv)
2128		return 0;
2129
2130	return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2131						   DMA_RESV_USAGE_BOOKKEEP);
2132}
2133
2134int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2135		       uint64_t dst_offset, uint32_t byte_count,
2136		       struct dma_resv *resv,
2137		       struct dma_fence **fence, bool direct_submit,
2138		       bool vm_needs_flush, bool tmz)
2139{
2140	struct amdgpu_device *adev = ring->adev;
2141	unsigned int num_loops, num_dw;
2142	struct amdgpu_job *job;
2143	uint32_t max_bytes;
2144	unsigned int i;
2145	int r;
2146
2147	if (!direct_submit && !ring->sched.ready) {
2148		DRM_ERROR("Trying to move memory with ring turned off.\n");
2149		return -EINVAL;
2150	}
2151
2152	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2153	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2154	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2155	r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2156				   resv, vm_needs_flush, &job, false);
2157	if (r)
2158		return r;
2159
2160	for (i = 0; i < num_loops; i++) {
2161		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2162
2163		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2164					dst_offset, cur_size_in_bytes, tmz);
2165
2166		src_offset += cur_size_in_bytes;
2167		dst_offset += cur_size_in_bytes;
2168		byte_count -= cur_size_in_bytes;
2169	}
2170
2171	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2172	WARN_ON(job->ibs[0].length_dw > num_dw);
2173	if (direct_submit)
2174		r = amdgpu_job_submit_direct(job, ring, fence);
2175	else
2176		*fence = amdgpu_job_submit(job);
2177	if (r)
2178		goto error_free;
2179
2180	return r;
2181
2182error_free:
2183	amdgpu_job_free(job);
2184	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2185	return r;
2186}
2187
2188static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2189			       uint64_t dst_addr, uint32_t byte_count,
2190			       struct dma_resv *resv,
2191			       struct dma_fence **fence,
2192			       bool vm_needs_flush, bool delayed)
2193{
2194	struct amdgpu_device *adev = ring->adev;
2195	unsigned int num_loops, num_dw;
2196	struct amdgpu_job *job;
2197	uint32_t max_bytes;
2198	unsigned int i;
2199	int r;
2200
2201	max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2202	num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2203	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2204	r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2205				   &job, delayed);
2206	if (r)
2207		return r;
2208
2209	for (i = 0; i < num_loops; i++) {
2210		uint32_t cur_size = min(byte_count, max_bytes);
2211
2212		amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2213					cur_size);
2214
2215		dst_addr += cur_size;
2216		byte_count -= cur_size;
2217	}
2218
2219	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2220	WARN_ON(job->ibs[0].length_dw > num_dw);
2221	*fence = amdgpu_job_submit(job);
2222	return 0;
2223}
2224
2225int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2226			uint32_t src_data,
2227			struct dma_resv *resv,
2228			struct dma_fence **f,
2229			bool delayed)
2230{
2231	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2232	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2233	struct dma_fence *fence = NULL;
2234	struct amdgpu_res_cursor dst;
2235	int r;
2236
2237	if (!adev->mman.buffer_funcs_enabled) {
2238		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2239		return -EINVAL;
2240	}
2241
2242	amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2243
2244	mutex_lock(&adev->mman.gtt_window_lock);
2245	while (dst.remaining) {
2246		struct dma_fence *next;
2247		uint64_t cur_size, to;
2248
2249		/* Never fill more than 256MiB at once to avoid timeouts */
2250		cur_size = min(dst.size, 256ULL << 20);
2251
2252		r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2253					  1, ring, false, &cur_size, &to);
2254		if (r)
2255			goto error;
2256
2257		r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2258					&next, true, delayed);
2259		if (r)
2260			goto error;
2261
2262		dma_fence_put(fence);
2263		fence = next;
2264
2265		amdgpu_res_next(&dst, cur_size);
2266	}
2267error:
2268	mutex_unlock(&adev->mman.gtt_window_lock);
2269	if (f)
2270		*f = dma_fence_get(fence);
2271	dma_fence_put(fence);
2272	return r;
2273}
2274
2275/**
2276 * amdgpu_ttm_evict_resources - evict memory buffers
2277 * @adev: amdgpu device object
2278 * @mem_type: evicted BO's memory type
2279 *
2280 * Evicts all @mem_type buffers on the lru list of the memory type.
2281 *
2282 * Returns:
2283 * 0 for success or a negative error code on failure.
2284 */
2285int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2286{
2287	struct ttm_resource_manager *man;
2288
2289	switch (mem_type) {
2290	case TTM_PL_VRAM:
2291	case TTM_PL_TT:
2292	case AMDGPU_PL_GWS:
2293	case AMDGPU_PL_GDS:
2294	case AMDGPU_PL_OA:
2295		man = ttm_manager_type(&adev->mman.bdev, mem_type);
2296		break;
2297	default:
2298		DRM_ERROR("Trying to evict invalid memory type\n");
2299		return -EINVAL;
2300	}
2301
2302	return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2303}
2304
2305#if defined(CONFIG_DEBUG_FS)
2306
2307static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2308{
2309	struct amdgpu_device *adev = m->private;
2310
2311	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2312}
2313
2314DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2315
2316/*
2317 * amdgpu_ttm_vram_read - Linear read access to VRAM
2318 *
2319 * Accesses VRAM via MMIO for debugging purposes.
2320 */
2321static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2322				    size_t size, loff_t *pos)
2323{
2324	struct amdgpu_device *adev = file_inode(f)->i_private;
2325	ssize_t result = 0;
2326
2327	if (size & 0x3 || *pos & 0x3)
2328		return -EINVAL;
2329
2330	if (*pos >= adev->gmc.mc_vram_size)
2331		return -ENXIO;
2332
2333	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2334	while (size) {
2335		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2336		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2337
2338		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2339		if (copy_to_user(buf, value, bytes))
2340			return -EFAULT;
2341
2342		result += bytes;
2343		buf += bytes;
2344		*pos += bytes;
2345		size -= bytes;
2346	}
2347
2348	return result;
2349}
2350
2351/*
2352 * amdgpu_ttm_vram_write - Linear write access to VRAM
2353 *
2354 * Accesses VRAM via MMIO for debugging purposes.
2355 */
2356static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2357				    size_t size, loff_t *pos)
2358{
2359	struct amdgpu_device *adev = file_inode(f)->i_private;
2360	ssize_t result = 0;
2361	int r;
2362
2363	if (size & 0x3 || *pos & 0x3)
2364		return -EINVAL;
2365
2366	if (*pos >= adev->gmc.mc_vram_size)
2367		return -ENXIO;
2368
2369	while (size) {
2370		uint32_t value;
2371
2372		if (*pos >= adev->gmc.mc_vram_size)
2373			return result;
2374
2375		r = get_user(value, (uint32_t *)buf);
2376		if (r)
2377			return r;
2378
2379		amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2380
2381		result += 4;
2382		buf += 4;
2383		*pos += 4;
2384		size -= 4;
2385	}
2386
2387	return result;
2388}
2389
2390static const struct file_operations amdgpu_ttm_vram_fops = {
2391	.owner = THIS_MODULE,
2392	.read = amdgpu_ttm_vram_read,
2393	.write = amdgpu_ttm_vram_write,
2394	.llseek = default_llseek,
2395};
2396
2397/*
2398 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2399 *
2400 * This function is used to read memory that has been mapped to the
2401 * GPU and the known addresses are not physical addresses but instead
2402 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2403 */
2404static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2405				 size_t size, loff_t *pos)
2406{
2407	struct amdgpu_device *adev = file_inode(f)->i_private;
2408	struct iommu_domain *dom;
2409	ssize_t result = 0;
2410	int r;
2411
2412	/* retrieve the IOMMU domain if any for this device */
2413	dom = iommu_get_domain_for_dev(adev->dev);
2414
2415	while (size) {
2416		phys_addr_t addr = *pos & PAGE_MASK;
2417		loff_t off = *pos & ~PAGE_MASK;
2418		size_t bytes = PAGE_SIZE - off;
2419		unsigned long pfn;
2420		struct page *p;
2421		void *ptr;
2422
2423		bytes = min(bytes, size);
2424
2425		/* Translate the bus address to a physical address.  If
2426		 * the domain is NULL it means there is no IOMMU active
2427		 * and the address translation is the identity
2428		 */
2429		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2430
2431		pfn = addr >> PAGE_SHIFT;
2432		if (!pfn_valid(pfn))
2433			return -EPERM;
2434
2435		p = pfn_to_page(pfn);
2436		if (p->mapping != adev->mman.bdev.dev_mapping)
2437			return -EPERM;
2438
2439		ptr = kmap_local_page(p);
2440		r = copy_to_user(buf, ptr + off, bytes);
2441		kunmap_local(ptr);
2442		if (r)
2443			return -EFAULT;
2444
2445		size -= bytes;
2446		*pos += bytes;
2447		result += bytes;
2448	}
2449
2450	return result;
2451}
2452
2453/*
2454 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2455 *
2456 * This function is used to write memory that has been mapped to the
2457 * GPU and the known addresses are not physical addresses but instead
2458 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2459 */
2460static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2461				 size_t size, loff_t *pos)
2462{
2463	struct amdgpu_device *adev = file_inode(f)->i_private;
2464	struct iommu_domain *dom;
2465	ssize_t result = 0;
2466	int r;
2467
2468	dom = iommu_get_domain_for_dev(adev->dev);
2469
2470	while (size) {
2471		phys_addr_t addr = *pos & PAGE_MASK;
2472		loff_t off = *pos & ~PAGE_MASK;
2473		size_t bytes = PAGE_SIZE - off;
2474		unsigned long pfn;
2475		struct page *p;
2476		void *ptr;
2477
2478		bytes = min(bytes, size);
2479
2480		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2481
2482		pfn = addr >> PAGE_SHIFT;
2483		if (!pfn_valid(pfn))
2484			return -EPERM;
2485
2486		p = pfn_to_page(pfn);
2487		if (p->mapping != adev->mman.bdev.dev_mapping)
2488			return -EPERM;
2489
2490		ptr = kmap_local_page(p);
2491		r = copy_from_user(ptr + off, buf, bytes);
2492		kunmap_local(ptr);
2493		if (r)
2494			return -EFAULT;
2495
2496		size -= bytes;
2497		*pos += bytes;
2498		result += bytes;
2499	}
2500
2501	return result;
2502}
2503
2504static const struct file_operations amdgpu_ttm_iomem_fops = {
2505	.owner = THIS_MODULE,
2506	.read = amdgpu_iomem_read,
2507	.write = amdgpu_iomem_write,
2508	.llseek = default_llseek
2509};
2510
2511#endif
2512
2513void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2514{
2515#if defined(CONFIG_DEBUG_FS)
2516	struct drm_minor *minor = adev_to_drm(adev)->primary;
2517	struct dentry *root = minor->debugfs_root;
2518
2519	debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2520				 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2521	debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2522			    &amdgpu_ttm_iomem_fops);
2523	debugfs_create_file("ttm_page_pool", 0444, root, adev,
2524			    &amdgpu_ttm_page_pool_fops);
2525	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2526							     TTM_PL_VRAM),
2527					    root, "amdgpu_vram_mm");
2528	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2529							     TTM_PL_TT),
2530					    root, "amdgpu_gtt_mm");
2531	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2532							     AMDGPU_PL_GDS),
2533					    root, "amdgpu_gds_mm");
2534	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2535							     AMDGPU_PL_GWS),
2536					    root, "amdgpu_gws_mm");
2537	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2538							     AMDGPU_PL_OA),
2539					    root, "amdgpu_oa_mm");
2540
2541#endif
2542}
2543