1// SPDX-License-Identifier: GPL-2.0
2/*
3 * System Control and Management Interface (SCMI) Message Protocol driver
4 *
5 * SCMI Message Protocol is used between the System Control Processor(SCP)
6 * and the Application Processors(AP). The Message Handling Unit(MHU)
7 * provides a mechanism for inter-processor communication between SCP's
8 * Cortex M3 and AP.
9 *
10 * SCP offers control and management of the core/cluster power states,
11 * various power domain DVFS including the core/cluster, certain system
12 * clocks configuration, thermal sensors and many others.
13 *
14 * Copyright (C) 2018-2021 ARM Ltd.
15 */
16
17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19#include <linux/bitmap.h>
20#include <linux/debugfs.h>
21#include <linux/device.h>
22#include <linux/export.h>
23#include <linux/idr.h>
24#include <linux/io.h>
25#include <linux/io-64-nonatomic-hi-lo.h>
26#include <linux/kernel.h>
27#include <linux/ktime.h>
28#include <linux/hashtable.h>
29#include <linux/list.h>
30#include <linux/module.h>
31#include <linux/of.h>
32#include <linux/platform_device.h>
33#include <linux/processor.h>
34#include <linux/refcount.h>
35#include <linux/slab.h>
36
37#include "common.h"
38#include "notify.h"
39
40#include "raw_mode.h"
41
42#define CREATE_TRACE_POINTS
43#include <trace/events/scmi.h>
44
45static DEFINE_IDA(scmi_id);
46
47static DEFINE_IDR(scmi_protocols);
48static DEFINE_SPINLOCK(protocol_lock);
49
50/* List of all SCMI devices active in system */
51static LIST_HEAD(scmi_list);
52/* Protection for the entire list */
53static DEFINE_MUTEX(scmi_list_mutex);
54/* Track the unique id for the transfers for debug & profiling purpose */
55static atomic_t transfer_last_id;
56
57static struct dentry *scmi_top_dentry;
58
59/**
60 * struct scmi_xfers_info - Structure to manage transfer information
61 *
62 * @xfer_alloc_table: Bitmap table for allocated messages.
63 *	Index of this bitmap table is also used for message
64 *	sequence identifier.
65 * @xfer_lock: Protection for message allocation
66 * @max_msg: Maximum number of messages that can be pending
67 * @free_xfers: A free list for available to use xfers. It is initialized with
68 *		a number of xfers equal to the maximum allowed in-flight
69 *		messages.
70 * @pending_xfers: An hashtable, indexed by msg_hdr.seq, used to keep all the
71 *		   currently in-flight messages.
72 */
73struct scmi_xfers_info {
74	unsigned long *xfer_alloc_table;
75	spinlock_t xfer_lock;
76	int max_msg;
77	struct hlist_head free_xfers;
78	DECLARE_HASHTABLE(pending_xfers, SCMI_PENDING_XFERS_HT_ORDER_SZ);
79};
80
81/**
82 * struct scmi_protocol_instance  - Describe an initialized protocol instance.
83 * @handle: Reference to the SCMI handle associated to this protocol instance.
84 * @proto: A reference to the protocol descriptor.
85 * @gid: A reference for per-protocol devres management.
86 * @users: A refcount to track effective users of this protocol.
87 * @priv: Reference for optional protocol private data.
88 * @ph: An embedded protocol handle that will be passed down to protocol
89 *	initialization code to identify this instance.
90 *
91 * Each protocol is initialized independently once for each SCMI platform in
92 * which is defined by DT and implemented by the SCMI server fw.
93 */
94struct scmi_protocol_instance {
95	const struct scmi_handle	*handle;
96	const struct scmi_protocol	*proto;
97	void				*gid;
98	refcount_t			users;
99	void				*priv;
100	struct scmi_protocol_handle	ph;
101};
102
103#define ph_to_pi(h)	container_of(h, struct scmi_protocol_instance, ph)
104
105/**
106 * struct scmi_debug_info  - Debug common info
107 * @top_dentry: A reference to the top debugfs dentry
108 * @name: Name of this SCMI instance
109 * @type: Type of this SCMI instance
110 * @is_atomic: Flag to state if the transport of this instance is atomic
111 */
112struct scmi_debug_info {
113	struct dentry *top_dentry;
114	const char *name;
115	const char *type;
116	bool is_atomic;
117};
118
119/**
120 * struct scmi_info - Structure representing a SCMI instance
121 *
122 * @id: A sequence number starting from zero identifying this instance
123 * @dev: Device pointer
124 * @desc: SoC description for this instance
125 * @version: SCMI revision information containing protocol version,
126 *	implementation version and (sub-)vendor identification.
127 * @handle: Instance of SCMI handle to send to clients
128 * @tx_minfo: Universal Transmit Message management info
129 * @rx_minfo: Universal Receive Message management info
130 * @tx_idr: IDR object to map protocol id to Tx channel info pointer
131 * @rx_idr: IDR object to map protocol id to Rx channel info pointer
132 * @protocols: IDR for protocols' instance descriptors initialized for
133 *	       this SCMI instance: populated on protocol's first attempted
134 *	       usage.
135 * @protocols_mtx: A mutex to protect protocols instances initialization.
136 * @protocols_imp: List of protocols implemented, currently maximum of
137 *		   scmi_revision_info.num_protocols elements allocated by the
138 *		   base protocol
139 * @active_protocols: IDR storing device_nodes for protocols actually defined
140 *		      in the DT and confirmed as implemented by fw.
141 * @atomic_threshold: Optional system wide DT-configured threshold, expressed
142 *		      in microseconds, for atomic operations.
143 *		      Only SCMI synchronous commands reported by the platform
144 *		      to have an execution latency lesser-equal to the threshold
145 *		      should be considered for atomic mode operation: such
146 *		      decision is finally left up to the SCMI drivers.
147 * @notify_priv: Pointer to private data structure specific to notifications.
148 * @node: List head
149 * @users: Number of users of this instance
150 * @bus_nb: A notifier to listen for device bind/unbind on the scmi bus
151 * @dev_req_nb: A notifier to listen for device request/unrequest on the scmi
152 *		bus
153 * @devreq_mtx: A mutex to serialize device creation for this SCMI instance
154 * @dbg: A pointer to debugfs related data (if any)
155 * @raw: An opaque reference handle used by SCMI Raw mode.
156 */
157struct scmi_info {
158	int id;
159	struct device *dev;
160	const struct scmi_desc *desc;
161	struct scmi_revision_info version;
162	struct scmi_handle handle;
163	struct scmi_xfers_info tx_minfo;
164	struct scmi_xfers_info rx_minfo;
165	struct idr tx_idr;
166	struct idr rx_idr;
167	struct idr protocols;
168	/* Ensure mutual exclusive access to protocols instance array */
169	struct mutex protocols_mtx;
170	u8 *protocols_imp;
171	struct idr active_protocols;
172	unsigned int atomic_threshold;
173	void *notify_priv;
174	struct list_head node;
175	int users;
176	struct notifier_block bus_nb;
177	struct notifier_block dev_req_nb;
178	/* Serialize device creation process for this instance */
179	struct mutex devreq_mtx;
180	struct scmi_debug_info *dbg;
181	void *raw;
182};
183
184#define handle_to_scmi_info(h)	container_of(h, struct scmi_info, handle)
185#define bus_nb_to_scmi_info(nb)	container_of(nb, struct scmi_info, bus_nb)
186#define req_nb_to_scmi_info(nb)	container_of(nb, struct scmi_info, dev_req_nb)
187
188static const struct scmi_protocol *scmi_protocol_get(int protocol_id)
189{
190	const struct scmi_protocol *proto;
191
192	proto = idr_find(&scmi_protocols, protocol_id);
193	if (!proto || !try_module_get(proto->owner)) {
194		pr_warn("SCMI Protocol 0x%x not found!\n", protocol_id);
195		return NULL;
196	}
197
198	pr_debug("Found SCMI Protocol 0x%x\n", protocol_id);
199
200	return proto;
201}
202
203static void scmi_protocol_put(int protocol_id)
204{
205	const struct scmi_protocol *proto;
206
207	proto = idr_find(&scmi_protocols, protocol_id);
208	if (proto)
209		module_put(proto->owner);
210}
211
212int scmi_protocol_register(const struct scmi_protocol *proto)
213{
214	int ret;
215
216	if (!proto) {
217		pr_err("invalid protocol\n");
218		return -EINVAL;
219	}
220
221	if (!proto->instance_init) {
222		pr_err("missing init for protocol 0x%x\n", proto->id);
223		return -EINVAL;
224	}
225
226	spin_lock(&protocol_lock);
227	ret = idr_alloc(&scmi_protocols, (void *)proto,
228			proto->id, proto->id + 1, GFP_ATOMIC);
229	spin_unlock(&protocol_lock);
230	if (ret != proto->id) {
231		pr_err("unable to allocate SCMI idr slot for 0x%x - err %d\n",
232		       proto->id, ret);
233		return ret;
234	}
235
236	pr_debug("Registered SCMI Protocol 0x%x\n", proto->id);
237
238	return 0;
239}
240EXPORT_SYMBOL_GPL(scmi_protocol_register);
241
242void scmi_protocol_unregister(const struct scmi_protocol *proto)
243{
244	spin_lock(&protocol_lock);
245	idr_remove(&scmi_protocols, proto->id);
246	spin_unlock(&protocol_lock);
247
248	pr_debug("Unregistered SCMI Protocol 0x%x\n", proto->id);
249}
250EXPORT_SYMBOL_GPL(scmi_protocol_unregister);
251
252/**
253 * scmi_create_protocol_devices  - Create devices for all pending requests for
254 * this SCMI instance.
255 *
256 * @np: The device node describing the protocol
257 * @info: The SCMI instance descriptor
258 * @prot_id: The protocol ID
259 * @name: The optional name of the device to be created: if not provided this
260 *	  call will lead to the creation of all the devices currently requested
261 *	  for the specified protocol.
262 */
263static void scmi_create_protocol_devices(struct device_node *np,
264					 struct scmi_info *info,
265					 int prot_id, const char *name)
266{
267	struct scmi_device *sdev;
268
269	mutex_lock(&info->devreq_mtx);
270	sdev = scmi_device_create(np, info->dev, prot_id, name);
271	if (name && !sdev)
272		dev_err(info->dev,
273			"failed to create device for protocol 0x%X (%s)\n",
274			prot_id, name);
275	mutex_unlock(&info->devreq_mtx);
276}
277
278static void scmi_destroy_protocol_devices(struct scmi_info *info,
279					  int prot_id, const char *name)
280{
281	mutex_lock(&info->devreq_mtx);
282	scmi_device_destroy(info->dev, prot_id, name);
283	mutex_unlock(&info->devreq_mtx);
284}
285
286void scmi_notification_instance_data_set(const struct scmi_handle *handle,
287					 void *priv)
288{
289	struct scmi_info *info = handle_to_scmi_info(handle);
290
291	info->notify_priv = priv;
292	/* Ensure updated protocol private date are visible */
293	smp_wmb();
294}
295
296void *scmi_notification_instance_data_get(const struct scmi_handle *handle)
297{
298	struct scmi_info *info = handle_to_scmi_info(handle);
299
300	/* Ensure protocols_private_data has been updated */
301	smp_rmb();
302	return info->notify_priv;
303}
304
305/**
306 * scmi_xfer_token_set  - Reserve and set new token for the xfer at hand
307 *
308 * @minfo: Pointer to Tx/Rx Message management info based on channel type
309 * @xfer: The xfer to act upon
310 *
311 * Pick the next unused monotonically increasing token and set it into
312 * xfer->hdr.seq: picking a monotonically increasing value avoids immediate
313 * reuse of freshly completed or timed-out xfers, thus mitigating the risk
314 * of incorrect association of a late and expired xfer with a live in-flight
315 * transaction, both happening to re-use the same token identifier.
316 *
317 * Since platform is NOT required to answer our request in-order we should
318 * account for a few rare but possible scenarios:
319 *
320 *  - exactly 'next_token' may be NOT available so pick xfer_id >= next_token
321 *    using find_next_zero_bit() starting from candidate next_token bit
322 *
323 *  - all tokens ahead upto (MSG_TOKEN_ID_MASK - 1) are used in-flight but we
324 *    are plenty of free tokens at start, so try a second pass using
325 *    find_next_zero_bit() and starting from 0.
326 *
327 *  X = used in-flight
328 *
329 * Normal
330 * ------
331 *
332 *		|- xfer_id picked
333 *   -----------+----------------------------------------------------------
334 *   | | |X|X|X| | | | | | ... ... ... ... ... ... ... ... ... ... ...|X|X|
335 *   ----------------------------------------------------------------------
336 *		^
337 *		|- next_token
338 *
339 * Out-of-order pending at start
340 * -----------------------------
341 *
342 *	  |- xfer_id picked, last_token fixed
343 *   -----+----------------------------------------------------------------
344 *   |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... ... ...|X| |
345 *   ----------------------------------------------------------------------
346 *    ^
347 *    |- next_token
348 *
349 *
350 * Out-of-order pending at end
351 * ---------------------------
352 *
353 *	  |- xfer_id picked, last_token fixed
354 *   -----+----------------------------------------------------------------
355 *   |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... |X|X|X||X|X|
356 *   ----------------------------------------------------------------------
357 *								^
358 *								|- next_token
359 *
360 * Context: Assumes to be called with @xfer_lock already acquired.
361 *
362 * Return: 0 on Success or error
363 */
364static int scmi_xfer_token_set(struct scmi_xfers_info *minfo,
365			       struct scmi_xfer *xfer)
366{
367	unsigned long xfer_id, next_token;
368
369	/*
370	 * Pick a candidate monotonic token in range [0, MSG_TOKEN_MAX - 1]
371	 * using the pre-allocated transfer_id as a base.
372	 * Note that the global transfer_id is shared across all message types
373	 * so there could be holes in the allocated set of monotonic sequence
374	 * numbers, but that is going to limit the effectiveness of the
375	 * mitigation only in very rare limit conditions.
376	 */
377	next_token = (xfer->transfer_id & (MSG_TOKEN_MAX - 1));
378
379	/* Pick the next available xfer_id >= next_token */
380	xfer_id = find_next_zero_bit(minfo->xfer_alloc_table,
381				     MSG_TOKEN_MAX, next_token);
382	if (xfer_id == MSG_TOKEN_MAX) {
383		/*
384		 * After heavily out-of-order responses, there are no free
385		 * tokens ahead, but only at start of xfer_alloc_table so
386		 * try again from the beginning.
387		 */
388		xfer_id = find_next_zero_bit(minfo->xfer_alloc_table,
389					     MSG_TOKEN_MAX, 0);
390		/*
391		 * Something is wrong if we got here since there can be a
392		 * maximum number of (MSG_TOKEN_MAX - 1) in-flight messages
393		 * but we have not found any free token [0, MSG_TOKEN_MAX - 1].
394		 */
395		if (WARN_ON_ONCE(xfer_id == MSG_TOKEN_MAX))
396			return -ENOMEM;
397	}
398
399	/* Update +/- last_token accordingly if we skipped some hole */
400	if (xfer_id != next_token)
401		atomic_add((int)(xfer_id - next_token), &transfer_last_id);
402
403	xfer->hdr.seq = (u16)xfer_id;
404
405	return 0;
406}
407
408/**
409 * scmi_xfer_token_clear  - Release the token
410 *
411 * @minfo: Pointer to Tx/Rx Message management info based on channel type
412 * @xfer: The xfer to act upon
413 */
414static inline void scmi_xfer_token_clear(struct scmi_xfers_info *minfo,
415					 struct scmi_xfer *xfer)
416{
417	clear_bit(xfer->hdr.seq, minfo->xfer_alloc_table);
418}
419
420/**
421 * scmi_xfer_inflight_register_unlocked  - Register the xfer as in-flight
422 *
423 * @xfer: The xfer to register
424 * @minfo: Pointer to Tx/Rx Message management info based on channel type
425 *
426 * Note that this helper assumes that the xfer to be registered as in-flight
427 * had been built using an xfer sequence number which still corresponds to a
428 * free slot in the xfer_alloc_table.
429 *
430 * Context: Assumes to be called with @xfer_lock already acquired.
431 */
432static inline void
433scmi_xfer_inflight_register_unlocked(struct scmi_xfer *xfer,
434				     struct scmi_xfers_info *minfo)
435{
436	/* Set in-flight */
437	set_bit(xfer->hdr.seq, minfo->xfer_alloc_table);
438	hash_add(minfo->pending_xfers, &xfer->node, xfer->hdr.seq);
439	xfer->pending = true;
440}
441
442/**
443 * scmi_xfer_inflight_register  - Try to register an xfer as in-flight
444 *
445 * @xfer: The xfer to register
446 * @minfo: Pointer to Tx/Rx Message management info based on channel type
447 *
448 * Note that this helper does NOT assume anything about the sequence number
449 * that was baked into the provided xfer, so it checks at first if it can
450 * be mapped to a free slot and fails with an error if another xfer with the
451 * same sequence number is currently still registered as in-flight.
452 *
453 * Return: 0 on Success or -EBUSY if sequence number embedded in the xfer
454 *	   could not rbe mapped to a free slot in the xfer_alloc_table.
455 */
456static int scmi_xfer_inflight_register(struct scmi_xfer *xfer,
457				       struct scmi_xfers_info *minfo)
458{
459	int ret = 0;
460	unsigned long flags;
461
462	spin_lock_irqsave(&minfo->xfer_lock, flags);
463	if (!test_bit(xfer->hdr.seq, minfo->xfer_alloc_table))
464		scmi_xfer_inflight_register_unlocked(xfer, minfo);
465	else
466		ret = -EBUSY;
467	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
468
469	return ret;
470}
471
472/**
473 * scmi_xfer_raw_inflight_register  - An helper to register the given xfer as in
474 * flight on the TX channel, if possible.
475 *
476 * @handle: Pointer to SCMI entity handle
477 * @xfer: The xfer to register
478 *
479 * Return: 0 on Success, error otherwise
480 */
481int scmi_xfer_raw_inflight_register(const struct scmi_handle *handle,
482				    struct scmi_xfer *xfer)
483{
484	struct scmi_info *info = handle_to_scmi_info(handle);
485
486	return scmi_xfer_inflight_register(xfer, &info->tx_minfo);
487}
488
489/**
490 * scmi_xfer_pending_set  - Pick a proper sequence number and mark the xfer
491 * as pending in-flight
492 *
493 * @xfer: The xfer to act upon
494 * @minfo: Pointer to Tx/Rx Message management info based on channel type
495 *
496 * Return: 0 on Success or error otherwise
497 */
498static inline int scmi_xfer_pending_set(struct scmi_xfer *xfer,
499					struct scmi_xfers_info *minfo)
500{
501	int ret;
502	unsigned long flags;
503
504	spin_lock_irqsave(&minfo->xfer_lock, flags);
505	/* Set a new monotonic token as the xfer sequence number */
506	ret = scmi_xfer_token_set(minfo, xfer);
507	if (!ret)
508		scmi_xfer_inflight_register_unlocked(xfer, minfo);
509	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
510
511	return ret;
512}
513
514/**
515 * scmi_xfer_get() - Allocate one message
516 *
517 * @handle: Pointer to SCMI entity handle
518 * @minfo: Pointer to Tx/Rx Message management info based on channel type
519 *
520 * Helper function which is used by various message functions that are
521 * exposed to clients of this driver for allocating a message traffic event.
522 *
523 * Picks an xfer from the free list @free_xfers (if any available) and perform
524 * a basic initialization.
525 *
526 * Note that, at this point, still no sequence number is assigned to the
527 * allocated xfer, nor it is registered as a pending transaction.
528 *
529 * The successfully initialized xfer is refcounted.
530 *
531 * Context: Holds @xfer_lock while manipulating @free_xfers.
532 *
533 * Return: An initialized xfer if all went fine, else pointer error.
534 */
535static struct scmi_xfer *scmi_xfer_get(const struct scmi_handle *handle,
536				       struct scmi_xfers_info *minfo)
537{
538	unsigned long flags;
539	struct scmi_xfer *xfer;
540
541	spin_lock_irqsave(&minfo->xfer_lock, flags);
542	if (hlist_empty(&minfo->free_xfers)) {
543		spin_unlock_irqrestore(&minfo->xfer_lock, flags);
544		return ERR_PTR(-ENOMEM);
545	}
546
547	/* grab an xfer from the free_list */
548	xfer = hlist_entry(minfo->free_xfers.first, struct scmi_xfer, node);
549	hlist_del_init(&xfer->node);
550
551	/*
552	 * Allocate transfer_id early so that can be used also as base for
553	 * monotonic sequence number generation if needed.
554	 */
555	xfer->transfer_id = atomic_inc_return(&transfer_last_id);
556
557	refcount_set(&xfer->users, 1);
558	atomic_set(&xfer->busy, SCMI_XFER_FREE);
559	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
560
561	return xfer;
562}
563
564/**
565 * scmi_xfer_raw_get  - Helper to get a bare free xfer from the TX channel
566 *
567 * @handle: Pointer to SCMI entity handle
568 *
569 * Note that xfer is taken from the TX channel structures.
570 *
571 * Return: A valid xfer on Success, or an error-pointer otherwise
572 */
573struct scmi_xfer *scmi_xfer_raw_get(const struct scmi_handle *handle)
574{
575	struct scmi_xfer *xfer;
576	struct scmi_info *info = handle_to_scmi_info(handle);
577
578	xfer = scmi_xfer_get(handle, &info->tx_minfo);
579	if (!IS_ERR(xfer))
580		xfer->flags |= SCMI_XFER_FLAG_IS_RAW;
581
582	return xfer;
583}
584
585/**
586 * scmi_xfer_raw_channel_get  - Helper to get a reference to the proper channel
587 * to use for a specific protocol_id Raw transaction.
588 *
589 * @handle: Pointer to SCMI entity handle
590 * @protocol_id: Identifier of the protocol
591 *
592 * Note that in a regular SCMI stack, usually, a protocol has to be defined in
593 * the DT to have an associated channel and be usable; but in Raw mode any
594 * protocol in range is allowed, re-using the Base channel, so as to enable
595 * fuzzing on any protocol without the need of a fully compiled DT.
596 *
597 * Return: A reference to the channel to use, or an ERR_PTR
598 */
599struct scmi_chan_info *
600scmi_xfer_raw_channel_get(const struct scmi_handle *handle, u8 protocol_id)
601{
602	struct scmi_chan_info *cinfo;
603	struct scmi_info *info = handle_to_scmi_info(handle);
604
605	cinfo = idr_find(&info->tx_idr, protocol_id);
606	if (!cinfo) {
607		if (protocol_id == SCMI_PROTOCOL_BASE)
608			return ERR_PTR(-EINVAL);
609		/* Use Base channel for protocols not defined for DT */
610		cinfo = idr_find(&info->tx_idr, SCMI_PROTOCOL_BASE);
611		if (!cinfo)
612			return ERR_PTR(-EINVAL);
613		dev_warn_once(handle->dev,
614			      "Using Base channel for protocol 0x%X\n",
615			      protocol_id);
616	}
617
618	return cinfo;
619}
620
621/**
622 * __scmi_xfer_put() - Release a message
623 *
624 * @minfo: Pointer to Tx/Rx Message management info based on channel type
625 * @xfer: message that was reserved by scmi_xfer_get
626 *
627 * After refcount check, possibly release an xfer, clearing the token slot,
628 * removing xfer from @pending_xfers and putting it back into free_xfers.
629 *
630 * This holds a spinlock to maintain integrity of internal data structures.
631 */
632static void
633__scmi_xfer_put(struct scmi_xfers_info *minfo, struct scmi_xfer *xfer)
634{
635	unsigned long flags;
636
637	spin_lock_irqsave(&minfo->xfer_lock, flags);
638	if (refcount_dec_and_test(&xfer->users)) {
639		if (xfer->pending) {
640			scmi_xfer_token_clear(minfo, xfer);
641			hash_del(&xfer->node);
642			xfer->pending = false;
643		}
644		hlist_add_head(&xfer->node, &minfo->free_xfers);
645	}
646	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
647}
648
649/**
650 * scmi_xfer_raw_put  - Release an xfer that was taken by @scmi_xfer_raw_get
651 *
652 * @handle: Pointer to SCMI entity handle
653 * @xfer: A reference to the xfer to put
654 *
655 * Note that as with other xfer_put() handlers the xfer is really effectively
656 * released only if there are no more users on the system.
657 */
658void scmi_xfer_raw_put(const struct scmi_handle *handle, struct scmi_xfer *xfer)
659{
660	struct scmi_info *info = handle_to_scmi_info(handle);
661
662	xfer->flags &= ~SCMI_XFER_FLAG_IS_RAW;
663	xfer->flags &= ~SCMI_XFER_FLAG_CHAN_SET;
664	return __scmi_xfer_put(&info->tx_minfo, xfer);
665}
666
667/**
668 * scmi_xfer_lookup_unlocked  -  Helper to lookup an xfer_id
669 *
670 * @minfo: Pointer to Tx/Rx Message management info based on channel type
671 * @xfer_id: Token ID to lookup in @pending_xfers
672 *
673 * Refcounting is untouched.
674 *
675 * Context: Assumes to be called with @xfer_lock already acquired.
676 *
677 * Return: A valid xfer on Success or error otherwise
678 */
679static struct scmi_xfer *
680scmi_xfer_lookup_unlocked(struct scmi_xfers_info *minfo, u16 xfer_id)
681{
682	struct scmi_xfer *xfer = NULL;
683
684	if (test_bit(xfer_id, minfo->xfer_alloc_table))
685		xfer = XFER_FIND(minfo->pending_xfers, xfer_id);
686
687	return xfer ?: ERR_PTR(-EINVAL);
688}
689
690/**
691 * scmi_msg_response_validate  - Validate message type against state of related
692 * xfer
693 *
694 * @cinfo: A reference to the channel descriptor.
695 * @msg_type: Message type to check
696 * @xfer: A reference to the xfer to validate against @msg_type
697 *
698 * This function checks if @msg_type is congruent with the current state of
699 * a pending @xfer; if an asynchronous delayed response is received before the
700 * related synchronous response (Out-of-Order Delayed Response) the missing
701 * synchronous response is assumed to be OK and completed, carrying on with the
702 * Delayed Response: this is done to address the case in which the underlying
703 * SCMI transport can deliver such out-of-order responses.
704 *
705 * Context: Assumes to be called with xfer->lock already acquired.
706 *
707 * Return: 0 on Success, error otherwise
708 */
709static inline int scmi_msg_response_validate(struct scmi_chan_info *cinfo,
710					     u8 msg_type,
711					     struct scmi_xfer *xfer)
712{
713	/*
714	 * Even if a response was indeed expected on this slot at this point,
715	 * a buggy platform could wrongly reply feeding us an unexpected
716	 * delayed response we're not prepared to handle: bail-out safely
717	 * blaming firmware.
718	 */
719	if (msg_type == MSG_TYPE_DELAYED_RESP && !xfer->async_done) {
720		dev_err(cinfo->dev,
721			"Delayed Response for %d not expected! Buggy F/W ?\n",
722			xfer->hdr.seq);
723		return -EINVAL;
724	}
725
726	switch (xfer->state) {
727	case SCMI_XFER_SENT_OK:
728		if (msg_type == MSG_TYPE_DELAYED_RESP) {
729			/*
730			 * Delayed Response expected but delivered earlier.
731			 * Assume message RESPONSE was OK and skip state.
732			 */
733			xfer->hdr.status = SCMI_SUCCESS;
734			xfer->state = SCMI_XFER_RESP_OK;
735			complete(&xfer->done);
736			dev_warn(cinfo->dev,
737				 "Received valid OoO Delayed Response for %d\n",
738				 xfer->hdr.seq);
739		}
740		break;
741	case SCMI_XFER_RESP_OK:
742		if (msg_type != MSG_TYPE_DELAYED_RESP)
743			return -EINVAL;
744		break;
745	case SCMI_XFER_DRESP_OK:
746		/* No further message expected once in SCMI_XFER_DRESP_OK */
747		return -EINVAL;
748	}
749
750	return 0;
751}
752
753/**
754 * scmi_xfer_state_update  - Update xfer state
755 *
756 * @xfer: A reference to the xfer to update
757 * @msg_type: Type of message being processed.
758 *
759 * Note that this message is assumed to have been already successfully validated
760 * by @scmi_msg_response_validate(), so here we just update the state.
761 *
762 * Context: Assumes to be called on an xfer exclusively acquired using the
763 *	    busy flag.
764 */
765static inline void scmi_xfer_state_update(struct scmi_xfer *xfer, u8 msg_type)
766{
767	xfer->hdr.type = msg_type;
768
769	/* Unknown command types were already discarded earlier */
770	if (xfer->hdr.type == MSG_TYPE_COMMAND)
771		xfer->state = SCMI_XFER_RESP_OK;
772	else
773		xfer->state = SCMI_XFER_DRESP_OK;
774}
775
776static bool scmi_xfer_acquired(struct scmi_xfer *xfer)
777{
778	int ret;
779
780	ret = atomic_cmpxchg(&xfer->busy, SCMI_XFER_FREE, SCMI_XFER_BUSY);
781
782	return ret == SCMI_XFER_FREE;
783}
784
785/**
786 * scmi_xfer_command_acquire  -  Helper to lookup and acquire a command xfer
787 *
788 * @cinfo: A reference to the channel descriptor.
789 * @msg_hdr: A message header to use as lookup key
790 *
791 * When a valid xfer is found for the sequence number embedded in the provided
792 * msg_hdr, reference counting is properly updated and exclusive access to this
793 * xfer is granted till released with @scmi_xfer_command_release.
794 *
795 * Return: A valid @xfer on Success or error otherwise.
796 */
797static inline struct scmi_xfer *
798scmi_xfer_command_acquire(struct scmi_chan_info *cinfo, u32 msg_hdr)
799{
800	int ret;
801	unsigned long flags;
802	struct scmi_xfer *xfer;
803	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
804	struct scmi_xfers_info *minfo = &info->tx_minfo;
805	u8 msg_type = MSG_XTRACT_TYPE(msg_hdr);
806	u16 xfer_id = MSG_XTRACT_TOKEN(msg_hdr);
807
808	/* Are we even expecting this? */
809	spin_lock_irqsave(&minfo->xfer_lock, flags);
810	xfer = scmi_xfer_lookup_unlocked(minfo, xfer_id);
811	if (IS_ERR(xfer)) {
812		dev_err(cinfo->dev,
813			"Message for %d type %d is not expected!\n",
814			xfer_id, msg_type);
815		spin_unlock_irqrestore(&minfo->xfer_lock, flags);
816		return xfer;
817	}
818	refcount_inc(&xfer->users);
819	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
820
821	spin_lock_irqsave(&xfer->lock, flags);
822	ret = scmi_msg_response_validate(cinfo, msg_type, xfer);
823	/*
824	 * If a pending xfer was found which was also in a congruent state with
825	 * the received message, acquire exclusive access to it setting the busy
826	 * flag.
827	 * Spins only on the rare limit condition of concurrent reception of
828	 * RESP and DRESP for the same xfer.
829	 */
830	if (!ret) {
831		spin_until_cond(scmi_xfer_acquired(xfer));
832		scmi_xfer_state_update(xfer, msg_type);
833	}
834	spin_unlock_irqrestore(&xfer->lock, flags);
835
836	if (ret) {
837		dev_err(cinfo->dev,
838			"Invalid message type:%d for %d - HDR:0x%X  state:%d\n",
839			msg_type, xfer_id, msg_hdr, xfer->state);
840		/* On error the refcount incremented above has to be dropped */
841		__scmi_xfer_put(minfo, xfer);
842		xfer = ERR_PTR(-EINVAL);
843	}
844
845	return xfer;
846}
847
848static inline void scmi_xfer_command_release(struct scmi_info *info,
849					     struct scmi_xfer *xfer)
850{
851	atomic_set(&xfer->busy, SCMI_XFER_FREE);
852	__scmi_xfer_put(&info->tx_minfo, xfer);
853}
854
855static inline void scmi_clear_channel(struct scmi_info *info,
856				      struct scmi_chan_info *cinfo)
857{
858	if (info->desc->ops->clear_channel)
859		info->desc->ops->clear_channel(cinfo);
860}
861
862static void scmi_handle_notification(struct scmi_chan_info *cinfo,
863				     u32 msg_hdr, void *priv)
864{
865	struct scmi_xfer *xfer;
866	struct device *dev = cinfo->dev;
867	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
868	struct scmi_xfers_info *minfo = &info->rx_minfo;
869	ktime_t ts;
870
871	ts = ktime_get_boottime();
872	xfer = scmi_xfer_get(cinfo->handle, minfo);
873	if (IS_ERR(xfer)) {
874		dev_err(dev, "failed to get free message slot (%ld)\n",
875			PTR_ERR(xfer));
876		scmi_clear_channel(info, cinfo);
877		return;
878	}
879
880	unpack_scmi_header(msg_hdr, &xfer->hdr);
881	if (priv)
882		/* Ensure order between xfer->priv store and following ops */
883		smp_store_mb(xfer->priv, priv);
884	info->desc->ops->fetch_notification(cinfo, info->desc->max_msg_size,
885					    xfer);
886
887	trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id,
888			    xfer->hdr.id, "NOTI", xfer->hdr.seq,
889			    xfer->hdr.status, xfer->rx.buf, xfer->rx.len);
890
891	scmi_notify(cinfo->handle, xfer->hdr.protocol_id,
892		    xfer->hdr.id, xfer->rx.buf, xfer->rx.len, ts);
893
894	trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id,
895			   xfer->hdr.protocol_id, xfer->hdr.seq,
896			   MSG_TYPE_NOTIFICATION);
897
898	if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
899		xfer->hdr.seq = MSG_XTRACT_TOKEN(msg_hdr);
900		scmi_raw_message_report(info->raw, xfer, SCMI_RAW_NOTIF_QUEUE,
901					cinfo->id);
902	}
903
904	__scmi_xfer_put(minfo, xfer);
905
906	scmi_clear_channel(info, cinfo);
907}
908
909static void scmi_handle_response(struct scmi_chan_info *cinfo,
910				 u32 msg_hdr, void *priv)
911{
912	struct scmi_xfer *xfer;
913	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
914
915	xfer = scmi_xfer_command_acquire(cinfo, msg_hdr);
916	if (IS_ERR(xfer)) {
917		if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT))
918			scmi_raw_error_report(info->raw, cinfo, msg_hdr, priv);
919
920		if (MSG_XTRACT_TYPE(msg_hdr) == MSG_TYPE_DELAYED_RESP)
921			scmi_clear_channel(info, cinfo);
922		return;
923	}
924
925	/* rx.len could be shrunk in the sync do_xfer, so reset to maxsz */
926	if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP)
927		xfer->rx.len = info->desc->max_msg_size;
928
929	if (priv)
930		/* Ensure order between xfer->priv store and following ops */
931		smp_store_mb(xfer->priv, priv);
932	info->desc->ops->fetch_response(cinfo, xfer);
933
934	trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id,
935			    xfer->hdr.id,
936			    xfer->hdr.type == MSG_TYPE_DELAYED_RESP ?
937			    (!SCMI_XFER_IS_RAW(xfer) ? "DLYD" : "dlyd") :
938			    (!SCMI_XFER_IS_RAW(xfer) ? "RESP" : "resp"),
939			    xfer->hdr.seq, xfer->hdr.status,
940			    xfer->rx.buf, xfer->rx.len);
941
942	trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id,
943			   xfer->hdr.protocol_id, xfer->hdr.seq,
944			   xfer->hdr.type);
945
946	if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP) {
947		scmi_clear_channel(info, cinfo);
948		complete(xfer->async_done);
949	} else {
950		complete(&xfer->done);
951	}
952
953	if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
954		/*
955		 * When in polling mode avoid to queue the Raw xfer on the IRQ
956		 * RX path since it will be already queued at the end of the TX
957		 * poll loop.
958		 */
959		if (!xfer->hdr.poll_completion)
960			scmi_raw_message_report(info->raw, xfer,
961						SCMI_RAW_REPLY_QUEUE,
962						cinfo->id);
963	}
964
965	scmi_xfer_command_release(info, xfer);
966}
967
968/**
969 * scmi_rx_callback() - callback for receiving messages
970 *
971 * @cinfo: SCMI channel info
972 * @msg_hdr: Message header
973 * @priv: Transport specific private data.
974 *
975 * Processes one received message to appropriate transfer information and
976 * signals completion of the transfer.
977 *
978 * NOTE: This function will be invoked in IRQ context, hence should be
979 * as optimal as possible.
980 */
981void scmi_rx_callback(struct scmi_chan_info *cinfo, u32 msg_hdr, void *priv)
982{
983	u8 msg_type = MSG_XTRACT_TYPE(msg_hdr);
984
985	switch (msg_type) {
986	case MSG_TYPE_NOTIFICATION:
987		scmi_handle_notification(cinfo, msg_hdr, priv);
988		break;
989	case MSG_TYPE_COMMAND:
990	case MSG_TYPE_DELAYED_RESP:
991		scmi_handle_response(cinfo, msg_hdr, priv);
992		break;
993	default:
994		WARN_ONCE(1, "received unknown msg_type:%d\n", msg_type);
995		break;
996	}
997}
998
999/**
1000 * xfer_put() - Release a transmit message
1001 *
1002 * @ph: Pointer to SCMI protocol handle
1003 * @xfer: message that was reserved by xfer_get_init
1004 */
1005static void xfer_put(const struct scmi_protocol_handle *ph,
1006		     struct scmi_xfer *xfer)
1007{
1008	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1009	struct scmi_info *info = handle_to_scmi_info(pi->handle);
1010
1011	__scmi_xfer_put(&info->tx_minfo, xfer);
1012}
1013
1014static bool scmi_xfer_done_no_timeout(struct scmi_chan_info *cinfo,
1015				      struct scmi_xfer *xfer, ktime_t stop)
1016{
1017	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1018
1019	/*
1020	 * Poll also on xfer->done so that polling can be forcibly terminated
1021	 * in case of out-of-order receptions of delayed responses
1022	 */
1023	return info->desc->ops->poll_done(cinfo, xfer) ||
1024	       try_wait_for_completion(&xfer->done) ||
1025	       ktime_after(ktime_get(), stop);
1026}
1027
1028static int scmi_wait_for_reply(struct device *dev, const struct scmi_desc *desc,
1029			       struct scmi_chan_info *cinfo,
1030			       struct scmi_xfer *xfer, unsigned int timeout_ms)
1031{
1032	int ret = 0;
1033
1034	if (xfer->hdr.poll_completion) {
1035		/*
1036		 * Real polling is needed only if transport has NOT declared
1037		 * itself to support synchronous commands replies.
1038		 */
1039		if (!desc->sync_cmds_completed_on_ret) {
1040			/*
1041			 * Poll on xfer using transport provided .poll_done();
1042			 * assumes no completion interrupt was available.
1043			 */
1044			ktime_t stop = ktime_add_ms(ktime_get(), timeout_ms);
1045
1046			spin_until_cond(scmi_xfer_done_no_timeout(cinfo,
1047								  xfer, stop));
1048			if (ktime_after(ktime_get(), stop)) {
1049				dev_err(dev,
1050					"timed out in resp(caller: %pS) - polling\n",
1051					(void *)_RET_IP_);
1052				ret = -ETIMEDOUT;
1053			}
1054		}
1055
1056		if (!ret) {
1057			unsigned long flags;
1058			struct scmi_info *info =
1059				handle_to_scmi_info(cinfo->handle);
1060
1061			/*
1062			 * Do not fetch_response if an out-of-order delayed
1063			 * response is being processed.
1064			 */
1065			spin_lock_irqsave(&xfer->lock, flags);
1066			if (xfer->state == SCMI_XFER_SENT_OK) {
1067				desc->ops->fetch_response(cinfo, xfer);
1068				xfer->state = SCMI_XFER_RESP_OK;
1069			}
1070			spin_unlock_irqrestore(&xfer->lock, flags);
1071
1072			/* Trace polled replies. */
1073			trace_scmi_msg_dump(info->id, cinfo->id,
1074					    xfer->hdr.protocol_id, xfer->hdr.id,
1075					    !SCMI_XFER_IS_RAW(xfer) ?
1076					    "RESP" : "resp",
1077					    xfer->hdr.seq, xfer->hdr.status,
1078					    xfer->rx.buf, xfer->rx.len);
1079
1080			if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
1081				struct scmi_info *info =
1082					handle_to_scmi_info(cinfo->handle);
1083
1084				scmi_raw_message_report(info->raw, xfer,
1085							SCMI_RAW_REPLY_QUEUE,
1086							cinfo->id);
1087			}
1088		}
1089	} else {
1090		/* And we wait for the response. */
1091		if (!wait_for_completion_timeout(&xfer->done,
1092						 msecs_to_jiffies(timeout_ms))) {
1093			dev_err(dev, "timed out in resp(caller: %pS)\n",
1094				(void *)_RET_IP_);
1095			ret = -ETIMEDOUT;
1096		}
1097	}
1098
1099	return ret;
1100}
1101
1102/**
1103 * scmi_wait_for_message_response  - An helper to group all the possible ways of
1104 * waiting for a synchronous message response.
1105 *
1106 * @cinfo: SCMI channel info
1107 * @xfer: Reference to the transfer being waited for.
1108 *
1109 * Chooses waiting strategy (sleep-waiting vs busy-waiting) depending on
1110 * configuration flags like xfer->hdr.poll_completion.
1111 *
1112 * Return: 0 on Success, error otherwise.
1113 */
1114static int scmi_wait_for_message_response(struct scmi_chan_info *cinfo,
1115					  struct scmi_xfer *xfer)
1116{
1117	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1118	struct device *dev = info->dev;
1119
1120	trace_scmi_xfer_response_wait(xfer->transfer_id, xfer->hdr.id,
1121				      xfer->hdr.protocol_id, xfer->hdr.seq,
1122				      info->desc->max_rx_timeout_ms,
1123				      xfer->hdr.poll_completion);
1124
1125	return scmi_wait_for_reply(dev, info->desc, cinfo, xfer,
1126				   info->desc->max_rx_timeout_ms);
1127}
1128
1129/**
1130 * scmi_xfer_raw_wait_for_message_response  - An helper to wait for a message
1131 * reply to an xfer raw request on a specific channel for the required timeout.
1132 *
1133 * @cinfo: SCMI channel info
1134 * @xfer: Reference to the transfer being waited for.
1135 * @timeout_ms: The maximum timeout in milliseconds
1136 *
1137 * Return: 0 on Success, error otherwise.
1138 */
1139int scmi_xfer_raw_wait_for_message_response(struct scmi_chan_info *cinfo,
1140					    struct scmi_xfer *xfer,
1141					    unsigned int timeout_ms)
1142{
1143	int ret;
1144	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1145	struct device *dev = info->dev;
1146
1147	ret = scmi_wait_for_reply(dev, info->desc, cinfo, xfer, timeout_ms);
1148	if (ret)
1149		dev_dbg(dev, "timed out in RAW response - HDR:%08X\n",
1150			pack_scmi_header(&xfer->hdr));
1151
1152	return ret;
1153}
1154
1155/**
1156 * do_xfer() - Do one transfer
1157 *
1158 * @ph: Pointer to SCMI protocol handle
1159 * @xfer: Transfer to initiate and wait for response
1160 *
1161 * Return: -ETIMEDOUT in case of no response, if transmit error,
1162 *	return corresponding error, else if all goes well,
1163 *	return 0.
1164 */
1165static int do_xfer(const struct scmi_protocol_handle *ph,
1166		   struct scmi_xfer *xfer)
1167{
1168	int ret;
1169	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1170	struct scmi_info *info = handle_to_scmi_info(pi->handle);
1171	struct device *dev = info->dev;
1172	struct scmi_chan_info *cinfo;
1173
1174	/* Check for polling request on custom command xfers at first */
1175	if (xfer->hdr.poll_completion &&
1176	    !is_transport_polling_capable(info->desc)) {
1177		dev_warn_once(dev,
1178			      "Polling mode is not supported by transport.\n");
1179		return -EINVAL;
1180	}
1181
1182	cinfo = idr_find(&info->tx_idr, pi->proto->id);
1183	if (unlikely(!cinfo))
1184		return -EINVAL;
1185
1186	/* True ONLY if also supported by transport. */
1187	if (is_polling_enabled(cinfo, info->desc))
1188		xfer->hdr.poll_completion = true;
1189
1190	/*
1191	 * Initialise protocol id now from protocol handle to avoid it being
1192	 * overridden by mistake (or malice) by the protocol code mangling with
1193	 * the scmi_xfer structure prior to this.
1194	 */
1195	xfer->hdr.protocol_id = pi->proto->id;
1196	reinit_completion(&xfer->done);
1197
1198	trace_scmi_xfer_begin(xfer->transfer_id, xfer->hdr.id,
1199			      xfer->hdr.protocol_id, xfer->hdr.seq,
1200			      xfer->hdr.poll_completion);
1201
1202	/* Clear any stale status */
1203	xfer->hdr.status = SCMI_SUCCESS;
1204	xfer->state = SCMI_XFER_SENT_OK;
1205	/*
1206	 * Even though spinlocking is not needed here since no race is possible
1207	 * on xfer->state due to the monotonically increasing tokens allocation,
1208	 * we must anyway ensure xfer->state initialization is not re-ordered
1209	 * after the .send_message() to be sure that on the RX path an early
1210	 * ISR calling scmi_rx_callback() cannot see an old stale xfer->state.
1211	 */
1212	smp_mb();
1213
1214	ret = info->desc->ops->send_message(cinfo, xfer);
1215	if (ret < 0) {
1216		dev_dbg(dev, "Failed to send message %d\n", ret);
1217		return ret;
1218	}
1219
1220	trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id,
1221			    xfer->hdr.id, "CMND", xfer->hdr.seq,
1222			    xfer->hdr.status, xfer->tx.buf, xfer->tx.len);
1223
1224	ret = scmi_wait_for_message_response(cinfo, xfer);
1225	if (!ret && xfer->hdr.status)
1226		ret = scmi_to_linux_errno(xfer->hdr.status);
1227
1228	if (info->desc->ops->mark_txdone)
1229		info->desc->ops->mark_txdone(cinfo, ret, xfer);
1230
1231	trace_scmi_xfer_end(xfer->transfer_id, xfer->hdr.id,
1232			    xfer->hdr.protocol_id, xfer->hdr.seq, ret);
1233
1234	return ret;
1235}
1236
1237static void reset_rx_to_maxsz(const struct scmi_protocol_handle *ph,
1238			      struct scmi_xfer *xfer)
1239{
1240	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1241	struct scmi_info *info = handle_to_scmi_info(pi->handle);
1242
1243	xfer->rx.len = info->desc->max_msg_size;
1244}
1245
1246/**
1247 * do_xfer_with_response() - Do one transfer and wait until the delayed
1248 *	response is received
1249 *
1250 * @ph: Pointer to SCMI protocol handle
1251 * @xfer: Transfer to initiate and wait for response
1252 *
1253 * Using asynchronous commands in atomic/polling mode should be avoided since
1254 * it could cause long busy-waiting here, so ignore polling for the delayed
1255 * response and WARN if it was requested for this command transaction since
1256 * upper layers should refrain from issuing such kind of requests.
1257 *
1258 * The only other option would have been to refrain from using any asynchronous
1259 * command even if made available, when an atomic transport is detected, and
1260 * instead forcibly use the synchronous version (thing that can be easily
1261 * attained at the protocol layer), but this would also have led to longer
1262 * stalls of the channel for synchronous commands and possibly timeouts.
1263 * (in other words there is usually a good reason if a platform provides an
1264 *  asynchronous version of a command and we should prefer to use it...just not
1265 *  when using atomic/polling mode)
1266 *
1267 * Return: -ETIMEDOUT in case of no delayed response, if transmit error,
1268 *	return corresponding error, else if all goes well, return 0.
1269 */
1270static int do_xfer_with_response(const struct scmi_protocol_handle *ph,
1271				 struct scmi_xfer *xfer)
1272{
1273	int ret, timeout = msecs_to_jiffies(SCMI_MAX_RESPONSE_TIMEOUT);
1274	DECLARE_COMPLETION_ONSTACK(async_response);
1275
1276	xfer->async_done = &async_response;
1277
1278	/*
1279	 * Delayed responses should not be polled, so an async command should
1280	 * not have been used when requiring an atomic/poll context; WARN and
1281	 * perform instead a sleeping wait.
1282	 * (Note Async + IgnoreDelayedResponses are sent via do_xfer)
1283	 */
1284	WARN_ON_ONCE(xfer->hdr.poll_completion);
1285
1286	ret = do_xfer(ph, xfer);
1287	if (!ret) {
1288		if (!wait_for_completion_timeout(xfer->async_done, timeout)) {
1289			dev_err(ph->dev,
1290				"timed out in delayed resp(caller: %pS)\n",
1291				(void *)_RET_IP_);
1292			ret = -ETIMEDOUT;
1293		} else if (xfer->hdr.status) {
1294			ret = scmi_to_linux_errno(xfer->hdr.status);
1295		}
1296	}
1297
1298	xfer->async_done = NULL;
1299	return ret;
1300}
1301
1302/**
1303 * xfer_get_init() - Allocate and initialise one message for transmit
1304 *
1305 * @ph: Pointer to SCMI protocol handle
1306 * @msg_id: Message identifier
1307 * @tx_size: transmit message size
1308 * @rx_size: receive message size
1309 * @p: pointer to the allocated and initialised message
1310 *
1311 * This function allocates the message using @scmi_xfer_get and
1312 * initialise the header.
1313 *
1314 * Return: 0 if all went fine with @p pointing to message, else
1315 *	corresponding error.
1316 */
1317static int xfer_get_init(const struct scmi_protocol_handle *ph,
1318			 u8 msg_id, size_t tx_size, size_t rx_size,
1319			 struct scmi_xfer **p)
1320{
1321	int ret;
1322	struct scmi_xfer *xfer;
1323	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1324	struct scmi_info *info = handle_to_scmi_info(pi->handle);
1325	struct scmi_xfers_info *minfo = &info->tx_minfo;
1326	struct device *dev = info->dev;
1327
1328	/* Ensure we have sane transfer sizes */
1329	if (rx_size > info->desc->max_msg_size ||
1330	    tx_size > info->desc->max_msg_size)
1331		return -ERANGE;
1332
1333	xfer = scmi_xfer_get(pi->handle, minfo);
1334	if (IS_ERR(xfer)) {
1335		ret = PTR_ERR(xfer);
1336		dev_err(dev, "failed to get free message slot(%d)\n", ret);
1337		return ret;
1338	}
1339
1340	/* Pick a sequence number and register this xfer as in-flight */
1341	ret = scmi_xfer_pending_set(xfer, minfo);
1342	if (ret) {
1343		dev_err(pi->handle->dev,
1344			"Failed to get monotonic token %d\n", ret);
1345		__scmi_xfer_put(minfo, xfer);
1346		return ret;
1347	}
1348
1349	xfer->tx.len = tx_size;
1350	xfer->rx.len = rx_size ? : info->desc->max_msg_size;
1351	xfer->hdr.type = MSG_TYPE_COMMAND;
1352	xfer->hdr.id = msg_id;
1353	xfer->hdr.poll_completion = false;
1354
1355	*p = xfer;
1356
1357	return 0;
1358}
1359
1360/**
1361 * version_get() - command to get the revision of the SCMI entity
1362 *
1363 * @ph: Pointer to SCMI protocol handle
1364 * @version: Holds returned version of protocol.
1365 *
1366 * Updates the SCMI information in the internal data structure.
1367 *
1368 * Return: 0 if all went fine, else return appropriate error.
1369 */
1370static int version_get(const struct scmi_protocol_handle *ph, u32 *version)
1371{
1372	int ret;
1373	__le32 *rev_info;
1374	struct scmi_xfer *t;
1375
1376	ret = xfer_get_init(ph, PROTOCOL_VERSION, 0, sizeof(*version), &t);
1377	if (ret)
1378		return ret;
1379
1380	ret = do_xfer(ph, t);
1381	if (!ret) {
1382		rev_info = t->rx.buf;
1383		*version = le32_to_cpu(*rev_info);
1384	}
1385
1386	xfer_put(ph, t);
1387	return ret;
1388}
1389
1390/**
1391 * scmi_set_protocol_priv  - Set protocol specific data at init time
1392 *
1393 * @ph: A reference to the protocol handle.
1394 * @priv: The private data to set.
1395 *
1396 * Return: 0 on Success
1397 */
1398static int scmi_set_protocol_priv(const struct scmi_protocol_handle *ph,
1399				  void *priv)
1400{
1401	struct scmi_protocol_instance *pi = ph_to_pi(ph);
1402
1403	pi->priv = priv;
1404
1405	return 0;
1406}
1407
1408/**
1409 * scmi_get_protocol_priv  - Set protocol specific data at init time
1410 *
1411 * @ph: A reference to the protocol handle.
1412 *
1413 * Return: Protocol private data if any was set.
1414 */
1415static void *scmi_get_protocol_priv(const struct scmi_protocol_handle *ph)
1416{
1417	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1418
1419	return pi->priv;
1420}
1421
1422static const struct scmi_xfer_ops xfer_ops = {
1423	.version_get = version_get,
1424	.xfer_get_init = xfer_get_init,
1425	.reset_rx_to_maxsz = reset_rx_to_maxsz,
1426	.do_xfer = do_xfer,
1427	.do_xfer_with_response = do_xfer_with_response,
1428	.xfer_put = xfer_put,
1429};
1430
1431struct scmi_msg_resp_domain_name_get {
1432	__le32 flags;
1433	u8 name[SCMI_MAX_STR_SIZE];
1434};
1435
1436/**
1437 * scmi_common_extended_name_get  - Common helper to get extended resources name
1438 * @ph: A protocol handle reference.
1439 * @cmd_id: The specific command ID to use.
1440 * @res_id: The specific resource ID to use.
1441 * @name: A pointer to the preallocated area where the retrieved name will be
1442 *	  stored as a NULL terminated string.
1443 * @len: The len in bytes of the @name char array.
1444 *
1445 * Return: 0 on Succcess
1446 */
1447static int scmi_common_extended_name_get(const struct scmi_protocol_handle *ph,
1448					 u8 cmd_id, u32 res_id, char *name,
1449					 size_t len)
1450{
1451	int ret;
1452	struct scmi_xfer *t;
1453	struct scmi_msg_resp_domain_name_get *resp;
1454
1455	ret = ph->xops->xfer_get_init(ph, cmd_id, sizeof(res_id),
1456				      sizeof(*resp), &t);
1457	if (ret)
1458		goto out;
1459
1460	put_unaligned_le32(res_id, t->tx.buf);
1461	resp = t->rx.buf;
1462
1463	ret = ph->xops->do_xfer(ph, t);
1464	if (!ret)
1465		strscpy(name, resp->name, len);
1466
1467	ph->xops->xfer_put(ph, t);
1468out:
1469	if (ret)
1470		dev_warn(ph->dev,
1471			 "Failed to get extended name - id:%u (ret:%d). Using %s\n",
1472			 res_id, ret, name);
1473	return ret;
1474}
1475
1476/**
1477 * struct scmi_iterator  - Iterator descriptor
1478 * @msg: A reference to the message TX buffer; filled by @prepare_message with
1479 *	 a proper custom command payload for each multi-part command request.
1480 * @resp: A reference to the response RX buffer; used by @update_state and
1481 *	  @process_response to parse the multi-part replies.
1482 * @t: A reference to the underlying xfer initialized and used transparently by
1483 *     the iterator internal routines.
1484 * @ph: A reference to the associated protocol handle to be used.
1485 * @ops: A reference to the custom provided iterator operations.
1486 * @state: The current iterator state; used and updated in turn by the iterators
1487 *	   internal routines and by the caller-provided @scmi_iterator_ops.
1488 * @priv: A reference to optional private data as provided by the caller and
1489 *	  passed back to the @@scmi_iterator_ops.
1490 */
1491struct scmi_iterator {
1492	void *msg;
1493	void *resp;
1494	struct scmi_xfer *t;
1495	const struct scmi_protocol_handle *ph;
1496	struct scmi_iterator_ops *ops;
1497	struct scmi_iterator_state state;
1498	void *priv;
1499};
1500
1501static void *scmi_iterator_init(const struct scmi_protocol_handle *ph,
1502				struct scmi_iterator_ops *ops,
1503				unsigned int max_resources, u8 msg_id,
1504				size_t tx_size, void *priv)
1505{
1506	int ret;
1507	struct scmi_iterator *i;
1508
1509	i = devm_kzalloc(ph->dev, sizeof(*i), GFP_KERNEL);
1510	if (!i)
1511		return ERR_PTR(-ENOMEM);
1512
1513	i->ph = ph;
1514	i->ops = ops;
1515	i->priv = priv;
1516
1517	ret = ph->xops->xfer_get_init(ph, msg_id, tx_size, 0, &i->t);
1518	if (ret) {
1519		devm_kfree(ph->dev, i);
1520		return ERR_PTR(ret);
1521	}
1522
1523	i->state.max_resources = max_resources;
1524	i->msg = i->t->tx.buf;
1525	i->resp = i->t->rx.buf;
1526
1527	return i;
1528}
1529
1530static int scmi_iterator_run(void *iter)
1531{
1532	int ret = -EINVAL;
1533	struct scmi_iterator_ops *iops;
1534	const struct scmi_protocol_handle *ph;
1535	struct scmi_iterator_state *st;
1536	struct scmi_iterator *i = iter;
1537
1538	if (!i || !i->ops || !i->ph)
1539		return ret;
1540
1541	iops = i->ops;
1542	ph = i->ph;
1543	st = &i->state;
1544
1545	do {
1546		iops->prepare_message(i->msg, st->desc_index, i->priv);
1547		ret = ph->xops->do_xfer(ph, i->t);
1548		if (ret)
1549			break;
1550
1551		st->rx_len = i->t->rx.len;
1552		ret = iops->update_state(st, i->resp, i->priv);
1553		if (ret)
1554			break;
1555
1556		if (st->num_returned > st->max_resources - st->desc_index) {
1557			dev_err(ph->dev,
1558				"No. of resources can't exceed %d\n",
1559				st->max_resources);
1560			ret = -EINVAL;
1561			break;
1562		}
1563
1564		for (st->loop_idx = 0; st->loop_idx < st->num_returned;
1565		     st->loop_idx++) {
1566			ret = iops->process_response(ph, i->resp, st, i->priv);
1567			if (ret)
1568				goto out;
1569		}
1570
1571		st->desc_index += st->num_returned;
1572		ph->xops->reset_rx_to_maxsz(ph, i->t);
1573		/*
1574		 * check for both returned and remaining to avoid infinite
1575		 * loop due to buggy firmware
1576		 */
1577	} while (st->num_returned && st->num_remaining);
1578
1579out:
1580	/* Finalize and destroy iterator */
1581	ph->xops->xfer_put(ph, i->t);
1582	devm_kfree(ph->dev, i);
1583
1584	return ret;
1585}
1586
1587struct scmi_msg_get_fc_info {
1588	__le32 domain;
1589	__le32 message_id;
1590};
1591
1592struct scmi_msg_resp_desc_fc {
1593	__le32 attr;
1594#define SUPPORTS_DOORBELL(x)		((x) & BIT(0))
1595#define DOORBELL_REG_WIDTH(x)		FIELD_GET(GENMASK(2, 1), (x))
1596	__le32 rate_limit;
1597	__le32 chan_addr_low;
1598	__le32 chan_addr_high;
1599	__le32 chan_size;
1600	__le32 db_addr_low;
1601	__le32 db_addr_high;
1602	__le32 db_set_lmask;
1603	__le32 db_set_hmask;
1604	__le32 db_preserve_lmask;
1605	__le32 db_preserve_hmask;
1606};
1607
1608static void
1609scmi_common_fastchannel_init(const struct scmi_protocol_handle *ph,
1610			     u8 describe_id, u32 message_id, u32 valid_size,
1611			     u32 domain, void __iomem **p_addr,
1612			     struct scmi_fc_db_info **p_db)
1613{
1614	int ret;
1615	u32 flags;
1616	u64 phys_addr;
1617	u8 size;
1618	void __iomem *addr;
1619	struct scmi_xfer *t;
1620	struct scmi_fc_db_info *db = NULL;
1621	struct scmi_msg_get_fc_info *info;
1622	struct scmi_msg_resp_desc_fc *resp;
1623	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1624
1625	if (!p_addr) {
1626		ret = -EINVAL;
1627		goto err_out;
1628	}
1629
1630	ret = ph->xops->xfer_get_init(ph, describe_id,
1631				      sizeof(*info), sizeof(*resp), &t);
1632	if (ret)
1633		goto err_out;
1634
1635	info = t->tx.buf;
1636	info->domain = cpu_to_le32(domain);
1637	info->message_id = cpu_to_le32(message_id);
1638
1639	/*
1640	 * Bail out on error leaving fc_info addresses zeroed; this includes
1641	 * the case in which the requested domain/message_id does NOT support
1642	 * fastchannels at all.
1643	 */
1644	ret = ph->xops->do_xfer(ph, t);
1645	if (ret)
1646		goto err_xfer;
1647
1648	resp = t->rx.buf;
1649	flags = le32_to_cpu(resp->attr);
1650	size = le32_to_cpu(resp->chan_size);
1651	if (size != valid_size) {
1652		ret = -EINVAL;
1653		goto err_xfer;
1654	}
1655
1656	phys_addr = le32_to_cpu(resp->chan_addr_low);
1657	phys_addr |= (u64)le32_to_cpu(resp->chan_addr_high) << 32;
1658	addr = devm_ioremap(ph->dev, phys_addr, size);
1659	if (!addr) {
1660		ret = -EADDRNOTAVAIL;
1661		goto err_xfer;
1662	}
1663
1664	*p_addr = addr;
1665
1666	if (p_db && SUPPORTS_DOORBELL(flags)) {
1667		db = devm_kzalloc(ph->dev, sizeof(*db), GFP_KERNEL);
1668		if (!db) {
1669			ret = -ENOMEM;
1670			goto err_db;
1671		}
1672
1673		size = 1 << DOORBELL_REG_WIDTH(flags);
1674		phys_addr = le32_to_cpu(resp->db_addr_low);
1675		phys_addr |= (u64)le32_to_cpu(resp->db_addr_high) << 32;
1676		addr = devm_ioremap(ph->dev, phys_addr, size);
1677		if (!addr) {
1678			ret = -EADDRNOTAVAIL;
1679			goto err_db_mem;
1680		}
1681
1682		db->addr = addr;
1683		db->width = size;
1684		db->set = le32_to_cpu(resp->db_set_lmask);
1685		db->set |= (u64)le32_to_cpu(resp->db_set_hmask) << 32;
1686		db->mask = le32_to_cpu(resp->db_preserve_lmask);
1687		db->mask |= (u64)le32_to_cpu(resp->db_preserve_hmask) << 32;
1688
1689		*p_db = db;
1690	}
1691
1692	ph->xops->xfer_put(ph, t);
1693
1694	dev_dbg(ph->dev,
1695		"Using valid FC for protocol %X [MSG_ID:%u / RES_ID:%u]\n",
1696		pi->proto->id, message_id, domain);
1697
1698	return;
1699
1700err_db_mem:
1701	devm_kfree(ph->dev, db);
1702
1703err_db:
1704	*p_addr = NULL;
1705
1706err_xfer:
1707	ph->xops->xfer_put(ph, t);
1708
1709err_out:
1710	dev_warn(ph->dev,
1711		 "Failed to get FC for protocol %X [MSG_ID:%u / RES_ID:%u] - ret:%d. Using regular messaging.\n",
1712		 pi->proto->id, message_id, domain, ret);
1713}
1714
1715#define SCMI_PROTO_FC_RING_DB(w)			\
1716do {							\
1717	u##w val = 0;					\
1718							\
1719	if (db->mask)					\
1720		val = ioread##w(db->addr) & db->mask;	\
1721	iowrite##w((u##w)db->set | val, db->addr);	\
1722} while (0)
1723
1724static void scmi_common_fastchannel_db_ring(struct scmi_fc_db_info *db)
1725{
1726	if (!db || !db->addr)
1727		return;
1728
1729	if (db->width == 1)
1730		SCMI_PROTO_FC_RING_DB(8);
1731	else if (db->width == 2)
1732		SCMI_PROTO_FC_RING_DB(16);
1733	else if (db->width == 4)
1734		SCMI_PROTO_FC_RING_DB(32);
1735	else /* db->width == 8 */
1736#ifdef CONFIG_64BIT
1737		SCMI_PROTO_FC_RING_DB(64);
1738#else
1739	{
1740		u64 val = 0;
1741
1742		if (db->mask)
1743			val = ioread64_hi_lo(db->addr) & db->mask;
1744		iowrite64_hi_lo(db->set | val, db->addr);
1745	}
1746#endif
1747}
1748
1749static const struct scmi_proto_helpers_ops helpers_ops = {
1750	.extended_name_get = scmi_common_extended_name_get,
1751	.iter_response_init = scmi_iterator_init,
1752	.iter_response_run = scmi_iterator_run,
1753	.fastchannel_init = scmi_common_fastchannel_init,
1754	.fastchannel_db_ring = scmi_common_fastchannel_db_ring,
1755};
1756
1757/**
1758 * scmi_revision_area_get  - Retrieve version memory area.
1759 *
1760 * @ph: A reference to the protocol handle.
1761 *
1762 * A helper to grab the version memory area reference during SCMI Base protocol
1763 * initialization.
1764 *
1765 * Return: A reference to the version memory area associated to the SCMI
1766 *	   instance underlying this protocol handle.
1767 */
1768struct scmi_revision_info *
1769scmi_revision_area_get(const struct scmi_protocol_handle *ph)
1770{
1771	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1772
1773	return pi->handle->version;
1774}
1775
1776/**
1777 * scmi_alloc_init_protocol_instance  - Allocate and initialize a protocol
1778 * instance descriptor.
1779 * @info: The reference to the related SCMI instance.
1780 * @proto: The protocol descriptor.
1781 *
1782 * Allocate a new protocol instance descriptor, using the provided @proto
1783 * description, against the specified SCMI instance @info, and initialize it;
1784 * all resources management is handled via a dedicated per-protocol devres
1785 * group.
1786 *
1787 * Context: Assumes to be called with @protocols_mtx already acquired.
1788 * Return: A reference to a freshly allocated and initialized protocol instance
1789 *	   or ERR_PTR on failure. On failure the @proto reference is at first
1790 *	   put using @scmi_protocol_put() before releasing all the devres group.
1791 */
1792static struct scmi_protocol_instance *
1793scmi_alloc_init_protocol_instance(struct scmi_info *info,
1794				  const struct scmi_protocol *proto)
1795{
1796	int ret = -ENOMEM;
1797	void *gid;
1798	struct scmi_protocol_instance *pi;
1799	const struct scmi_handle *handle = &info->handle;
1800
1801	/* Protocol specific devres group */
1802	gid = devres_open_group(handle->dev, NULL, GFP_KERNEL);
1803	if (!gid) {
1804		scmi_protocol_put(proto->id);
1805		goto out;
1806	}
1807
1808	pi = devm_kzalloc(handle->dev, sizeof(*pi), GFP_KERNEL);
1809	if (!pi)
1810		goto clean;
1811
1812	pi->gid = gid;
1813	pi->proto = proto;
1814	pi->handle = handle;
1815	pi->ph.dev = handle->dev;
1816	pi->ph.xops = &xfer_ops;
1817	pi->ph.hops = &helpers_ops;
1818	pi->ph.set_priv = scmi_set_protocol_priv;
1819	pi->ph.get_priv = scmi_get_protocol_priv;
1820	refcount_set(&pi->users, 1);
1821	/* proto->init is assured NON NULL by scmi_protocol_register */
1822	ret = pi->proto->instance_init(&pi->ph);
1823	if (ret)
1824		goto clean;
1825
1826	ret = idr_alloc(&info->protocols, pi, proto->id, proto->id + 1,
1827			GFP_KERNEL);
1828	if (ret != proto->id)
1829		goto clean;
1830
1831	/*
1832	 * Warn but ignore events registration errors since we do not want
1833	 * to skip whole protocols if their notifications are messed up.
1834	 */
1835	if (pi->proto->events) {
1836		ret = scmi_register_protocol_events(handle, pi->proto->id,
1837						    &pi->ph,
1838						    pi->proto->events);
1839		if (ret)
1840			dev_warn(handle->dev,
1841				 "Protocol:%X - Events Registration Failed - err:%d\n",
1842				 pi->proto->id, ret);
1843	}
1844
1845	devres_close_group(handle->dev, pi->gid);
1846	dev_dbg(handle->dev, "Initialized protocol: 0x%X\n", pi->proto->id);
1847
1848	return pi;
1849
1850clean:
1851	/* Take care to put the protocol module's owner before releasing all */
1852	scmi_protocol_put(proto->id);
1853	devres_release_group(handle->dev, gid);
1854out:
1855	return ERR_PTR(ret);
1856}
1857
1858/**
1859 * scmi_get_protocol_instance  - Protocol initialization helper.
1860 * @handle: A reference to the SCMI platform instance.
1861 * @protocol_id: The protocol being requested.
1862 *
1863 * In case the required protocol has never been requested before for this
1864 * instance, allocate and initialize all the needed structures while handling
1865 * resource allocation with a dedicated per-protocol devres subgroup.
1866 *
1867 * Return: A reference to an initialized protocol instance or error on failure:
1868 *	   in particular returns -EPROBE_DEFER when the desired protocol could
1869 *	   NOT be found.
1870 */
1871static struct scmi_protocol_instance * __must_check
1872scmi_get_protocol_instance(const struct scmi_handle *handle, u8 protocol_id)
1873{
1874	struct scmi_protocol_instance *pi;
1875	struct scmi_info *info = handle_to_scmi_info(handle);
1876
1877	mutex_lock(&info->protocols_mtx);
1878	pi = idr_find(&info->protocols, protocol_id);
1879
1880	if (pi) {
1881		refcount_inc(&pi->users);
1882	} else {
1883		const struct scmi_protocol *proto;
1884
1885		/* Fails if protocol not registered on bus */
1886		proto = scmi_protocol_get(protocol_id);
1887		if (proto)
1888			pi = scmi_alloc_init_protocol_instance(info, proto);
1889		else
1890			pi = ERR_PTR(-EPROBE_DEFER);
1891	}
1892	mutex_unlock(&info->protocols_mtx);
1893
1894	return pi;
1895}
1896
1897/**
1898 * scmi_protocol_acquire  - Protocol acquire
1899 * @handle: A reference to the SCMI platform instance.
1900 * @protocol_id: The protocol being requested.
1901 *
1902 * Register a new user for the requested protocol on the specified SCMI
1903 * platform instance, possibly triggering its initialization on first user.
1904 *
1905 * Return: 0 if protocol was acquired successfully.
1906 */
1907int scmi_protocol_acquire(const struct scmi_handle *handle, u8 protocol_id)
1908{
1909	return PTR_ERR_OR_ZERO(scmi_get_protocol_instance(handle, protocol_id));
1910}
1911
1912/**
1913 * scmi_protocol_release  - Protocol de-initialization helper.
1914 * @handle: A reference to the SCMI platform instance.
1915 * @protocol_id: The protocol being requested.
1916 *
1917 * Remove one user for the specified protocol and triggers de-initialization
1918 * and resources de-allocation once the last user has gone.
1919 */
1920void scmi_protocol_release(const struct scmi_handle *handle, u8 protocol_id)
1921{
1922	struct scmi_info *info = handle_to_scmi_info(handle);
1923	struct scmi_protocol_instance *pi;
1924
1925	mutex_lock(&info->protocols_mtx);
1926	pi = idr_find(&info->protocols, protocol_id);
1927	if (WARN_ON(!pi))
1928		goto out;
1929
1930	if (refcount_dec_and_test(&pi->users)) {
1931		void *gid = pi->gid;
1932
1933		if (pi->proto->events)
1934			scmi_deregister_protocol_events(handle, protocol_id);
1935
1936		if (pi->proto->instance_deinit)
1937			pi->proto->instance_deinit(&pi->ph);
1938
1939		idr_remove(&info->protocols, protocol_id);
1940
1941		scmi_protocol_put(protocol_id);
1942
1943		devres_release_group(handle->dev, gid);
1944		dev_dbg(handle->dev, "De-Initialized protocol: 0x%X\n",
1945			protocol_id);
1946	}
1947
1948out:
1949	mutex_unlock(&info->protocols_mtx);
1950}
1951
1952void scmi_setup_protocol_implemented(const struct scmi_protocol_handle *ph,
1953				     u8 *prot_imp)
1954{
1955	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1956	struct scmi_info *info = handle_to_scmi_info(pi->handle);
1957
1958	info->protocols_imp = prot_imp;
1959}
1960
1961static bool
1962scmi_is_protocol_implemented(const struct scmi_handle *handle, u8 prot_id)
1963{
1964	int i;
1965	struct scmi_info *info = handle_to_scmi_info(handle);
1966	struct scmi_revision_info *rev = handle->version;
1967
1968	if (!info->protocols_imp)
1969		return false;
1970
1971	for (i = 0; i < rev->num_protocols; i++)
1972		if (info->protocols_imp[i] == prot_id)
1973			return true;
1974	return false;
1975}
1976
1977struct scmi_protocol_devres {
1978	const struct scmi_handle *handle;
1979	u8 protocol_id;
1980};
1981
1982static void scmi_devm_release_protocol(struct device *dev, void *res)
1983{
1984	struct scmi_protocol_devres *dres = res;
1985
1986	scmi_protocol_release(dres->handle, dres->protocol_id);
1987}
1988
1989static struct scmi_protocol_instance __must_check *
1990scmi_devres_protocol_instance_get(struct scmi_device *sdev, u8 protocol_id)
1991{
1992	struct scmi_protocol_instance *pi;
1993	struct scmi_protocol_devres *dres;
1994
1995	dres = devres_alloc(scmi_devm_release_protocol,
1996			    sizeof(*dres), GFP_KERNEL);
1997	if (!dres)
1998		return ERR_PTR(-ENOMEM);
1999
2000	pi = scmi_get_protocol_instance(sdev->handle, protocol_id);
2001	if (IS_ERR(pi)) {
2002		devres_free(dres);
2003		return pi;
2004	}
2005
2006	dres->handle = sdev->handle;
2007	dres->protocol_id = protocol_id;
2008	devres_add(&sdev->dev, dres);
2009
2010	return pi;
2011}
2012
2013/**
2014 * scmi_devm_protocol_get  - Devres managed get protocol operations and handle
2015 * @sdev: A reference to an scmi_device whose embedded struct device is to
2016 *	  be used for devres accounting.
2017 * @protocol_id: The protocol being requested.
2018 * @ph: A pointer reference used to pass back the associated protocol handle.
2019 *
2020 * Get hold of a protocol accounting for its usage, eventually triggering its
2021 * initialization, and returning the protocol specific operations and related
2022 * protocol handle which will be used as first argument in most of the
2023 * protocols operations methods.
2024 * Being a devres based managed method, protocol hold will be automatically
2025 * released, and possibly de-initialized on last user, once the SCMI driver
2026 * owning the scmi_device is unbound from it.
2027 *
2028 * Return: A reference to the requested protocol operations or error.
2029 *	   Must be checked for errors by caller.
2030 */
2031static const void __must_check *
2032scmi_devm_protocol_get(struct scmi_device *sdev, u8 protocol_id,
2033		       struct scmi_protocol_handle **ph)
2034{
2035	struct scmi_protocol_instance *pi;
2036
2037	if (!ph)
2038		return ERR_PTR(-EINVAL);
2039
2040	pi = scmi_devres_protocol_instance_get(sdev, protocol_id);
2041	if (IS_ERR(pi))
2042		return pi;
2043
2044	*ph = &pi->ph;
2045
2046	return pi->proto->ops;
2047}
2048
2049/**
2050 * scmi_devm_protocol_acquire  - Devres managed helper to get hold of a protocol
2051 * @sdev: A reference to an scmi_device whose embedded struct device is to
2052 *	  be used for devres accounting.
2053 * @protocol_id: The protocol being requested.
2054 *
2055 * Get hold of a protocol accounting for its usage, possibly triggering its
2056 * initialization but without getting access to its protocol specific operations
2057 * and handle.
2058 *
2059 * Being a devres based managed method, protocol hold will be automatically
2060 * released, and possibly de-initialized on last user, once the SCMI driver
2061 * owning the scmi_device is unbound from it.
2062 *
2063 * Return: 0 on SUCCESS
2064 */
2065static int __must_check scmi_devm_protocol_acquire(struct scmi_device *sdev,
2066						   u8 protocol_id)
2067{
2068	struct scmi_protocol_instance *pi;
2069
2070	pi = scmi_devres_protocol_instance_get(sdev, protocol_id);
2071	if (IS_ERR(pi))
2072		return PTR_ERR(pi);
2073
2074	return 0;
2075}
2076
2077static int scmi_devm_protocol_match(struct device *dev, void *res, void *data)
2078{
2079	struct scmi_protocol_devres *dres = res;
2080
2081	if (WARN_ON(!dres || !data))
2082		return 0;
2083
2084	return dres->protocol_id == *((u8 *)data);
2085}
2086
2087/**
2088 * scmi_devm_protocol_put  - Devres managed put protocol operations and handle
2089 * @sdev: A reference to an scmi_device whose embedded struct device is to
2090 *	  be used for devres accounting.
2091 * @protocol_id: The protocol being requested.
2092 *
2093 * Explicitly release a protocol hold previously obtained calling the above
2094 * @scmi_devm_protocol_get.
2095 */
2096static void scmi_devm_protocol_put(struct scmi_device *sdev, u8 protocol_id)
2097{
2098	int ret;
2099
2100	ret = devres_release(&sdev->dev, scmi_devm_release_protocol,
2101			     scmi_devm_protocol_match, &protocol_id);
2102	WARN_ON(ret);
2103}
2104
2105/**
2106 * scmi_is_transport_atomic  - Method to check if underlying transport for an
2107 * SCMI instance is configured as atomic.
2108 *
2109 * @handle: A reference to the SCMI platform instance.
2110 * @atomic_threshold: An optional return value for the system wide currently
2111 *		      configured threshold for atomic operations.
2112 *
2113 * Return: True if transport is configured as atomic
2114 */
2115static bool scmi_is_transport_atomic(const struct scmi_handle *handle,
2116				     unsigned int *atomic_threshold)
2117{
2118	bool ret;
2119	struct scmi_info *info = handle_to_scmi_info(handle);
2120
2121	ret = info->desc->atomic_enabled &&
2122		is_transport_polling_capable(info->desc);
2123	if (ret && atomic_threshold)
2124		*atomic_threshold = info->atomic_threshold;
2125
2126	return ret;
2127}
2128
2129/**
2130 * scmi_handle_get() - Get the SCMI handle for a device
2131 *
2132 * @dev: pointer to device for which we want SCMI handle
2133 *
2134 * NOTE: The function does not track individual clients of the framework
2135 * and is expected to be maintained by caller of SCMI protocol library.
2136 * scmi_handle_put must be balanced with successful scmi_handle_get
2137 *
2138 * Return: pointer to handle if successful, NULL on error
2139 */
2140static struct scmi_handle *scmi_handle_get(struct device *dev)
2141{
2142	struct list_head *p;
2143	struct scmi_info *info;
2144	struct scmi_handle *handle = NULL;
2145
2146	mutex_lock(&scmi_list_mutex);
2147	list_for_each(p, &scmi_list) {
2148		info = list_entry(p, struct scmi_info, node);
2149		if (dev->parent == info->dev) {
2150			info->users++;
2151			handle = &info->handle;
2152			break;
2153		}
2154	}
2155	mutex_unlock(&scmi_list_mutex);
2156
2157	return handle;
2158}
2159
2160/**
2161 * scmi_handle_put() - Release the handle acquired by scmi_handle_get
2162 *
2163 * @handle: handle acquired by scmi_handle_get
2164 *
2165 * NOTE: The function does not track individual clients of the framework
2166 * and is expected to be maintained by caller of SCMI protocol library.
2167 * scmi_handle_put must be balanced with successful scmi_handle_get
2168 *
2169 * Return: 0 is successfully released
2170 *	if null was passed, it returns -EINVAL;
2171 */
2172static int scmi_handle_put(const struct scmi_handle *handle)
2173{
2174	struct scmi_info *info;
2175
2176	if (!handle)
2177		return -EINVAL;
2178
2179	info = handle_to_scmi_info(handle);
2180	mutex_lock(&scmi_list_mutex);
2181	if (!WARN_ON(!info->users))
2182		info->users--;
2183	mutex_unlock(&scmi_list_mutex);
2184
2185	return 0;
2186}
2187
2188static void scmi_device_link_add(struct device *consumer,
2189				 struct device *supplier)
2190{
2191	struct device_link *link;
2192
2193	link = device_link_add(consumer, supplier, DL_FLAG_AUTOREMOVE_CONSUMER);
2194
2195	WARN_ON(!link);
2196}
2197
2198static void scmi_set_handle(struct scmi_device *scmi_dev)
2199{
2200	scmi_dev->handle = scmi_handle_get(&scmi_dev->dev);
2201	if (scmi_dev->handle)
2202		scmi_device_link_add(&scmi_dev->dev, scmi_dev->handle->dev);
2203}
2204
2205static int __scmi_xfer_info_init(struct scmi_info *sinfo,
2206				 struct scmi_xfers_info *info)
2207{
2208	int i;
2209	struct scmi_xfer *xfer;
2210	struct device *dev = sinfo->dev;
2211	const struct scmi_desc *desc = sinfo->desc;
2212
2213	/* Pre-allocated messages, no more than what hdr.seq can support */
2214	if (WARN_ON(!info->max_msg || info->max_msg > MSG_TOKEN_MAX)) {
2215		dev_err(dev,
2216			"Invalid maximum messages %d, not in range [1 - %lu]\n",
2217			info->max_msg, MSG_TOKEN_MAX);
2218		return -EINVAL;
2219	}
2220
2221	hash_init(info->pending_xfers);
2222
2223	/* Allocate a bitmask sized to hold MSG_TOKEN_MAX tokens */
2224	info->xfer_alloc_table = devm_bitmap_zalloc(dev, MSG_TOKEN_MAX,
2225						    GFP_KERNEL);
2226	if (!info->xfer_alloc_table)
2227		return -ENOMEM;
2228
2229	/*
2230	 * Preallocate a number of xfers equal to max inflight messages,
2231	 * pre-initialize the buffer pointer to pre-allocated buffers and
2232	 * attach all of them to the free list
2233	 */
2234	INIT_HLIST_HEAD(&info->free_xfers);
2235	for (i = 0; i < info->max_msg; i++) {
2236		xfer = devm_kzalloc(dev, sizeof(*xfer), GFP_KERNEL);
2237		if (!xfer)
2238			return -ENOMEM;
2239
2240		xfer->rx.buf = devm_kcalloc(dev, sizeof(u8), desc->max_msg_size,
2241					    GFP_KERNEL);
2242		if (!xfer->rx.buf)
2243			return -ENOMEM;
2244
2245		xfer->tx.buf = xfer->rx.buf;
2246		init_completion(&xfer->done);
2247		spin_lock_init(&xfer->lock);
2248
2249		/* Add initialized xfer to the free list */
2250		hlist_add_head(&xfer->node, &info->free_xfers);
2251	}
2252
2253	spin_lock_init(&info->xfer_lock);
2254
2255	return 0;
2256}
2257
2258static int scmi_channels_max_msg_configure(struct scmi_info *sinfo)
2259{
2260	const struct scmi_desc *desc = sinfo->desc;
2261
2262	if (!desc->ops->get_max_msg) {
2263		sinfo->tx_minfo.max_msg = desc->max_msg;
2264		sinfo->rx_minfo.max_msg = desc->max_msg;
2265	} else {
2266		struct scmi_chan_info *base_cinfo;
2267
2268		base_cinfo = idr_find(&sinfo->tx_idr, SCMI_PROTOCOL_BASE);
2269		if (!base_cinfo)
2270			return -EINVAL;
2271		sinfo->tx_minfo.max_msg = desc->ops->get_max_msg(base_cinfo);
2272
2273		/* RX channel is optional so can be skipped */
2274		base_cinfo = idr_find(&sinfo->rx_idr, SCMI_PROTOCOL_BASE);
2275		if (base_cinfo)
2276			sinfo->rx_minfo.max_msg =
2277				desc->ops->get_max_msg(base_cinfo);
2278	}
2279
2280	return 0;
2281}
2282
2283static int scmi_xfer_info_init(struct scmi_info *sinfo)
2284{
2285	int ret;
2286
2287	ret = scmi_channels_max_msg_configure(sinfo);
2288	if (ret)
2289		return ret;
2290
2291	ret = __scmi_xfer_info_init(sinfo, &sinfo->tx_minfo);
2292	if (!ret && !idr_is_empty(&sinfo->rx_idr))
2293		ret = __scmi_xfer_info_init(sinfo, &sinfo->rx_minfo);
2294
2295	return ret;
2296}
2297
2298static int scmi_chan_setup(struct scmi_info *info, struct device_node *of_node,
2299			   int prot_id, bool tx)
2300{
2301	int ret, idx;
2302	char name[32];
2303	struct scmi_chan_info *cinfo;
2304	struct idr *idr;
2305	struct scmi_device *tdev = NULL;
2306
2307	/* Transmit channel is first entry i.e. index 0 */
2308	idx = tx ? 0 : 1;
2309	idr = tx ? &info->tx_idr : &info->rx_idr;
2310
2311	if (!info->desc->ops->chan_available(of_node, idx)) {
2312		cinfo = idr_find(idr, SCMI_PROTOCOL_BASE);
2313		if (unlikely(!cinfo)) /* Possible only if platform has no Rx */
2314			return -EINVAL;
2315		goto idr_alloc;
2316	}
2317
2318	cinfo = devm_kzalloc(info->dev, sizeof(*cinfo), GFP_KERNEL);
2319	if (!cinfo)
2320		return -ENOMEM;
2321
2322	cinfo->rx_timeout_ms = info->desc->max_rx_timeout_ms;
2323
2324	/* Create a unique name for this transport device */
2325	snprintf(name, 32, "__scmi_transport_device_%s_%02X",
2326		 idx ? "rx" : "tx", prot_id);
2327	/* Create a uniquely named, dedicated transport device for this chan */
2328	tdev = scmi_device_create(of_node, info->dev, prot_id, name);
2329	if (!tdev) {
2330		dev_err(info->dev,
2331			"failed to create transport device (%s)\n", name);
2332		devm_kfree(info->dev, cinfo);
2333		return -EINVAL;
2334	}
2335	of_node_get(of_node);
2336
2337	cinfo->id = prot_id;
2338	cinfo->dev = &tdev->dev;
2339	ret = info->desc->ops->chan_setup(cinfo, info->dev, tx);
2340	if (ret) {
2341		of_node_put(of_node);
2342		scmi_device_destroy(info->dev, prot_id, name);
2343		devm_kfree(info->dev, cinfo);
2344		return ret;
2345	}
2346
2347	if (tx && is_polling_required(cinfo, info->desc)) {
2348		if (is_transport_polling_capable(info->desc))
2349			dev_info(&tdev->dev,
2350				 "Enabled polling mode TX channel - prot_id:%d\n",
2351				 prot_id);
2352		else
2353			dev_warn(&tdev->dev,
2354				 "Polling mode NOT supported by transport.\n");
2355	}
2356
2357idr_alloc:
2358	ret = idr_alloc(idr, cinfo, prot_id, prot_id + 1, GFP_KERNEL);
2359	if (ret != prot_id) {
2360		dev_err(info->dev,
2361			"unable to allocate SCMI idr slot err %d\n", ret);
2362		/* Destroy channel and device only if created by this call. */
2363		if (tdev) {
2364			of_node_put(of_node);
2365			scmi_device_destroy(info->dev, prot_id, name);
2366			devm_kfree(info->dev, cinfo);
2367		}
2368		return ret;
2369	}
2370
2371	cinfo->handle = &info->handle;
2372	return 0;
2373}
2374
2375static inline int
2376scmi_txrx_setup(struct scmi_info *info, struct device_node *of_node,
2377		int prot_id)
2378{
2379	int ret = scmi_chan_setup(info, of_node, prot_id, true);
2380
2381	if (!ret) {
2382		/* Rx is optional, report only memory errors */
2383		ret = scmi_chan_setup(info, of_node, prot_id, false);
2384		if (ret && ret != -ENOMEM)
2385			ret = 0;
2386	}
2387
2388	return ret;
2389}
2390
2391/**
2392 * scmi_channels_setup  - Helper to initialize all required channels
2393 *
2394 * @info: The SCMI instance descriptor.
2395 *
2396 * Initialize all the channels found described in the DT against the underlying
2397 * configured transport using custom defined dedicated devices instead of
2398 * borrowing devices from the SCMI drivers; this way channels are initialized
2399 * upfront during core SCMI stack probing and are no more coupled with SCMI
2400 * devices used by SCMI drivers.
2401 *
2402 * Note that, even though a pair of TX/RX channels is associated to each
2403 * protocol defined in the DT, a distinct freshly initialized channel is
2404 * created only if the DT node for the protocol at hand describes a dedicated
2405 * channel: in all the other cases the common BASE protocol channel is reused.
2406 *
2407 * Return: 0 on Success
2408 */
2409static int scmi_channels_setup(struct scmi_info *info)
2410{
2411	int ret;
2412	struct device_node *child, *top_np = info->dev->of_node;
2413
2414	/* Initialize a common generic channel at first */
2415	ret = scmi_txrx_setup(info, top_np, SCMI_PROTOCOL_BASE);
2416	if (ret)
2417		return ret;
2418
2419	for_each_available_child_of_node(top_np, child) {
2420		u32 prot_id;
2421
2422		if (of_property_read_u32(child, "reg", &prot_id))
2423			continue;
2424
2425		if (!FIELD_FIT(MSG_PROTOCOL_ID_MASK, prot_id))
2426			dev_err(info->dev,
2427				"Out of range protocol %d\n", prot_id);
2428
2429		ret = scmi_txrx_setup(info, child, prot_id);
2430		if (ret) {
2431			of_node_put(child);
2432			return ret;
2433		}
2434	}
2435
2436	return 0;
2437}
2438
2439static int scmi_chan_destroy(int id, void *p, void *idr)
2440{
2441	struct scmi_chan_info *cinfo = p;
2442
2443	if (cinfo->dev) {
2444		struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
2445		struct scmi_device *sdev = to_scmi_dev(cinfo->dev);
2446
2447		of_node_put(cinfo->dev->of_node);
2448		scmi_device_destroy(info->dev, id, sdev->name);
2449		cinfo->dev = NULL;
2450	}
2451
2452	idr_remove(idr, id);
2453
2454	return 0;
2455}
2456
2457static void scmi_cleanup_channels(struct scmi_info *info, struct idr *idr)
2458{
2459	/* At first free all channels at the transport layer ... */
2460	idr_for_each(idr, info->desc->ops->chan_free, idr);
2461
2462	/* ...then destroy all underlying devices */
2463	idr_for_each(idr, scmi_chan_destroy, idr);
2464
2465	idr_destroy(idr);
2466}
2467
2468static void scmi_cleanup_txrx_channels(struct scmi_info *info)
2469{
2470	scmi_cleanup_channels(info, &info->tx_idr);
2471
2472	scmi_cleanup_channels(info, &info->rx_idr);
2473}
2474
2475static int scmi_bus_notifier(struct notifier_block *nb,
2476			     unsigned long action, void *data)
2477{
2478	struct scmi_info *info = bus_nb_to_scmi_info(nb);
2479	struct scmi_device *sdev = to_scmi_dev(data);
2480
2481	/* Skip transport devices and devices of different SCMI instances */
2482	if (!strncmp(sdev->name, "__scmi_transport_device", 23) ||
2483	    sdev->dev.parent != info->dev)
2484		return NOTIFY_DONE;
2485
2486	switch (action) {
2487	case BUS_NOTIFY_BIND_DRIVER:
2488		/* setup handle now as the transport is ready */
2489		scmi_set_handle(sdev);
2490		break;
2491	case BUS_NOTIFY_UNBOUND_DRIVER:
2492		scmi_handle_put(sdev->handle);
2493		sdev->handle = NULL;
2494		break;
2495	default:
2496		return NOTIFY_DONE;
2497	}
2498
2499	dev_dbg(info->dev, "Device %s (%s) is now %s\n", dev_name(&sdev->dev),
2500		sdev->name, action == BUS_NOTIFY_BIND_DRIVER ?
2501		"about to be BOUND." : "UNBOUND.");
2502
2503	return NOTIFY_OK;
2504}
2505
2506static int scmi_device_request_notifier(struct notifier_block *nb,
2507					unsigned long action, void *data)
2508{
2509	struct device_node *np;
2510	struct scmi_device_id *id_table = data;
2511	struct scmi_info *info = req_nb_to_scmi_info(nb);
2512
2513	np = idr_find(&info->active_protocols, id_table->protocol_id);
2514	if (!np)
2515		return NOTIFY_DONE;
2516
2517	dev_dbg(info->dev, "%sRequested device (%s) for protocol 0x%x\n",
2518		action == SCMI_BUS_NOTIFY_DEVICE_REQUEST ? "" : "UN-",
2519		id_table->name, id_table->protocol_id);
2520
2521	switch (action) {
2522	case SCMI_BUS_NOTIFY_DEVICE_REQUEST:
2523		scmi_create_protocol_devices(np, info, id_table->protocol_id,
2524					     id_table->name);
2525		break;
2526	case SCMI_BUS_NOTIFY_DEVICE_UNREQUEST:
2527		scmi_destroy_protocol_devices(info, id_table->protocol_id,
2528					      id_table->name);
2529		break;
2530	default:
2531		return NOTIFY_DONE;
2532	}
2533
2534	return NOTIFY_OK;
2535}
2536
2537static void scmi_debugfs_common_cleanup(void *d)
2538{
2539	struct scmi_debug_info *dbg = d;
2540
2541	if (!dbg)
2542		return;
2543
2544	debugfs_remove_recursive(dbg->top_dentry);
2545	kfree(dbg->name);
2546	kfree(dbg->type);
2547}
2548
2549static struct scmi_debug_info *scmi_debugfs_common_setup(struct scmi_info *info)
2550{
2551	char top_dir[16];
2552	struct dentry *trans, *top_dentry;
2553	struct scmi_debug_info *dbg;
2554	const char *c_ptr = NULL;
2555
2556	dbg = devm_kzalloc(info->dev, sizeof(*dbg), GFP_KERNEL);
2557	if (!dbg)
2558		return NULL;
2559
2560	dbg->name = kstrdup(of_node_full_name(info->dev->of_node), GFP_KERNEL);
2561	if (!dbg->name) {
2562		devm_kfree(info->dev, dbg);
2563		return NULL;
2564	}
2565
2566	of_property_read_string(info->dev->of_node, "compatible", &c_ptr);
2567	dbg->type = kstrdup(c_ptr, GFP_KERNEL);
2568	if (!dbg->type) {
2569		kfree(dbg->name);
2570		devm_kfree(info->dev, dbg);
2571		return NULL;
2572	}
2573
2574	snprintf(top_dir, 16, "%d", info->id);
2575	top_dentry = debugfs_create_dir(top_dir, scmi_top_dentry);
2576	trans = debugfs_create_dir("transport", top_dentry);
2577
2578	dbg->is_atomic = info->desc->atomic_enabled &&
2579				is_transport_polling_capable(info->desc);
2580
2581	debugfs_create_str("instance_name", 0400, top_dentry,
2582			   (char **)&dbg->name);
2583
2584	debugfs_create_u32("atomic_threshold_us", 0400, top_dentry,
2585			   &info->atomic_threshold);
2586
2587	debugfs_create_str("type", 0400, trans, (char **)&dbg->type);
2588
2589	debugfs_create_bool("is_atomic", 0400, trans, &dbg->is_atomic);
2590
2591	debugfs_create_u32("max_rx_timeout_ms", 0400, trans,
2592			   (u32 *)&info->desc->max_rx_timeout_ms);
2593
2594	debugfs_create_u32("max_msg_size", 0400, trans,
2595			   (u32 *)&info->desc->max_msg_size);
2596
2597	debugfs_create_u32("tx_max_msg", 0400, trans,
2598			   (u32 *)&info->tx_minfo.max_msg);
2599
2600	debugfs_create_u32("rx_max_msg", 0400, trans,
2601			   (u32 *)&info->rx_minfo.max_msg);
2602
2603	dbg->top_dentry = top_dentry;
2604
2605	if (devm_add_action_or_reset(info->dev,
2606				     scmi_debugfs_common_cleanup, dbg)) {
2607		scmi_debugfs_common_cleanup(dbg);
2608		return NULL;
2609	}
2610
2611	return dbg;
2612}
2613
2614static int scmi_debugfs_raw_mode_setup(struct scmi_info *info)
2615{
2616	int id, num_chans = 0, ret = 0;
2617	struct scmi_chan_info *cinfo;
2618	u8 channels[SCMI_MAX_CHANNELS] = {};
2619	DECLARE_BITMAP(protos, SCMI_MAX_CHANNELS) = {};
2620
2621	if (!info->dbg)
2622		return -EINVAL;
2623
2624	/* Enumerate all channels to collect their ids */
2625	idr_for_each_entry(&info->tx_idr, cinfo, id) {
2626		/*
2627		 * Cannot happen, but be defensive.
2628		 * Zero as num_chans is ok, warn and carry on.
2629		 */
2630		if (num_chans >= SCMI_MAX_CHANNELS || !cinfo) {
2631			dev_warn(info->dev,
2632				 "SCMI RAW - Error enumerating channels\n");
2633			break;
2634		}
2635
2636		if (!test_bit(cinfo->id, protos)) {
2637			channels[num_chans++] = cinfo->id;
2638			set_bit(cinfo->id, protos);
2639		}
2640	}
2641
2642	info->raw = scmi_raw_mode_init(&info->handle, info->dbg->top_dentry,
2643				       info->id, channels, num_chans,
2644				       info->desc, info->tx_minfo.max_msg);
2645	if (IS_ERR(info->raw)) {
2646		dev_err(info->dev, "Failed to initialize SCMI RAW Mode !\n");
2647		ret = PTR_ERR(info->raw);
2648		info->raw = NULL;
2649	}
2650
2651	return ret;
2652}
2653
2654static int scmi_probe(struct platform_device *pdev)
2655{
2656	int ret;
2657	struct scmi_handle *handle;
2658	const struct scmi_desc *desc;
2659	struct scmi_info *info;
2660	bool coex = IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT_COEX);
2661	struct device *dev = &pdev->dev;
2662	struct device_node *child, *np = dev->of_node;
2663
2664	desc = of_device_get_match_data(dev);
2665	if (!desc)
2666		return -EINVAL;
2667
2668	info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL);
2669	if (!info)
2670		return -ENOMEM;
2671
2672	info->id = ida_alloc_min(&scmi_id, 0, GFP_KERNEL);
2673	if (info->id < 0)
2674		return info->id;
2675
2676	info->dev = dev;
2677	info->desc = desc;
2678	info->bus_nb.notifier_call = scmi_bus_notifier;
2679	info->dev_req_nb.notifier_call = scmi_device_request_notifier;
2680	INIT_LIST_HEAD(&info->node);
2681	idr_init(&info->protocols);
2682	mutex_init(&info->protocols_mtx);
2683	idr_init(&info->active_protocols);
2684	mutex_init(&info->devreq_mtx);
2685
2686	platform_set_drvdata(pdev, info);
2687	idr_init(&info->tx_idr);
2688	idr_init(&info->rx_idr);
2689
2690	handle = &info->handle;
2691	handle->dev = info->dev;
2692	handle->version = &info->version;
2693	handle->devm_protocol_acquire = scmi_devm_protocol_acquire;
2694	handle->devm_protocol_get = scmi_devm_protocol_get;
2695	handle->devm_protocol_put = scmi_devm_protocol_put;
2696
2697	/* System wide atomic threshold for atomic ops .. if any */
2698	if (!of_property_read_u32(np, "atomic-threshold-us",
2699				  &info->atomic_threshold))
2700		dev_info(dev,
2701			 "SCMI System wide atomic threshold set to %d us\n",
2702			 info->atomic_threshold);
2703	handle->is_transport_atomic = scmi_is_transport_atomic;
2704
2705	if (desc->ops->link_supplier) {
2706		ret = desc->ops->link_supplier(dev);
2707		if (ret)
2708			goto clear_ida;
2709	}
2710
2711	/* Setup all channels described in the DT at first */
2712	ret = scmi_channels_setup(info);
2713	if (ret)
2714		goto clear_ida;
2715
2716	ret = bus_register_notifier(&scmi_bus_type, &info->bus_nb);
2717	if (ret)
2718		goto clear_txrx_setup;
2719
2720	ret = blocking_notifier_chain_register(&scmi_requested_devices_nh,
2721					       &info->dev_req_nb);
2722	if (ret)
2723		goto clear_bus_notifier;
2724
2725	ret = scmi_xfer_info_init(info);
2726	if (ret)
2727		goto clear_dev_req_notifier;
2728
2729	if (scmi_top_dentry) {
2730		info->dbg = scmi_debugfs_common_setup(info);
2731		if (!info->dbg)
2732			dev_warn(dev, "Failed to setup SCMI debugfs.\n");
2733
2734		if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
2735			ret = scmi_debugfs_raw_mode_setup(info);
2736			if (!coex) {
2737				if (ret)
2738					goto clear_dev_req_notifier;
2739
2740				/* Bail out anyway when coex disabled. */
2741				return 0;
2742			}
2743
2744			/* Coex enabled, carry on in any case. */
2745			dev_info(dev, "SCMI RAW Mode COEX enabled !\n");
2746		}
2747	}
2748
2749	if (scmi_notification_init(handle))
2750		dev_err(dev, "SCMI Notifications NOT available.\n");
2751
2752	if (info->desc->atomic_enabled &&
2753	    !is_transport_polling_capable(info->desc))
2754		dev_err(dev,
2755			"Transport is not polling capable. Atomic mode not supported.\n");
2756
2757	/*
2758	 * Trigger SCMI Base protocol initialization.
2759	 * It's mandatory and won't be ever released/deinit until the
2760	 * SCMI stack is shutdown/unloaded as a whole.
2761	 */
2762	ret = scmi_protocol_acquire(handle, SCMI_PROTOCOL_BASE);
2763	if (ret) {
2764		dev_err(dev, "unable to communicate with SCMI\n");
2765		if (coex)
2766			return 0;
2767		goto notification_exit;
2768	}
2769
2770	mutex_lock(&scmi_list_mutex);
2771	list_add_tail(&info->node, &scmi_list);
2772	mutex_unlock(&scmi_list_mutex);
2773
2774	for_each_available_child_of_node(np, child) {
2775		u32 prot_id;
2776
2777		if (of_property_read_u32(child, "reg", &prot_id))
2778			continue;
2779
2780		if (!FIELD_FIT(MSG_PROTOCOL_ID_MASK, prot_id))
2781			dev_err(dev, "Out of range protocol %d\n", prot_id);
2782
2783		if (!scmi_is_protocol_implemented(handle, prot_id)) {
2784			dev_err(dev, "SCMI protocol %d not implemented\n",
2785				prot_id);
2786			continue;
2787		}
2788
2789		/*
2790		 * Save this valid DT protocol descriptor amongst
2791		 * @active_protocols for this SCMI instance/
2792		 */
2793		ret = idr_alloc(&info->active_protocols, child,
2794				prot_id, prot_id + 1, GFP_KERNEL);
2795		if (ret != prot_id) {
2796			dev_err(dev, "SCMI protocol %d already activated. Skip\n",
2797				prot_id);
2798			continue;
2799		}
2800
2801		of_node_get(child);
2802		scmi_create_protocol_devices(child, info, prot_id, NULL);
2803	}
2804
2805	return 0;
2806
2807notification_exit:
2808	if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT))
2809		scmi_raw_mode_cleanup(info->raw);
2810	scmi_notification_exit(&info->handle);
2811clear_dev_req_notifier:
2812	blocking_notifier_chain_unregister(&scmi_requested_devices_nh,
2813					   &info->dev_req_nb);
2814clear_bus_notifier:
2815	bus_unregister_notifier(&scmi_bus_type, &info->bus_nb);
2816clear_txrx_setup:
2817	scmi_cleanup_txrx_channels(info);
2818clear_ida:
2819	ida_free(&scmi_id, info->id);
2820	return ret;
2821}
2822
2823static int scmi_remove(struct platform_device *pdev)
2824{
2825	int id;
2826	struct scmi_info *info = platform_get_drvdata(pdev);
2827	struct device_node *child;
2828
2829	if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT))
2830		scmi_raw_mode_cleanup(info->raw);
2831
2832	mutex_lock(&scmi_list_mutex);
2833	if (info->users)
2834		dev_warn(&pdev->dev,
2835			 "Still active SCMI users will be forcibly unbound.\n");
2836	list_del(&info->node);
2837	mutex_unlock(&scmi_list_mutex);
2838
2839	scmi_notification_exit(&info->handle);
2840
2841	mutex_lock(&info->protocols_mtx);
2842	idr_destroy(&info->protocols);
2843	mutex_unlock(&info->protocols_mtx);
2844
2845	idr_for_each_entry(&info->active_protocols, child, id)
2846		of_node_put(child);
2847	idr_destroy(&info->active_protocols);
2848
2849	blocking_notifier_chain_unregister(&scmi_requested_devices_nh,
2850					   &info->dev_req_nb);
2851	bus_unregister_notifier(&scmi_bus_type, &info->bus_nb);
2852
2853	/* Safe to free channels since no more users */
2854	scmi_cleanup_txrx_channels(info);
2855
2856	ida_free(&scmi_id, info->id);
2857
2858	return 0;
2859}
2860
2861static ssize_t protocol_version_show(struct device *dev,
2862				     struct device_attribute *attr, char *buf)
2863{
2864	struct scmi_info *info = dev_get_drvdata(dev);
2865
2866	return sprintf(buf, "%u.%u\n", info->version.major_ver,
2867		       info->version.minor_ver);
2868}
2869static DEVICE_ATTR_RO(protocol_version);
2870
2871static ssize_t firmware_version_show(struct device *dev,
2872				     struct device_attribute *attr, char *buf)
2873{
2874	struct scmi_info *info = dev_get_drvdata(dev);
2875
2876	return sprintf(buf, "0x%x\n", info->version.impl_ver);
2877}
2878static DEVICE_ATTR_RO(firmware_version);
2879
2880static ssize_t vendor_id_show(struct device *dev,
2881			      struct device_attribute *attr, char *buf)
2882{
2883	struct scmi_info *info = dev_get_drvdata(dev);
2884
2885	return sprintf(buf, "%s\n", info->version.vendor_id);
2886}
2887static DEVICE_ATTR_RO(vendor_id);
2888
2889static ssize_t sub_vendor_id_show(struct device *dev,
2890				  struct device_attribute *attr, char *buf)
2891{
2892	struct scmi_info *info = dev_get_drvdata(dev);
2893
2894	return sprintf(buf, "%s\n", info->version.sub_vendor_id);
2895}
2896static DEVICE_ATTR_RO(sub_vendor_id);
2897
2898static struct attribute *versions_attrs[] = {
2899	&dev_attr_firmware_version.attr,
2900	&dev_attr_protocol_version.attr,
2901	&dev_attr_vendor_id.attr,
2902	&dev_attr_sub_vendor_id.attr,
2903	NULL,
2904};
2905ATTRIBUTE_GROUPS(versions);
2906
2907/* Each compatible listed below must have descriptor associated with it */
2908static const struct of_device_id scmi_of_match[] = {
2909#ifdef CONFIG_ARM_SCMI_TRANSPORT_MAILBOX
2910	{ .compatible = "arm,scmi", .data = &scmi_mailbox_desc },
2911#endif
2912#ifdef CONFIG_ARM_SCMI_TRANSPORT_OPTEE
2913	{ .compatible = "linaro,scmi-optee", .data = &scmi_optee_desc },
2914#endif
2915#ifdef CONFIG_ARM_SCMI_TRANSPORT_SMC
2916	{ .compatible = "arm,scmi-smc", .data = &scmi_smc_desc},
2917	{ .compatible = "arm,scmi-smc-param", .data = &scmi_smc_desc},
2918#endif
2919#ifdef CONFIG_ARM_SCMI_TRANSPORT_VIRTIO
2920	{ .compatible = "arm,scmi-virtio", .data = &scmi_virtio_desc},
2921#endif
2922	{ /* Sentinel */ },
2923};
2924
2925MODULE_DEVICE_TABLE(of, scmi_of_match);
2926
2927static struct platform_driver scmi_driver = {
2928	.driver = {
2929		   .name = "arm-scmi",
2930		   .suppress_bind_attrs = true,
2931		   .of_match_table = scmi_of_match,
2932		   .dev_groups = versions_groups,
2933		   },
2934	.probe = scmi_probe,
2935	.remove = scmi_remove,
2936};
2937
2938/**
2939 * __scmi_transports_setup  - Common helper to call transport-specific
2940 * .init/.exit code if provided.
2941 *
2942 * @init: A flag to distinguish between init and exit.
2943 *
2944 * Note that, if provided, we invoke .init/.exit functions for all the
2945 * transports currently compiled in.
2946 *
2947 * Return: 0 on Success.
2948 */
2949static inline int __scmi_transports_setup(bool init)
2950{
2951	int ret = 0;
2952	const struct of_device_id *trans;
2953
2954	for (trans = scmi_of_match; trans->data; trans++) {
2955		const struct scmi_desc *tdesc = trans->data;
2956
2957		if ((init && !tdesc->transport_init) ||
2958		    (!init && !tdesc->transport_exit))
2959			continue;
2960
2961		if (init)
2962			ret = tdesc->transport_init();
2963		else
2964			tdesc->transport_exit();
2965
2966		if (ret) {
2967			pr_err("SCMI transport %s FAILED initialization!\n",
2968			       trans->compatible);
2969			break;
2970		}
2971	}
2972
2973	return ret;
2974}
2975
2976static int __init scmi_transports_init(void)
2977{
2978	return __scmi_transports_setup(true);
2979}
2980
2981static void __exit scmi_transports_exit(void)
2982{
2983	__scmi_transports_setup(false);
2984}
2985
2986static struct dentry *scmi_debugfs_init(void)
2987{
2988	struct dentry *d;
2989
2990	d = debugfs_create_dir("scmi", NULL);
2991	if (IS_ERR(d)) {
2992		pr_err("Could NOT create SCMI top dentry.\n");
2993		return NULL;
2994	}
2995
2996	return d;
2997}
2998
2999static int __init scmi_driver_init(void)
3000{
3001	int ret;
3002
3003	/* Bail out if no SCMI transport was configured */
3004	if (WARN_ON(!IS_ENABLED(CONFIG_ARM_SCMI_HAVE_TRANSPORT)))
3005		return -EINVAL;
3006
3007	/* Initialize any compiled-in transport which provided an init/exit */
3008	ret = scmi_transports_init();
3009	if (ret)
3010		return ret;
3011
3012	if (IS_ENABLED(CONFIG_ARM_SCMI_NEED_DEBUGFS))
3013		scmi_top_dentry = scmi_debugfs_init();
3014
3015	scmi_base_register();
3016
3017	scmi_clock_register();
3018	scmi_perf_register();
3019	scmi_power_register();
3020	scmi_reset_register();
3021	scmi_sensors_register();
3022	scmi_voltage_register();
3023	scmi_system_register();
3024	scmi_powercap_register();
3025
3026	return platform_driver_register(&scmi_driver);
3027}
3028module_init(scmi_driver_init);
3029
3030static void __exit scmi_driver_exit(void)
3031{
3032	scmi_base_unregister();
3033
3034	scmi_clock_unregister();
3035	scmi_perf_unregister();
3036	scmi_power_unregister();
3037	scmi_reset_unregister();
3038	scmi_sensors_unregister();
3039	scmi_voltage_unregister();
3040	scmi_system_unregister();
3041	scmi_powercap_unregister();
3042
3043	scmi_transports_exit();
3044
3045	platform_driver_unregister(&scmi_driver);
3046
3047	debugfs_remove_recursive(scmi_top_dentry);
3048}
3049module_exit(scmi_driver_exit);
3050
3051MODULE_ALIAS("platform:arm-scmi");
3052MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>");
3053MODULE_DESCRIPTION("ARM SCMI protocol driver");
3054MODULE_LICENSE("GPL v2");
3055