1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Core IEEE1394 transaction logic
4 *
5 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 */
7
8#include <linux/bug.h>
9#include <linux/completion.h>
10#include <linux/device.h>
11#include <linux/errno.h>
12#include <linux/firewire.h>
13#include <linux/firewire-constants.h>
14#include <linux/fs.h>
15#include <linux/init.h>
16#include <linux/idr.h>
17#include <linux/jiffies.h>
18#include <linux/kernel.h>
19#include <linux/list.h>
20#include <linux/module.h>
21#include <linux/rculist.h>
22#include <linux/slab.h>
23#include <linux/spinlock.h>
24#include <linux/string.h>
25#include <linux/timer.h>
26#include <linux/types.h>
27#include <linux/workqueue.h>
28
29#include <asm/byteorder.h>
30
31#include "core.h"
32
33#define HEADER_PRI(pri)			((pri) << 0)
34#define HEADER_TCODE(tcode)		((tcode) << 4)
35#define HEADER_RETRY(retry)		((retry) << 8)
36#define HEADER_TLABEL(tlabel)		((tlabel) << 10)
37#define HEADER_DESTINATION(destination)	((destination) << 16)
38#define HEADER_SOURCE(source)		((source) << 16)
39#define HEADER_RCODE(rcode)		((rcode) << 12)
40#define HEADER_OFFSET_HIGH(offset_high)	((offset_high) << 0)
41#define HEADER_DATA_LENGTH(length)	((length) << 16)
42#define HEADER_EXTENDED_TCODE(tcode)	((tcode) << 0)
43
44#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
45#define HEADER_GET_TLABEL(q)		(((q) >> 10) & 0x3f)
46#define HEADER_GET_RCODE(q)		(((q) >> 12) & 0x0f)
47#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
48#define HEADER_GET_SOURCE(q)		(((q) >> 16) & 0xffff)
49#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
50#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
51#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
52
53#define HEADER_DESTINATION_IS_BROADCAST(q) \
54	(((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f))
55
56#define PHY_PACKET_CONFIG	0x0
57#define PHY_PACKET_LINK_ON	0x1
58#define PHY_PACKET_SELF_ID	0x2
59
60#define PHY_CONFIG_GAP_COUNT(gap_count)	(((gap_count) << 16) | (1 << 22))
61#define PHY_CONFIG_ROOT_ID(node_id)	((((node_id) & 0x3f) << 24) | (1 << 23))
62#define PHY_IDENTIFIER(id)		((id) << 30)
63
64/* returns 0 if the split timeout handler is already running */
65static int try_cancel_split_timeout(struct fw_transaction *t)
66{
67	if (t->is_split_transaction)
68		return del_timer(&t->split_timeout_timer);
69	else
70		return 1;
71}
72
73static int close_transaction(struct fw_transaction *transaction, struct fw_card *card, int rcode,
74			     u32 response_tstamp)
75{
76	struct fw_transaction *t = NULL, *iter;
77	unsigned long flags;
78
79	spin_lock_irqsave(&card->lock, flags);
80	list_for_each_entry(iter, &card->transaction_list, link) {
81		if (iter == transaction) {
82			if (!try_cancel_split_timeout(iter)) {
83				spin_unlock_irqrestore(&card->lock, flags);
84				goto timed_out;
85			}
86			list_del_init(&iter->link);
87			card->tlabel_mask &= ~(1ULL << iter->tlabel);
88			t = iter;
89			break;
90		}
91	}
92	spin_unlock_irqrestore(&card->lock, flags);
93
94	if (t) {
95		if (!t->with_tstamp) {
96			t->callback.without_tstamp(card, rcode, NULL, 0, t->callback_data);
97		} else {
98			t->callback.with_tstamp(card, rcode, t->packet.timestamp, response_tstamp,
99						NULL, 0, t->callback_data);
100		}
101		return 0;
102	}
103
104 timed_out:
105	return -ENOENT;
106}
107
108/*
109 * Only valid for transactions that are potentially pending (ie have
110 * been sent).
111 */
112int fw_cancel_transaction(struct fw_card *card,
113			  struct fw_transaction *transaction)
114{
115	u32 tstamp;
116
117	/*
118	 * Cancel the packet transmission if it's still queued.  That
119	 * will call the packet transmission callback which cancels
120	 * the transaction.
121	 */
122
123	if (card->driver->cancel_packet(card, &transaction->packet) == 0)
124		return 0;
125
126	/*
127	 * If the request packet has already been sent, we need to see
128	 * if the transaction is still pending and remove it in that case.
129	 */
130
131	if (transaction->packet.ack == 0) {
132		// The timestamp is reused since it was just read now.
133		tstamp = transaction->packet.timestamp;
134	} else {
135		u32 curr_cycle_time = 0;
136
137		(void)fw_card_read_cycle_time(card, &curr_cycle_time);
138		tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time);
139	}
140
141	return close_transaction(transaction, card, RCODE_CANCELLED, tstamp);
142}
143EXPORT_SYMBOL(fw_cancel_transaction);
144
145static void split_transaction_timeout_callback(struct timer_list *timer)
146{
147	struct fw_transaction *t = from_timer(t, timer, split_timeout_timer);
148	struct fw_card *card = t->card;
149	unsigned long flags;
150
151	spin_lock_irqsave(&card->lock, flags);
152	if (list_empty(&t->link)) {
153		spin_unlock_irqrestore(&card->lock, flags);
154		return;
155	}
156	list_del(&t->link);
157	card->tlabel_mask &= ~(1ULL << t->tlabel);
158	spin_unlock_irqrestore(&card->lock, flags);
159
160	if (!t->with_tstamp) {
161		t->callback.without_tstamp(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
162	} else {
163		t->callback.with_tstamp(card, RCODE_CANCELLED, t->packet.timestamp,
164					t->split_timeout_cycle, NULL, 0, t->callback_data);
165	}
166}
167
168static void start_split_transaction_timeout(struct fw_transaction *t,
169					    struct fw_card *card)
170{
171	unsigned long flags;
172
173	spin_lock_irqsave(&card->lock, flags);
174
175	if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) {
176		spin_unlock_irqrestore(&card->lock, flags);
177		return;
178	}
179
180	t->is_split_transaction = true;
181	mod_timer(&t->split_timeout_timer,
182		  jiffies + card->split_timeout_jiffies);
183
184	spin_unlock_irqrestore(&card->lock, flags);
185}
186
187static u32 compute_split_timeout_timestamp(struct fw_card *card, u32 request_timestamp);
188
189static void transmit_complete_callback(struct fw_packet *packet,
190				       struct fw_card *card, int status)
191{
192	struct fw_transaction *t =
193	    container_of(packet, struct fw_transaction, packet);
194
195	switch (status) {
196	case ACK_COMPLETE:
197		close_transaction(t, card, RCODE_COMPLETE, packet->timestamp);
198		break;
199	case ACK_PENDING:
200	{
201		t->split_timeout_cycle =
202			compute_split_timeout_timestamp(card, packet->timestamp) & 0xffff;
203		start_split_transaction_timeout(t, card);
204		break;
205	}
206	case ACK_BUSY_X:
207	case ACK_BUSY_A:
208	case ACK_BUSY_B:
209		close_transaction(t, card, RCODE_BUSY, packet->timestamp);
210		break;
211	case ACK_DATA_ERROR:
212		close_transaction(t, card, RCODE_DATA_ERROR, packet->timestamp);
213		break;
214	case ACK_TYPE_ERROR:
215		close_transaction(t, card, RCODE_TYPE_ERROR, packet->timestamp);
216		break;
217	default:
218		/*
219		 * In this case the ack is really a juju specific
220		 * rcode, so just forward that to the callback.
221		 */
222		close_transaction(t, card, status, packet->timestamp);
223		break;
224	}
225}
226
227static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
228		int destination_id, int source_id, int generation, int speed,
229		unsigned long long offset, void *payload, size_t length)
230{
231	int ext_tcode;
232
233	if (tcode == TCODE_STREAM_DATA) {
234		packet->header[0] =
235			HEADER_DATA_LENGTH(length) |
236			destination_id |
237			HEADER_TCODE(TCODE_STREAM_DATA);
238		packet->header_length = 4;
239		packet->payload = payload;
240		packet->payload_length = length;
241
242		goto common;
243	}
244
245	if (tcode > 0x10) {
246		ext_tcode = tcode & ~0x10;
247		tcode = TCODE_LOCK_REQUEST;
248	} else
249		ext_tcode = 0;
250
251	packet->header[0] =
252		HEADER_RETRY(RETRY_X) |
253		HEADER_TLABEL(tlabel) |
254		HEADER_TCODE(tcode) |
255		HEADER_DESTINATION(destination_id);
256	packet->header[1] =
257		HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
258	packet->header[2] =
259		offset;
260
261	switch (tcode) {
262	case TCODE_WRITE_QUADLET_REQUEST:
263		packet->header[3] = *(u32 *)payload;
264		packet->header_length = 16;
265		packet->payload_length = 0;
266		break;
267
268	case TCODE_LOCK_REQUEST:
269	case TCODE_WRITE_BLOCK_REQUEST:
270		packet->header[3] =
271			HEADER_DATA_LENGTH(length) |
272			HEADER_EXTENDED_TCODE(ext_tcode);
273		packet->header_length = 16;
274		packet->payload = payload;
275		packet->payload_length = length;
276		break;
277
278	case TCODE_READ_QUADLET_REQUEST:
279		packet->header_length = 12;
280		packet->payload_length = 0;
281		break;
282
283	case TCODE_READ_BLOCK_REQUEST:
284		packet->header[3] =
285			HEADER_DATA_LENGTH(length) |
286			HEADER_EXTENDED_TCODE(ext_tcode);
287		packet->header_length = 16;
288		packet->payload_length = 0;
289		break;
290
291	default:
292		WARN(1, "wrong tcode %d\n", tcode);
293	}
294 common:
295	packet->speed = speed;
296	packet->generation = generation;
297	packet->ack = 0;
298	packet->payload_mapped = false;
299}
300
301static int allocate_tlabel(struct fw_card *card)
302{
303	int tlabel;
304
305	tlabel = card->current_tlabel;
306	while (card->tlabel_mask & (1ULL << tlabel)) {
307		tlabel = (tlabel + 1) & 0x3f;
308		if (tlabel == card->current_tlabel)
309			return -EBUSY;
310	}
311
312	card->current_tlabel = (tlabel + 1) & 0x3f;
313	card->tlabel_mask |= 1ULL << tlabel;
314
315	return tlabel;
316}
317
318/**
319 * __fw_send_request() - submit a request packet for transmission to generate callback for response
320 *			 subaction with or without time stamp.
321 * @card:		interface to send the request at
322 * @t:			transaction instance to which the request belongs
323 * @tcode:		transaction code
324 * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
325 * @generation:		bus generation in which request and response are valid
326 * @speed:		transmission speed
327 * @offset:		48bit wide offset into destination's address space
328 * @payload:		data payload for the request subaction
329 * @length:		length of the payload, in bytes
330 * @callback:		union of two functions whether to receive time stamp or not for response
331 *			subaction.
332 * @with_tstamp:	Whether to receive time stamp or not for response subaction.
333 * @callback_data:	data to be passed to the transaction completion callback
334 *
335 * Submit a request packet into the asynchronous request transmission queue.
336 * Can be called from atomic context.  If you prefer a blocking API, use
337 * fw_run_transaction() in a context that can sleep.
338 *
339 * In case of lock requests, specify one of the firewire-core specific %TCODE_
340 * constants instead of %TCODE_LOCK_REQUEST in @tcode.
341 *
342 * Make sure that the value in @destination_id is not older than the one in
343 * @generation.  Otherwise the request is in danger to be sent to a wrong node.
344 *
345 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
346 * needs to synthesize @destination_id with fw_stream_packet_destination_id().
347 * It will contain tag, channel, and sy data instead of a node ID then.
348 *
349 * The payload buffer at @data is going to be DMA-mapped except in case of
350 * @length <= 8 or of local (loopback) requests.  Hence make sure that the
351 * buffer complies with the restrictions of the streaming DMA mapping API.
352 * @payload must not be freed before the @callback is called.
353 *
354 * In case of request types without payload, @data is NULL and @length is 0.
355 *
356 * After the transaction is completed successfully or unsuccessfully, the
357 * @callback will be called.  Among its parameters is the response code which
358 * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
359 * the firewire-core specific %RCODE_SEND_ERROR.  The other firewire-core
360 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
361 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
362 * generation, or missing ACK respectively.
363 *
364 * Note some timing corner cases:  fw_send_request() may complete much earlier
365 * than when the request packet actually hits the wire.  On the other hand,
366 * transaction completion and hence execution of @callback may happen even
367 * before fw_send_request() returns.
368 */
369void __fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
370		int destination_id, int generation, int speed, unsigned long long offset,
371		void *payload, size_t length, union fw_transaction_callback callback,
372		bool with_tstamp, void *callback_data)
373{
374	unsigned long flags;
375	int tlabel;
376
377	/*
378	 * Allocate tlabel from the bitmap and put the transaction on
379	 * the list while holding the card spinlock.
380	 */
381
382	spin_lock_irqsave(&card->lock, flags);
383
384	tlabel = allocate_tlabel(card);
385	if (tlabel < 0) {
386		spin_unlock_irqrestore(&card->lock, flags);
387		if (!with_tstamp) {
388			callback.without_tstamp(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
389		} else {
390			// Timestamping on behalf of hardware.
391			u32 curr_cycle_time = 0;
392			u32 tstamp;
393
394			(void)fw_card_read_cycle_time(card, &curr_cycle_time);
395			tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time);
396
397			callback.with_tstamp(card, RCODE_SEND_ERROR, tstamp, tstamp, NULL, 0,
398					     callback_data);
399		}
400		return;
401	}
402
403	t->node_id = destination_id;
404	t->tlabel = tlabel;
405	t->card = card;
406	t->is_split_transaction = false;
407	timer_setup(&t->split_timeout_timer, split_transaction_timeout_callback, 0);
408	t->callback = callback;
409	t->with_tstamp = with_tstamp;
410	t->callback_data = callback_data;
411
412	fw_fill_request(&t->packet, tcode, t->tlabel, destination_id, card->node_id, generation,
413			speed, offset, payload, length);
414	t->packet.callback = transmit_complete_callback;
415
416	list_add_tail(&t->link, &card->transaction_list);
417
418	spin_unlock_irqrestore(&card->lock, flags);
419
420	card->driver->send_request(card, &t->packet);
421}
422EXPORT_SYMBOL_GPL(__fw_send_request);
423
424struct transaction_callback_data {
425	struct completion done;
426	void *payload;
427	int rcode;
428};
429
430static void transaction_callback(struct fw_card *card, int rcode,
431				 void *payload, size_t length, void *data)
432{
433	struct transaction_callback_data *d = data;
434
435	if (rcode == RCODE_COMPLETE)
436		memcpy(d->payload, payload, length);
437	d->rcode = rcode;
438	complete(&d->done);
439}
440
441/**
442 * fw_run_transaction() - send request and sleep until transaction is completed
443 * @card:		card interface for this request
444 * @tcode:		transaction code
445 * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
446 * @generation:		bus generation in which request and response are valid
447 * @speed:		transmission speed
448 * @offset:		48bit wide offset into destination's address space
449 * @payload:		data payload for the request subaction
450 * @length:		length of the payload, in bytes
451 *
452 * Returns the RCODE.  See fw_send_request() for parameter documentation.
453 * Unlike fw_send_request(), @data points to the payload of the request or/and
454 * to the payload of the response.  DMA mapping restrictions apply to outbound
455 * request payloads of >= 8 bytes but not to inbound response payloads.
456 */
457int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
458		       int generation, int speed, unsigned long long offset,
459		       void *payload, size_t length)
460{
461	struct transaction_callback_data d;
462	struct fw_transaction t;
463
464	timer_setup_on_stack(&t.split_timeout_timer, NULL, 0);
465	init_completion(&d.done);
466	d.payload = payload;
467	fw_send_request(card, &t, tcode, destination_id, generation, speed,
468			offset, payload, length, transaction_callback, &d);
469	wait_for_completion(&d.done);
470	destroy_timer_on_stack(&t.split_timeout_timer);
471
472	return d.rcode;
473}
474EXPORT_SYMBOL(fw_run_transaction);
475
476static DEFINE_MUTEX(phy_config_mutex);
477static DECLARE_COMPLETION(phy_config_done);
478
479static void transmit_phy_packet_callback(struct fw_packet *packet,
480					 struct fw_card *card, int status)
481{
482	complete(&phy_config_done);
483}
484
485static struct fw_packet phy_config_packet = {
486	.header_length	= 12,
487	.header[0]	= TCODE_LINK_INTERNAL << 4,
488	.payload_length	= 0,
489	.speed		= SCODE_100,
490	.callback	= transmit_phy_packet_callback,
491};
492
493void fw_send_phy_config(struct fw_card *card,
494			int node_id, int generation, int gap_count)
495{
496	long timeout = DIV_ROUND_UP(HZ, 10);
497	u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG);
498
499	if (node_id != FW_PHY_CONFIG_NO_NODE_ID)
500		data |= PHY_CONFIG_ROOT_ID(node_id);
501
502	if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
503		gap_count = card->driver->read_phy_reg(card, 1);
504		if (gap_count < 0)
505			return;
506
507		gap_count &= 63;
508		if (gap_count == 63)
509			return;
510	}
511	data |= PHY_CONFIG_GAP_COUNT(gap_count);
512
513	mutex_lock(&phy_config_mutex);
514
515	phy_config_packet.header[1] = data;
516	phy_config_packet.header[2] = ~data;
517	phy_config_packet.generation = generation;
518	reinit_completion(&phy_config_done);
519
520	card->driver->send_request(card, &phy_config_packet);
521	wait_for_completion_timeout(&phy_config_done, timeout);
522
523	mutex_unlock(&phy_config_mutex);
524}
525
526static struct fw_address_handler *lookup_overlapping_address_handler(
527	struct list_head *list, unsigned long long offset, size_t length)
528{
529	struct fw_address_handler *handler;
530
531	list_for_each_entry_rcu(handler, list, link) {
532		if (handler->offset < offset + length &&
533		    offset < handler->offset + handler->length)
534			return handler;
535	}
536
537	return NULL;
538}
539
540static bool is_enclosing_handler(struct fw_address_handler *handler,
541				 unsigned long long offset, size_t length)
542{
543	return handler->offset <= offset &&
544		offset + length <= handler->offset + handler->length;
545}
546
547static struct fw_address_handler *lookup_enclosing_address_handler(
548	struct list_head *list, unsigned long long offset, size_t length)
549{
550	struct fw_address_handler *handler;
551
552	list_for_each_entry_rcu(handler, list, link) {
553		if (is_enclosing_handler(handler, offset, length))
554			return handler;
555	}
556
557	return NULL;
558}
559
560static DEFINE_SPINLOCK(address_handler_list_lock);
561static LIST_HEAD(address_handler_list);
562
563const struct fw_address_region fw_high_memory_region =
564	{ .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, };
565EXPORT_SYMBOL(fw_high_memory_region);
566
567static const struct fw_address_region low_memory_region =
568	{ .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, };
569
570#if 0
571const struct fw_address_region fw_private_region =
572	{ .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL,  };
573const struct fw_address_region fw_csr_region =
574	{ .start = CSR_REGISTER_BASE,
575	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END,  };
576const struct fw_address_region fw_unit_space_region =
577	{ .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
578#endif  /*  0  */
579
580/**
581 * fw_core_add_address_handler() - register for incoming requests
582 * @handler:	callback
583 * @region:	region in the IEEE 1212 node space address range
584 *
585 * region->start, ->end, and handler->length have to be quadlet-aligned.
586 *
587 * When a request is received that falls within the specified address range,
588 * the specified callback is invoked.  The parameters passed to the callback
589 * give the details of the particular request.
590 *
591 * To be called in process context.
592 * Return value:  0 on success, non-zero otherwise.
593 *
594 * The start offset of the handler's address region is determined by
595 * fw_core_add_address_handler() and is returned in handler->offset.
596 *
597 * Address allocations are exclusive, except for the FCP registers.
598 */
599int fw_core_add_address_handler(struct fw_address_handler *handler,
600				const struct fw_address_region *region)
601{
602	struct fw_address_handler *other;
603	int ret = -EBUSY;
604
605	if (region->start & 0xffff000000000003ULL ||
606	    region->start >= region->end ||
607	    region->end   > 0x0001000000000000ULL ||
608	    handler->length & 3 ||
609	    handler->length == 0)
610		return -EINVAL;
611
612	spin_lock(&address_handler_list_lock);
613
614	handler->offset = region->start;
615	while (handler->offset + handler->length <= region->end) {
616		if (is_in_fcp_region(handler->offset, handler->length))
617			other = NULL;
618		else
619			other = lookup_overlapping_address_handler
620					(&address_handler_list,
621					 handler->offset, handler->length);
622		if (other != NULL) {
623			handler->offset += other->length;
624		} else {
625			list_add_tail_rcu(&handler->link, &address_handler_list);
626			ret = 0;
627			break;
628		}
629	}
630
631	spin_unlock(&address_handler_list_lock);
632
633	return ret;
634}
635EXPORT_SYMBOL(fw_core_add_address_handler);
636
637/**
638 * fw_core_remove_address_handler() - unregister an address handler
639 * @handler: callback
640 *
641 * To be called in process context.
642 *
643 * When fw_core_remove_address_handler() returns, @handler->callback() is
644 * guaranteed to not run on any CPU anymore.
645 */
646void fw_core_remove_address_handler(struct fw_address_handler *handler)
647{
648	spin_lock(&address_handler_list_lock);
649	list_del_rcu(&handler->link);
650	spin_unlock(&address_handler_list_lock);
651	synchronize_rcu();
652}
653EXPORT_SYMBOL(fw_core_remove_address_handler);
654
655struct fw_request {
656	struct kref kref;
657	struct fw_packet response;
658	u32 request_header[4];
659	int ack;
660	u32 timestamp;
661	u32 length;
662	u32 data[];
663};
664
665void fw_request_get(struct fw_request *request)
666{
667	kref_get(&request->kref);
668}
669
670static void release_request(struct kref *kref)
671{
672	struct fw_request *request = container_of(kref, struct fw_request, kref);
673
674	kfree(request);
675}
676
677void fw_request_put(struct fw_request *request)
678{
679	kref_put(&request->kref, release_request);
680}
681
682static void free_response_callback(struct fw_packet *packet,
683				   struct fw_card *card, int status)
684{
685	struct fw_request *request = container_of(packet, struct fw_request, response);
686
687	// Decrease the reference count since not at in-flight.
688	fw_request_put(request);
689
690	// Decrease the reference count to release the object.
691	fw_request_put(request);
692}
693
694int fw_get_response_length(struct fw_request *r)
695{
696	int tcode, ext_tcode, data_length;
697
698	tcode = HEADER_GET_TCODE(r->request_header[0]);
699
700	switch (tcode) {
701	case TCODE_WRITE_QUADLET_REQUEST:
702	case TCODE_WRITE_BLOCK_REQUEST:
703		return 0;
704
705	case TCODE_READ_QUADLET_REQUEST:
706		return 4;
707
708	case TCODE_READ_BLOCK_REQUEST:
709		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
710		return data_length;
711
712	case TCODE_LOCK_REQUEST:
713		ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]);
714		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
715		switch (ext_tcode) {
716		case EXTCODE_FETCH_ADD:
717		case EXTCODE_LITTLE_ADD:
718			return data_length;
719		default:
720			return data_length / 2;
721		}
722
723	default:
724		WARN(1, "wrong tcode %d\n", tcode);
725		return 0;
726	}
727}
728
729void fw_fill_response(struct fw_packet *response, u32 *request_header,
730		      int rcode, void *payload, size_t length)
731{
732	int tcode, tlabel, extended_tcode, source, destination;
733
734	tcode          = HEADER_GET_TCODE(request_header[0]);
735	tlabel         = HEADER_GET_TLABEL(request_header[0]);
736	source         = HEADER_GET_DESTINATION(request_header[0]);
737	destination    = HEADER_GET_SOURCE(request_header[1]);
738	extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);
739
740	response->header[0] =
741		HEADER_RETRY(RETRY_1) |
742		HEADER_TLABEL(tlabel) |
743		HEADER_DESTINATION(destination);
744	response->header[1] =
745		HEADER_SOURCE(source) |
746		HEADER_RCODE(rcode);
747	response->header[2] = 0;
748
749	switch (tcode) {
750	case TCODE_WRITE_QUADLET_REQUEST:
751	case TCODE_WRITE_BLOCK_REQUEST:
752		response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
753		response->header_length = 12;
754		response->payload_length = 0;
755		break;
756
757	case TCODE_READ_QUADLET_REQUEST:
758		response->header[0] |=
759			HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
760		if (payload != NULL)
761			response->header[3] = *(u32 *)payload;
762		else
763			response->header[3] = 0;
764		response->header_length = 16;
765		response->payload_length = 0;
766		break;
767
768	case TCODE_READ_BLOCK_REQUEST:
769	case TCODE_LOCK_REQUEST:
770		response->header[0] |= HEADER_TCODE(tcode + 2);
771		response->header[3] =
772			HEADER_DATA_LENGTH(length) |
773			HEADER_EXTENDED_TCODE(extended_tcode);
774		response->header_length = 16;
775		response->payload = payload;
776		response->payload_length = length;
777		break;
778
779	default:
780		WARN(1, "wrong tcode %d\n", tcode);
781	}
782
783	response->payload_mapped = false;
784}
785EXPORT_SYMBOL(fw_fill_response);
786
787static u32 compute_split_timeout_timestamp(struct fw_card *card,
788					   u32 request_timestamp)
789{
790	unsigned int cycles;
791	u32 timestamp;
792
793	cycles = card->split_timeout_cycles;
794	cycles += request_timestamp & 0x1fff;
795
796	timestamp = request_timestamp & ~0x1fff;
797	timestamp += (cycles / 8000) << 13;
798	timestamp |= cycles % 8000;
799
800	return timestamp;
801}
802
803static struct fw_request *allocate_request(struct fw_card *card,
804					   struct fw_packet *p)
805{
806	struct fw_request *request;
807	u32 *data, length;
808	int request_tcode;
809
810	request_tcode = HEADER_GET_TCODE(p->header[0]);
811	switch (request_tcode) {
812	case TCODE_WRITE_QUADLET_REQUEST:
813		data = &p->header[3];
814		length = 4;
815		break;
816
817	case TCODE_WRITE_BLOCK_REQUEST:
818	case TCODE_LOCK_REQUEST:
819		data = p->payload;
820		length = HEADER_GET_DATA_LENGTH(p->header[3]);
821		break;
822
823	case TCODE_READ_QUADLET_REQUEST:
824		data = NULL;
825		length = 4;
826		break;
827
828	case TCODE_READ_BLOCK_REQUEST:
829		data = NULL;
830		length = HEADER_GET_DATA_LENGTH(p->header[3]);
831		break;
832
833	default:
834		fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
835			 p->header[0], p->header[1], p->header[2]);
836		return NULL;
837	}
838
839	request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
840	if (request == NULL)
841		return NULL;
842	kref_init(&request->kref);
843
844	request->response.speed = p->speed;
845	request->response.timestamp =
846			compute_split_timeout_timestamp(card, p->timestamp);
847	request->response.generation = p->generation;
848	request->response.ack = 0;
849	request->response.callback = free_response_callback;
850	request->ack = p->ack;
851	request->timestamp = p->timestamp;
852	request->length = length;
853	if (data)
854		memcpy(request->data, data, length);
855
856	memcpy(request->request_header, p->header, sizeof(p->header));
857
858	return request;
859}
860
861/**
862 * fw_send_response: - send response packet for asynchronous transaction.
863 * @card:	interface to send the response at.
864 * @request:	firewire request data for the transaction.
865 * @rcode:	response code to send.
866 *
867 * Submit a response packet into the asynchronous response transmission queue. The @request
868 * is going to be released when the transmission successfully finishes later.
869 */
870void fw_send_response(struct fw_card *card,
871		      struct fw_request *request, int rcode)
872{
873	/* unified transaction or broadcast transaction: don't respond */
874	if (request->ack != ACK_PENDING ||
875	    HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) {
876		fw_request_put(request);
877		return;
878	}
879
880	if (rcode == RCODE_COMPLETE)
881		fw_fill_response(&request->response, request->request_header,
882				 rcode, request->data,
883				 fw_get_response_length(request));
884	else
885		fw_fill_response(&request->response, request->request_header,
886				 rcode, NULL, 0);
887
888	// Increase the reference count so that the object is kept during in-flight.
889	fw_request_get(request);
890
891	card->driver->send_response(card, &request->response);
892}
893EXPORT_SYMBOL(fw_send_response);
894
895/**
896 * fw_get_request_speed() - returns speed at which the @request was received
897 * @request: firewire request data
898 */
899int fw_get_request_speed(struct fw_request *request)
900{
901	return request->response.speed;
902}
903EXPORT_SYMBOL(fw_get_request_speed);
904
905/**
906 * fw_request_get_timestamp: Get timestamp of the request.
907 * @request: The opaque pointer to request structure.
908 *
909 * Get timestamp when 1394 OHCI controller receives the asynchronous request subaction. The
910 * timestamp consists of the low order 3 bits of second field and the full 13 bits of count
911 * field of isochronous cycle time register.
912 *
913 * Returns: timestamp of the request.
914 */
915u32 fw_request_get_timestamp(const struct fw_request *request)
916{
917	return request->timestamp;
918}
919EXPORT_SYMBOL_GPL(fw_request_get_timestamp);
920
921static void handle_exclusive_region_request(struct fw_card *card,
922					    struct fw_packet *p,
923					    struct fw_request *request,
924					    unsigned long long offset)
925{
926	struct fw_address_handler *handler;
927	int tcode, destination, source;
928
929	destination = HEADER_GET_DESTINATION(p->header[0]);
930	source      = HEADER_GET_SOURCE(p->header[1]);
931	tcode       = HEADER_GET_TCODE(p->header[0]);
932	if (tcode == TCODE_LOCK_REQUEST)
933		tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]);
934
935	rcu_read_lock();
936	handler = lookup_enclosing_address_handler(&address_handler_list,
937						   offset, request->length);
938	if (handler)
939		handler->address_callback(card, request,
940					  tcode, destination, source,
941					  p->generation, offset,
942					  request->data, request->length,
943					  handler->callback_data);
944	rcu_read_unlock();
945
946	if (!handler)
947		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
948}
949
950static void handle_fcp_region_request(struct fw_card *card,
951				      struct fw_packet *p,
952				      struct fw_request *request,
953				      unsigned long long offset)
954{
955	struct fw_address_handler *handler;
956	int tcode, destination, source;
957
958	if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
959	     offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
960	    request->length > 0x200) {
961		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
962
963		return;
964	}
965
966	tcode       = HEADER_GET_TCODE(p->header[0]);
967	destination = HEADER_GET_DESTINATION(p->header[0]);
968	source      = HEADER_GET_SOURCE(p->header[1]);
969
970	if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
971	    tcode != TCODE_WRITE_BLOCK_REQUEST) {
972		fw_send_response(card, request, RCODE_TYPE_ERROR);
973
974		return;
975	}
976
977	rcu_read_lock();
978	list_for_each_entry_rcu(handler, &address_handler_list, link) {
979		if (is_enclosing_handler(handler, offset, request->length))
980			handler->address_callback(card, request, tcode,
981						  destination, source,
982						  p->generation, offset,
983						  request->data,
984						  request->length,
985						  handler->callback_data);
986	}
987	rcu_read_unlock();
988
989	fw_send_response(card, request, RCODE_COMPLETE);
990}
991
992void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
993{
994	struct fw_request *request;
995	unsigned long long offset;
996
997	if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
998		return;
999
1000	if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) {
1001		fw_cdev_handle_phy_packet(card, p);
1002		return;
1003	}
1004
1005	request = allocate_request(card, p);
1006	if (request == NULL) {
1007		/* FIXME: send statically allocated busy packet. */
1008		return;
1009	}
1010
1011	offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) |
1012		p->header[2];
1013
1014	if (!is_in_fcp_region(offset, request->length))
1015		handle_exclusive_region_request(card, p, request, offset);
1016	else
1017		handle_fcp_region_request(card, p, request, offset);
1018
1019}
1020EXPORT_SYMBOL(fw_core_handle_request);
1021
1022void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
1023{
1024	struct fw_transaction *t = NULL, *iter;
1025	unsigned long flags;
1026	u32 *data;
1027	size_t data_length;
1028	int tcode, tlabel, source, rcode;
1029
1030	tcode	= HEADER_GET_TCODE(p->header[0]);
1031	tlabel	= HEADER_GET_TLABEL(p->header[0]);
1032	source	= HEADER_GET_SOURCE(p->header[1]);
1033	rcode	= HEADER_GET_RCODE(p->header[1]);
1034
1035	spin_lock_irqsave(&card->lock, flags);
1036	list_for_each_entry(iter, &card->transaction_list, link) {
1037		if (iter->node_id == source && iter->tlabel == tlabel) {
1038			if (!try_cancel_split_timeout(iter)) {
1039				spin_unlock_irqrestore(&card->lock, flags);
1040				goto timed_out;
1041			}
1042			list_del_init(&iter->link);
1043			card->tlabel_mask &= ~(1ULL << iter->tlabel);
1044			t = iter;
1045			break;
1046		}
1047	}
1048	spin_unlock_irqrestore(&card->lock, flags);
1049
1050	if (!t) {
1051 timed_out:
1052		fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
1053			  source, tlabel);
1054		return;
1055	}
1056
1057	/*
1058	 * FIXME: sanity check packet, is length correct, does tcodes
1059	 * and addresses match.
1060	 */
1061
1062	switch (tcode) {
1063	case TCODE_READ_QUADLET_RESPONSE:
1064		data = (u32 *) &p->header[3];
1065		data_length = 4;
1066		break;
1067
1068	case TCODE_WRITE_RESPONSE:
1069		data = NULL;
1070		data_length = 0;
1071		break;
1072
1073	case TCODE_READ_BLOCK_RESPONSE:
1074	case TCODE_LOCK_RESPONSE:
1075		data = p->payload;
1076		data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
1077		break;
1078
1079	default:
1080		/* Should never happen, this is just to shut up gcc. */
1081		data = NULL;
1082		data_length = 0;
1083		break;
1084	}
1085
1086	/*
1087	 * The response handler may be executed while the request handler
1088	 * is still pending.  Cancel the request handler.
1089	 */
1090	card->driver->cancel_packet(card, &t->packet);
1091
1092	if (!t->with_tstamp) {
1093		t->callback.without_tstamp(card, rcode, data, data_length, t->callback_data);
1094	} else {
1095		t->callback.with_tstamp(card, rcode, t->packet.timestamp, p->timestamp, data,
1096					data_length, t->callback_data);
1097	}
1098}
1099EXPORT_SYMBOL(fw_core_handle_response);
1100
1101/**
1102 * fw_rcode_string - convert a firewire result code to an error description
1103 * @rcode: the result code
1104 */
1105const char *fw_rcode_string(int rcode)
1106{
1107	static const char *const names[] = {
1108		[RCODE_COMPLETE]       = "no error",
1109		[RCODE_CONFLICT_ERROR] = "conflict error",
1110		[RCODE_DATA_ERROR]     = "data error",
1111		[RCODE_TYPE_ERROR]     = "type error",
1112		[RCODE_ADDRESS_ERROR]  = "address error",
1113		[RCODE_SEND_ERROR]     = "send error",
1114		[RCODE_CANCELLED]      = "timeout",
1115		[RCODE_BUSY]           = "busy",
1116		[RCODE_GENERATION]     = "bus reset",
1117		[RCODE_NO_ACK]         = "no ack",
1118	};
1119
1120	if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode])
1121		return names[rcode];
1122	else
1123		return "unknown";
1124}
1125EXPORT_SYMBOL(fw_rcode_string);
1126
1127static const struct fw_address_region topology_map_region =
1128	{ .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1129	  .end   = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1130
1131static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1132		int tcode, int destination, int source, int generation,
1133		unsigned long long offset, void *payload, size_t length,
1134		void *callback_data)
1135{
1136	int start;
1137
1138	if (!TCODE_IS_READ_REQUEST(tcode)) {
1139		fw_send_response(card, request, RCODE_TYPE_ERROR);
1140		return;
1141	}
1142
1143	if ((offset & 3) > 0 || (length & 3) > 0) {
1144		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1145		return;
1146	}
1147
1148	start = (offset - topology_map_region.start) / 4;
1149	memcpy(payload, &card->topology_map[start], length);
1150
1151	fw_send_response(card, request, RCODE_COMPLETE);
1152}
1153
1154static struct fw_address_handler topology_map = {
1155	.length			= 0x400,
1156	.address_callback	= handle_topology_map,
1157};
1158
1159static const struct fw_address_region registers_region =
1160	{ .start = CSR_REGISTER_BASE,
1161	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1162
1163static void update_split_timeout(struct fw_card *card)
1164{
1165	unsigned int cycles;
1166
1167	cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1168
1169	/* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
1170	cycles = clamp(cycles, 800u, 3u * 8000u);
1171
1172	card->split_timeout_cycles = cycles;
1173	card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1174}
1175
1176static void handle_registers(struct fw_card *card, struct fw_request *request,
1177		int tcode, int destination, int source, int generation,
1178		unsigned long long offset, void *payload, size_t length,
1179		void *callback_data)
1180{
1181	int reg = offset & ~CSR_REGISTER_BASE;
1182	__be32 *data = payload;
1183	int rcode = RCODE_COMPLETE;
1184	unsigned long flags;
1185
1186	switch (reg) {
1187	case CSR_PRIORITY_BUDGET:
1188		if (!card->priority_budget_implemented) {
1189			rcode = RCODE_ADDRESS_ERROR;
1190			break;
1191		}
1192		fallthrough;
1193
1194	case CSR_NODE_IDS:
1195		/*
1196		 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1197		 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1198		 */
1199		fallthrough;
1200
1201	case CSR_STATE_CLEAR:
1202	case CSR_STATE_SET:
1203	case CSR_CYCLE_TIME:
1204	case CSR_BUS_TIME:
1205	case CSR_BUSY_TIMEOUT:
1206		if (tcode == TCODE_READ_QUADLET_REQUEST)
1207			*data = cpu_to_be32(card->driver->read_csr(card, reg));
1208		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1209			card->driver->write_csr(card, reg, be32_to_cpu(*data));
1210		else
1211			rcode = RCODE_TYPE_ERROR;
1212		break;
1213
1214	case CSR_RESET_START:
1215		if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1216			card->driver->write_csr(card, CSR_STATE_CLEAR,
1217						CSR_STATE_BIT_ABDICATE);
1218		else
1219			rcode = RCODE_TYPE_ERROR;
1220		break;
1221
1222	case CSR_SPLIT_TIMEOUT_HI:
1223		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1224			*data = cpu_to_be32(card->split_timeout_hi);
1225		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1226			spin_lock_irqsave(&card->lock, flags);
1227			card->split_timeout_hi = be32_to_cpu(*data) & 7;
1228			update_split_timeout(card);
1229			spin_unlock_irqrestore(&card->lock, flags);
1230		} else {
1231			rcode = RCODE_TYPE_ERROR;
1232		}
1233		break;
1234
1235	case CSR_SPLIT_TIMEOUT_LO:
1236		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1237			*data = cpu_to_be32(card->split_timeout_lo);
1238		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1239			spin_lock_irqsave(&card->lock, flags);
1240			card->split_timeout_lo =
1241					be32_to_cpu(*data) & 0xfff80000;
1242			update_split_timeout(card);
1243			spin_unlock_irqrestore(&card->lock, flags);
1244		} else {
1245			rcode = RCODE_TYPE_ERROR;
1246		}
1247		break;
1248
1249	case CSR_MAINT_UTILITY:
1250		if (tcode == TCODE_READ_QUADLET_REQUEST)
1251			*data = card->maint_utility_register;
1252		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1253			card->maint_utility_register = *data;
1254		else
1255			rcode = RCODE_TYPE_ERROR;
1256		break;
1257
1258	case CSR_BROADCAST_CHANNEL:
1259		if (tcode == TCODE_READ_QUADLET_REQUEST)
1260			*data = cpu_to_be32(card->broadcast_channel);
1261		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1262			card->broadcast_channel =
1263			    (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1264			    BROADCAST_CHANNEL_INITIAL;
1265		else
1266			rcode = RCODE_TYPE_ERROR;
1267		break;
1268
1269	case CSR_BUS_MANAGER_ID:
1270	case CSR_BANDWIDTH_AVAILABLE:
1271	case CSR_CHANNELS_AVAILABLE_HI:
1272	case CSR_CHANNELS_AVAILABLE_LO:
1273		/*
1274		 * FIXME: these are handled by the OHCI hardware and
1275		 * the stack never sees these request. If we add
1276		 * support for a new type of controller that doesn't
1277		 * handle this in hardware we need to deal with these
1278		 * transactions.
1279		 */
1280		BUG();
1281		break;
1282
1283	default:
1284		rcode = RCODE_ADDRESS_ERROR;
1285		break;
1286	}
1287
1288	fw_send_response(card, request, rcode);
1289}
1290
1291static struct fw_address_handler registers = {
1292	.length			= 0x400,
1293	.address_callback	= handle_registers,
1294};
1295
1296static void handle_low_memory(struct fw_card *card, struct fw_request *request,
1297		int tcode, int destination, int source, int generation,
1298		unsigned long long offset, void *payload, size_t length,
1299		void *callback_data)
1300{
1301	/*
1302	 * This catches requests not handled by the physical DMA unit,
1303	 * i.e., wrong transaction types or unauthorized source nodes.
1304	 */
1305	fw_send_response(card, request, RCODE_TYPE_ERROR);
1306}
1307
1308static struct fw_address_handler low_memory = {
1309	.length			= FW_MAX_PHYSICAL_RANGE,
1310	.address_callback	= handle_low_memory,
1311};
1312
1313MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1314MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1315MODULE_LICENSE("GPL");
1316
1317static const u32 vendor_textual_descriptor[] = {
1318	/* textual descriptor leaf () */
1319	0x00060000,
1320	0x00000000,
1321	0x00000000,
1322	0x4c696e75,		/* L i n u */
1323	0x78204669,		/* x   F i */
1324	0x72657769,		/* r e w i */
1325	0x72650000,		/* r e     */
1326};
1327
1328static const u32 model_textual_descriptor[] = {
1329	/* model descriptor leaf () */
1330	0x00030000,
1331	0x00000000,
1332	0x00000000,
1333	0x4a756a75,		/* J u j u */
1334};
1335
1336static struct fw_descriptor vendor_id_descriptor = {
1337	.length = ARRAY_SIZE(vendor_textual_descriptor),
1338	.immediate = 0x03001f11,
1339	.key = 0x81000000,
1340	.data = vendor_textual_descriptor,
1341};
1342
1343static struct fw_descriptor model_id_descriptor = {
1344	.length = ARRAY_SIZE(model_textual_descriptor),
1345	.immediate = 0x17023901,
1346	.key = 0x81000000,
1347	.data = model_textual_descriptor,
1348};
1349
1350static int __init fw_core_init(void)
1351{
1352	int ret;
1353
1354	fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0);
1355	if (!fw_workqueue)
1356		return -ENOMEM;
1357
1358	ret = bus_register(&fw_bus_type);
1359	if (ret < 0) {
1360		destroy_workqueue(fw_workqueue);
1361		return ret;
1362	}
1363
1364	fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1365	if (fw_cdev_major < 0) {
1366		bus_unregister(&fw_bus_type);
1367		destroy_workqueue(fw_workqueue);
1368		return fw_cdev_major;
1369	}
1370
1371	fw_core_add_address_handler(&topology_map, &topology_map_region);
1372	fw_core_add_address_handler(&registers, &registers_region);
1373	fw_core_add_address_handler(&low_memory, &low_memory_region);
1374	fw_core_add_descriptor(&vendor_id_descriptor);
1375	fw_core_add_descriptor(&model_id_descriptor);
1376
1377	return 0;
1378}
1379
1380static void __exit fw_core_cleanup(void)
1381{
1382	unregister_chrdev(fw_cdev_major, "firewire");
1383	bus_unregister(&fw_bus_type);
1384	destroy_workqueue(fw_workqueue);
1385	idr_destroy(&fw_device_idr);
1386}
1387
1388module_init(fw_core_init);
1389module_exit(fw_core_cleanup);
1390