1// SPDX-License-Identifier: GPL-2.0
2/*
3 * System Control and Management Interface (SCMI) Sensor Protocol
4 *
5 * Copyright (C) 2018-2022 ARM Ltd.
6 */
7
8#define pr_fmt(fmt) "SCMI Notifications SENSOR - " fmt
9
10#include <linux/bitfield.h>
11#include <linux/module.h>
12#include <linux/scmi_protocol.h>
13
14#include "protocols.h"
15#include "notify.h"
16
17#define SCMI_MAX_NUM_SENSOR_AXIS	63
18#define	SCMIv2_SENSOR_PROTOCOL		0x10000
19
20enum scmi_sensor_protocol_cmd {
21	SENSOR_DESCRIPTION_GET = 0x3,
22	SENSOR_TRIP_POINT_NOTIFY = 0x4,
23	SENSOR_TRIP_POINT_CONFIG = 0x5,
24	SENSOR_READING_GET = 0x6,
25	SENSOR_AXIS_DESCRIPTION_GET = 0x7,
26	SENSOR_LIST_UPDATE_INTERVALS = 0x8,
27	SENSOR_CONFIG_GET = 0x9,
28	SENSOR_CONFIG_SET = 0xA,
29	SENSOR_CONTINUOUS_UPDATE_NOTIFY = 0xB,
30	SENSOR_NAME_GET = 0xC,
31	SENSOR_AXIS_NAME_GET = 0xD,
32};
33
34struct scmi_msg_resp_sensor_attributes {
35	__le16 num_sensors;
36	u8 max_requests;
37	u8 reserved;
38	__le32 reg_addr_low;
39	__le32 reg_addr_high;
40	__le32 reg_size;
41};
42
43/* v3 attributes_low macros */
44#define SUPPORTS_UPDATE_NOTIFY(x)	FIELD_GET(BIT(30), (x))
45#define SENSOR_TSTAMP_EXP(x)		FIELD_GET(GENMASK(14, 10), (x))
46#define SUPPORTS_TIMESTAMP(x)		FIELD_GET(BIT(9), (x))
47#define SUPPORTS_EXTEND_ATTRS(x)	FIELD_GET(BIT(8), (x))
48
49/* v2 attributes_high macros */
50#define SENSOR_UPDATE_BASE(x)		FIELD_GET(GENMASK(31, 27), (x))
51#define SENSOR_UPDATE_SCALE(x)		FIELD_GET(GENMASK(26, 22), (x))
52
53/* v3 attributes_high macros */
54#define SENSOR_AXIS_NUMBER(x)		FIELD_GET(GENMASK(21, 16), (x))
55#define SUPPORTS_AXIS(x)		FIELD_GET(BIT(8), (x))
56
57/* v3 resolution macros */
58#define SENSOR_RES(x)			FIELD_GET(GENMASK(26, 0), (x))
59#define SENSOR_RES_EXP(x)		FIELD_GET(GENMASK(31, 27), (x))
60
61struct scmi_msg_resp_attrs {
62	__le32 min_range_low;
63	__le32 min_range_high;
64	__le32 max_range_low;
65	__le32 max_range_high;
66};
67
68struct scmi_msg_sensor_description {
69	__le32 desc_index;
70};
71
72struct scmi_msg_resp_sensor_description {
73	__le16 num_returned;
74	__le16 num_remaining;
75	struct scmi_sensor_descriptor {
76		__le32 id;
77		__le32 attributes_low;
78/* Common attributes_low macros */
79#define SUPPORTS_ASYNC_READ(x)		FIELD_GET(BIT(31), (x))
80#define SUPPORTS_EXTENDED_NAMES(x)	FIELD_GET(BIT(29), (x))
81#define NUM_TRIP_POINTS(x)		FIELD_GET(GENMASK(7, 0), (x))
82		__le32 attributes_high;
83/* Common attributes_high macros */
84#define SENSOR_SCALE(x)			FIELD_GET(GENMASK(15, 11), (x))
85#define SENSOR_SCALE_SIGN		BIT(4)
86#define SENSOR_SCALE_EXTEND		GENMASK(31, 5)
87#define SENSOR_TYPE(x)			FIELD_GET(GENMASK(7, 0), (x))
88		u8 name[SCMI_SHORT_NAME_MAX_SIZE];
89		/* only for version > 2.0 */
90		__le32 power;
91		__le32 resolution;
92		struct scmi_msg_resp_attrs scalar_attrs;
93	} desc[];
94};
95
96/* Base scmi_sensor_descriptor size excluding extended attrs after name */
97#define SCMI_MSG_RESP_SENS_DESCR_BASE_SZ	28
98
99/* Sign extend to a full s32 */
100#define	S32_EXT(v)							\
101	({								\
102		int __v = (v);						\
103									\
104		if (__v & SENSOR_SCALE_SIGN)				\
105			__v |= SENSOR_SCALE_EXTEND;			\
106		__v;							\
107	})
108
109struct scmi_msg_sensor_axis_description_get {
110	__le32 id;
111	__le32 axis_desc_index;
112};
113
114struct scmi_msg_resp_sensor_axis_description {
115	__le32 num_axis_flags;
116#define NUM_AXIS_RETURNED(x)		FIELD_GET(GENMASK(5, 0), (x))
117#define NUM_AXIS_REMAINING(x)		FIELD_GET(GENMASK(31, 26), (x))
118	struct scmi_axis_descriptor {
119		__le32 id;
120		__le32 attributes_low;
121#define SUPPORTS_EXTENDED_AXIS_NAMES(x)	FIELD_GET(BIT(9), (x))
122		__le32 attributes_high;
123		u8 name[SCMI_SHORT_NAME_MAX_SIZE];
124		__le32 resolution;
125		struct scmi_msg_resp_attrs attrs;
126	} desc[];
127};
128
129struct scmi_msg_resp_sensor_axis_names_description {
130	__le32 num_axis_flags;
131	struct scmi_sensor_axis_name_descriptor {
132		__le32 axis_id;
133		u8 name[SCMI_MAX_STR_SIZE];
134	} desc[];
135};
136
137/* Base scmi_axis_descriptor size excluding extended attrs after name */
138#define SCMI_MSG_RESP_AXIS_DESCR_BASE_SZ	28
139
140struct scmi_msg_sensor_list_update_intervals {
141	__le32 id;
142	__le32 index;
143};
144
145struct scmi_msg_resp_sensor_list_update_intervals {
146	__le32 num_intervals_flags;
147#define NUM_INTERVALS_RETURNED(x)	FIELD_GET(GENMASK(11, 0), (x))
148#define SEGMENTED_INTVL_FORMAT(x)	FIELD_GET(BIT(12), (x))
149#define NUM_INTERVALS_REMAINING(x)	FIELD_GET(GENMASK(31, 16), (x))
150	__le32 intervals[];
151};
152
153struct scmi_msg_sensor_request_notify {
154	__le32 id;
155	__le32 event_control;
156#define SENSOR_NOTIFY_ALL	BIT(0)
157};
158
159struct scmi_msg_set_sensor_trip_point {
160	__le32 id;
161	__le32 event_control;
162#define SENSOR_TP_EVENT_MASK	(0x3)
163#define SENSOR_TP_DISABLED	0x0
164#define SENSOR_TP_POSITIVE	0x1
165#define SENSOR_TP_NEGATIVE	0x2
166#define SENSOR_TP_BOTH		0x3
167#define SENSOR_TP_ID(x)		(((x) & 0xff) << 4)
168	__le32 value_low;
169	__le32 value_high;
170};
171
172struct scmi_msg_sensor_config_set {
173	__le32 id;
174	__le32 sensor_config;
175};
176
177struct scmi_msg_sensor_reading_get {
178	__le32 id;
179	__le32 flags;
180#define SENSOR_READ_ASYNC	BIT(0)
181};
182
183struct scmi_resp_sensor_reading_complete {
184	__le32 id;
185	__le32 readings_low;
186	__le32 readings_high;
187};
188
189struct scmi_sensor_reading_resp {
190	__le32 sensor_value_low;
191	__le32 sensor_value_high;
192	__le32 timestamp_low;
193	__le32 timestamp_high;
194};
195
196struct scmi_resp_sensor_reading_complete_v3 {
197	__le32 id;
198	struct scmi_sensor_reading_resp readings[];
199};
200
201struct scmi_sensor_trip_notify_payld {
202	__le32 agent_id;
203	__le32 sensor_id;
204	__le32 trip_point_desc;
205};
206
207struct scmi_sensor_update_notify_payld {
208	__le32 agent_id;
209	__le32 sensor_id;
210	struct scmi_sensor_reading_resp readings[];
211};
212
213struct sensors_info {
214	u32 version;
215	int num_sensors;
216	int max_requests;
217	u64 reg_addr;
218	u32 reg_size;
219	struct scmi_sensor_info *sensors;
220};
221
222static int scmi_sensor_attributes_get(const struct scmi_protocol_handle *ph,
223				      struct sensors_info *si)
224{
225	int ret;
226	struct scmi_xfer *t;
227	struct scmi_msg_resp_sensor_attributes *attr;
228
229	ret = ph->xops->xfer_get_init(ph, PROTOCOL_ATTRIBUTES,
230				      0, sizeof(*attr), &t);
231	if (ret)
232		return ret;
233
234	attr = t->rx.buf;
235
236	ret = ph->xops->do_xfer(ph, t);
237	if (!ret) {
238		si->num_sensors = le16_to_cpu(attr->num_sensors);
239		si->max_requests = attr->max_requests;
240		si->reg_addr = le32_to_cpu(attr->reg_addr_low) |
241				(u64)le32_to_cpu(attr->reg_addr_high) << 32;
242		si->reg_size = le32_to_cpu(attr->reg_size);
243	}
244
245	ph->xops->xfer_put(ph, t);
246	return ret;
247}
248
249static inline void scmi_parse_range_attrs(struct scmi_range_attrs *out,
250					  const struct scmi_msg_resp_attrs *in)
251{
252	out->min_range = get_unaligned_le64((void *)&in->min_range_low);
253	out->max_range = get_unaligned_le64((void *)&in->max_range_low);
254}
255
256struct scmi_sens_ipriv {
257	void *priv;
258	struct device *dev;
259};
260
261static void iter_intervals_prepare_message(void *message,
262					   unsigned int desc_index,
263					   const void *p)
264{
265	struct scmi_msg_sensor_list_update_intervals *msg = message;
266	const struct scmi_sensor_info *s;
267
268	s = ((const struct scmi_sens_ipriv *)p)->priv;
269	/* Set the number of sensors to be skipped/already read */
270	msg->id = cpu_to_le32(s->id);
271	msg->index = cpu_to_le32(desc_index);
272}
273
274static int iter_intervals_update_state(struct scmi_iterator_state *st,
275				       const void *response, void *p)
276{
277	u32 flags;
278	struct scmi_sensor_info *s = ((struct scmi_sens_ipriv *)p)->priv;
279	struct device *dev = ((struct scmi_sens_ipriv *)p)->dev;
280	const struct scmi_msg_resp_sensor_list_update_intervals *r = response;
281
282	flags = le32_to_cpu(r->num_intervals_flags);
283	st->num_returned = NUM_INTERVALS_RETURNED(flags);
284	st->num_remaining = NUM_INTERVALS_REMAINING(flags);
285
286	/*
287	 * Max intervals is not declared previously anywhere so we
288	 * assume it's returned+remaining on first call.
289	 */
290	if (!st->max_resources) {
291		s->intervals.segmented = SEGMENTED_INTVL_FORMAT(flags);
292		s->intervals.count = st->num_returned + st->num_remaining;
293		/* segmented intervals are reported in one triplet */
294		if (s->intervals.segmented &&
295		    (st->num_remaining || st->num_returned != 3)) {
296			dev_err(dev,
297				"Sensor ID:%d advertises an invalid segmented interval (%d)\n",
298				s->id, s->intervals.count);
299			s->intervals.segmented = false;
300			s->intervals.count = 0;
301			return -EINVAL;
302		}
303		/* Direct allocation when exceeding pre-allocated */
304		if (s->intervals.count >= SCMI_MAX_PREALLOC_POOL) {
305			s->intervals.desc =
306				devm_kcalloc(dev,
307					     s->intervals.count,
308					     sizeof(*s->intervals.desc),
309					     GFP_KERNEL);
310			if (!s->intervals.desc) {
311				s->intervals.segmented = false;
312				s->intervals.count = 0;
313				return -ENOMEM;
314			}
315		}
316
317		st->max_resources = s->intervals.count;
318	}
319
320	return 0;
321}
322
323static int
324iter_intervals_process_response(const struct scmi_protocol_handle *ph,
325				const void *response,
326				struct scmi_iterator_state *st, void *p)
327{
328	const struct scmi_msg_resp_sensor_list_update_intervals *r = response;
329	struct scmi_sensor_info *s = ((struct scmi_sens_ipriv *)p)->priv;
330
331	s->intervals.desc[st->desc_index + st->loop_idx] =
332		le32_to_cpu(r->intervals[st->loop_idx]);
333
334	return 0;
335}
336
337static int scmi_sensor_update_intervals(const struct scmi_protocol_handle *ph,
338					struct scmi_sensor_info *s)
339{
340	void *iter;
341	struct scmi_iterator_ops ops = {
342		.prepare_message = iter_intervals_prepare_message,
343		.update_state = iter_intervals_update_state,
344		.process_response = iter_intervals_process_response,
345	};
346	struct scmi_sens_ipriv upriv = {
347		.priv = s,
348		.dev = ph->dev,
349	};
350
351	iter = ph->hops->iter_response_init(ph, &ops, s->intervals.count,
352					    SENSOR_LIST_UPDATE_INTERVALS,
353					    sizeof(struct scmi_msg_sensor_list_update_intervals),
354					    &upriv);
355	if (IS_ERR(iter))
356		return PTR_ERR(iter);
357
358	return ph->hops->iter_response_run(iter);
359}
360
361struct scmi_apriv {
362	bool any_axes_support_extended_names;
363	struct scmi_sensor_info *s;
364};
365
366static void iter_axes_desc_prepare_message(void *message,
367					   const unsigned int desc_index,
368					   const void *priv)
369{
370	struct scmi_msg_sensor_axis_description_get *msg = message;
371	const struct scmi_apriv *apriv = priv;
372
373	/* Set the number of sensors to be skipped/already read */
374	msg->id = cpu_to_le32(apriv->s->id);
375	msg->axis_desc_index = cpu_to_le32(desc_index);
376}
377
378static int
379iter_axes_desc_update_state(struct scmi_iterator_state *st,
380			    const void *response, void *priv)
381{
382	u32 flags;
383	const struct scmi_msg_resp_sensor_axis_description *r = response;
384
385	flags = le32_to_cpu(r->num_axis_flags);
386	st->num_returned = NUM_AXIS_RETURNED(flags);
387	st->num_remaining = NUM_AXIS_REMAINING(flags);
388	st->priv = (void *)&r->desc[0];
389
390	return 0;
391}
392
393static int
394iter_axes_desc_process_response(const struct scmi_protocol_handle *ph,
395				const void *response,
396				struct scmi_iterator_state *st, void *priv)
397{
398	u32 attrh, attrl;
399	struct scmi_sensor_axis_info *a;
400	size_t dsize = SCMI_MSG_RESP_AXIS_DESCR_BASE_SZ;
401	struct scmi_apriv *apriv = priv;
402	const struct scmi_axis_descriptor *adesc = st->priv;
403
404	attrl = le32_to_cpu(adesc->attributes_low);
405	if (SUPPORTS_EXTENDED_AXIS_NAMES(attrl))
406		apriv->any_axes_support_extended_names = true;
407
408	a = &apriv->s->axis[st->desc_index + st->loop_idx];
409	a->id = le32_to_cpu(adesc->id);
410	a->extended_attrs = SUPPORTS_EXTEND_ATTRS(attrl);
411
412	attrh = le32_to_cpu(adesc->attributes_high);
413	a->scale = S32_EXT(SENSOR_SCALE(attrh));
414	a->type = SENSOR_TYPE(attrh);
415	strscpy(a->name, adesc->name, SCMI_SHORT_NAME_MAX_SIZE);
416
417	if (a->extended_attrs) {
418		unsigned int ares = le32_to_cpu(adesc->resolution);
419
420		a->resolution = SENSOR_RES(ares);
421		a->exponent = S32_EXT(SENSOR_RES_EXP(ares));
422		dsize += sizeof(adesc->resolution);
423
424		scmi_parse_range_attrs(&a->attrs, &adesc->attrs);
425		dsize += sizeof(adesc->attrs);
426	}
427	st->priv = ((u8 *)adesc + dsize);
428
429	return 0;
430}
431
432static int
433iter_axes_extended_name_update_state(struct scmi_iterator_state *st,
434				     const void *response, void *priv)
435{
436	u32 flags;
437	const struct scmi_msg_resp_sensor_axis_names_description *r = response;
438
439	flags = le32_to_cpu(r->num_axis_flags);
440	st->num_returned = NUM_AXIS_RETURNED(flags);
441	st->num_remaining = NUM_AXIS_REMAINING(flags);
442	st->priv = (void *)&r->desc[0];
443
444	return 0;
445}
446
447static int
448iter_axes_extended_name_process_response(const struct scmi_protocol_handle *ph,
449					 const void *response,
450					 struct scmi_iterator_state *st,
451					 void *priv)
452{
453	struct scmi_sensor_axis_info *a;
454	const struct scmi_apriv *apriv = priv;
455	struct scmi_sensor_axis_name_descriptor *adesc = st->priv;
456	u32 axis_id = le32_to_cpu(adesc->axis_id);
457
458	if (axis_id >= st->max_resources)
459		return -EPROTO;
460
461	/*
462	 * Pick the corresponding descriptor based on the axis_id embedded
463	 * in the reply since the list of axes supporting extended names
464	 * can be a subset of all the axes.
465	 */
466	a = &apriv->s->axis[axis_id];
467	strscpy(a->name, adesc->name, SCMI_MAX_STR_SIZE);
468	st->priv = ++adesc;
469
470	return 0;
471}
472
473static int
474scmi_sensor_axis_extended_names_get(const struct scmi_protocol_handle *ph,
475				    struct scmi_sensor_info *s)
476{
477	int ret;
478	void *iter;
479	struct scmi_iterator_ops ops = {
480		.prepare_message = iter_axes_desc_prepare_message,
481		.update_state = iter_axes_extended_name_update_state,
482		.process_response = iter_axes_extended_name_process_response,
483	};
484	struct scmi_apriv apriv = {
485		.any_axes_support_extended_names = false,
486		.s = s,
487	};
488
489	iter = ph->hops->iter_response_init(ph, &ops, s->num_axis,
490					    SENSOR_AXIS_NAME_GET,
491					    sizeof(struct scmi_msg_sensor_axis_description_get),
492					    &apriv);
493	if (IS_ERR(iter))
494		return PTR_ERR(iter);
495
496	/*
497	 * Do not cause whole protocol initialization failure when failing to
498	 * get extended names for axes.
499	 */
500	ret = ph->hops->iter_response_run(iter);
501	if (ret)
502		dev_warn(ph->dev,
503			 "Failed to get axes extended names for %s (ret:%d).\n",
504			 s->name, ret);
505
506	return 0;
507}
508
509static int scmi_sensor_axis_description(const struct scmi_protocol_handle *ph,
510					struct scmi_sensor_info *s,
511					u32 version)
512{
513	int ret;
514	void *iter;
515	struct scmi_iterator_ops ops = {
516		.prepare_message = iter_axes_desc_prepare_message,
517		.update_state = iter_axes_desc_update_state,
518		.process_response = iter_axes_desc_process_response,
519	};
520	struct scmi_apriv apriv = {
521		.any_axes_support_extended_names = false,
522		.s = s,
523	};
524
525	s->axis = devm_kcalloc(ph->dev, s->num_axis,
526			       sizeof(*s->axis), GFP_KERNEL);
527	if (!s->axis)
528		return -ENOMEM;
529
530	iter = ph->hops->iter_response_init(ph, &ops, s->num_axis,
531					    SENSOR_AXIS_DESCRIPTION_GET,
532					    sizeof(struct scmi_msg_sensor_axis_description_get),
533					    &apriv);
534	if (IS_ERR(iter))
535		return PTR_ERR(iter);
536
537	ret = ph->hops->iter_response_run(iter);
538	if (ret)
539		return ret;
540
541	if (PROTOCOL_REV_MAJOR(version) >= 0x3 &&
542	    apriv.any_axes_support_extended_names)
543		ret = scmi_sensor_axis_extended_names_get(ph, s);
544
545	return ret;
546}
547
548static void iter_sens_descr_prepare_message(void *message,
549					    unsigned int desc_index,
550					    const void *priv)
551{
552	struct scmi_msg_sensor_description *msg = message;
553
554	msg->desc_index = cpu_to_le32(desc_index);
555}
556
557static int iter_sens_descr_update_state(struct scmi_iterator_state *st,
558					const void *response, void *priv)
559{
560	const struct scmi_msg_resp_sensor_description *r = response;
561
562	st->num_returned = le16_to_cpu(r->num_returned);
563	st->num_remaining = le16_to_cpu(r->num_remaining);
564	st->priv = (void *)&r->desc[0];
565
566	return 0;
567}
568
569static int
570iter_sens_descr_process_response(const struct scmi_protocol_handle *ph,
571				 const void *response,
572				 struct scmi_iterator_state *st, void *priv)
573
574{
575	int ret = 0;
576	u32 attrh, attrl;
577	size_t dsize = SCMI_MSG_RESP_SENS_DESCR_BASE_SZ;
578	struct scmi_sensor_info *s;
579	struct sensors_info *si = priv;
580	const struct scmi_sensor_descriptor *sdesc = st->priv;
581
582	s = &si->sensors[st->desc_index + st->loop_idx];
583	s->id = le32_to_cpu(sdesc->id);
584
585	attrl = le32_to_cpu(sdesc->attributes_low);
586	/* common bitfields parsing */
587	s->async = SUPPORTS_ASYNC_READ(attrl);
588	s->num_trip_points = NUM_TRIP_POINTS(attrl);
589	/**
590	 * only SCMIv3.0 specific bitfield below.
591	 * Such bitfields are assumed to be zeroed on non
592	 * relevant fw versions...assuming fw not buggy !
593	 */
594	s->update = SUPPORTS_UPDATE_NOTIFY(attrl);
595	s->timestamped = SUPPORTS_TIMESTAMP(attrl);
596	if (s->timestamped)
597		s->tstamp_scale = S32_EXT(SENSOR_TSTAMP_EXP(attrl));
598	s->extended_scalar_attrs = SUPPORTS_EXTEND_ATTRS(attrl);
599
600	attrh = le32_to_cpu(sdesc->attributes_high);
601	/* common bitfields parsing */
602	s->scale = S32_EXT(SENSOR_SCALE(attrh));
603	s->type = SENSOR_TYPE(attrh);
604	/* Use pre-allocated pool wherever possible */
605	s->intervals.desc = s->intervals.prealloc_pool;
606	if (si->version == SCMIv2_SENSOR_PROTOCOL) {
607		s->intervals.segmented = false;
608		s->intervals.count = 1;
609		/*
610		 * Convert SCMIv2.0 update interval format to
611		 * SCMIv3.0 to be used as the common exposed
612		 * descriptor, accessible via common macros.
613		 */
614		s->intervals.desc[0] = (SENSOR_UPDATE_BASE(attrh) << 5) |
615					SENSOR_UPDATE_SCALE(attrh);
616	} else {
617		/*
618		 * From SCMIv3.0 update intervals are retrieved
619		 * via a dedicated (optional) command.
620		 * Since the command is optional, on error carry
621		 * on without any update interval.
622		 */
623		if (scmi_sensor_update_intervals(ph, s))
624			dev_dbg(ph->dev,
625				"Update Intervals not available for sensor ID:%d\n",
626				s->id);
627	}
628	/**
629	 * only > SCMIv2.0 specific bitfield below.
630	 * Such bitfields are assumed to be zeroed on non
631	 * relevant fw versions...assuming fw not buggy !
632	 */
633	s->num_axis = min_t(unsigned int,
634			    SUPPORTS_AXIS(attrh) ?
635			    SENSOR_AXIS_NUMBER(attrh) : 0,
636			    SCMI_MAX_NUM_SENSOR_AXIS);
637	strscpy(s->name, sdesc->name, SCMI_SHORT_NAME_MAX_SIZE);
638
639	/*
640	 * If supported overwrite short name with the extended
641	 * one; on error just carry on and use already provided
642	 * short name.
643	 */
644	if (PROTOCOL_REV_MAJOR(si->version) >= 0x3 &&
645	    SUPPORTS_EXTENDED_NAMES(attrl))
646		ph->hops->extended_name_get(ph, SENSOR_NAME_GET, s->id,
647					    s->name, SCMI_MAX_STR_SIZE);
648
649	if (s->extended_scalar_attrs) {
650		s->sensor_power = le32_to_cpu(sdesc->power);
651		dsize += sizeof(sdesc->power);
652
653		/* Only for sensors reporting scalar values */
654		if (s->num_axis == 0) {
655			unsigned int sres = le32_to_cpu(sdesc->resolution);
656
657			s->resolution = SENSOR_RES(sres);
658			s->exponent = S32_EXT(SENSOR_RES_EXP(sres));
659			dsize += sizeof(sdesc->resolution);
660
661			scmi_parse_range_attrs(&s->scalar_attrs,
662					       &sdesc->scalar_attrs);
663			dsize += sizeof(sdesc->scalar_attrs);
664		}
665	}
666
667	if (s->num_axis > 0)
668		ret = scmi_sensor_axis_description(ph, s, si->version);
669
670	st->priv = ((u8 *)sdesc + dsize);
671
672	return ret;
673}
674
675static int scmi_sensor_description_get(const struct scmi_protocol_handle *ph,
676				       struct sensors_info *si)
677{
678	void *iter;
679	struct scmi_iterator_ops ops = {
680		.prepare_message = iter_sens_descr_prepare_message,
681		.update_state = iter_sens_descr_update_state,
682		.process_response = iter_sens_descr_process_response,
683	};
684
685	iter = ph->hops->iter_response_init(ph, &ops, si->num_sensors,
686					    SENSOR_DESCRIPTION_GET,
687					    sizeof(__le32), si);
688	if (IS_ERR(iter))
689		return PTR_ERR(iter);
690
691	return ph->hops->iter_response_run(iter);
692}
693
694static inline int
695scmi_sensor_request_notify(const struct scmi_protocol_handle *ph, u32 sensor_id,
696			   u8 message_id, bool enable)
697{
698	int ret;
699	u32 evt_cntl = enable ? SENSOR_NOTIFY_ALL : 0;
700	struct scmi_xfer *t;
701	struct scmi_msg_sensor_request_notify *cfg;
702
703	ret = ph->xops->xfer_get_init(ph, message_id, sizeof(*cfg), 0, &t);
704	if (ret)
705		return ret;
706
707	cfg = t->tx.buf;
708	cfg->id = cpu_to_le32(sensor_id);
709	cfg->event_control = cpu_to_le32(evt_cntl);
710
711	ret = ph->xops->do_xfer(ph, t);
712
713	ph->xops->xfer_put(ph, t);
714	return ret;
715}
716
717static int scmi_sensor_trip_point_notify(const struct scmi_protocol_handle *ph,
718					 u32 sensor_id, bool enable)
719{
720	return scmi_sensor_request_notify(ph, sensor_id,
721					  SENSOR_TRIP_POINT_NOTIFY,
722					  enable);
723}
724
725static int
726scmi_sensor_continuous_update_notify(const struct scmi_protocol_handle *ph,
727				     u32 sensor_id, bool enable)
728{
729	return scmi_sensor_request_notify(ph, sensor_id,
730					  SENSOR_CONTINUOUS_UPDATE_NOTIFY,
731					  enable);
732}
733
734static int
735scmi_sensor_trip_point_config(const struct scmi_protocol_handle *ph,
736			      u32 sensor_id, u8 trip_id, u64 trip_value)
737{
738	int ret;
739	u32 evt_cntl = SENSOR_TP_BOTH;
740	struct scmi_xfer *t;
741	struct scmi_msg_set_sensor_trip_point *trip;
742
743	ret = ph->xops->xfer_get_init(ph, SENSOR_TRIP_POINT_CONFIG,
744				      sizeof(*trip), 0, &t);
745	if (ret)
746		return ret;
747
748	trip = t->tx.buf;
749	trip->id = cpu_to_le32(sensor_id);
750	trip->event_control = cpu_to_le32(evt_cntl | SENSOR_TP_ID(trip_id));
751	trip->value_low = cpu_to_le32(trip_value & 0xffffffff);
752	trip->value_high = cpu_to_le32(trip_value >> 32);
753
754	ret = ph->xops->do_xfer(ph, t);
755
756	ph->xops->xfer_put(ph, t);
757	return ret;
758}
759
760static int scmi_sensor_config_get(const struct scmi_protocol_handle *ph,
761				  u32 sensor_id, u32 *sensor_config)
762{
763	int ret;
764	struct scmi_xfer *t;
765	struct sensors_info *si = ph->get_priv(ph);
766
767	if (sensor_id >= si->num_sensors)
768		return -EINVAL;
769
770	ret = ph->xops->xfer_get_init(ph, SENSOR_CONFIG_GET,
771				      sizeof(__le32), sizeof(__le32), &t);
772	if (ret)
773		return ret;
774
775	put_unaligned_le32(sensor_id, t->tx.buf);
776	ret = ph->xops->do_xfer(ph, t);
777	if (!ret) {
778		struct scmi_sensor_info *s = si->sensors + sensor_id;
779
780		*sensor_config = get_unaligned_le64(t->rx.buf);
781		s->sensor_config = *sensor_config;
782	}
783
784	ph->xops->xfer_put(ph, t);
785	return ret;
786}
787
788static int scmi_sensor_config_set(const struct scmi_protocol_handle *ph,
789				  u32 sensor_id, u32 sensor_config)
790{
791	int ret;
792	struct scmi_xfer *t;
793	struct scmi_msg_sensor_config_set *msg;
794	struct sensors_info *si = ph->get_priv(ph);
795
796	if (sensor_id >= si->num_sensors)
797		return -EINVAL;
798
799	ret = ph->xops->xfer_get_init(ph, SENSOR_CONFIG_SET,
800				      sizeof(*msg), 0, &t);
801	if (ret)
802		return ret;
803
804	msg = t->tx.buf;
805	msg->id = cpu_to_le32(sensor_id);
806	msg->sensor_config = cpu_to_le32(sensor_config);
807
808	ret = ph->xops->do_xfer(ph, t);
809	if (!ret) {
810		struct scmi_sensor_info *s = si->sensors + sensor_id;
811
812		s->sensor_config = sensor_config;
813	}
814
815	ph->xops->xfer_put(ph, t);
816	return ret;
817}
818
819/**
820 * scmi_sensor_reading_get  - Read scalar sensor value
821 * @ph: Protocol handle
822 * @sensor_id: Sensor ID
823 * @value: The 64bit value sensor reading
824 *
825 * This function returns a single 64 bit reading value representing the sensor
826 * value; if the platform SCMI Protocol implementation and the sensor support
827 * multiple axis and timestamped-reads, this just returns the first axis while
828 * dropping the timestamp value.
829 * Use instead the @scmi_sensor_reading_get_timestamped to retrieve the array of
830 * timestamped multi-axis values.
831 *
832 * Return: 0 on Success
833 */
834static int scmi_sensor_reading_get(const struct scmi_protocol_handle *ph,
835				   u32 sensor_id, u64 *value)
836{
837	int ret;
838	struct scmi_xfer *t;
839	struct scmi_msg_sensor_reading_get *sensor;
840	struct scmi_sensor_info *s;
841	struct sensors_info *si = ph->get_priv(ph);
842
843	if (sensor_id >= si->num_sensors)
844		return -EINVAL;
845
846	ret = ph->xops->xfer_get_init(ph, SENSOR_READING_GET,
847				      sizeof(*sensor), 0, &t);
848	if (ret)
849		return ret;
850
851	sensor = t->tx.buf;
852	sensor->id = cpu_to_le32(sensor_id);
853	s = si->sensors + sensor_id;
854	if (s->async) {
855		sensor->flags = cpu_to_le32(SENSOR_READ_ASYNC);
856		ret = ph->xops->do_xfer_with_response(ph, t);
857		if (!ret) {
858			struct scmi_resp_sensor_reading_complete *resp;
859
860			resp = t->rx.buf;
861			if (le32_to_cpu(resp->id) == sensor_id)
862				*value =
863					get_unaligned_le64(&resp->readings_low);
864			else
865				ret = -EPROTO;
866		}
867	} else {
868		sensor->flags = cpu_to_le32(0);
869		ret = ph->xops->do_xfer(ph, t);
870		if (!ret)
871			*value = get_unaligned_le64(t->rx.buf);
872	}
873
874	ph->xops->xfer_put(ph, t);
875	return ret;
876}
877
878static inline void
879scmi_parse_sensor_readings(struct scmi_sensor_reading *out,
880			   const struct scmi_sensor_reading_resp *in)
881{
882	out->value = get_unaligned_le64((void *)&in->sensor_value_low);
883	out->timestamp = get_unaligned_le64((void *)&in->timestamp_low);
884}
885
886/**
887 * scmi_sensor_reading_get_timestamped  - Read multiple-axis timestamped values
888 * @ph: Protocol handle
889 * @sensor_id: Sensor ID
890 * @count: The length of the provided @readings array
891 * @readings: An array of elements each representing a timestamped per-axis
892 *	      reading of type @struct scmi_sensor_reading.
893 *	      Returned readings are ordered as the @axis descriptors array
894 *	      included in @struct scmi_sensor_info and the max number of
895 *	      returned elements is min(@count, @num_axis); ideally the provided
896 *	      array should be of length @count equal to @num_axis.
897 *
898 * Return: 0 on Success
899 */
900static int
901scmi_sensor_reading_get_timestamped(const struct scmi_protocol_handle *ph,
902				    u32 sensor_id, u8 count,
903				    struct scmi_sensor_reading *readings)
904{
905	int ret;
906	struct scmi_xfer *t;
907	struct scmi_msg_sensor_reading_get *sensor;
908	struct scmi_sensor_info *s;
909	struct sensors_info *si = ph->get_priv(ph);
910
911	if (sensor_id >= si->num_sensors)
912		return -EINVAL;
913
914	s = si->sensors + sensor_id;
915	if (!count || !readings ||
916	    (!s->num_axis && count > 1) || (s->num_axis && count > s->num_axis))
917		return -EINVAL;
918
919	ret = ph->xops->xfer_get_init(ph, SENSOR_READING_GET,
920				      sizeof(*sensor), 0, &t);
921	if (ret)
922		return ret;
923
924	sensor = t->tx.buf;
925	sensor->id = cpu_to_le32(sensor_id);
926	if (s->async) {
927		sensor->flags = cpu_to_le32(SENSOR_READ_ASYNC);
928		ret = ph->xops->do_xfer_with_response(ph, t);
929		if (!ret) {
930			int i;
931			struct scmi_resp_sensor_reading_complete_v3 *resp;
932
933			resp = t->rx.buf;
934			/* Retrieve only the number of requested axis anyway */
935			if (le32_to_cpu(resp->id) == sensor_id)
936				for (i = 0; i < count; i++)
937					scmi_parse_sensor_readings(&readings[i],
938								   &resp->readings[i]);
939			else
940				ret = -EPROTO;
941		}
942	} else {
943		sensor->flags = cpu_to_le32(0);
944		ret = ph->xops->do_xfer(ph, t);
945		if (!ret) {
946			int i;
947			struct scmi_sensor_reading_resp *resp_readings;
948
949			resp_readings = t->rx.buf;
950			for (i = 0; i < count; i++)
951				scmi_parse_sensor_readings(&readings[i],
952							   &resp_readings[i]);
953		}
954	}
955
956	ph->xops->xfer_put(ph, t);
957	return ret;
958}
959
960static const struct scmi_sensor_info *
961scmi_sensor_info_get(const struct scmi_protocol_handle *ph, u32 sensor_id)
962{
963	struct sensors_info *si = ph->get_priv(ph);
964
965	if (sensor_id >= si->num_sensors)
966		return NULL;
967
968	return si->sensors + sensor_id;
969}
970
971static int scmi_sensor_count_get(const struct scmi_protocol_handle *ph)
972{
973	struct sensors_info *si = ph->get_priv(ph);
974
975	return si->num_sensors;
976}
977
978static const struct scmi_sensor_proto_ops sensor_proto_ops = {
979	.count_get = scmi_sensor_count_get,
980	.info_get = scmi_sensor_info_get,
981	.trip_point_config = scmi_sensor_trip_point_config,
982	.reading_get = scmi_sensor_reading_get,
983	.reading_get_timestamped = scmi_sensor_reading_get_timestamped,
984	.config_get = scmi_sensor_config_get,
985	.config_set = scmi_sensor_config_set,
986};
987
988static int scmi_sensor_set_notify_enabled(const struct scmi_protocol_handle *ph,
989					  u8 evt_id, u32 src_id, bool enable)
990{
991	int ret;
992
993	switch (evt_id) {
994	case SCMI_EVENT_SENSOR_TRIP_POINT_EVENT:
995		ret = scmi_sensor_trip_point_notify(ph, src_id, enable);
996		break;
997	case SCMI_EVENT_SENSOR_UPDATE:
998		ret = scmi_sensor_continuous_update_notify(ph, src_id, enable);
999		break;
1000	default:
1001		ret = -EINVAL;
1002		break;
1003	}
1004
1005	if (ret)
1006		pr_debug("FAIL_ENABLED - evt[%X] dom[%d] - ret:%d\n",
1007			 evt_id, src_id, ret);
1008
1009	return ret;
1010}
1011
1012static void *
1013scmi_sensor_fill_custom_report(const struct scmi_protocol_handle *ph,
1014			       u8 evt_id, ktime_t timestamp,
1015			       const void *payld, size_t payld_sz,
1016			       void *report, u32 *src_id)
1017{
1018	void *rep = NULL;
1019
1020	switch (evt_id) {
1021	case SCMI_EVENT_SENSOR_TRIP_POINT_EVENT:
1022	{
1023		const struct scmi_sensor_trip_notify_payld *p = payld;
1024		struct scmi_sensor_trip_point_report *r = report;
1025
1026		if (sizeof(*p) != payld_sz)
1027			break;
1028
1029		r->timestamp = timestamp;
1030		r->agent_id = le32_to_cpu(p->agent_id);
1031		r->sensor_id = le32_to_cpu(p->sensor_id);
1032		r->trip_point_desc = le32_to_cpu(p->trip_point_desc);
1033		*src_id = r->sensor_id;
1034		rep = r;
1035		break;
1036	}
1037	case SCMI_EVENT_SENSOR_UPDATE:
1038	{
1039		int i;
1040		struct scmi_sensor_info *s;
1041		const struct scmi_sensor_update_notify_payld *p = payld;
1042		struct scmi_sensor_update_report *r = report;
1043		struct sensors_info *sinfo = ph->get_priv(ph);
1044
1045		/* payld_sz is variable for this event */
1046		r->sensor_id = le32_to_cpu(p->sensor_id);
1047		if (r->sensor_id >= sinfo->num_sensors)
1048			break;
1049		r->timestamp = timestamp;
1050		r->agent_id = le32_to_cpu(p->agent_id);
1051		s = &sinfo->sensors[r->sensor_id];
1052		/*
1053		 * The generated report r (@struct scmi_sensor_update_report)
1054		 * was pre-allocated to contain up to SCMI_MAX_NUM_SENSOR_AXIS
1055		 * readings: here it is filled with the effective @num_axis
1056		 * readings defined for this sensor or 1 for scalar sensors.
1057		 */
1058		r->readings_count = s->num_axis ?: 1;
1059		for (i = 0; i < r->readings_count; i++)
1060			scmi_parse_sensor_readings(&r->readings[i],
1061						   &p->readings[i]);
1062		*src_id = r->sensor_id;
1063		rep = r;
1064		break;
1065	}
1066	default:
1067		break;
1068	}
1069
1070	return rep;
1071}
1072
1073static int scmi_sensor_get_num_sources(const struct scmi_protocol_handle *ph)
1074{
1075	struct sensors_info *si = ph->get_priv(ph);
1076
1077	return si->num_sensors;
1078}
1079
1080static const struct scmi_event sensor_events[] = {
1081	{
1082		.id = SCMI_EVENT_SENSOR_TRIP_POINT_EVENT,
1083		.max_payld_sz = sizeof(struct scmi_sensor_trip_notify_payld),
1084		.max_report_sz = sizeof(struct scmi_sensor_trip_point_report),
1085	},
1086	{
1087		.id = SCMI_EVENT_SENSOR_UPDATE,
1088		.max_payld_sz =
1089			sizeof(struct scmi_sensor_update_notify_payld) +
1090			 SCMI_MAX_NUM_SENSOR_AXIS *
1091			 sizeof(struct scmi_sensor_reading_resp),
1092		.max_report_sz = sizeof(struct scmi_sensor_update_report) +
1093				  SCMI_MAX_NUM_SENSOR_AXIS *
1094				  sizeof(struct scmi_sensor_reading),
1095	},
1096};
1097
1098static const struct scmi_event_ops sensor_event_ops = {
1099	.get_num_sources = scmi_sensor_get_num_sources,
1100	.set_notify_enabled = scmi_sensor_set_notify_enabled,
1101	.fill_custom_report = scmi_sensor_fill_custom_report,
1102};
1103
1104static const struct scmi_protocol_events sensor_protocol_events = {
1105	.queue_sz = SCMI_PROTO_QUEUE_SZ,
1106	.ops = &sensor_event_ops,
1107	.evts = sensor_events,
1108	.num_events = ARRAY_SIZE(sensor_events),
1109};
1110
1111static int scmi_sensors_protocol_init(const struct scmi_protocol_handle *ph)
1112{
1113	u32 version;
1114	int ret;
1115	struct sensors_info *sinfo;
1116
1117	ret = ph->xops->version_get(ph, &version);
1118	if (ret)
1119		return ret;
1120
1121	dev_dbg(ph->dev, "Sensor Version %d.%d\n",
1122		PROTOCOL_REV_MAJOR(version), PROTOCOL_REV_MINOR(version));
1123
1124	sinfo = devm_kzalloc(ph->dev, sizeof(*sinfo), GFP_KERNEL);
1125	if (!sinfo)
1126		return -ENOMEM;
1127	sinfo->version = version;
1128
1129	ret = scmi_sensor_attributes_get(ph, sinfo);
1130	if (ret)
1131		return ret;
1132	sinfo->sensors = devm_kcalloc(ph->dev, sinfo->num_sensors,
1133				      sizeof(*sinfo->sensors), GFP_KERNEL);
1134	if (!sinfo->sensors)
1135		return -ENOMEM;
1136
1137	ret = scmi_sensor_description_get(ph, sinfo);
1138	if (ret)
1139		return ret;
1140
1141	return ph->set_priv(ph, sinfo);
1142}
1143
1144static const struct scmi_protocol scmi_sensors = {
1145	.id = SCMI_PROTOCOL_SENSOR,
1146	.owner = THIS_MODULE,
1147	.instance_init = &scmi_sensors_protocol_init,
1148	.ops = &sensor_proto_ops,
1149	.events = &sensor_protocol_events,
1150};
1151
1152DEFINE_SCMI_PROTOCOL_REGISTER_UNREGISTER(sensors, scmi_sensors)
1153