1/*
2 * Intel 5400 class Memory Controllers kernel module (Seaburg)
3 *
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
6 *
7 * Copyright (c) 2008 by:
8 *	 Ben Woodard <woodard@redhat.com>
9 *	 Mauro Carvalho Chehab
10 *
11 * Red Hat Inc. https://www.redhat.com
12 *
13 * Forked and adapted from the i5000_edac driver which was
14 * written by Douglas Thompson Linux Networx <norsk5@xmission.com>
15 *
16 * This module is based on the following document:
17 *
18 * Intel 5400 Chipset Memory Controller Hub (MCH) - Datasheet
19 * 	http://developer.intel.com/design/chipsets/datashts/313070.htm
20 *
21 * This Memory Controller manages DDR2 FB-DIMMs. It has 2 branches, each with
22 * 2 channels operating in lockstep no-mirror mode. Each channel can have up to
23 * 4 dimm's, each with up to 8GB.
24 *
25 */
26
27#include <linux/module.h>
28#include <linux/init.h>
29#include <linux/pci.h>
30#include <linux/pci_ids.h>
31#include <linux/slab.h>
32#include <linux/edac.h>
33#include <linux/mmzone.h>
34
35#include "edac_module.h"
36
37/*
38 * Alter this version for the I5400 module when modifications are made
39 */
40#define I5400_REVISION    " Ver: 1.0.0"
41
42#define EDAC_MOD_STR      "i5400_edac"
43
44#define i5400_printk(level, fmt, arg...) \
45	edac_printk(level, "i5400", fmt, ##arg)
46
47#define i5400_mc_printk(mci, level, fmt, arg...) \
48	edac_mc_chipset_printk(mci, level, "i5400", fmt, ##arg)
49
50/* Limits for i5400 */
51#define MAX_BRANCHES		2
52#define CHANNELS_PER_BRANCH	2
53#define DIMMS_PER_CHANNEL	4
54#define	MAX_CHANNELS		(MAX_BRANCHES * CHANNELS_PER_BRANCH)
55
56/* Device 16,
57 * Function 0: System Address
58 * Function 1: Memory Branch Map, Control, Errors Register
59 * Function 2: FSB Error Registers
60 *
61 * All 3 functions of Device 16 (0,1,2) share the SAME DID and
62 * uses PCI_DEVICE_ID_INTEL_5400_ERR for device 16 (0,1,2),
63 * PCI_DEVICE_ID_INTEL_5400_FBD0 and PCI_DEVICE_ID_INTEL_5400_FBD1
64 * for device 21 (0,1).
65 */
66
67	/* OFFSETS for Function 0 */
68#define		AMBASE			0x48 /* AMB Mem Mapped Reg Region Base */
69#define		MAXCH			0x56 /* Max Channel Number */
70#define		MAXDIMMPERCH		0x57 /* Max DIMM PER Channel Number */
71
72	/* OFFSETS for Function 1 */
73#define		TOLM			0x6C
74#define		REDMEMB			0x7C
75#define			REC_ECC_LOCATOR_ODD(x)	((x) & 0x3fe00) /* bits [17:9] indicate ODD, [8:0]  indicate EVEN */
76#define		MIR0			0x80
77#define		MIR1			0x84
78#define		AMIR0			0x8c
79#define		AMIR1			0x90
80
81	/* Fatal error registers */
82#define		FERR_FAT_FBD		0x98	/* also called as FERR_FAT_FB_DIMM at datasheet */
83#define			FERR_FAT_FBDCHAN (3<<28)	/* channel index where the highest-order error occurred */
84
85#define		NERR_FAT_FBD		0x9c
86#define		FERR_NF_FBD		0xa0	/* also called as FERR_NFAT_FB_DIMM at datasheet */
87
88	/* Non-fatal error register */
89#define		NERR_NF_FBD		0xa4
90
91	/* Enable error mask */
92#define		EMASK_FBD		0xa8
93
94#define		ERR0_FBD		0xac
95#define		ERR1_FBD		0xb0
96#define		ERR2_FBD		0xb4
97#define		MCERR_FBD		0xb8
98
99	/* No OFFSETS for Device 16 Function 2 */
100
101/*
102 * Device 21,
103 * Function 0: Memory Map Branch 0
104 *
105 * Device 22,
106 * Function 0: Memory Map Branch 1
107 */
108
109	/* OFFSETS for Function 0 */
110#define AMBPRESENT_0	0x64
111#define AMBPRESENT_1	0x66
112#define MTR0		0x80
113#define MTR1		0x82
114#define MTR2		0x84
115#define MTR3		0x86
116
117	/* OFFSETS for Function 1 */
118#define NRECFGLOG		0x74
119#define RECFGLOG		0x78
120#define NRECMEMA		0xbe
121#define NRECMEMB		0xc0
122#define NRECFB_DIMMA		0xc4
123#define NRECFB_DIMMB		0xc8
124#define NRECFB_DIMMC		0xcc
125#define NRECFB_DIMMD		0xd0
126#define NRECFB_DIMME		0xd4
127#define NRECFB_DIMMF		0xd8
128#define REDMEMA			0xdC
129#define RECMEMA			0xf0
130#define RECMEMB			0xf4
131#define RECFB_DIMMA		0xf8
132#define RECFB_DIMMB		0xec
133#define RECFB_DIMMC		0xf0
134#define RECFB_DIMMD		0xf4
135#define RECFB_DIMME		0xf8
136#define RECFB_DIMMF		0xfC
137
138/*
139 * Error indicator bits and masks
140 * Error masks are according with Table 5-17 of i5400 datasheet
141 */
142
143enum error_mask {
144	EMASK_M1  = 1<<0,  /* Memory Write error on non-redundant retry */
145	EMASK_M2  = 1<<1,  /* Memory or FB-DIMM configuration CRC read error */
146	EMASK_M3  = 1<<2,  /* Reserved */
147	EMASK_M4  = 1<<3,  /* Uncorrectable Data ECC on Replay */
148	EMASK_M5  = 1<<4,  /* Aliased Uncorrectable Non-Mirrored Demand Data ECC */
149	EMASK_M6  = 1<<5,  /* Unsupported on i5400 */
150	EMASK_M7  = 1<<6,  /* Aliased Uncorrectable Resilver- or Spare-Copy Data ECC */
151	EMASK_M8  = 1<<7,  /* Aliased Uncorrectable Patrol Data ECC */
152	EMASK_M9  = 1<<8,  /* Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC */
153	EMASK_M10 = 1<<9,  /* Unsupported on i5400 */
154	EMASK_M11 = 1<<10, /* Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC  */
155	EMASK_M12 = 1<<11, /* Non-Aliased Uncorrectable Patrol Data ECC */
156	EMASK_M13 = 1<<12, /* Memory Write error on first attempt */
157	EMASK_M14 = 1<<13, /* FB-DIMM Configuration Write error on first attempt */
158	EMASK_M15 = 1<<14, /* Memory or FB-DIMM configuration CRC read error */
159	EMASK_M16 = 1<<15, /* Channel Failed-Over Occurred */
160	EMASK_M17 = 1<<16, /* Correctable Non-Mirrored Demand Data ECC */
161	EMASK_M18 = 1<<17, /* Unsupported on i5400 */
162	EMASK_M19 = 1<<18, /* Correctable Resilver- or Spare-Copy Data ECC */
163	EMASK_M20 = 1<<19, /* Correctable Patrol Data ECC */
164	EMASK_M21 = 1<<20, /* FB-DIMM Northbound parity error on FB-DIMM Sync Status */
165	EMASK_M22 = 1<<21, /* SPD protocol Error */
166	EMASK_M23 = 1<<22, /* Non-Redundant Fast Reset Timeout */
167	EMASK_M24 = 1<<23, /* Refresh error */
168	EMASK_M25 = 1<<24, /* Memory Write error on redundant retry */
169	EMASK_M26 = 1<<25, /* Redundant Fast Reset Timeout */
170	EMASK_M27 = 1<<26, /* Correctable Counter Threshold Exceeded */
171	EMASK_M28 = 1<<27, /* DIMM-Spare Copy Completed */
172	EMASK_M29 = 1<<28, /* DIMM-Isolation Completed */
173};
174
175/*
176 * Names to translate bit error into something useful
177 */
178static const char *error_name[] = {
179	[0]  = "Memory Write error on non-redundant retry",
180	[1]  = "Memory or FB-DIMM configuration CRC read error",
181	/* Reserved */
182	[3]  = "Uncorrectable Data ECC on Replay",
183	[4]  = "Aliased Uncorrectable Non-Mirrored Demand Data ECC",
184	/* M6 Unsupported on i5400 */
185	[6]  = "Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
186	[7]  = "Aliased Uncorrectable Patrol Data ECC",
187	[8]  = "Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC",
188	/* M10 Unsupported on i5400 */
189	[10] = "Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
190	[11] = "Non-Aliased Uncorrectable Patrol Data ECC",
191	[12] = "Memory Write error on first attempt",
192	[13] = "FB-DIMM Configuration Write error on first attempt",
193	[14] = "Memory or FB-DIMM configuration CRC read error",
194	[15] = "Channel Failed-Over Occurred",
195	[16] = "Correctable Non-Mirrored Demand Data ECC",
196	/* M18 Unsupported on i5400 */
197	[18] = "Correctable Resilver- or Spare-Copy Data ECC",
198	[19] = "Correctable Patrol Data ECC",
199	[20] = "FB-DIMM Northbound parity error on FB-DIMM Sync Status",
200	[21] = "SPD protocol Error",
201	[22] = "Non-Redundant Fast Reset Timeout",
202	[23] = "Refresh error",
203	[24] = "Memory Write error on redundant retry",
204	[25] = "Redundant Fast Reset Timeout",
205	[26] = "Correctable Counter Threshold Exceeded",
206	[27] = "DIMM-Spare Copy Completed",
207	[28] = "DIMM-Isolation Completed",
208};
209
210/* Fatal errors */
211#define ERROR_FAT_MASK		(EMASK_M1 | \
212				 EMASK_M2 | \
213				 EMASK_M23)
214
215/* Correctable errors */
216#define ERROR_NF_CORRECTABLE	(EMASK_M27 | \
217				 EMASK_M20 | \
218				 EMASK_M19 | \
219				 EMASK_M18 | \
220				 EMASK_M17 | \
221				 EMASK_M16)
222#define ERROR_NF_DIMM_SPARE	(EMASK_M29 | \
223				 EMASK_M28)
224#define ERROR_NF_SPD_PROTOCOL	(EMASK_M22)
225#define ERROR_NF_NORTH_CRC	(EMASK_M21)
226
227/* Recoverable errors */
228#define ERROR_NF_RECOVERABLE	(EMASK_M26 | \
229				 EMASK_M25 | \
230				 EMASK_M24 | \
231				 EMASK_M15 | \
232				 EMASK_M14 | \
233				 EMASK_M13 | \
234				 EMASK_M12 | \
235				 EMASK_M11 | \
236				 EMASK_M9  | \
237				 EMASK_M8  | \
238				 EMASK_M7  | \
239				 EMASK_M5)
240
241/* uncorrectable errors */
242#define ERROR_NF_UNCORRECTABLE	(EMASK_M4)
243
244/* mask to all non-fatal errors */
245#define ERROR_NF_MASK		(ERROR_NF_CORRECTABLE   | \
246				 ERROR_NF_UNCORRECTABLE | \
247				 ERROR_NF_RECOVERABLE   | \
248				 ERROR_NF_DIMM_SPARE    | \
249				 ERROR_NF_SPD_PROTOCOL  | \
250				 ERROR_NF_NORTH_CRC)
251
252/*
253 * Define error masks for the several registers
254 */
255
256/* Enable all fatal and non fatal errors */
257#define ENABLE_EMASK_ALL	(ERROR_FAT_MASK | ERROR_NF_MASK)
258
259/* mask for fatal error registers */
260#define FERR_FAT_MASK ERROR_FAT_MASK
261
262/* masks for non-fatal error register */
263static inline int to_nf_mask(unsigned int mask)
264{
265	return (mask & EMASK_M29) | (mask >> 3);
266};
267
268static inline int from_nf_ferr(unsigned int mask)
269{
270	return (mask & EMASK_M29) |		/* Bit 28 */
271	       (mask & ((1 << 28) - 1) << 3);	/* Bits 0 to 27 */
272};
273
274#define FERR_NF_MASK		to_nf_mask(ERROR_NF_MASK)
275#define FERR_NF_CORRECTABLE	to_nf_mask(ERROR_NF_CORRECTABLE)
276#define FERR_NF_DIMM_SPARE	to_nf_mask(ERROR_NF_DIMM_SPARE)
277#define FERR_NF_SPD_PROTOCOL	to_nf_mask(ERROR_NF_SPD_PROTOCOL)
278#define FERR_NF_NORTH_CRC	to_nf_mask(ERROR_NF_NORTH_CRC)
279#define FERR_NF_RECOVERABLE	to_nf_mask(ERROR_NF_RECOVERABLE)
280#define FERR_NF_UNCORRECTABLE	to_nf_mask(ERROR_NF_UNCORRECTABLE)
281
282/*
283 * Defines to extract the various fields from the
284 *	MTRx - Memory Technology Registers
285 */
286#define MTR_DIMMS_PRESENT(mtr)		((mtr) & (1 << 10))
287#define MTR_DIMMS_ETHROTTLE(mtr)	((mtr) & (1 << 9))
288#define MTR_DRAM_WIDTH(mtr)		(((mtr) & (1 << 8)) ? 8 : 4)
289#define MTR_DRAM_BANKS(mtr)		(((mtr) & (1 << 6)) ? 8 : 4)
290#define MTR_DRAM_BANKS_ADDR_BITS(mtr)	((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
291#define MTR_DIMM_RANK(mtr)		(((mtr) >> 5) & 0x1)
292#define MTR_DIMM_RANK_ADDR_BITS(mtr)	(MTR_DIMM_RANK(mtr) ? 2 : 1)
293#define MTR_DIMM_ROWS(mtr)		(((mtr) >> 2) & 0x3)
294#define MTR_DIMM_ROWS_ADDR_BITS(mtr)	(MTR_DIMM_ROWS(mtr) + 13)
295#define MTR_DIMM_COLS(mtr)		((mtr) & 0x3)
296#define MTR_DIMM_COLS_ADDR_BITS(mtr)	(MTR_DIMM_COLS(mtr) + 10)
297
298/* This applies to FERR_NF_FB-DIMM as well as FERR_FAT_FB-DIMM */
299static inline int extract_fbdchan_indx(u32 x)
300{
301	return (x>>28) & 0x3;
302}
303
304/* Device name and register DID (Device ID) */
305struct i5400_dev_info {
306	const char *ctl_name;	/* name for this device */
307	u16 fsb_mapping_errors;	/* DID for the branchmap,control */
308};
309
310/* Table of devices attributes supported by this driver */
311static const struct i5400_dev_info i5400_devs[] = {
312	{
313		.ctl_name = "I5400",
314		.fsb_mapping_errors = PCI_DEVICE_ID_INTEL_5400_ERR,
315	},
316};
317
318struct i5400_dimm_info {
319	int megabytes;		/* size, 0 means not present  */
320};
321
322/* driver private data structure */
323struct i5400_pvt {
324	struct pci_dev *system_address;		/* 16.0 */
325	struct pci_dev *branchmap_werrors;	/* 16.1 */
326	struct pci_dev *fsb_error_regs;		/* 16.2 */
327	struct pci_dev *branch_0;		/* 21.0 */
328	struct pci_dev *branch_1;		/* 22.0 */
329
330	u16 tolm;				/* top of low memory */
331	union {
332		u64 ambase;				/* AMB BAR */
333		struct {
334			u32 ambase_bottom;
335			u32 ambase_top;
336		} u __packed;
337	};
338
339	u16 mir0, mir1;
340
341	u16 b0_mtr[DIMMS_PER_CHANNEL];	/* Memory Technlogy Reg */
342	u16 b0_ambpresent0;			/* Branch 0, Channel 0 */
343	u16 b0_ambpresent1;			/* Brnach 0, Channel 1 */
344
345	u16 b1_mtr[DIMMS_PER_CHANNEL];	/* Memory Technlogy Reg */
346	u16 b1_ambpresent0;			/* Branch 1, Channel 8 */
347	u16 b1_ambpresent1;			/* Branch 1, Channel 1 */
348
349	/* DIMM information matrix, allocating architecture maximums */
350	struct i5400_dimm_info dimm_info[DIMMS_PER_CHANNEL][MAX_CHANNELS];
351
352	/* Actual values for this controller */
353	int maxch;				/* Max channels */
354	int maxdimmperch;			/* Max DIMMs per channel */
355};
356
357/* I5400 MCH error information retrieved from Hardware */
358struct i5400_error_info {
359	/* These registers are always read from the MC */
360	u32 ferr_fat_fbd;	/* First Errors Fatal */
361	u32 nerr_fat_fbd;	/* Next Errors Fatal */
362	u32 ferr_nf_fbd;	/* First Errors Non-Fatal */
363	u32 nerr_nf_fbd;	/* Next Errors Non-Fatal */
364
365	/* These registers are input ONLY if there was a Recoverable Error */
366	u32 redmemb;		/* Recoverable Mem Data Error log B */
367	u16 recmema;		/* Recoverable Mem Error log A */
368	u32 recmemb;		/* Recoverable Mem Error log B */
369
370	/* These registers are input ONLY if there was a Non-Rec Error */
371	u16 nrecmema;		/* Non-Recoverable Mem log A */
372	u32 nrecmemb;		/* Non-Recoverable Mem log B */
373
374};
375
376/* note that nrec_rdwr changed from NRECMEMA to NRECMEMB between the 5000 and
377   5400 better to use an inline function than a macro in this case */
378static inline int nrec_bank(struct i5400_error_info *info)
379{
380	return ((info->nrecmema) >> 12) & 0x7;
381}
382static inline int nrec_rank(struct i5400_error_info *info)
383{
384	return ((info->nrecmema) >> 8) & 0xf;
385}
386static inline int nrec_buf_id(struct i5400_error_info *info)
387{
388	return ((info->nrecmema)) & 0xff;
389}
390static inline int nrec_rdwr(struct i5400_error_info *info)
391{
392	return (info->nrecmemb) >> 31;
393}
394/* This applies to both NREC and REC string so it can be used with nrec_rdwr
395   and rec_rdwr */
396static inline const char *rdwr_str(int rdwr)
397{
398	return rdwr ? "Write" : "Read";
399}
400static inline int nrec_cas(struct i5400_error_info *info)
401{
402	return ((info->nrecmemb) >> 16) & 0x1fff;
403}
404static inline int nrec_ras(struct i5400_error_info *info)
405{
406	return (info->nrecmemb) & 0xffff;
407}
408static inline int rec_bank(struct i5400_error_info *info)
409{
410	return ((info->recmema) >> 12) & 0x7;
411}
412static inline int rec_rank(struct i5400_error_info *info)
413{
414	return ((info->recmema) >> 8) & 0xf;
415}
416static inline int rec_rdwr(struct i5400_error_info *info)
417{
418	return (info->recmemb) >> 31;
419}
420static inline int rec_cas(struct i5400_error_info *info)
421{
422	return ((info->recmemb) >> 16) & 0x1fff;
423}
424static inline int rec_ras(struct i5400_error_info *info)
425{
426	return (info->recmemb) & 0xffff;
427}
428
429static struct edac_pci_ctl_info *i5400_pci;
430
431/*
432 *	i5400_get_error_info	Retrieve the hardware error information from
433 *				the hardware and cache it in the 'info'
434 *				structure
435 */
436static void i5400_get_error_info(struct mem_ctl_info *mci,
437				 struct i5400_error_info *info)
438{
439	struct i5400_pvt *pvt;
440	u32 value;
441
442	pvt = mci->pvt_info;
443
444	/* read in the 1st FATAL error register */
445	pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value);
446
447	/* Mask only the bits that the doc says are valid
448	 */
449	value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK);
450
451	/* If there is an error, then read in the
452	   NEXT FATAL error register and the Memory Error Log Register A
453	 */
454	if (value & FERR_FAT_MASK) {
455		info->ferr_fat_fbd = value;
456
457		/* harvest the various error data we need */
458		pci_read_config_dword(pvt->branchmap_werrors,
459				NERR_FAT_FBD, &info->nerr_fat_fbd);
460		pci_read_config_word(pvt->branchmap_werrors,
461				NRECMEMA, &info->nrecmema);
462		pci_read_config_dword(pvt->branchmap_werrors,
463				NRECMEMB, &info->nrecmemb);
464
465		/* Clear the error bits, by writing them back */
466		pci_write_config_dword(pvt->branchmap_werrors,
467				FERR_FAT_FBD, value);
468	} else {
469		info->ferr_fat_fbd = 0;
470		info->nerr_fat_fbd = 0;
471		info->nrecmema = 0;
472		info->nrecmemb = 0;
473	}
474
475	/* read in the 1st NON-FATAL error register */
476	pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value);
477
478	/* If there is an error, then read in the 1st NON-FATAL error
479	 * register as well */
480	if (value & FERR_NF_MASK) {
481		info->ferr_nf_fbd = value;
482
483		/* harvest the various error data we need */
484		pci_read_config_dword(pvt->branchmap_werrors,
485				NERR_NF_FBD, &info->nerr_nf_fbd);
486		pci_read_config_word(pvt->branchmap_werrors,
487				RECMEMA, &info->recmema);
488		pci_read_config_dword(pvt->branchmap_werrors,
489				RECMEMB, &info->recmemb);
490		pci_read_config_dword(pvt->branchmap_werrors,
491				REDMEMB, &info->redmemb);
492
493		/* Clear the error bits, by writing them back */
494		pci_write_config_dword(pvt->branchmap_werrors,
495				FERR_NF_FBD, value);
496	} else {
497		info->ferr_nf_fbd = 0;
498		info->nerr_nf_fbd = 0;
499		info->recmema = 0;
500		info->recmemb = 0;
501		info->redmemb = 0;
502	}
503}
504
505/*
506 * i5400_proccess_non_recoverable_info(struct mem_ctl_info *mci,
507 * 					struct i5400_error_info *info,
508 * 					int handle_errors);
509 *
510 *	handle the Intel FATAL and unrecoverable errors, if any
511 */
512static void i5400_proccess_non_recoverable_info(struct mem_ctl_info *mci,
513				    struct i5400_error_info *info,
514				    unsigned long allErrors)
515{
516	char msg[EDAC_MC_LABEL_LEN + 1 + 90 + 80];
517	int branch;
518	int channel;
519	int bank;
520	int buf_id;
521	int rank;
522	int rdwr;
523	int ras, cas;
524	int errnum;
525	char *type = NULL;
526	enum hw_event_mc_err_type tp_event = HW_EVENT_ERR_UNCORRECTED;
527
528	if (!allErrors)
529		return;		/* if no error, return now */
530
531	if (allErrors &  ERROR_FAT_MASK) {
532		type = "FATAL";
533		tp_event = HW_EVENT_ERR_FATAL;
534	} else if (allErrors & FERR_NF_UNCORRECTABLE)
535		type = "NON-FATAL uncorrected";
536	else
537		type = "NON-FATAL recoverable";
538
539	/* ONLY ONE of the possible error bits will be set, as per the docs */
540
541	branch = extract_fbdchan_indx(info->ferr_fat_fbd);
542	channel = branch;
543
544	/* Use the NON-Recoverable macros to extract data */
545	bank = nrec_bank(info);
546	rank = nrec_rank(info);
547	buf_id = nrec_buf_id(info);
548	rdwr = nrec_rdwr(info);
549	ras = nrec_ras(info);
550	cas = nrec_cas(info);
551
552	edac_dbg(0, "\t\t%s DIMM= %d  Channels= %d,%d  (Branch= %d DRAM Bank= %d Buffer ID = %d rdwr= %s ras= %d cas= %d)\n",
553		 type, rank, channel, channel + 1, branch >> 1, bank,
554		 buf_id, rdwr_str(rdwr), ras, cas);
555
556	/* Only 1 bit will be on */
557	errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
558
559	/* Form out message */
560	snprintf(msg, sizeof(msg),
561		 "Bank=%d Buffer ID = %d RAS=%d CAS=%d Err=0x%lx (%s)",
562		 bank, buf_id, ras, cas, allErrors, error_name[errnum]);
563
564	edac_mc_handle_error(tp_event, mci, 1, 0, 0, 0,
565			     branch >> 1, -1, rank,
566			     rdwr ? "Write error" : "Read error",
567			     msg);
568}
569
570/*
571 * i5400_process_fatal_error_info(struct mem_ctl_info *mci,
572 * 				struct i5400_error_info *info,
573 * 				int handle_errors);
574 *
575 *	handle the Intel NON-FATAL errors, if any
576 */
577static void i5400_process_nonfatal_error_info(struct mem_ctl_info *mci,
578					struct i5400_error_info *info)
579{
580	char msg[EDAC_MC_LABEL_LEN + 1 + 90 + 80];
581	unsigned long allErrors;
582	int branch;
583	int channel;
584	int bank;
585	int rank;
586	int rdwr;
587	int ras, cas;
588	int errnum;
589
590	/* mask off the Error bits that are possible */
591	allErrors = from_nf_ferr(info->ferr_nf_fbd & FERR_NF_MASK);
592	if (!allErrors)
593		return;		/* if no error, return now */
594
595	/* ONLY ONE of the possible error bits will be set, as per the docs */
596
597	if (allErrors & (ERROR_NF_UNCORRECTABLE | ERROR_NF_RECOVERABLE)) {
598		i5400_proccess_non_recoverable_info(mci, info, allErrors);
599		return;
600	}
601
602	/* Correctable errors */
603	if (allErrors & ERROR_NF_CORRECTABLE) {
604		edac_dbg(0, "\tCorrected bits= 0x%lx\n", allErrors);
605
606		branch = extract_fbdchan_indx(info->ferr_nf_fbd);
607
608		channel = 0;
609		if (REC_ECC_LOCATOR_ODD(info->redmemb))
610			channel = 1;
611
612		/* Convert channel to be based from zero, instead of
613		 * from branch base of 0 */
614		channel += branch;
615
616		bank = rec_bank(info);
617		rank = rec_rank(info);
618		rdwr = rec_rdwr(info);
619		ras = rec_ras(info);
620		cas = rec_cas(info);
621
622		/* Only 1 bit will be on */
623		errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
624
625		edac_dbg(0, "\t\tDIMM= %d Channel= %d  (Branch %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
626			 rank, channel, branch >> 1, bank,
627			 rdwr_str(rdwr), ras, cas);
628
629		/* Form out message */
630		snprintf(msg, sizeof(msg),
631			 "Corrected error (Branch=%d DRAM-Bank=%d RDWR=%s "
632			 "RAS=%d CAS=%d, CE Err=0x%lx (%s))",
633			 branch >> 1, bank, rdwr_str(rdwr), ras, cas,
634			 allErrors, error_name[errnum]);
635
636		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0,
637				     branch >> 1, channel % 2, rank,
638				     rdwr ? "Write error" : "Read error",
639				     msg);
640
641		return;
642	}
643
644	/* Miscellaneous errors */
645	errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
646
647	branch = extract_fbdchan_indx(info->ferr_nf_fbd);
648
649	i5400_mc_printk(mci, KERN_EMERG,
650			"Non-Fatal misc error (Branch=%d Err=%#lx (%s))",
651			branch >> 1, allErrors, error_name[errnum]);
652}
653
654/*
655 *	i5400_process_error_info	Process the error info that is
656 *	in the 'info' structure, previously retrieved from hardware
657 */
658static void i5400_process_error_info(struct mem_ctl_info *mci,
659				struct i5400_error_info *info)
660{	u32 allErrors;
661
662	/* First handle any fatal errors that occurred */
663	allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK);
664	i5400_proccess_non_recoverable_info(mci, info, allErrors);
665
666	/* now handle any non-fatal errors that occurred */
667	i5400_process_nonfatal_error_info(mci, info);
668}
669
670/*
671 *	i5400_clear_error	Retrieve any error from the hardware
672 *				but do NOT process that error.
673 *				Used for 'clearing' out of previous errors
674 *				Called by the Core module.
675 */
676static void i5400_clear_error(struct mem_ctl_info *mci)
677{
678	struct i5400_error_info info;
679
680	i5400_get_error_info(mci, &info);
681}
682
683/*
684 *	i5400_check_error	Retrieve and process errors reported by the
685 *				hardware. Called by the Core module.
686 */
687static void i5400_check_error(struct mem_ctl_info *mci)
688{
689	struct i5400_error_info info;
690
691	i5400_get_error_info(mci, &info);
692	i5400_process_error_info(mci, &info);
693}
694
695/*
696 *	i5400_put_devices	'put' all the devices that we have
697 *				reserved via 'get'
698 */
699static void i5400_put_devices(struct mem_ctl_info *mci)
700{
701	struct i5400_pvt *pvt;
702
703	pvt = mci->pvt_info;
704
705	/* Decrement usage count for devices */
706	pci_dev_put(pvt->branch_1);
707	pci_dev_put(pvt->branch_0);
708	pci_dev_put(pvt->fsb_error_regs);
709	pci_dev_put(pvt->branchmap_werrors);
710}
711
712/*
713 *	i5400_get_devices	Find and perform 'get' operation on the MCH's
714 *			device/functions we want to reference for this driver
715 *
716 *			Need to 'get' device 16 func 1 and func 2
717 */
718static int i5400_get_devices(struct mem_ctl_info *mci, int dev_idx)
719{
720	struct i5400_pvt *pvt;
721	struct pci_dev *pdev;
722
723	pvt = mci->pvt_info;
724	pvt->branchmap_werrors = NULL;
725	pvt->fsb_error_regs = NULL;
726	pvt->branch_0 = NULL;
727	pvt->branch_1 = NULL;
728
729	/* Attempt to 'get' the MCH register we want */
730	pdev = NULL;
731	while (1) {
732		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
733				      PCI_DEVICE_ID_INTEL_5400_ERR, pdev);
734		if (!pdev) {
735			/* End of list, leave */
736			i5400_printk(KERN_ERR,
737				"'system address,Process Bus' "
738				"device not found:"
739				"vendor 0x%x device 0x%x ERR func 1 "
740				"(broken BIOS?)\n",
741				PCI_VENDOR_ID_INTEL,
742				PCI_DEVICE_ID_INTEL_5400_ERR);
743			return -ENODEV;
744		}
745
746		/* Store device 16 func 1 */
747		if (PCI_FUNC(pdev->devfn) == 1)
748			break;
749	}
750	pvt->branchmap_werrors = pdev;
751
752	pdev = NULL;
753	while (1) {
754		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
755				      PCI_DEVICE_ID_INTEL_5400_ERR, pdev);
756		if (!pdev) {
757			/* End of list, leave */
758			i5400_printk(KERN_ERR,
759				"'system address,Process Bus' "
760				"device not found:"
761				"vendor 0x%x device 0x%x ERR func 2 "
762				"(broken BIOS?)\n",
763				PCI_VENDOR_ID_INTEL,
764				PCI_DEVICE_ID_INTEL_5400_ERR);
765
766			pci_dev_put(pvt->branchmap_werrors);
767			return -ENODEV;
768		}
769
770		/* Store device 16 func 2 */
771		if (PCI_FUNC(pdev->devfn) == 2)
772			break;
773	}
774	pvt->fsb_error_regs = pdev;
775
776	edac_dbg(1, "System Address, processor bus- PCI Bus ID: %s  %x:%x\n",
777		 pci_name(pvt->system_address),
778		 pvt->system_address->vendor, pvt->system_address->device);
779	edac_dbg(1, "Branchmap, control and errors - PCI Bus ID: %s  %x:%x\n",
780		 pci_name(pvt->branchmap_werrors),
781		 pvt->branchmap_werrors->vendor,
782		 pvt->branchmap_werrors->device);
783	edac_dbg(1, "FSB Error Regs - PCI Bus ID: %s  %x:%x\n",
784		 pci_name(pvt->fsb_error_regs),
785		 pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device);
786
787	pvt->branch_0 = pci_get_device(PCI_VENDOR_ID_INTEL,
788				       PCI_DEVICE_ID_INTEL_5400_FBD0, NULL);
789	if (!pvt->branch_0) {
790		i5400_printk(KERN_ERR,
791			"MC: 'BRANCH 0' device not found:"
792			"vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
793			PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_FBD0);
794
795		pci_dev_put(pvt->fsb_error_regs);
796		pci_dev_put(pvt->branchmap_werrors);
797		return -ENODEV;
798	}
799
800	/* If this device claims to have more than 2 channels then
801	 * fetch Branch 1's information
802	 */
803	if (pvt->maxch < CHANNELS_PER_BRANCH)
804		return 0;
805
806	pvt->branch_1 = pci_get_device(PCI_VENDOR_ID_INTEL,
807				       PCI_DEVICE_ID_INTEL_5400_FBD1, NULL);
808	if (!pvt->branch_1) {
809		i5400_printk(KERN_ERR,
810			"MC: 'BRANCH 1' device not found:"
811			"vendor 0x%x device 0x%x Func 0 "
812			"(broken BIOS?)\n",
813			PCI_VENDOR_ID_INTEL,
814			PCI_DEVICE_ID_INTEL_5400_FBD1);
815
816		pci_dev_put(pvt->branch_0);
817		pci_dev_put(pvt->fsb_error_regs);
818		pci_dev_put(pvt->branchmap_werrors);
819		return -ENODEV;
820	}
821
822	return 0;
823}
824
825/*
826 *	determine_amb_present
827 *
828 *		the information is contained in DIMMS_PER_CHANNEL different
829 *		registers determining which of the DIMMS_PER_CHANNEL requires
830 *              knowing which channel is in question
831 *
832 *	2 branches, each with 2 channels
833 *		b0_ambpresent0 for channel '0'
834 *		b0_ambpresent1 for channel '1'
835 *		b1_ambpresent0 for channel '2'
836 *		b1_ambpresent1 for channel '3'
837 */
838static int determine_amb_present_reg(struct i5400_pvt *pvt, int channel)
839{
840	int amb_present;
841
842	if (channel < CHANNELS_PER_BRANCH) {
843		if (channel & 0x1)
844			amb_present = pvt->b0_ambpresent1;
845		else
846			amb_present = pvt->b0_ambpresent0;
847	} else {
848		if (channel & 0x1)
849			amb_present = pvt->b1_ambpresent1;
850		else
851			amb_present = pvt->b1_ambpresent0;
852	}
853
854	return amb_present;
855}
856
857/*
858 * determine_mtr(pvt, dimm, channel)
859 *
860 * return the proper MTR register as determine by the dimm and desired channel
861 */
862static int determine_mtr(struct i5400_pvt *pvt, int dimm, int channel)
863{
864	int mtr;
865	int n;
866
867	/* There is one MTR for each slot pair of FB-DIMMs,
868	   Each slot pair may be at branch 0 or branch 1.
869	 */
870	n = dimm;
871
872	if (n >= DIMMS_PER_CHANNEL) {
873		edac_dbg(0, "ERROR: trying to access an invalid dimm: %d\n",
874			 dimm);
875		return 0;
876	}
877
878	if (channel < CHANNELS_PER_BRANCH)
879		mtr = pvt->b0_mtr[n];
880	else
881		mtr = pvt->b1_mtr[n];
882
883	return mtr;
884}
885
886/*
887 */
888static void decode_mtr(int slot_row, u16 mtr)
889{
890	int ans;
891
892	ans = MTR_DIMMS_PRESENT(mtr);
893
894	edac_dbg(2, "\tMTR%d=0x%x:  DIMMs are %sPresent\n",
895		 slot_row, mtr, ans ? "" : "NOT ");
896	if (!ans)
897		return;
898
899	edac_dbg(2, "\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
900
901	edac_dbg(2, "\t\tELECTRICAL THROTTLING is %s\n",
902		 MTR_DIMMS_ETHROTTLE(mtr) ? "enabled" : "disabled");
903
904	edac_dbg(2, "\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
905	edac_dbg(2, "\t\tNUMRANK: %s\n",
906		 MTR_DIMM_RANK(mtr) ? "double" : "single");
907	edac_dbg(2, "\t\tNUMROW: %s\n",
908		 MTR_DIMM_ROWS(mtr) == 0 ? "8,192 - 13 rows" :
909		 MTR_DIMM_ROWS(mtr) == 1 ? "16,384 - 14 rows" :
910		 MTR_DIMM_ROWS(mtr) == 2 ? "32,768 - 15 rows" :
911		 "65,536 - 16 rows");
912	edac_dbg(2, "\t\tNUMCOL: %s\n",
913		 MTR_DIMM_COLS(mtr) == 0 ? "1,024 - 10 columns" :
914		 MTR_DIMM_COLS(mtr) == 1 ? "2,048 - 11 columns" :
915		 MTR_DIMM_COLS(mtr) == 2 ? "4,096 - 12 columns" :
916		 "reserved");
917}
918
919static void handle_channel(struct i5400_pvt *pvt, int dimm, int channel,
920			struct i5400_dimm_info *dinfo)
921{
922	int mtr;
923	int amb_present_reg;
924	int addrBits;
925
926	mtr = determine_mtr(pvt, dimm, channel);
927	if (MTR_DIMMS_PRESENT(mtr)) {
928		amb_present_reg = determine_amb_present_reg(pvt, channel);
929
930		/* Determine if there is a DIMM present in this DIMM slot */
931		if (amb_present_reg & (1 << dimm)) {
932			/* Start with the number of bits for a Bank
933			 * on the DRAM */
934			addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr);
935			/* Add thenumber of ROW bits */
936			addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
937			/* add the number of COLUMN bits */
938			addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
939			/* add the number of RANK bits */
940			addrBits += MTR_DIMM_RANK(mtr);
941
942			addrBits += 6;	/* add 64 bits per DIMM */
943			addrBits -= 20;	/* divide by 2^^20 */
944			addrBits -= 3;	/* 8 bits per bytes */
945
946			dinfo->megabytes = 1 << addrBits;
947		}
948	}
949}
950
951/*
952 *	calculate_dimm_size
953 *
954 *	also will output a DIMM matrix map, if debug is enabled, for viewing
955 *	how the DIMMs are populated
956 */
957static void calculate_dimm_size(struct i5400_pvt *pvt)
958{
959	struct i5400_dimm_info *dinfo;
960	int dimm, max_dimms;
961	char *p, *mem_buffer;
962	int space, n;
963	int channel, branch;
964
965	/* ================= Generate some debug output ================= */
966	space = PAGE_SIZE;
967	mem_buffer = p = kmalloc(space, GFP_KERNEL);
968	if (p == NULL) {
969		i5400_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n",
970			__FILE__, __func__);
971		return;
972	}
973
974	/* Scan all the actual DIMMS
975	 * and calculate the information for each DIMM
976	 * Start with the highest dimm first, to display it first
977	 * and work toward the 0th dimm
978	 */
979	max_dimms = pvt->maxdimmperch;
980	for (dimm = max_dimms - 1; dimm >= 0; dimm--) {
981
982		/* on an odd dimm, first output a 'boundary' marker,
983		 * then reset the message buffer  */
984		if (dimm & 0x1) {
985			n = snprintf(p, space, "---------------------------"
986					"-------------------------------");
987			p += n;
988			space -= n;
989			edac_dbg(2, "%s\n", mem_buffer);
990			p = mem_buffer;
991			space = PAGE_SIZE;
992		}
993		n = snprintf(p, space, "dimm %2d    ", dimm);
994		p += n;
995		space -= n;
996
997		for (channel = 0; channel < pvt->maxch; channel++) {
998			dinfo = &pvt->dimm_info[dimm][channel];
999			handle_channel(pvt, dimm, channel, dinfo);
1000			n = snprintf(p, space, "%4d MB   | ", dinfo->megabytes);
1001			p += n;
1002			space -= n;
1003		}
1004		edac_dbg(2, "%s\n", mem_buffer);
1005		p = mem_buffer;
1006		space = PAGE_SIZE;
1007	}
1008
1009	/* Output the last bottom 'boundary' marker */
1010	n = snprintf(p, space, "---------------------------"
1011			"-------------------------------");
1012	p += n;
1013	space -= n;
1014	edac_dbg(2, "%s\n", mem_buffer);
1015	p = mem_buffer;
1016	space = PAGE_SIZE;
1017
1018	/* now output the 'channel' labels */
1019	n = snprintf(p, space, "           ");
1020	p += n;
1021	space -= n;
1022	for (channel = 0; channel < pvt->maxch; channel++) {
1023		n = snprintf(p, space, "channel %d | ", channel);
1024		p += n;
1025		space -= n;
1026	}
1027
1028	space -= n;
1029	edac_dbg(2, "%s\n", mem_buffer);
1030	p = mem_buffer;
1031	space = PAGE_SIZE;
1032
1033	n = snprintf(p, space, "           ");
1034	p += n;
1035	for (branch = 0; branch < MAX_BRANCHES; branch++) {
1036		n = snprintf(p, space, "       branch %d       | ", branch);
1037		p += n;
1038		space -= n;
1039	}
1040
1041	/* output the last message and free buffer */
1042	edac_dbg(2, "%s\n", mem_buffer);
1043	kfree(mem_buffer);
1044}
1045
1046/*
1047 *	i5400_get_mc_regs	read in the necessary registers and
1048 *				cache locally
1049 *
1050 *			Fills in the private data members
1051 */
1052static void i5400_get_mc_regs(struct mem_ctl_info *mci)
1053{
1054	struct i5400_pvt *pvt;
1055	u32 actual_tolm;
1056	u16 limit;
1057	int slot_row;
1058	int way0, way1;
1059
1060	pvt = mci->pvt_info;
1061
1062	pci_read_config_dword(pvt->system_address, AMBASE,
1063			&pvt->u.ambase_bottom);
1064	pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32),
1065			&pvt->u.ambase_top);
1066
1067	edac_dbg(2, "AMBASE= 0x%lx  MAXCH= %d  MAX-DIMM-Per-CH= %d\n",
1068		 (long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch);
1069
1070	/* Get the Branch Map regs */
1071	pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm);
1072	pvt->tolm >>= 12;
1073	edac_dbg(2, "\nTOLM (number of 256M regions) =%u (0x%x)\n",
1074		 pvt->tolm, pvt->tolm);
1075
1076	actual_tolm = (u32) ((1000l * pvt->tolm) >> (30 - 28));
1077	edac_dbg(2, "Actual TOLM byte addr=%u.%03u GB (0x%x)\n",
1078		 actual_tolm/1000, actual_tolm % 1000, pvt->tolm << 28);
1079
1080	pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0);
1081	pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1);
1082
1083	/* Get the MIR[0-1] regs */
1084	limit = (pvt->mir0 >> 4) & 0x0fff;
1085	way0 = pvt->mir0 & 0x1;
1086	way1 = pvt->mir0 & 0x2;
1087	edac_dbg(2, "MIR0: limit= 0x%x  WAY1= %u  WAY0= %x\n",
1088		 limit, way1, way0);
1089	limit = (pvt->mir1 >> 4) & 0xfff;
1090	way0 = pvt->mir1 & 0x1;
1091	way1 = pvt->mir1 & 0x2;
1092	edac_dbg(2, "MIR1: limit= 0x%x  WAY1= %u  WAY0= %x\n",
1093		 limit, way1, way0);
1094
1095	/* Get the set of MTR[0-3] regs by each branch */
1096	for (slot_row = 0; slot_row < DIMMS_PER_CHANNEL; slot_row++) {
1097		int where = MTR0 + (slot_row * sizeof(u16));
1098
1099		/* Branch 0 set of MTR registers */
1100		pci_read_config_word(pvt->branch_0, where,
1101				&pvt->b0_mtr[slot_row]);
1102
1103		edac_dbg(2, "MTR%d where=0x%x B0 value=0x%x\n",
1104			 slot_row, where, pvt->b0_mtr[slot_row]);
1105
1106		if (pvt->maxch < CHANNELS_PER_BRANCH) {
1107			pvt->b1_mtr[slot_row] = 0;
1108			continue;
1109		}
1110
1111		/* Branch 1 set of MTR registers */
1112		pci_read_config_word(pvt->branch_1, where,
1113				&pvt->b1_mtr[slot_row]);
1114		edac_dbg(2, "MTR%d where=0x%x B1 value=0x%x\n",
1115			 slot_row, where, pvt->b1_mtr[slot_row]);
1116	}
1117
1118	/* Read and dump branch 0's MTRs */
1119	edac_dbg(2, "Memory Technology Registers:\n");
1120	edac_dbg(2, "   Branch 0:\n");
1121	for (slot_row = 0; slot_row < DIMMS_PER_CHANNEL; slot_row++)
1122		decode_mtr(slot_row, pvt->b0_mtr[slot_row]);
1123
1124	pci_read_config_word(pvt->branch_0, AMBPRESENT_0,
1125			&pvt->b0_ambpresent0);
1126	edac_dbg(2, "\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0);
1127	pci_read_config_word(pvt->branch_0, AMBPRESENT_1,
1128			&pvt->b0_ambpresent1);
1129	edac_dbg(2, "\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1);
1130
1131	/* Only if we have 2 branchs (4 channels) */
1132	if (pvt->maxch < CHANNELS_PER_BRANCH) {
1133		pvt->b1_ambpresent0 = 0;
1134		pvt->b1_ambpresent1 = 0;
1135	} else {
1136		/* Read and dump  branch 1's MTRs */
1137		edac_dbg(2, "   Branch 1:\n");
1138		for (slot_row = 0; slot_row < DIMMS_PER_CHANNEL; slot_row++)
1139			decode_mtr(slot_row, pvt->b1_mtr[slot_row]);
1140
1141		pci_read_config_word(pvt->branch_1, AMBPRESENT_0,
1142				&pvt->b1_ambpresent0);
1143		edac_dbg(2, "\t\tAMB-Branch 1-present0 0x%x:\n",
1144			 pvt->b1_ambpresent0);
1145		pci_read_config_word(pvt->branch_1, AMBPRESENT_1,
1146				&pvt->b1_ambpresent1);
1147		edac_dbg(2, "\t\tAMB-Branch 1-present1 0x%x:\n",
1148			 pvt->b1_ambpresent1);
1149	}
1150
1151	/* Go and determine the size of each DIMM and place in an
1152	 * orderly matrix */
1153	calculate_dimm_size(pvt);
1154}
1155
1156/*
1157 *	i5400_init_dimms	Initialize the 'dimms' table within
1158 *				the mci control	structure with the
1159 *				addressing of memory.
1160 *
1161 *	return:
1162 *		0	success
1163 *		1	no actual memory found on this MC
1164 */
1165static int i5400_init_dimms(struct mem_ctl_info *mci)
1166{
1167	struct i5400_pvt *pvt;
1168	struct dimm_info *dimm;
1169	int ndimms;
1170	int mtr;
1171	int size_mb;
1172	int  channel, slot;
1173
1174	pvt = mci->pvt_info;
1175
1176	ndimms = 0;
1177
1178	/*
1179	 * FIXME: remove  pvt->dimm_info[slot][channel] and use the 3
1180	 * layers here.
1181	 */
1182	for (channel = 0; channel < mci->layers[0].size * mci->layers[1].size;
1183	     channel++) {
1184		for (slot = 0; slot < mci->layers[2].size; slot++) {
1185			mtr = determine_mtr(pvt, slot, channel);
1186
1187			/* if no DIMMS on this slot, continue */
1188			if (!MTR_DIMMS_PRESENT(mtr))
1189				continue;
1190
1191			dimm = edac_get_dimm(mci, channel / 2, channel % 2, slot);
1192
1193			size_mb =  pvt->dimm_info[slot][channel].megabytes;
1194
1195			edac_dbg(2, "dimm (branch %d channel %d slot %d): %d.%03d GB\n",
1196				 channel / 2, channel % 2, slot,
1197				 size_mb / 1000, size_mb % 1000);
1198
1199			dimm->nr_pages = size_mb << 8;
1200			dimm->grain = 8;
1201			dimm->dtype = MTR_DRAM_WIDTH(mtr) == 8 ?
1202				      DEV_X8 : DEV_X4;
1203			dimm->mtype = MEM_FB_DDR2;
1204			/*
1205			 * The eccc mechanism is SDDC (aka SECC), with
1206			 * is similar to Chipkill.
1207			 */
1208			dimm->edac_mode = MTR_DRAM_WIDTH(mtr) == 8 ?
1209					  EDAC_S8ECD8ED : EDAC_S4ECD4ED;
1210			ndimms++;
1211		}
1212	}
1213
1214	/*
1215	 * When just one memory is provided, it should be at location (0,0,0).
1216	 * With such single-DIMM mode, the SDCC algorithm degrades to SECDEC+.
1217	 */
1218	if (ndimms == 1)
1219		mci->dimms[0]->edac_mode = EDAC_SECDED;
1220
1221	return (ndimms == 0);
1222}
1223
1224/*
1225 *	i5400_enable_error_reporting
1226 *			Turn on the memory reporting features of the hardware
1227 */
1228static void i5400_enable_error_reporting(struct mem_ctl_info *mci)
1229{
1230	struct i5400_pvt *pvt;
1231	u32 fbd_error_mask;
1232
1233	pvt = mci->pvt_info;
1234
1235	/* Read the FBD Error Mask Register */
1236	pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1237			&fbd_error_mask);
1238
1239	/* Enable with a '0' */
1240	fbd_error_mask &= ~(ENABLE_EMASK_ALL);
1241
1242	pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1243			fbd_error_mask);
1244}
1245
1246/*
1247 *	i5400_probe1	Probe for ONE instance of device to see if it is
1248 *			present.
1249 *	return:
1250 *		0 for FOUND a device
1251 *		< 0 for error code
1252 */
1253static int i5400_probe1(struct pci_dev *pdev, int dev_idx)
1254{
1255	struct mem_ctl_info *mci;
1256	struct i5400_pvt *pvt;
1257	struct edac_mc_layer layers[3];
1258
1259	if (dev_idx >= ARRAY_SIZE(i5400_devs))
1260		return -EINVAL;
1261
1262	edac_dbg(0, "MC: pdev bus %u dev=0x%x fn=0x%x\n",
1263		 pdev->bus->number,
1264		 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1265
1266	/* We only are looking for func 0 of the set */
1267	if (PCI_FUNC(pdev->devfn) != 0)
1268		return -ENODEV;
1269
1270	/*
1271	 * allocate a new MC control structure
1272	 *
1273	 * This drivers uses the DIMM slot as "csrow" and the rest as "channel".
1274	 */
1275	layers[0].type = EDAC_MC_LAYER_BRANCH;
1276	layers[0].size = MAX_BRANCHES;
1277	layers[0].is_virt_csrow = false;
1278	layers[1].type = EDAC_MC_LAYER_CHANNEL;
1279	layers[1].size = CHANNELS_PER_BRANCH;
1280	layers[1].is_virt_csrow = false;
1281	layers[2].type = EDAC_MC_LAYER_SLOT;
1282	layers[2].size = DIMMS_PER_CHANNEL;
1283	layers[2].is_virt_csrow = true;
1284	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
1285	if (mci == NULL)
1286		return -ENOMEM;
1287
1288	edac_dbg(0, "MC: mci = %p\n", mci);
1289
1290	mci->pdev = &pdev->dev;	/* record ptr  to the generic device */
1291
1292	pvt = mci->pvt_info;
1293	pvt->system_address = pdev;	/* Record this device in our private */
1294	pvt->maxch = MAX_CHANNELS;
1295	pvt->maxdimmperch = DIMMS_PER_CHANNEL;
1296
1297	/* 'get' the pci devices we want to reserve for our use */
1298	if (i5400_get_devices(mci, dev_idx))
1299		goto fail0;
1300
1301	/* Time to get serious */
1302	i5400_get_mc_regs(mci);	/* retrieve the hardware registers */
1303
1304	mci->mc_idx = 0;
1305	mci->mtype_cap = MEM_FLAG_FB_DDR2;
1306	mci->edac_ctl_cap = EDAC_FLAG_NONE;
1307	mci->edac_cap = EDAC_FLAG_NONE;
1308	mci->mod_name = "i5400_edac.c";
1309	mci->ctl_name = i5400_devs[dev_idx].ctl_name;
1310	mci->dev_name = pci_name(pdev);
1311	mci->ctl_page_to_phys = NULL;
1312
1313	/* Set the function pointer to an actual operation function */
1314	mci->edac_check = i5400_check_error;
1315
1316	/* initialize the MC control structure 'dimms' table
1317	 * with the mapping and control information */
1318	if (i5400_init_dimms(mci)) {
1319		edac_dbg(0, "MC: Setting mci->edac_cap to EDAC_FLAG_NONE because i5400_init_dimms() returned nonzero value\n");
1320		mci->edac_cap = EDAC_FLAG_NONE;	/* no dimms found */
1321	} else {
1322		edac_dbg(1, "MC: Enable error reporting now\n");
1323		i5400_enable_error_reporting(mci);
1324	}
1325
1326	/* add this new MC control structure to EDAC's list of MCs */
1327	if (edac_mc_add_mc(mci)) {
1328		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
1329		/* FIXME: perhaps some code should go here that disables error
1330		 * reporting if we just enabled it
1331		 */
1332		goto fail1;
1333	}
1334
1335	i5400_clear_error(mci);
1336
1337	/* allocating generic PCI control info */
1338	i5400_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
1339	if (!i5400_pci) {
1340		printk(KERN_WARNING
1341			"%s(): Unable to create PCI control\n",
1342			__func__);
1343		printk(KERN_WARNING
1344			"%s(): PCI error report via EDAC not setup\n",
1345			__func__);
1346	}
1347
1348	return 0;
1349
1350	/* Error exit unwinding stack */
1351fail1:
1352
1353	i5400_put_devices(mci);
1354
1355fail0:
1356	edac_mc_free(mci);
1357	return -ENODEV;
1358}
1359
1360/*
1361 *	i5400_init_one	constructor for one instance of device
1362 *
1363 * 	returns:
1364 *		negative on error
1365 *		count (>= 0)
1366 */
1367static int i5400_init_one(struct pci_dev *pdev, const struct pci_device_id *id)
1368{
1369	int rc;
1370
1371	edac_dbg(0, "MC:\n");
1372
1373	/* wake up device */
1374	rc = pci_enable_device(pdev);
1375	if (rc)
1376		return rc;
1377
1378	/* now probe and enable the device */
1379	return i5400_probe1(pdev, id->driver_data);
1380}
1381
1382/*
1383 *	i5400_remove_one	destructor for one instance of device
1384 *
1385 */
1386static void i5400_remove_one(struct pci_dev *pdev)
1387{
1388	struct mem_ctl_info *mci;
1389
1390	edac_dbg(0, "\n");
1391
1392	if (i5400_pci)
1393		edac_pci_release_generic_ctl(i5400_pci);
1394
1395	mci = edac_mc_del_mc(&pdev->dev);
1396	if (!mci)
1397		return;
1398
1399	/* retrieve references to resources, and free those resources */
1400	i5400_put_devices(mci);
1401
1402	pci_disable_device(pdev);
1403
1404	edac_mc_free(mci);
1405}
1406
1407/*
1408 *	pci_device_id	table for which devices we are looking for
1409 *
1410 *	The "E500P" device is the first device supported.
1411 */
1412static const struct pci_device_id i5400_pci_tbl[] = {
1413	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_ERR)},
1414	{0,}			/* 0 terminated list. */
1415};
1416
1417MODULE_DEVICE_TABLE(pci, i5400_pci_tbl);
1418
1419/*
1420 *	i5400_driver	pci_driver structure for this module
1421 *
1422 */
1423static struct pci_driver i5400_driver = {
1424	.name = "i5400_edac",
1425	.probe = i5400_init_one,
1426	.remove = i5400_remove_one,
1427	.id_table = i5400_pci_tbl,
1428};
1429
1430/*
1431 *	i5400_init		Module entry function
1432 *			Try to initialize this module for its devices
1433 */
1434static int __init i5400_init(void)
1435{
1436	int pci_rc;
1437
1438	edac_dbg(2, "MC:\n");
1439
1440	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
1441	opstate_init();
1442
1443	pci_rc = pci_register_driver(&i5400_driver);
1444
1445	return (pci_rc < 0) ? pci_rc : 0;
1446}
1447
1448/*
1449 *	i5400_exit()	Module exit function
1450 *			Unregister the driver
1451 */
1452static void __exit i5400_exit(void)
1453{
1454	edac_dbg(2, "MC:\n");
1455	pci_unregister_driver(&i5400_driver);
1456}
1457
1458module_init(i5400_init);
1459module_exit(i5400_exit);
1460
1461MODULE_LICENSE("GPL");
1462MODULE_AUTHOR("Ben Woodard <woodard@redhat.com>");
1463MODULE_AUTHOR("Mauro Carvalho Chehab");
1464MODULE_AUTHOR("Red Hat Inc. (https://www.redhat.com)");
1465MODULE_DESCRIPTION("MC Driver for Intel I5400 memory controllers - "
1466		   I5400_REVISION);
1467
1468module_param(edac_op_state, int, 0444);
1469MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1470