1/*
2 * Copyright 2018 Advanced Micro Devices, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
23 * of the Software.
24 *
25 */
26
27#include <linux/io-64-nonatomic-lo-hi.h>
28#ifdef CONFIG_X86
29#include <asm/hypervisor.h>
30#endif
31
32#include "amdgpu.h"
33#include "amdgpu_gmc.h"
34#include "amdgpu_ras.h"
35#include "amdgpu_xgmi.h"
36
37#include <drm/drm_drv.h>
38#include <drm/ttm/ttm_tt.h>
39
40/**
41 * amdgpu_gmc_pdb0_alloc - allocate vram for pdb0
42 *
43 * @adev: amdgpu_device pointer
44 *
45 * Allocate video memory for pdb0 and map it for CPU access
46 * Returns 0 for success, error for failure.
47 */
48int amdgpu_gmc_pdb0_alloc(struct amdgpu_device *adev)
49{
50	int r;
51	struct amdgpu_bo_param bp;
52	u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
53	uint32_t pde0_page_shift = adev->gmc.vmid0_page_table_block_size + 21;
54	uint32_t npdes = (vram_size + (1ULL << pde0_page_shift) -1) >> pde0_page_shift;
55
56	memset(&bp, 0, sizeof(bp));
57	bp.size = PAGE_ALIGN((npdes + 1) * 8);
58	bp.byte_align = PAGE_SIZE;
59	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
60	bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
61		AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
62	bp.type = ttm_bo_type_kernel;
63	bp.resv = NULL;
64	bp.bo_ptr_size = sizeof(struct amdgpu_bo);
65
66	r = amdgpu_bo_create(adev, &bp, &adev->gmc.pdb0_bo);
67	if (r)
68		return r;
69
70	r = amdgpu_bo_reserve(adev->gmc.pdb0_bo, false);
71	if (unlikely(r != 0))
72		goto bo_reserve_failure;
73
74	r = amdgpu_bo_pin(adev->gmc.pdb0_bo, AMDGPU_GEM_DOMAIN_VRAM);
75	if (r)
76		goto bo_pin_failure;
77	r = amdgpu_bo_kmap(adev->gmc.pdb0_bo, &adev->gmc.ptr_pdb0);
78	if (r)
79		goto bo_kmap_failure;
80
81	amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
82	return 0;
83
84bo_kmap_failure:
85	amdgpu_bo_unpin(adev->gmc.pdb0_bo);
86bo_pin_failure:
87	amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
88bo_reserve_failure:
89	amdgpu_bo_unref(&adev->gmc.pdb0_bo);
90	return r;
91}
92
93/**
94 * amdgpu_gmc_get_pde_for_bo - get the PDE for a BO
95 *
96 * @bo: the BO to get the PDE for
97 * @level: the level in the PD hirarchy
98 * @addr: resulting addr
99 * @flags: resulting flags
100 *
101 * Get the address and flags to be used for a PDE (Page Directory Entry).
102 */
103void amdgpu_gmc_get_pde_for_bo(struct amdgpu_bo *bo, int level,
104			       uint64_t *addr, uint64_t *flags)
105{
106	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
107
108	switch (bo->tbo.resource->mem_type) {
109	case TTM_PL_TT:
110		*addr = bo->tbo.ttm->dma_address[0];
111		break;
112	case TTM_PL_VRAM:
113		*addr = amdgpu_bo_gpu_offset(bo);
114		break;
115	default:
116		*addr = 0;
117		break;
118	}
119	*flags = amdgpu_ttm_tt_pde_flags(bo->tbo.ttm, bo->tbo.resource);
120	amdgpu_gmc_get_vm_pde(adev, level, addr, flags);
121}
122
123/*
124 * amdgpu_gmc_pd_addr - return the address of the root directory
125 */
126uint64_t amdgpu_gmc_pd_addr(struct amdgpu_bo *bo)
127{
128	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
129	uint64_t pd_addr;
130
131	/* TODO: move that into ASIC specific code */
132	if (adev->asic_type >= CHIP_VEGA10) {
133		uint64_t flags = AMDGPU_PTE_VALID;
134
135		amdgpu_gmc_get_pde_for_bo(bo, -1, &pd_addr, &flags);
136		pd_addr |= flags;
137	} else {
138		pd_addr = amdgpu_bo_gpu_offset(bo);
139	}
140	return pd_addr;
141}
142
143/**
144 * amdgpu_gmc_set_pte_pde - update the page tables using CPU
145 *
146 * @adev: amdgpu_device pointer
147 * @cpu_pt_addr: cpu address of the page table
148 * @gpu_page_idx: entry in the page table to update
149 * @addr: dst addr to write into pte/pde
150 * @flags: access flags
151 *
152 * Update the page tables using CPU.
153 */
154int amdgpu_gmc_set_pte_pde(struct amdgpu_device *adev, void *cpu_pt_addr,
155				uint32_t gpu_page_idx, uint64_t addr,
156				uint64_t flags)
157{
158	void __iomem *ptr = (void *)cpu_pt_addr;
159	uint64_t value;
160
161	/*
162	 * The following is for PTE only. GART does not have PDEs.
163	*/
164	value = addr & 0x0000FFFFFFFFF000ULL;
165	value |= flags;
166	writeq(value, ptr + (gpu_page_idx * 8));
167
168	return 0;
169}
170
171/**
172 * amdgpu_gmc_agp_addr - return the address in the AGP address space
173 *
174 * @bo: TTM BO which needs the address, must be in GTT domain
175 *
176 * Tries to figure out how to access the BO through the AGP aperture. Returns
177 * AMDGPU_BO_INVALID_OFFSET if that is not possible.
178 */
179uint64_t amdgpu_gmc_agp_addr(struct ttm_buffer_object *bo)
180{
181	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
182
183	if (bo->ttm->num_pages != 1 || bo->ttm->caching == ttm_cached)
184		return AMDGPU_BO_INVALID_OFFSET;
185
186	if (bo->ttm->dma_address[0] + PAGE_SIZE >= adev->gmc.agp_size)
187		return AMDGPU_BO_INVALID_OFFSET;
188
189	return adev->gmc.agp_start + bo->ttm->dma_address[0];
190}
191
192/**
193 * amdgpu_gmc_vram_location - try to find VRAM location
194 *
195 * @adev: amdgpu device structure holding all necessary information
196 * @mc: memory controller structure holding memory information
197 * @base: base address at which to put VRAM
198 *
199 * Function will try to place VRAM at base address provided
200 * as parameter.
201 */
202void amdgpu_gmc_vram_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc,
203			      u64 base)
204{
205	uint64_t vis_limit = (uint64_t)amdgpu_vis_vram_limit << 20;
206	uint64_t limit = (uint64_t)amdgpu_vram_limit << 20;
207
208	mc->vram_start = base;
209	mc->vram_end = mc->vram_start + mc->mc_vram_size - 1;
210	if (limit < mc->real_vram_size)
211		mc->real_vram_size = limit;
212
213	if (vis_limit && vis_limit < mc->visible_vram_size)
214		mc->visible_vram_size = vis_limit;
215
216	if (mc->real_vram_size < mc->visible_vram_size)
217		mc->visible_vram_size = mc->real_vram_size;
218
219	if (mc->xgmi.num_physical_nodes == 0) {
220		mc->fb_start = mc->vram_start;
221		mc->fb_end = mc->vram_end;
222	}
223	dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
224			mc->mc_vram_size >> 20, mc->vram_start,
225			mc->vram_end, mc->real_vram_size >> 20);
226}
227
228/** amdgpu_gmc_sysvm_location - place vram and gart in sysvm aperture
229 *
230 * @adev: amdgpu device structure holding all necessary information
231 * @mc: memory controller structure holding memory information
232 *
233 * This function is only used if use GART for FB translation. In such
234 * case, we use sysvm aperture (vmid0 page tables) for both vram
235 * and gart (aka system memory) access.
236 *
237 * GPUVM (and our organization of vmid0 page tables) require sysvm
238 * aperture to be placed at a location aligned with 8 times of native
239 * page size. For example, if vm_context0_cntl.page_table_block_size
240 * is 12, then native page size is 8G (2M*2^12), sysvm should start
241 * with a 64G aligned address. For simplicity, we just put sysvm at
242 * address 0. So vram start at address 0 and gart is right after vram.
243 */
244void amdgpu_gmc_sysvm_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
245{
246	u64 hive_vram_start = 0;
247	u64 hive_vram_end = mc->xgmi.node_segment_size * mc->xgmi.num_physical_nodes - 1;
248	mc->vram_start = mc->xgmi.node_segment_size * mc->xgmi.physical_node_id;
249	mc->vram_end = mc->vram_start + mc->xgmi.node_segment_size - 1;
250	mc->gart_start = hive_vram_end + 1;
251	mc->gart_end = mc->gart_start + mc->gart_size - 1;
252	mc->fb_start = hive_vram_start;
253	mc->fb_end = hive_vram_end;
254	dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
255			mc->mc_vram_size >> 20, mc->vram_start,
256			mc->vram_end, mc->real_vram_size >> 20);
257	dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
258			mc->gart_size >> 20, mc->gart_start, mc->gart_end);
259}
260
261/**
262 * amdgpu_gmc_gart_location - try to find GART location
263 *
264 * @adev: amdgpu device structure holding all necessary information
265 * @mc: memory controller structure holding memory information
266 *
267 * Function will place try to place GART before or after VRAM.
268 * If GART size is bigger than space left then we ajust GART size.
269 * Thus function will never fails.
270 */
271void amdgpu_gmc_gart_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
272{
273	const uint64_t four_gb = 0x100000000ULL;
274	u64 size_af, size_bf;
275	/*To avoid the hole, limit the max mc address to AMDGPU_GMC_HOLE_START*/
276	u64 max_mc_address = min(adev->gmc.mc_mask, AMDGPU_GMC_HOLE_START - 1);
277
278	/* VCE doesn't like it when BOs cross a 4GB segment, so align
279	 * the GART base on a 4GB boundary as well.
280	 */
281	size_bf = mc->fb_start;
282	size_af = max_mc_address + 1 - ALIGN(mc->fb_end + 1, four_gb);
283
284	if (mc->gart_size > max(size_bf, size_af)) {
285		dev_warn(adev->dev, "limiting GART\n");
286		mc->gart_size = max(size_bf, size_af);
287	}
288
289	if ((size_bf >= mc->gart_size && size_bf < size_af) ||
290	    (size_af < mc->gart_size))
291		mc->gart_start = 0;
292	else
293		mc->gart_start = max_mc_address - mc->gart_size + 1;
294
295	mc->gart_start &= ~(four_gb - 1);
296	mc->gart_end = mc->gart_start + mc->gart_size - 1;
297	dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
298			mc->gart_size >> 20, mc->gart_start, mc->gart_end);
299}
300
301/**
302 * amdgpu_gmc_agp_location - try to find AGP location
303 * @adev: amdgpu device structure holding all necessary information
304 * @mc: memory controller structure holding memory information
305 *
306 * Function will place try to find a place for the AGP BAR in the MC address
307 * space.
308 *
309 * AGP BAR will be assigned the largest available hole in the address space.
310 * Should be called after VRAM and GART locations are setup.
311 */
312void amdgpu_gmc_agp_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
313{
314	const uint64_t sixteen_gb = 1ULL << 34;
315	const uint64_t sixteen_gb_mask = ~(sixteen_gb - 1);
316	u64 size_af, size_bf;
317
318	if (amdgpu_sriov_vf(adev)) {
319		mc->agp_start = 0xffffffffffff;
320		mc->agp_end = 0x0;
321		mc->agp_size = 0;
322
323		return;
324	}
325
326	if (mc->fb_start > mc->gart_start) {
327		size_bf = (mc->fb_start & sixteen_gb_mask) -
328			ALIGN(mc->gart_end + 1, sixteen_gb);
329		size_af = mc->mc_mask + 1 - ALIGN(mc->fb_end + 1, sixteen_gb);
330	} else {
331		size_bf = mc->fb_start & sixteen_gb_mask;
332		size_af = (mc->gart_start & sixteen_gb_mask) -
333			ALIGN(mc->fb_end + 1, sixteen_gb);
334	}
335
336	if (size_bf > size_af) {
337		mc->agp_start = (mc->fb_start - size_bf) & sixteen_gb_mask;
338		mc->agp_size = size_bf;
339	} else {
340		mc->agp_start = ALIGN(mc->fb_end + 1, sixteen_gb);
341		mc->agp_size = size_af;
342	}
343
344	mc->agp_end = mc->agp_start + mc->agp_size - 1;
345	dev_info(adev->dev, "AGP: %lluM 0x%016llX - 0x%016llX\n",
346			mc->agp_size >> 20, mc->agp_start, mc->agp_end);
347}
348
349/**
350 * amdgpu_gmc_fault_key - get hask key from vm fault address and pasid
351 *
352 * @addr: 48 bit physical address, page aligned (36 significant bits)
353 * @pasid: 16 bit process address space identifier
354 */
355static inline uint64_t amdgpu_gmc_fault_key(uint64_t addr, uint16_t pasid)
356{
357	return addr << 4 | pasid;
358}
359
360/**
361 * amdgpu_gmc_filter_faults - filter VM faults
362 *
363 * @adev: amdgpu device structure
364 * @ih: interrupt ring that the fault received from
365 * @addr: address of the VM fault
366 * @pasid: PASID of the process causing the fault
367 * @timestamp: timestamp of the fault
368 *
369 * Returns:
370 * True if the fault was filtered and should not be processed further.
371 * False if the fault is a new one and needs to be handled.
372 */
373bool amdgpu_gmc_filter_faults(struct amdgpu_device *adev,
374			      struct amdgpu_ih_ring *ih, uint64_t addr,
375			      uint16_t pasid, uint64_t timestamp)
376{
377	struct amdgpu_gmc *gmc = &adev->gmc;
378	uint64_t stamp, key = amdgpu_gmc_fault_key(addr, pasid);
379	struct amdgpu_gmc_fault *fault;
380	uint32_t hash;
381
382	/* Stale retry fault if timestamp goes backward */
383	if (amdgpu_ih_ts_after(timestamp, ih->processed_timestamp))
384		return true;
385
386	/* If we don't have space left in the ring buffer return immediately */
387	stamp = max(timestamp, AMDGPU_GMC_FAULT_TIMEOUT + 1) -
388		AMDGPU_GMC_FAULT_TIMEOUT;
389	if (gmc->fault_ring[gmc->last_fault].timestamp >= stamp)
390		return true;
391
392	/* Try to find the fault in the hash */
393	hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER);
394	fault = &gmc->fault_ring[gmc->fault_hash[hash].idx];
395	while (fault->timestamp >= stamp) {
396		uint64_t tmp;
397
398		if (atomic64_read(&fault->key) == key) {
399			/*
400			 * if we get a fault which is already present in
401			 * the fault_ring and the timestamp of
402			 * the fault is after the expired timestamp,
403			 * then this is a new fault that needs to be added
404			 * into the fault ring.
405			 */
406			if (fault->timestamp_expiry != 0 &&
407			    amdgpu_ih_ts_after(fault->timestamp_expiry,
408					       timestamp))
409				break;
410			else
411				return true;
412		}
413
414		tmp = fault->timestamp;
415		fault = &gmc->fault_ring[fault->next];
416
417		/* Check if the entry was reused */
418		if (fault->timestamp >= tmp)
419			break;
420	}
421
422	/* Add the fault to the ring */
423	fault = &gmc->fault_ring[gmc->last_fault];
424	atomic64_set(&fault->key, key);
425	fault->timestamp = timestamp;
426
427	/* And update the hash */
428	fault->next = gmc->fault_hash[hash].idx;
429	gmc->fault_hash[hash].idx = gmc->last_fault++;
430	return false;
431}
432
433/**
434 * amdgpu_gmc_filter_faults_remove - remove address from VM faults filter
435 *
436 * @adev: amdgpu device structure
437 * @addr: address of the VM fault
438 * @pasid: PASID of the process causing the fault
439 *
440 * Remove the address from fault filter, then future vm fault on this address
441 * will pass to retry fault handler to recover.
442 */
443void amdgpu_gmc_filter_faults_remove(struct amdgpu_device *adev, uint64_t addr,
444				     uint16_t pasid)
445{
446	struct amdgpu_gmc *gmc = &adev->gmc;
447	uint64_t key = amdgpu_gmc_fault_key(addr, pasid);
448	struct amdgpu_ih_ring *ih;
449	struct amdgpu_gmc_fault *fault;
450	uint32_t last_wptr;
451	uint64_t last_ts;
452	uint32_t hash;
453	uint64_t tmp;
454
455	ih = adev->irq.retry_cam_enabled ? &adev->irq.ih_soft : &adev->irq.ih1;
456	/* Get the WPTR of the last entry in IH ring */
457	last_wptr = amdgpu_ih_get_wptr(adev, ih);
458	/* Order wptr with ring data. */
459	rmb();
460	/* Get the timetamp of the last entry in IH ring */
461	last_ts = amdgpu_ih_decode_iv_ts(adev, ih, last_wptr, -1);
462
463	hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER);
464	fault = &gmc->fault_ring[gmc->fault_hash[hash].idx];
465	do {
466		if (atomic64_read(&fault->key) == key) {
467			/*
468			 * Update the timestamp when this fault
469			 * expired.
470			 */
471			fault->timestamp_expiry = last_ts;
472			break;
473		}
474
475		tmp = fault->timestamp;
476		fault = &gmc->fault_ring[fault->next];
477	} while (fault->timestamp < tmp);
478}
479
480int amdgpu_gmc_ras_sw_init(struct amdgpu_device *adev)
481{
482	int r;
483
484	/* umc ras block */
485	r = amdgpu_umc_ras_sw_init(adev);
486	if (r)
487		return r;
488
489	/* mmhub ras block */
490	r = amdgpu_mmhub_ras_sw_init(adev);
491	if (r)
492		return r;
493
494	/* hdp ras block */
495	r = amdgpu_hdp_ras_sw_init(adev);
496	if (r)
497		return r;
498
499	/* mca.x ras block */
500	r = amdgpu_mca_mp0_ras_sw_init(adev);
501	if (r)
502		return r;
503
504	r = amdgpu_mca_mp1_ras_sw_init(adev);
505	if (r)
506		return r;
507
508	r = amdgpu_mca_mpio_ras_sw_init(adev);
509	if (r)
510		return r;
511
512	/* xgmi ras block */
513	r = amdgpu_xgmi_ras_sw_init(adev);
514	if (r)
515		return r;
516
517	return 0;
518}
519
520int amdgpu_gmc_ras_late_init(struct amdgpu_device *adev)
521{
522	return 0;
523}
524
525void amdgpu_gmc_ras_fini(struct amdgpu_device *adev)
526{
527
528}
529
530	/*
531	 * The latest engine allocation on gfx9/10 is:
532	 * Engine 2, 3: firmware
533	 * Engine 0, 1, 4~16: amdgpu ring,
534	 *                    subject to change when ring number changes
535	 * Engine 17: Gart flushes
536	 */
537#define AMDGPU_VMHUB_INV_ENG_BITMAP		0x1FFF3
538
539int amdgpu_gmc_allocate_vm_inv_eng(struct amdgpu_device *adev)
540{
541	struct amdgpu_ring *ring;
542	unsigned vm_inv_engs[AMDGPU_MAX_VMHUBS] = {0};
543	unsigned i;
544	unsigned vmhub, inv_eng;
545
546	/* init the vm inv eng for all vmhubs */
547	for_each_set_bit(i, adev->vmhubs_mask, AMDGPU_MAX_VMHUBS) {
548		vm_inv_engs[i] = AMDGPU_VMHUB_INV_ENG_BITMAP;
549		/* reserve engine 5 for firmware */
550		if (adev->enable_mes)
551			vm_inv_engs[i] &= ~(1 << 5);
552	}
553
554	for (i = 0; i < adev->num_rings; ++i) {
555		ring = adev->rings[i];
556		vmhub = ring->vm_hub;
557
558		if (ring == &adev->mes.ring)
559			continue;
560
561		inv_eng = ffs(vm_inv_engs[vmhub]);
562		if (!inv_eng) {
563			dev_err(adev->dev, "no VM inv eng for ring %s\n",
564				ring->name);
565			return -EINVAL;
566		}
567
568		ring->vm_inv_eng = inv_eng - 1;
569		vm_inv_engs[vmhub] &= ~(1 << ring->vm_inv_eng);
570
571		dev_info(adev->dev, "ring %s uses VM inv eng %u on hub %u\n",
572			 ring->name, ring->vm_inv_eng, ring->vm_hub);
573	}
574
575	return 0;
576}
577
578/**
579 * amdgpu_gmc_tmz_set -- check and set if a device supports TMZ
580 * @adev: amdgpu_device pointer
581 *
582 * Check and set if an the device @adev supports Trusted Memory
583 * Zones (TMZ).
584 */
585void amdgpu_gmc_tmz_set(struct amdgpu_device *adev)
586{
587	switch (adev->ip_versions[GC_HWIP][0]) {
588	/* RAVEN */
589	case IP_VERSION(9, 2, 2):
590	case IP_VERSION(9, 1, 0):
591	/* RENOIR looks like RAVEN */
592	case IP_VERSION(9, 3, 0):
593	/* GC 10.3.7 */
594	case IP_VERSION(10, 3, 7):
595	/* GC 11.0.1 */
596	case IP_VERSION(11, 0, 1):
597		if (amdgpu_tmz == 0) {
598			adev->gmc.tmz_enabled = false;
599			dev_info(adev->dev,
600				 "Trusted Memory Zone (TMZ) feature disabled (cmd line)\n");
601		} else {
602			adev->gmc.tmz_enabled = true;
603			dev_info(adev->dev,
604				 "Trusted Memory Zone (TMZ) feature enabled\n");
605		}
606		break;
607	case IP_VERSION(10, 1, 10):
608	case IP_VERSION(10, 1, 1):
609	case IP_VERSION(10, 1, 2):
610	case IP_VERSION(10, 1, 3):
611	case IP_VERSION(10, 3, 0):
612	case IP_VERSION(10, 3, 2):
613	case IP_VERSION(10, 3, 4):
614	case IP_VERSION(10, 3, 5):
615	case IP_VERSION(10, 3, 6):
616	/* VANGOGH */
617	case IP_VERSION(10, 3, 1):
618	/* YELLOW_CARP*/
619	case IP_VERSION(10, 3, 3):
620	case IP_VERSION(11, 0, 4):
621		/* Don't enable it by default yet.
622		 */
623		if (amdgpu_tmz < 1) {
624			adev->gmc.tmz_enabled = false;
625			dev_info(adev->dev,
626				 "Trusted Memory Zone (TMZ) feature disabled as experimental (default)\n");
627		} else {
628			adev->gmc.tmz_enabled = true;
629			dev_info(adev->dev,
630				 "Trusted Memory Zone (TMZ) feature enabled as experimental (cmd line)\n");
631		}
632		break;
633	default:
634		adev->gmc.tmz_enabled = false;
635		dev_info(adev->dev,
636			 "Trusted Memory Zone (TMZ) feature not supported\n");
637		break;
638	}
639}
640
641/**
642 * amdgpu_gmc_noretry_set -- set per asic noretry defaults
643 * @adev: amdgpu_device pointer
644 *
645 * Set a per asic default for the no-retry parameter.
646 *
647 */
648void amdgpu_gmc_noretry_set(struct amdgpu_device *adev)
649{
650	struct amdgpu_gmc *gmc = &adev->gmc;
651	uint32_t gc_ver = adev->ip_versions[GC_HWIP][0];
652	bool noretry_default = (gc_ver == IP_VERSION(9, 0, 1) ||
653				gc_ver == IP_VERSION(9, 3, 0) ||
654				gc_ver == IP_VERSION(9, 4, 0) ||
655				gc_ver == IP_VERSION(9, 4, 1) ||
656				gc_ver == IP_VERSION(9, 4, 2) ||
657				gc_ver == IP_VERSION(9, 4, 3) ||
658				gc_ver >= IP_VERSION(10, 3, 0));
659
660	gmc->noretry = (amdgpu_noretry == -1) ? noretry_default : amdgpu_noretry;
661}
662
663void amdgpu_gmc_set_vm_fault_masks(struct amdgpu_device *adev, int hub_type,
664				   bool enable)
665{
666	struct amdgpu_vmhub *hub;
667	u32 tmp, reg, i;
668
669	hub = &adev->vmhub[hub_type];
670	for (i = 0; i < 16; i++) {
671		reg = hub->vm_context0_cntl + hub->ctx_distance * i;
672
673		tmp = (hub_type == AMDGPU_GFXHUB(0)) ?
674			RREG32_SOC15_IP(GC, reg) :
675			RREG32_SOC15_IP(MMHUB, reg);
676
677		if (enable)
678			tmp |= hub->vm_cntx_cntl_vm_fault;
679		else
680			tmp &= ~hub->vm_cntx_cntl_vm_fault;
681
682		(hub_type == AMDGPU_GFXHUB(0)) ?
683			WREG32_SOC15_IP(GC, reg, tmp) :
684			WREG32_SOC15_IP(MMHUB, reg, tmp);
685	}
686}
687
688void amdgpu_gmc_get_vbios_allocations(struct amdgpu_device *adev)
689{
690	unsigned size;
691
692	/*
693	 * Some ASICs need to reserve a region of video memory to avoid access
694	 * from driver
695	 */
696	adev->mman.stolen_reserved_offset = 0;
697	adev->mman.stolen_reserved_size = 0;
698
699	/*
700	 * TODO:
701	 * Currently there is a bug where some memory client outside
702	 * of the driver writes to first 8M of VRAM on S3 resume,
703	 * this overrides GART which by default gets placed in first 8M and
704	 * causes VM_FAULTS once GTT is accessed.
705	 * Keep the stolen memory reservation until the while this is not solved.
706	 */
707	switch (adev->asic_type) {
708	case CHIP_VEGA10:
709		adev->mman.keep_stolen_vga_memory = true;
710		/*
711		 * VEGA10 SRIOV VF with MS_HYPERV host needs some firmware reserved area.
712		 */
713#ifdef CONFIG_X86
714		if (amdgpu_sriov_vf(adev) && hypervisor_is_type(X86_HYPER_MS_HYPERV)) {
715			adev->mman.stolen_reserved_offset = 0x500000;
716			adev->mman.stolen_reserved_size = 0x200000;
717		}
718#endif
719		break;
720	case CHIP_RAVEN:
721	case CHIP_RENOIR:
722		adev->mman.keep_stolen_vga_memory = true;
723		break;
724	case CHIP_YELLOW_CARP:
725		if (amdgpu_discovery == 0) {
726			adev->mman.stolen_reserved_offset = 0x1ffb0000;
727			adev->mman.stolen_reserved_size = 64 * PAGE_SIZE;
728		}
729		break;
730	default:
731		adev->mman.keep_stolen_vga_memory = false;
732		break;
733	}
734
735	if (amdgpu_sriov_vf(adev) ||
736	    !amdgpu_device_has_display_hardware(adev)) {
737		size = 0;
738	} else {
739		size = amdgpu_gmc_get_vbios_fb_size(adev);
740
741		if (adev->mman.keep_stolen_vga_memory)
742			size = max(size, (unsigned)AMDGPU_VBIOS_VGA_ALLOCATION);
743	}
744
745	/* set to 0 if the pre-OS buffer uses up most of vram */
746	if ((adev->gmc.real_vram_size - size) < (8 * 1024 * 1024))
747		size = 0;
748
749	if (size > AMDGPU_VBIOS_VGA_ALLOCATION) {
750		adev->mman.stolen_vga_size = AMDGPU_VBIOS_VGA_ALLOCATION;
751		adev->mman.stolen_extended_size = size - adev->mman.stolen_vga_size;
752	} else {
753		adev->mman.stolen_vga_size = size;
754		adev->mman.stolen_extended_size = 0;
755	}
756}
757
758/**
759 * amdgpu_gmc_init_pdb0 - initialize PDB0
760 *
761 * @adev: amdgpu_device pointer
762 *
763 * This function is only used when GART page table is used
764 * for FB address translatioin. In such a case, we construct
765 * a 2-level system VM page table: PDB0->PTB, to cover both
766 * VRAM of the hive and system memory.
767 *
768 * PDB0 is static, initialized once on driver initialization.
769 * The first n entries of PDB0 are used as PTE by setting
770 * P bit to 1, pointing to VRAM. The n+1'th entry points
771 * to a big PTB covering system memory.
772 *
773 */
774void amdgpu_gmc_init_pdb0(struct amdgpu_device *adev)
775{
776	int i;
777	uint64_t flags = adev->gart.gart_pte_flags; //TODO it is UC. explore NC/RW?
778	/* Each PDE0 (used as PTE) covers (2^vmid0_page_table_block_size)*2M
779	 */
780	u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
781	u64 pde0_page_size = (1ULL<<adev->gmc.vmid0_page_table_block_size)<<21;
782	u64 vram_addr = adev->vm_manager.vram_base_offset -
783		adev->gmc.xgmi.physical_node_id * adev->gmc.xgmi.node_segment_size;
784	u64 vram_end = vram_addr + vram_size;
785	u64 gart_ptb_gpu_pa = amdgpu_gmc_vram_pa(adev, adev->gart.bo);
786	int idx;
787
788	if (!drm_dev_enter(adev_to_drm(adev), &idx))
789		return;
790
791	flags |= AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE;
792	flags |= AMDGPU_PTE_WRITEABLE;
793	flags |= AMDGPU_PTE_SNOOPED;
794	flags |= AMDGPU_PTE_FRAG((adev->gmc.vmid0_page_table_block_size + 9*1));
795	flags |= AMDGPU_PDE_PTE;
796
797	/* The first n PDE0 entries are used as PTE,
798	 * pointing to vram
799	 */
800	for (i = 0; vram_addr < vram_end; i++, vram_addr += pde0_page_size)
801		amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, vram_addr, flags);
802
803	/* The n+1'th PDE0 entry points to a huge
804	 * PTB who has more than 512 entries each
805	 * pointing to a 4K system page
806	 */
807	flags = AMDGPU_PTE_VALID;
808	flags |= AMDGPU_PDE_BFS(0) | AMDGPU_PTE_SNOOPED;
809	/* Requires gart_ptb_gpu_pa to be 4K aligned */
810	amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, gart_ptb_gpu_pa, flags);
811	drm_dev_exit(idx);
812}
813
814/**
815 * amdgpu_gmc_vram_mc2pa - calculate vram buffer's physical address from MC
816 * address
817 *
818 * @adev: amdgpu_device pointer
819 * @mc_addr: MC address of buffer
820 */
821uint64_t amdgpu_gmc_vram_mc2pa(struct amdgpu_device *adev, uint64_t mc_addr)
822{
823	return mc_addr - adev->gmc.vram_start + adev->vm_manager.vram_base_offset;
824}
825
826/**
827 * amdgpu_gmc_vram_pa - calculate vram buffer object's physical address from
828 * GPU's view
829 *
830 * @adev: amdgpu_device pointer
831 * @bo: amdgpu buffer object
832 */
833uint64_t amdgpu_gmc_vram_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo)
834{
835	return amdgpu_gmc_vram_mc2pa(adev, amdgpu_bo_gpu_offset(bo));
836}
837
838/**
839 * amdgpu_gmc_vram_cpu_pa - calculate vram buffer object's physical address
840 * from CPU's view
841 *
842 * @adev: amdgpu_device pointer
843 * @bo: amdgpu buffer object
844 */
845uint64_t amdgpu_gmc_vram_cpu_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo)
846{
847	return amdgpu_bo_gpu_offset(bo) - adev->gmc.vram_start + adev->gmc.aper_base;
848}
849
850int amdgpu_gmc_vram_checking(struct amdgpu_device *adev)
851{
852	struct amdgpu_bo *vram_bo = NULL;
853	uint64_t vram_gpu = 0;
854	void *vram_ptr = NULL;
855
856	int ret, size = 0x100000;
857	uint8_t cptr[10];
858
859	ret = amdgpu_bo_create_kernel(adev, size, PAGE_SIZE,
860				AMDGPU_GEM_DOMAIN_VRAM,
861				&vram_bo,
862				&vram_gpu,
863				&vram_ptr);
864	if (ret)
865		return ret;
866
867	memset(vram_ptr, 0x86, size);
868	memset(cptr, 0x86, 10);
869
870	/**
871	 * Check the start, the mid, and the end of the memory if the content of
872	 * each byte is the pattern "0x86". If yes, we suppose the vram bo is
873	 * workable.
874	 *
875	 * Note: If check the each byte of whole 1M bo, it will cost too many
876	 * seconds, so here, we just pick up three parts for emulation.
877	 */
878	ret = memcmp(vram_ptr, cptr, 10);
879	if (ret) {
880		ret = -EIO;
881		goto release_buffer;
882	}
883
884	ret = memcmp(vram_ptr + (size / 2), cptr, 10);
885	if (ret) {
886		ret = -EIO;
887		goto release_buffer;
888	}
889
890	ret = memcmp(vram_ptr + size - 10, cptr, 10);
891	if (ret) {
892		ret = -EIO;
893		goto release_buffer;
894	}
895
896release_buffer:
897	amdgpu_bo_free_kernel(&vram_bo, &vram_gpu,
898			&vram_ptr);
899
900	return ret;
901}
902
903static ssize_t current_memory_partition_show(
904	struct device *dev, struct device_attribute *addr, char *buf)
905{
906	struct drm_device *ddev = dev_get_drvdata(dev);
907	struct amdgpu_device *adev = drm_to_adev(ddev);
908	enum amdgpu_memory_partition mode;
909
910	mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev);
911	switch (mode) {
912	case AMDGPU_NPS1_PARTITION_MODE:
913		return sysfs_emit(buf, "NPS1\n");
914	case AMDGPU_NPS2_PARTITION_MODE:
915		return sysfs_emit(buf, "NPS2\n");
916	case AMDGPU_NPS3_PARTITION_MODE:
917		return sysfs_emit(buf, "NPS3\n");
918	case AMDGPU_NPS4_PARTITION_MODE:
919		return sysfs_emit(buf, "NPS4\n");
920	case AMDGPU_NPS6_PARTITION_MODE:
921		return sysfs_emit(buf, "NPS6\n");
922	case AMDGPU_NPS8_PARTITION_MODE:
923		return sysfs_emit(buf, "NPS8\n");
924	default:
925		return sysfs_emit(buf, "UNKNOWN\n");
926	}
927
928	return sysfs_emit(buf, "UNKNOWN\n");
929}
930
931static DEVICE_ATTR_RO(current_memory_partition);
932
933int amdgpu_gmc_sysfs_init(struct amdgpu_device *adev)
934{
935	if (!adev->gmc.gmc_funcs->query_mem_partition_mode)
936		return 0;
937
938	return device_create_file(adev->dev,
939				  &dev_attr_current_memory_partition);
940}
941
942void amdgpu_gmc_sysfs_fini(struct amdgpu_device *adev)
943{
944	device_remove_file(adev->dev, &dev_attr_current_memory_partition);
945}
946