xref: /kernel/linux/linux-6.6/drivers/dma/stm32-dma.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Driver for STM32 DMA controller
4 *
5 * Inspired by dma-jz4740.c and tegra20-apb-dma.c
6 *
7 * Copyright (C) M'boumba Cedric Madianga 2015
8 * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
9 *         Pierre-Yves Mordret <pierre-yves.mordret@st.com>
10 */
11
12#include <linux/bitfield.h>
13#include <linux/clk.h>
14#include <linux/delay.h>
15#include <linux/dmaengine.h>
16#include <linux/dma-mapping.h>
17#include <linux/err.h>
18#include <linux/init.h>
19#include <linux/iopoll.h>
20#include <linux/jiffies.h>
21#include <linux/list.h>
22#include <linux/module.h>
23#include <linux/of.h>
24#include <linux/of_device.h>
25#include <linux/of_dma.h>
26#include <linux/platform_device.h>
27#include <linux/pm_runtime.h>
28#include <linux/reset.h>
29#include <linux/sched.h>
30#include <linux/slab.h>
31
32#include "virt-dma.h"
33
34#define STM32_DMA_LISR			0x0000 /* DMA Low Int Status Reg */
35#define STM32_DMA_HISR			0x0004 /* DMA High Int Status Reg */
36#define STM32_DMA_ISR(n)		(((n) & 4) ? STM32_DMA_HISR : STM32_DMA_LISR)
37#define STM32_DMA_LIFCR			0x0008 /* DMA Low Int Flag Clear Reg */
38#define STM32_DMA_HIFCR			0x000c /* DMA High Int Flag Clear Reg */
39#define STM32_DMA_IFCR(n)		(((n) & 4) ? STM32_DMA_HIFCR : STM32_DMA_LIFCR)
40#define STM32_DMA_TCI			BIT(5) /* Transfer Complete Interrupt */
41#define STM32_DMA_HTI			BIT(4) /* Half Transfer Interrupt */
42#define STM32_DMA_TEI			BIT(3) /* Transfer Error Interrupt */
43#define STM32_DMA_DMEI			BIT(2) /* Direct Mode Error Interrupt */
44#define STM32_DMA_FEI			BIT(0) /* FIFO Error Interrupt */
45#define STM32_DMA_MASKI			(STM32_DMA_TCI \
46					 | STM32_DMA_TEI \
47					 | STM32_DMA_DMEI \
48					 | STM32_DMA_FEI)
49/*
50 * If (chan->id % 4) is 2 or 3, left shift the mask by 16 bits;
51 * if (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
52 */
53#define STM32_DMA_FLAGS_SHIFT(n)	({ typeof(n) (_n) = (n); \
54					   (((_n) & 2) << 3) | (((_n) & 1) * 6); })
55
56/* DMA Stream x Configuration Register */
57#define STM32_DMA_SCR(x)		(0x0010 + 0x18 * (x)) /* x = 0..7 */
58#define STM32_DMA_SCR_REQ_MASK		GENMASK(27, 25)
59#define STM32_DMA_SCR_MBURST_MASK	GENMASK(24, 23)
60#define STM32_DMA_SCR_PBURST_MASK	GENMASK(22, 21)
61#define STM32_DMA_SCR_PL_MASK		GENMASK(17, 16)
62#define STM32_DMA_SCR_MSIZE_MASK	GENMASK(14, 13)
63#define STM32_DMA_SCR_PSIZE_MASK	GENMASK(12, 11)
64#define STM32_DMA_SCR_DIR_MASK		GENMASK(7, 6)
65#define STM32_DMA_SCR_TRBUFF		BIT(20) /* Bufferable transfer for USART/UART */
66#define STM32_DMA_SCR_CT		BIT(19) /* Target in double buffer */
67#define STM32_DMA_SCR_DBM		BIT(18) /* Double Buffer Mode */
68#define STM32_DMA_SCR_PINCOS		BIT(15) /* Peripheral inc offset size */
69#define STM32_DMA_SCR_MINC		BIT(10) /* Memory increment mode */
70#define STM32_DMA_SCR_PINC		BIT(9) /* Peripheral increment mode */
71#define STM32_DMA_SCR_CIRC		BIT(8) /* Circular mode */
72#define STM32_DMA_SCR_PFCTRL		BIT(5) /* Peripheral Flow Controller */
73#define STM32_DMA_SCR_TCIE		BIT(4) /* Transfer Complete Int Enable
74						*/
75#define STM32_DMA_SCR_TEIE		BIT(2) /* Transfer Error Int Enable */
76#define STM32_DMA_SCR_DMEIE		BIT(1) /* Direct Mode Err Int Enable */
77#define STM32_DMA_SCR_EN		BIT(0) /* Stream Enable */
78#define STM32_DMA_SCR_CFG_MASK		(STM32_DMA_SCR_PINC \
79					| STM32_DMA_SCR_MINC \
80					| STM32_DMA_SCR_PINCOS \
81					| STM32_DMA_SCR_PL_MASK)
82#define STM32_DMA_SCR_IRQ_MASK		(STM32_DMA_SCR_TCIE \
83					| STM32_DMA_SCR_TEIE \
84					| STM32_DMA_SCR_DMEIE)
85
86/* DMA Stream x number of data register */
87#define STM32_DMA_SNDTR(x)		(0x0014 + 0x18 * (x))
88
89/* DMA stream peripheral address register */
90#define STM32_DMA_SPAR(x)		(0x0018 + 0x18 * (x))
91
92/* DMA stream x memory 0 address register */
93#define STM32_DMA_SM0AR(x)		(0x001c + 0x18 * (x))
94
95/* DMA stream x memory 1 address register */
96#define STM32_DMA_SM1AR(x)		(0x0020 + 0x18 * (x))
97
98/* DMA stream x FIFO control register */
99#define STM32_DMA_SFCR(x)		(0x0024 + 0x18 * (x))
100#define STM32_DMA_SFCR_FTH_MASK		GENMASK(1, 0)
101#define STM32_DMA_SFCR_FEIE		BIT(7) /* FIFO error interrupt enable */
102#define STM32_DMA_SFCR_DMDIS		BIT(2) /* Direct mode disable */
103#define STM32_DMA_SFCR_MASK		(STM32_DMA_SFCR_FEIE \
104					| STM32_DMA_SFCR_DMDIS)
105
106/* DMA direction */
107#define STM32_DMA_DEV_TO_MEM		0x00
108#define	STM32_DMA_MEM_TO_DEV		0x01
109#define	STM32_DMA_MEM_TO_MEM		0x02
110
111/* DMA priority level */
112#define STM32_DMA_PRIORITY_LOW		0x00
113#define STM32_DMA_PRIORITY_MEDIUM	0x01
114#define STM32_DMA_PRIORITY_HIGH		0x02
115#define STM32_DMA_PRIORITY_VERY_HIGH	0x03
116
117/* DMA FIFO threshold selection */
118#define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL		0x00
119#define STM32_DMA_FIFO_THRESHOLD_HALFFULL		0x01
120#define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL		0x02
121#define STM32_DMA_FIFO_THRESHOLD_FULL			0x03
122#define STM32_DMA_FIFO_THRESHOLD_NONE			0x04
123
124#define STM32_DMA_MAX_DATA_ITEMS	0xffff
125/*
126 * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter
127 * gather at boundary. Thus it's safer to round down this value on FIFO
128 * size (16 Bytes)
129 */
130#define STM32_DMA_ALIGNED_MAX_DATA_ITEMS	\
131	ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16)
132#define STM32_DMA_MAX_CHANNELS		0x08
133#define STM32_DMA_MAX_REQUEST_ID	0x08
134#define STM32_DMA_MAX_DATA_PARAM	0x03
135#define STM32_DMA_FIFO_SIZE		16	/* FIFO is 16 bytes */
136#define STM32_DMA_MIN_BURST		4
137#define STM32_DMA_MAX_BURST		16
138
139/* DMA Features */
140#define STM32_DMA_THRESHOLD_FTR_MASK	GENMASK(1, 0)
141#define STM32_DMA_DIRECT_MODE_MASK	BIT(2)
142#define STM32_DMA_ALT_ACK_MODE_MASK	BIT(4)
143#define STM32_DMA_MDMA_STREAM_ID_MASK	GENMASK(19, 16)
144
145enum stm32_dma_width {
146	STM32_DMA_BYTE,
147	STM32_DMA_HALF_WORD,
148	STM32_DMA_WORD,
149};
150
151enum stm32_dma_burst_size {
152	STM32_DMA_BURST_SINGLE,
153	STM32_DMA_BURST_INCR4,
154	STM32_DMA_BURST_INCR8,
155	STM32_DMA_BURST_INCR16,
156};
157
158/**
159 * struct stm32_dma_cfg - STM32 DMA custom configuration
160 * @channel_id: channel ID
161 * @request_line: DMA request
162 * @stream_config: 32bit mask specifying the DMA channel configuration
163 * @features: 32bit mask specifying the DMA Feature list
164 */
165struct stm32_dma_cfg {
166	u32 channel_id;
167	u32 request_line;
168	u32 stream_config;
169	u32 features;
170};
171
172struct stm32_dma_chan_reg {
173	u32 dma_lisr;
174	u32 dma_hisr;
175	u32 dma_lifcr;
176	u32 dma_hifcr;
177	u32 dma_scr;
178	u32 dma_sndtr;
179	u32 dma_spar;
180	u32 dma_sm0ar;
181	u32 dma_sm1ar;
182	u32 dma_sfcr;
183};
184
185struct stm32_dma_sg_req {
186	u32 len;
187	struct stm32_dma_chan_reg chan_reg;
188};
189
190struct stm32_dma_desc {
191	struct virt_dma_desc vdesc;
192	bool cyclic;
193	u32 num_sgs;
194	struct stm32_dma_sg_req sg_req[];
195};
196
197/**
198 * struct stm32_dma_mdma_config - STM32 DMA MDMA configuration
199 * @stream_id: DMA request to trigger STM32 MDMA transfer
200 * @ifcr: DMA interrupt flag clear register address,
201 *        used by STM32 MDMA to clear DMA Transfer Complete flag
202 * @tcf: DMA Transfer Complete flag
203 */
204struct stm32_dma_mdma_config {
205	u32 stream_id;
206	u32 ifcr;
207	u32 tcf;
208};
209
210struct stm32_dma_chan {
211	struct virt_dma_chan vchan;
212	bool config_init;
213	bool busy;
214	u32 id;
215	u32 irq;
216	struct stm32_dma_desc *desc;
217	u32 next_sg;
218	struct dma_slave_config	dma_sconfig;
219	struct stm32_dma_chan_reg chan_reg;
220	u32 threshold;
221	u32 mem_burst;
222	u32 mem_width;
223	enum dma_status status;
224	bool trig_mdma;
225	struct stm32_dma_mdma_config mdma_config;
226};
227
228struct stm32_dma_device {
229	struct dma_device ddev;
230	void __iomem *base;
231	struct clk *clk;
232	bool mem2mem;
233	struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS];
234};
235
236static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan)
237{
238	return container_of(chan->vchan.chan.device, struct stm32_dma_device,
239			    ddev);
240}
241
242static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c)
243{
244	return container_of(c, struct stm32_dma_chan, vchan.chan);
245}
246
247static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc)
248{
249	return container_of(vdesc, struct stm32_dma_desc, vdesc);
250}
251
252static struct device *chan2dev(struct stm32_dma_chan *chan)
253{
254	return &chan->vchan.chan.dev->device;
255}
256
257static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg)
258{
259	return readl_relaxed(dmadev->base + reg);
260}
261
262static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val)
263{
264	writel_relaxed(val, dmadev->base + reg);
265}
266
267static int stm32_dma_get_width(struct stm32_dma_chan *chan,
268			       enum dma_slave_buswidth width)
269{
270	switch (width) {
271	case DMA_SLAVE_BUSWIDTH_1_BYTE:
272		return STM32_DMA_BYTE;
273	case DMA_SLAVE_BUSWIDTH_2_BYTES:
274		return STM32_DMA_HALF_WORD;
275	case DMA_SLAVE_BUSWIDTH_4_BYTES:
276		return STM32_DMA_WORD;
277	default:
278		dev_err(chan2dev(chan), "Dma bus width not supported\n");
279		return -EINVAL;
280	}
281}
282
283static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len,
284						       dma_addr_t buf_addr,
285						       u32 threshold)
286{
287	enum dma_slave_buswidth max_width;
288
289	if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL)
290		max_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
291	else
292		max_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
293
294	while ((buf_len < max_width  || buf_len % max_width) &&
295	       max_width > DMA_SLAVE_BUSWIDTH_1_BYTE)
296		max_width = max_width >> 1;
297
298	if (buf_addr & (max_width - 1))
299		max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
300
301	return max_width;
302}
303
304static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold,
305						enum dma_slave_buswidth width)
306{
307	u32 remaining;
308
309	if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
310		return false;
311
312	if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) {
313		if (burst != 0) {
314			/*
315			 * If number of beats fit in several whole bursts
316			 * this configuration is allowed.
317			 */
318			remaining = ((STM32_DMA_FIFO_SIZE / width) *
319				     (threshold + 1) / 4) % burst;
320
321			if (remaining == 0)
322				return true;
323		} else {
324			return true;
325		}
326	}
327
328	return false;
329}
330
331static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold)
332{
333	/* If FIFO direct mode, burst is not possible */
334	if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
335		return false;
336
337	/*
338	 * Buffer or period length has to be aligned on FIFO depth.
339	 * Otherwise bytes may be stuck within FIFO at buffer or period
340	 * length.
341	 */
342	return ((buf_len % ((threshold + 1) * 4)) == 0);
343}
344
345static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold,
346				    enum dma_slave_buswidth width)
347{
348	u32 best_burst = max_burst;
349
350	if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold))
351		return 0;
352
353	while ((buf_len < best_burst * width && best_burst > 1) ||
354	       !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold,
355						    width)) {
356		if (best_burst > STM32_DMA_MIN_BURST)
357			best_burst = best_burst >> 1;
358		else
359			best_burst = 0;
360	}
361
362	return best_burst;
363}
364
365static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst)
366{
367	switch (maxburst) {
368	case 0:
369	case 1:
370		return STM32_DMA_BURST_SINGLE;
371	case 4:
372		return STM32_DMA_BURST_INCR4;
373	case 8:
374		return STM32_DMA_BURST_INCR8;
375	case 16:
376		return STM32_DMA_BURST_INCR16;
377	default:
378		dev_err(chan2dev(chan), "Dma burst size not supported\n");
379		return -EINVAL;
380	}
381}
382
383static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan,
384				      u32 src_burst, u32 dst_burst)
385{
386	chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK;
387	chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE;
388
389	if (!src_burst && !dst_burst) {
390		/* Using direct mode */
391		chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE;
392	} else {
393		/* Using FIFO mode */
394		chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
395	}
396}
397
398static int stm32_dma_slave_config(struct dma_chan *c,
399				  struct dma_slave_config *config)
400{
401	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
402
403	memcpy(&chan->dma_sconfig, config, sizeof(*config));
404
405	/* Check if user is requesting DMA to trigger STM32 MDMA */
406	if (config->peripheral_size) {
407		config->peripheral_config = &chan->mdma_config;
408		config->peripheral_size = sizeof(chan->mdma_config);
409		chan->trig_mdma = true;
410	}
411
412	chan->config_init = true;
413
414	return 0;
415}
416
417static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan)
418{
419	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
420	u32 flags, dma_isr;
421
422	/*
423	 * Read "flags" from DMA_xISR register corresponding to the selected
424	 * DMA channel at the correct bit offset inside that register.
425	 */
426
427	dma_isr = stm32_dma_read(dmadev, STM32_DMA_ISR(chan->id));
428	flags = dma_isr >> STM32_DMA_FLAGS_SHIFT(chan->id);
429
430	return flags & STM32_DMA_MASKI;
431}
432
433static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags)
434{
435	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
436	u32 dma_ifcr;
437
438	/*
439	 * Write "flags" to the DMA_xIFCR register corresponding to the selected
440	 * DMA channel at the correct bit offset inside that register.
441	 */
442	flags &= STM32_DMA_MASKI;
443	dma_ifcr = flags << STM32_DMA_FLAGS_SHIFT(chan->id);
444
445	stm32_dma_write(dmadev, STM32_DMA_IFCR(chan->id), dma_ifcr);
446}
447
448static int stm32_dma_disable_chan(struct stm32_dma_chan *chan)
449{
450	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
451	u32 dma_scr, id, reg;
452
453	id = chan->id;
454	reg = STM32_DMA_SCR(id);
455	dma_scr = stm32_dma_read(dmadev, reg);
456
457	if (dma_scr & STM32_DMA_SCR_EN) {
458		dma_scr &= ~STM32_DMA_SCR_EN;
459		stm32_dma_write(dmadev, reg, dma_scr);
460
461		return readl_relaxed_poll_timeout_atomic(dmadev->base + reg,
462					dma_scr, !(dma_scr & STM32_DMA_SCR_EN),
463					10, 1000000);
464	}
465
466	return 0;
467}
468
469static void stm32_dma_stop(struct stm32_dma_chan *chan)
470{
471	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
472	u32 dma_scr, dma_sfcr, status;
473	int ret;
474
475	/* Disable interrupts */
476	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
477	dma_scr &= ~STM32_DMA_SCR_IRQ_MASK;
478	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
479	dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
480	dma_sfcr &= ~STM32_DMA_SFCR_FEIE;
481	stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr);
482
483	/* Disable DMA */
484	ret = stm32_dma_disable_chan(chan);
485	if (ret < 0)
486		return;
487
488	/* Clear interrupt status if it is there */
489	status = stm32_dma_irq_status(chan);
490	if (status) {
491		dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n",
492			__func__, status);
493		stm32_dma_irq_clear(chan, status);
494	}
495
496	chan->busy = false;
497	chan->status = DMA_COMPLETE;
498}
499
500static int stm32_dma_terminate_all(struct dma_chan *c)
501{
502	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
503	unsigned long flags;
504	LIST_HEAD(head);
505
506	spin_lock_irqsave(&chan->vchan.lock, flags);
507
508	if (chan->desc) {
509		dma_cookie_complete(&chan->desc->vdesc.tx);
510		vchan_terminate_vdesc(&chan->desc->vdesc);
511		if (chan->busy)
512			stm32_dma_stop(chan);
513		chan->desc = NULL;
514	}
515
516	vchan_get_all_descriptors(&chan->vchan, &head);
517	spin_unlock_irqrestore(&chan->vchan.lock, flags);
518	vchan_dma_desc_free_list(&chan->vchan, &head);
519
520	return 0;
521}
522
523static void stm32_dma_synchronize(struct dma_chan *c)
524{
525	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
526
527	vchan_synchronize(&chan->vchan);
528}
529
530static void stm32_dma_dump_reg(struct stm32_dma_chan *chan)
531{
532	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
533	u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
534	u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
535	u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id));
536	u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id));
537	u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id));
538	u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
539
540	dev_dbg(chan2dev(chan), "SCR:   0x%08x\n", scr);
541	dev_dbg(chan2dev(chan), "NDTR:  0x%08x\n", ndtr);
542	dev_dbg(chan2dev(chan), "SPAR:  0x%08x\n", spar);
543	dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar);
544	dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar);
545	dev_dbg(chan2dev(chan), "SFCR:  0x%08x\n", sfcr);
546}
547
548static void stm32_dma_sg_inc(struct stm32_dma_chan *chan)
549{
550	chan->next_sg++;
551	if (chan->desc->cyclic && (chan->next_sg == chan->desc->num_sgs))
552		chan->next_sg = 0;
553}
554
555static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan);
556
557static void stm32_dma_start_transfer(struct stm32_dma_chan *chan)
558{
559	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
560	struct virt_dma_desc *vdesc;
561	struct stm32_dma_sg_req *sg_req;
562	struct stm32_dma_chan_reg *reg;
563	u32 status;
564	int ret;
565
566	ret = stm32_dma_disable_chan(chan);
567	if (ret < 0)
568		return;
569
570	if (!chan->desc) {
571		vdesc = vchan_next_desc(&chan->vchan);
572		if (!vdesc)
573			return;
574
575		list_del(&vdesc->node);
576
577		chan->desc = to_stm32_dma_desc(vdesc);
578		chan->next_sg = 0;
579	}
580
581	if (chan->next_sg == chan->desc->num_sgs)
582		chan->next_sg = 0;
583
584	sg_req = &chan->desc->sg_req[chan->next_sg];
585	reg = &sg_req->chan_reg;
586
587	/* When DMA triggers STM32 MDMA, DMA Transfer Complete is managed by STM32 MDMA */
588	if (chan->trig_mdma && chan->dma_sconfig.direction != DMA_MEM_TO_DEV)
589		reg->dma_scr &= ~STM32_DMA_SCR_TCIE;
590
591	reg->dma_scr &= ~STM32_DMA_SCR_EN;
592	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
593	stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar);
594	stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar);
595	stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr);
596	stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar);
597	stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr);
598
599	stm32_dma_sg_inc(chan);
600
601	/* Clear interrupt status if it is there */
602	status = stm32_dma_irq_status(chan);
603	if (status)
604		stm32_dma_irq_clear(chan, status);
605
606	if (chan->desc->cyclic)
607		stm32_dma_configure_next_sg(chan);
608
609	stm32_dma_dump_reg(chan);
610
611	/* Start DMA */
612	chan->busy = true;
613	chan->status = DMA_IN_PROGRESS;
614	reg->dma_scr |= STM32_DMA_SCR_EN;
615	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
616
617	dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
618}
619
620static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan)
621{
622	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
623	struct stm32_dma_sg_req *sg_req;
624	u32 dma_scr, dma_sm0ar, dma_sm1ar, id;
625
626	id = chan->id;
627	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
628
629	sg_req = &chan->desc->sg_req[chan->next_sg];
630
631	if (dma_scr & STM32_DMA_SCR_CT) {
632		dma_sm0ar = sg_req->chan_reg.dma_sm0ar;
633		stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar);
634		dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n",
635			stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)));
636	} else {
637		dma_sm1ar = sg_req->chan_reg.dma_sm1ar;
638		stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar);
639		dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n",
640			stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)));
641	}
642}
643
644static void stm32_dma_handle_chan_paused(struct stm32_dma_chan *chan)
645{
646	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
647	u32 dma_scr;
648
649	/*
650	 * Read and store current remaining data items and peripheral/memory addresses to be
651	 * updated on resume
652	 */
653	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
654	/*
655	 * Transfer can be paused while between a previous resume and reconfiguration on transfer
656	 * complete. If transfer is cyclic and CIRC and DBM have been deactivated for resume, need
657	 * to set it here in SCR backup to ensure a good reconfiguration on transfer complete.
658	 */
659	if (chan->desc && chan->desc->cyclic) {
660		if (chan->desc->num_sgs == 1)
661			dma_scr |= STM32_DMA_SCR_CIRC;
662		else
663			dma_scr |= STM32_DMA_SCR_DBM;
664	}
665	chan->chan_reg.dma_scr = dma_scr;
666
667	/*
668	 * Need to temporarily deactivate CIRC/DBM until next Transfer Complete interrupt, otherwise
669	 * on resume NDTR autoreload value will be wrong (lower than the initial period length)
670	 */
671	if (chan->desc && chan->desc->cyclic) {
672		dma_scr &= ~(STM32_DMA_SCR_DBM | STM32_DMA_SCR_CIRC);
673		stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
674	}
675
676	chan->chan_reg.dma_sndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
677
678	chan->status = DMA_PAUSED;
679
680	dev_dbg(chan2dev(chan), "vchan %pK: paused\n", &chan->vchan);
681}
682
683static void stm32_dma_post_resume_reconfigure(struct stm32_dma_chan *chan)
684{
685	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
686	struct stm32_dma_sg_req *sg_req;
687	u32 dma_scr, status, id;
688
689	id = chan->id;
690	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
691
692	/* Clear interrupt status if it is there */
693	status = stm32_dma_irq_status(chan);
694	if (status)
695		stm32_dma_irq_clear(chan, status);
696
697	if (!chan->next_sg)
698		sg_req = &chan->desc->sg_req[chan->desc->num_sgs - 1];
699	else
700		sg_req = &chan->desc->sg_req[chan->next_sg - 1];
701
702	/* Reconfigure NDTR with the initial value */
703	stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), sg_req->chan_reg.dma_sndtr);
704
705	/* Restore SPAR */
706	stm32_dma_write(dmadev, STM32_DMA_SPAR(id), sg_req->chan_reg.dma_spar);
707
708	/* Restore SM0AR/SM1AR whatever DBM/CT as they may have been modified */
709	stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), sg_req->chan_reg.dma_sm0ar);
710	stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), sg_req->chan_reg.dma_sm1ar);
711
712	/* Reactivate CIRC/DBM if needed */
713	if (chan->chan_reg.dma_scr & STM32_DMA_SCR_DBM) {
714		dma_scr |= STM32_DMA_SCR_DBM;
715		/* Restore CT */
716		if (chan->chan_reg.dma_scr & STM32_DMA_SCR_CT)
717			dma_scr &= ~STM32_DMA_SCR_CT;
718		else
719			dma_scr |= STM32_DMA_SCR_CT;
720	} else if (chan->chan_reg.dma_scr & STM32_DMA_SCR_CIRC) {
721		dma_scr |= STM32_DMA_SCR_CIRC;
722	}
723	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
724
725	stm32_dma_configure_next_sg(chan);
726
727	stm32_dma_dump_reg(chan);
728
729	dma_scr |= STM32_DMA_SCR_EN;
730	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
731
732	dev_dbg(chan2dev(chan), "vchan %pK: reconfigured after pause/resume\n", &chan->vchan);
733}
734
735static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan, u32 scr)
736{
737	if (!chan->desc)
738		return;
739
740	if (chan->desc->cyclic) {
741		vchan_cyclic_callback(&chan->desc->vdesc);
742		if (chan->trig_mdma)
743			return;
744		stm32_dma_sg_inc(chan);
745		/* cyclic while CIRC/DBM disable => post resume reconfiguration needed */
746		if (!(scr & (STM32_DMA_SCR_CIRC | STM32_DMA_SCR_DBM)))
747			stm32_dma_post_resume_reconfigure(chan);
748		else if (scr & STM32_DMA_SCR_DBM)
749			stm32_dma_configure_next_sg(chan);
750	} else {
751		chan->busy = false;
752		chan->status = DMA_COMPLETE;
753		if (chan->next_sg == chan->desc->num_sgs) {
754			vchan_cookie_complete(&chan->desc->vdesc);
755			chan->desc = NULL;
756		}
757		stm32_dma_start_transfer(chan);
758	}
759}
760
761static irqreturn_t stm32_dma_chan_irq(int irq, void *devid)
762{
763	struct stm32_dma_chan *chan = devid;
764	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
765	u32 status, scr, sfcr;
766
767	spin_lock(&chan->vchan.lock);
768
769	status = stm32_dma_irq_status(chan);
770	scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
771	sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
772
773	if (status & STM32_DMA_FEI) {
774		stm32_dma_irq_clear(chan, STM32_DMA_FEI);
775		status &= ~STM32_DMA_FEI;
776		if (sfcr & STM32_DMA_SFCR_FEIE) {
777			if (!(scr & STM32_DMA_SCR_EN) &&
778			    !(status & STM32_DMA_TCI))
779				dev_err(chan2dev(chan), "FIFO Error\n");
780			else
781				dev_dbg(chan2dev(chan), "FIFO over/underrun\n");
782		}
783	}
784	if (status & STM32_DMA_DMEI) {
785		stm32_dma_irq_clear(chan, STM32_DMA_DMEI);
786		status &= ~STM32_DMA_DMEI;
787		if (sfcr & STM32_DMA_SCR_DMEIE)
788			dev_dbg(chan2dev(chan), "Direct mode overrun\n");
789	}
790
791	if (status & STM32_DMA_TCI) {
792		stm32_dma_irq_clear(chan, STM32_DMA_TCI);
793		if (scr & STM32_DMA_SCR_TCIE) {
794			if (chan->status != DMA_PAUSED)
795				stm32_dma_handle_chan_done(chan, scr);
796		}
797		status &= ~STM32_DMA_TCI;
798	}
799
800	if (status & STM32_DMA_HTI) {
801		stm32_dma_irq_clear(chan, STM32_DMA_HTI);
802		status &= ~STM32_DMA_HTI;
803	}
804
805	if (status) {
806		stm32_dma_irq_clear(chan, status);
807		dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status);
808		if (!(scr & STM32_DMA_SCR_EN))
809			dev_err(chan2dev(chan), "chan disabled by HW\n");
810	}
811
812	spin_unlock(&chan->vchan.lock);
813
814	return IRQ_HANDLED;
815}
816
817static void stm32_dma_issue_pending(struct dma_chan *c)
818{
819	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
820	unsigned long flags;
821
822	spin_lock_irqsave(&chan->vchan.lock, flags);
823	if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) {
824		dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
825		stm32_dma_start_transfer(chan);
826
827	}
828	spin_unlock_irqrestore(&chan->vchan.lock, flags);
829}
830
831static int stm32_dma_pause(struct dma_chan *c)
832{
833	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
834	unsigned long flags;
835	int ret;
836
837	if (chan->status != DMA_IN_PROGRESS)
838		return -EPERM;
839
840	spin_lock_irqsave(&chan->vchan.lock, flags);
841
842	ret = stm32_dma_disable_chan(chan);
843	if (!ret)
844		stm32_dma_handle_chan_paused(chan);
845
846	spin_unlock_irqrestore(&chan->vchan.lock, flags);
847
848	return ret;
849}
850
851static int stm32_dma_resume(struct dma_chan *c)
852{
853	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
854	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
855	struct stm32_dma_chan_reg chan_reg = chan->chan_reg;
856	u32 id = chan->id, scr, ndtr, offset, spar, sm0ar, sm1ar;
857	struct stm32_dma_sg_req *sg_req;
858	unsigned long flags;
859
860	if (chan->status != DMA_PAUSED)
861		return -EPERM;
862
863	scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
864	if (WARN_ON(scr & STM32_DMA_SCR_EN))
865		return -EPERM;
866
867	spin_lock_irqsave(&chan->vchan.lock, flags);
868
869	/* sg_reg[prev_sg] contains original ndtr, sm0ar and sm1ar before pausing the transfer */
870	if (!chan->next_sg)
871		sg_req = &chan->desc->sg_req[chan->desc->num_sgs - 1];
872	else
873		sg_req = &chan->desc->sg_req[chan->next_sg - 1];
874
875	ndtr = sg_req->chan_reg.dma_sndtr;
876	offset = (ndtr - chan_reg.dma_sndtr);
877	offset <<= FIELD_GET(STM32_DMA_SCR_PSIZE_MASK, chan_reg.dma_scr);
878	spar = sg_req->chan_reg.dma_spar;
879	sm0ar = sg_req->chan_reg.dma_sm0ar;
880	sm1ar = sg_req->chan_reg.dma_sm1ar;
881
882	/*
883	 * The peripheral and/or memory addresses have to be updated in order to adjust the
884	 * address pointers. Need to check increment.
885	 */
886	if (chan_reg.dma_scr & STM32_DMA_SCR_PINC)
887		stm32_dma_write(dmadev, STM32_DMA_SPAR(id), spar + offset);
888	else
889		stm32_dma_write(dmadev, STM32_DMA_SPAR(id), spar);
890
891	if (!(chan_reg.dma_scr & STM32_DMA_SCR_MINC))
892		offset = 0;
893
894	/*
895	 * In case of DBM, the current target could be SM1AR.
896	 * Need to temporarily deactivate CIRC/DBM to finish the current transfer, so
897	 * SM0AR becomes the current target and must be updated with SM1AR + offset if CT=1.
898	 */
899	if ((chan_reg.dma_scr & STM32_DMA_SCR_DBM) && (chan_reg.dma_scr & STM32_DMA_SCR_CT))
900		stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), sm1ar + offset);
901	else
902		stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), sm0ar + offset);
903
904	/* NDTR must be restored otherwise internal HW counter won't be correctly reset */
905	stm32_dma_write(dmadev, STM32_DMA_SNDTR(id), chan_reg.dma_sndtr);
906
907	/*
908	 * Need to temporarily deactivate CIRC/DBM until next Transfer Complete interrupt,
909	 * otherwise NDTR autoreload value will be wrong (lower than the initial period length)
910	 */
911	if (chan_reg.dma_scr & (STM32_DMA_SCR_CIRC | STM32_DMA_SCR_DBM))
912		chan_reg.dma_scr &= ~(STM32_DMA_SCR_CIRC | STM32_DMA_SCR_DBM);
913
914	if (chan_reg.dma_scr & STM32_DMA_SCR_DBM)
915		stm32_dma_configure_next_sg(chan);
916
917	stm32_dma_dump_reg(chan);
918
919	/* The stream may then be re-enabled to restart transfer from the point it was stopped */
920	chan->status = DMA_IN_PROGRESS;
921	chan_reg.dma_scr |= STM32_DMA_SCR_EN;
922	stm32_dma_write(dmadev, STM32_DMA_SCR(id), chan_reg.dma_scr);
923
924	spin_unlock_irqrestore(&chan->vchan.lock, flags);
925
926	dev_dbg(chan2dev(chan), "vchan %pK: resumed\n", &chan->vchan);
927
928	return 0;
929}
930
931static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan,
932				    enum dma_transfer_direction direction,
933				    enum dma_slave_buswidth *buswidth,
934				    u32 buf_len, dma_addr_t buf_addr)
935{
936	enum dma_slave_buswidth src_addr_width, dst_addr_width;
937	int src_bus_width, dst_bus_width;
938	int src_burst_size, dst_burst_size;
939	u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst;
940	u32 dma_scr, fifoth;
941
942	src_addr_width = chan->dma_sconfig.src_addr_width;
943	dst_addr_width = chan->dma_sconfig.dst_addr_width;
944	src_maxburst = chan->dma_sconfig.src_maxburst;
945	dst_maxburst = chan->dma_sconfig.dst_maxburst;
946	fifoth = chan->threshold;
947
948	switch (direction) {
949	case DMA_MEM_TO_DEV:
950		/* Set device data size */
951		dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
952		if (dst_bus_width < 0)
953			return dst_bus_width;
954
955		/* Set device burst size */
956		dst_best_burst = stm32_dma_get_best_burst(buf_len,
957							  dst_maxburst,
958							  fifoth,
959							  dst_addr_width);
960
961		dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
962		if (dst_burst_size < 0)
963			return dst_burst_size;
964
965		/* Set memory data size */
966		src_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
967							 fifoth);
968		chan->mem_width = src_addr_width;
969		src_bus_width = stm32_dma_get_width(chan, src_addr_width);
970		if (src_bus_width < 0)
971			return src_bus_width;
972
973		/*
974		 * Set memory burst size - burst not possible if address is not aligned on
975		 * the address boundary equal to the size of the transfer
976		 */
977		if (buf_addr & (buf_len - 1))
978			src_maxburst = 1;
979		else
980			src_maxburst = STM32_DMA_MAX_BURST;
981		src_best_burst = stm32_dma_get_best_burst(buf_len,
982							  src_maxburst,
983							  fifoth,
984							  src_addr_width);
985		src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
986		if (src_burst_size < 0)
987			return src_burst_size;
988
989		dma_scr = FIELD_PREP(STM32_DMA_SCR_DIR_MASK, STM32_DMA_MEM_TO_DEV) |
990			FIELD_PREP(STM32_DMA_SCR_PSIZE_MASK, dst_bus_width) |
991			FIELD_PREP(STM32_DMA_SCR_MSIZE_MASK, src_bus_width) |
992			FIELD_PREP(STM32_DMA_SCR_PBURST_MASK, dst_burst_size) |
993			FIELD_PREP(STM32_DMA_SCR_MBURST_MASK, src_burst_size);
994
995		/* Set FIFO threshold */
996		chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
997		if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
998			chan->chan_reg.dma_sfcr |= FIELD_PREP(STM32_DMA_SFCR_FTH_MASK, fifoth);
999
1000		/* Set peripheral address */
1001		chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr;
1002		*buswidth = dst_addr_width;
1003		break;
1004
1005	case DMA_DEV_TO_MEM:
1006		/* Set device data size */
1007		src_bus_width = stm32_dma_get_width(chan, src_addr_width);
1008		if (src_bus_width < 0)
1009			return src_bus_width;
1010
1011		/* Set device burst size */
1012		src_best_burst = stm32_dma_get_best_burst(buf_len,
1013							  src_maxburst,
1014							  fifoth,
1015							  src_addr_width);
1016		chan->mem_burst = src_best_burst;
1017		src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
1018		if (src_burst_size < 0)
1019			return src_burst_size;
1020
1021		/* Set memory data size */
1022		dst_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
1023							 fifoth);
1024		chan->mem_width = dst_addr_width;
1025		dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
1026		if (dst_bus_width < 0)
1027			return dst_bus_width;
1028
1029		/*
1030		 * Set memory burst size - burst not possible if address is not aligned on
1031		 * the address boundary equal to the size of the transfer
1032		 */
1033		if (buf_addr & (buf_len - 1))
1034			dst_maxburst = 1;
1035		else
1036			dst_maxburst = STM32_DMA_MAX_BURST;
1037		dst_best_burst = stm32_dma_get_best_burst(buf_len,
1038							  dst_maxburst,
1039							  fifoth,
1040							  dst_addr_width);
1041		chan->mem_burst = dst_best_burst;
1042		dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
1043		if (dst_burst_size < 0)
1044			return dst_burst_size;
1045
1046		dma_scr = FIELD_PREP(STM32_DMA_SCR_DIR_MASK, STM32_DMA_DEV_TO_MEM) |
1047			FIELD_PREP(STM32_DMA_SCR_PSIZE_MASK, src_bus_width) |
1048			FIELD_PREP(STM32_DMA_SCR_MSIZE_MASK, dst_bus_width) |
1049			FIELD_PREP(STM32_DMA_SCR_PBURST_MASK, src_burst_size) |
1050			FIELD_PREP(STM32_DMA_SCR_MBURST_MASK, dst_burst_size);
1051
1052		/* Set FIFO threshold */
1053		chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
1054		if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
1055			chan->chan_reg.dma_sfcr |= FIELD_PREP(STM32_DMA_SFCR_FTH_MASK, fifoth);
1056
1057		/* Set peripheral address */
1058		chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr;
1059		*buswidth = chan->dma_sconfig.src_addr_width;
1060		break;
1061
1062	default:
1063		dev_err(chan2dev(chan), "Dma direction is not supported\n");
1064		return -EINVAL;
1065	}
1066
1067	stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst);
1068
1069	/* Set DMA control register */
1070	chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK |
1071			STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK |
1072			STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK);
1073	chan->chan_reg.dma_scr |= dma_scr;
1074
1075	return 0;
1076}
1077
1078static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs)
1079{
1080	memset(regs, 0, sizeof(struct stm32_dma_chan_reg));
1081}
1082
1083static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg(
1084	struct dma_chan *c, struct scatterlist *sgl,
1085	u32 sg_len, enum dma_transfer_direction direction,
1086	unsigned long flags, void *context)
1087{
1088	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1089	struct stm32_dma_desc *desc;
1090	struct scatterlist *sg;
1091	enum dma_slave_buswidth buswidth;
1092	u32 nb_data_items;
1093	int i, ret;
1094
1095	if (!chan->config_init) {
1096		dev_err(chan2dev(chan), "dma channel is not configured\n");
1097		return NULL;
1098	}
1099
1100	if (sg_len < 1) {
1101		dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len);
1102		return NULL;
1103	}
1104
1105	desc = kzalloc(struct_size(desc, sg_req, sg_len), GFP_NOWAIT);
1106	if (!desc)
1107		return NULL;
1108
1109	/* Set peripheral flow controller */
1110	if (chan->dma_sconfig.device_fc)
1111		chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL;
1112	else
1113		chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
1114
1115	/* Activate Double Buffer Mode if DMA triggers STM32 MDMA and more than 1 sg */
1116	if (chan->trig_mdma && sg_len > 1) {
1117		chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
1118		chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_CT;
1119	}
1120
1121	for_each_sg(sgl, sg, sg_len, i) {
1122		ret = stm32_dma_set_xfer_param(chan, direction, &buswidth,
1123					       sg_dma_len(sg),
1124					       sg_dma_address(sg));
1125		if (ret < 0)
1126			goto err;
1127
1128		desc->sg_req[i].len = sg_dma_len(sg);
1129
1130		nb_data_items = desc->sg_req[i].len / buswidth;
1131		if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
1132			dev_err(chan2dev(chan), "nb items not supported\n");
1133			goto err;
1134		}
1135
1136		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1137		desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
1138		desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
1139		desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
1140		desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg);
1141		desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg);
1142		if (chan->trig_mdma)
1143			desc->sg_req[i].chan_reg.dma_sm1ar += sg_dma_len(sg);
1144		desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
1145	}
1146
1147	desc->num_sgs = sg_len;
1148	desc->cyclic = false;
1149
1150	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1151
1152err:
1153	kfree(desc);
1154	return NULL;
1155}
1156
1157static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic(
1158	struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
1159	size_t period_len, enum dma_transfer_direction direction,
1160	unsigned long flags)
1161{
1162	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1163	struct stm32_dma_desc *desc;
1164	enum dma_slave_buswidth buswidth;
1165	u32 num_periods, nb_data_items;
1166	int i, ret;
1167
1168	if (!buf_len || !period_len) {
1169		dev_err(chan2dev(chan), "Invalid buffer/period len\n");
1170		return NULL;
1171	}
1172
1173	if (!chan->config_init) {
1174		dev_err(chan2dev(chan), "dma channel is not configured\n");
1175		return NULL;
1176	}
1177
1178	if (buf_len % period_len) {
1179		dev_err(chan2dev(chan), "buf_len not multiple of period_len\n");
1180		return NULL;
1181	}
1182
1183	/*
1184	 * We allow to take more number of requests till DMA is
1185	 * not started. The driver will loop over all requests.
1186	 * Once DMA is started then new requests can be queued only after
1187	 * terminating the DMA.
1188	 */
1189	if (chan->busy) {
1190		dev_err(chan2dev(chan), "Request not allowed when dma busy\n");
1191		return NULL;
1192	}
1193
1194	ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len,
1195				       buf_addr);
1196	if (ret < 0)
1197		return NULL;
1198
1199	nb_data_items = period_len / buswidth;
1200	if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
1201		dev_err(chan2dev(chan), "number of items not supported\n");
1202		return NULL;
1203	}
1204
1205	/*  Enable Circular mode or double buffer mode */
1206	if (buf_len == period_len) {
1207		chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC;
1208	} else {
1209		chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
1210		chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_CT;
1211	}
1212
1213	/* Clear periph ctrl if client set it */
1214	chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
1215
1216	num_periods = buf_len / period_len;
1217
1218	desc = kzalloc(struct_size(desc, sg_req, num_periods), GFP_NOWAIT);
1219	if (!desc)
1220		return NULL;
1221
1222	for (i = 0; i < num_periods; i++) {
1223		desc->sg_req[i].len = period_len;
1224
1225		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1226		desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
1227		desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
1228		desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
1229		desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr;
1230		desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr;
1231		if (chan->trig_mdma)
1232			desc->sg_req[i].chan_reg.dma_sm1ar += period_len;
1233		desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
1234		if (!chan->trig_mdma)
1235			buf_addr += period_len;
1236	}
1237
1238	desc->num_sgs = num_periods;
1239	desc->cyclic = true;
1240
1241	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1242}
1243
1244static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy(
1245	struct dma_chan *c, dma_addr_t dest,
1246	dma_addr_t src, size_t len, unsigned long flags)
1247{
1248	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1249	enum dma_slave_buswidth max_width;
1250	struct stm32_dma_desc *desc;
1251	size_t xfer_count, offset;
1252	u32 num_sgs, best_burst, threshold;
1253	int dma_burst, i;
1254
1255	num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1256	desc = kzalloc(struct_size(desc, sg_req, num_sgs), GFP_NOWAIT);
1257	if (!desc)
1258		return NULL;
1259
1260	threshold = chan->threshold;
1261
1262	for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) {
1263		xfer_count = min_t(size_t, len - offset,
1264				   STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1265
1266		/* Compute best burst size */
1267		max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1268		best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST,
1269						      threshold, max_width);
1270		dma_burst = stm32_dma_get_burst(chan, best_burst);
1271		if (dma_burst < 0) {
1272			kfree(desc);
1273			return NULL;
1274		}
1275
1276		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1277		desc->sg_req[i].chan_reg.dma_scr =
1278			FIELD_PREP(STM32_DMA_SCR_DIR_MASK, STM32_DMA_MEM_TO_MEM) |
1279			FIELD_PREP(STM32_DMA_SCR_PBURST_MASK, dma_burst) |
1280			FIELD_PREP(STM32_DMA_SCR_MBURST_MASK, dma_burst) |
1281			STM32_DMA_SCR_MINC |
1282			STM32_DMA_SCR_PINC |
1283			STM32_DMA_SCR_TCIE |
1284			STM32_DMA_SCR_TEIE;
1285		desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
1286		desc->sg_req[i].chan_reg.dma_sfcr |= FIELD_PREP(STM32_DMA_SFCR_FTH_MASK, threshold);
1287		desc->sg_req[i].chan_reg.dma_spar = src + offset;
1288		desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset;
1289		desc->sg_req[i].chan_reg.dma_sndtr = xfer_count;
1290		desc->sg_req[i].len = xfer_count;
1291	}
1292
1293	desc->num_sgs = num_sgs;
1294	desc->cyclic = false;
1295
1296	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1297}
1298
1299static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan)
1300{
1301	u32 dma_scr, width, ndtr;
1302	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1303
1304	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
1305	width = FIELD_GET(STM32_DMA_SCR_PSIZE_MASK, dma_scr);
1306	ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
1307
1308	return ndtr << width;
1309}
1310
1311/**
1312 * stm32_dma_is_current_sg - check that expected sg_req is currently transferred
1313 * @chan: dma channel
1314 *
1315 * This function called when IRQ are disable, checks that the hardware has not
1316 * switched on the next transfer in double buffer mode. The test is done by
1317 * comparing the next_sg memory address with the hardware related register
1318 * (based on CT bit value).
1319 *
1320 * Returns true if expected current transfer is still running or double
1321 * buffer mode is not activated.
1322 */
1323static bool stm32_dma_is_current_sg(struct stm32_dma_chan *chan)
1324{
1325	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1326	struct stm32_dma_sg_req *sg_req;
1327	u32 dma_scr, dma_smar, id, period_len;
1328
1329	id = chan->id;
1330	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1331
1332	/* In cyclic CIRC but not DBM, CT is not used */
1333	if (!(dma_scr & STM32_DMA_SCR_DBM))
1334		return true;
1335
1336	sg_req = &chan->desc->sg_req[chan->next_sg];
1337	period_len = sg_req->len;
1338
1339	/* DBM - take care of a previous pause/resume not yet post reconfigured */
1340	if (dma_scr & STM32_DMA_SCR_CT) {
1341		dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(id));
1342		/*
1343		 * If transfer has been pause/resumed,
1344		 * SM0AR is in the range of [SM0AR:SM0AR+period_len]
1345		 */
1346		return (dma_smar >= sg_req->chan_reg.dma_sm0ar &&
1347			dma_smar < sg_req->chan_reg.dma_sm0ar + period_len);
1348	}
1349
1350	dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(id));
1351	/*
1352	 * If transfer has been pause/resumed,
1353	 * SM1AR is in the range of [SM1AR:SM1AR+period_len]
1354	 */
1355	return (dma_smar >= sg_req->chan_reg.dma_sm1ar &&
1356		dma_smar < sg_req->chan_reg.dma_sm1ar + period_len);
1357}
1358
1359static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
1360				     struct stm32_dma_desc *desc,
1361				     u32 next_sg)
1362{
1363	u32 modulo, burst_size;
1364	u32 residue;
1365	u32 n_sg = next_sg;
1366	struct stm32_dma_sg_req *sg_req = &chan->desc->sg_req[chan->next_sg];
1367	int i;
1368
1369	/*
1370	 * Calculate the residue means compute the descriptors
1371	 * information:
1372	 * - the sg_req currently transferred
1373	 * - the Hardware remaining position in this sg (NDTR bits field).
1374	 *
1375	 * A race condition may occur if DMA is running in cyclic or double
1376	 * buffer mode, since the DMA register are automatically reloaded at end
1377	 * of period transfer. The hardware may have switched to the next
1378	 * transfer (CT bit updated) just before the position (SxNDTR reg) is
1379	 * read.
1380	 * In this case the SxNDTR reg could (or not) correspond to the new
1381	 * transfer position, and not the expected one.
1382	 * The strategy implemented in the stm32 driver is to:
1383	 *  - read the SxNDTR register
1384	 *  - crosscheck that hardware is still in current transfer.
1385	 * In case of switch, we can assume that the DMA is at the beginning of
1386	 * the next transfer. So we approximate the residue in consequence, by
1387	 * pointing on the beginning of next transfer.
1388	 *
1389	 * This race condition doesn't apply for none cyclic mode, as double
1390	 * buffer is not used. In such situation registers are updated by the
1391	 * software.
1392	 */
1393
1394	residue = stm32_dma_get_remaining_bytes(chan);
1395
1396	if ((chan->desc->cyclic || chan->trig_mdma) && !stm32_dma_is_current_sg(chan)) {
1397		n_sg++;
1398		if (n_sg == chan->desc->num_sgs)
1399			n_sg = 0;
1400		if (!chan->trig_mdma)
1401			residue = sg_req->len;
1402	}
1403
1404	/*
1405	 * In cyclic mode, for the last period, residue = remaining bytes
1406	 * from NDTR,
1407	 * else for all other periods in cyclic mode, and in sg mode,
1408	 * residue = remaining bytes from NDTR + remaining
1409	 * periods/sg to be transferred
1410	 */
1411	if ((!chan->desc->cyclic && !chan->trig_mdma) || n_sg != 0)
1412		for (i = n_sg; i < desc->num_sgs; i++)
1413			residue += desc->sg_req[i].len;
1414
1415	if (!chan->mem_burst)
1416		return residue;
1417
1418	burst_size = chan->mem_burst * chan->mem_width;
1419	modulo = residue % burst_size;
1420	if (modulo)
1421		residue = residue - modulo + burst_size;
1422
1423	return residue;
1424}
1425
1426static enum dma_status stm32_dma_tx_status(struct dma_chan *c,
1427					   dma_cookie_t cookie,
1428					   struct dma_tx_state *state)
1429{
1430	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1431	struct virt_dma_desc *vdesc;
1432	enum dma_status status;
1433	unsigned long flags;
1434	u32 residue = 0;
1435
1436	status = dma_cookie_status(c, cookie, state);
1437	if (status == DMA_COMPLETE)
1438		return status;
1439
1440	status = chan->status;
1441
1442	if (!state)
1443		return status;
1444
1445	spin_lock_irqsave(&chan->vchan.lock, flags);
1446	vdesc = vchan_find_desc(&chan->vchan, cookie);
1447	if (chan->desc && cookie == chan->desc->vdesc.tx.cookie)
1448		residue = stm32_dma_desc_residue(chan, chan->desc,
1449						 chan->next_sg);
1450	else if (vdesc)
1451		residue = stm32_dma_desc_residue(chan,
1452						 to_stm32_dma_desc(vdesc), 0);
1453	dma_set_residue(state, residue);
1454
1455	spin_unlock_irqrestore(&chan->vchan.lock, flags);
1456
1457	return status;
1458}
1459
1460static int stm32_dma_alloc_chan_resources(struct dma_chan *c)
1461{
1462	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1463	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1464	int ret;
1465
1466	chan->config_init = false;
1467
1468	ret = pm_runtime_resume_and_get(dmadev->ddev.dev);
1469	if (ret < 0)
1470		return ret;
1471
1472	ret = stm32_dma_disable_chan(chan);
1473	if (ret < 0)
1474		pm_runtime_put(dmadev->ddev.dev);
1475
1476	return ret;
1477}
1478
1479static void stm32_dma_free_chan_resources(struct dma_chan *c)
1480{
1481	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1482	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1483	unsigned long flags;
1484
1485	dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id);
1486
1487	if (chan->busy) {
1488		spin_lock_irqsave(&chan->vchan.lock, flags);
1489		stm32_dma_stop(chan);
1490		chan->desc = NULL;
1491		spin_unlock_irqrestore(&chan->vchan.lock, flags);
1492	}
1493
1494	pm_runtime_put(dmadev->ddev.dev);
1495
1496	vchan_free_chan_resources(to_virt_chan(c));
1497	stm32_dma_clear_reg(&chan->chan_reg);
1498	chan->threshold = 0;
1499}
1500
1501static void stm32_dma_desc_free(struct virt_dma_desc *vdesc)
1502{
1503	kfree(container_of(vdesc, struct stm32_dma_desc, vdesc));
1504}
1505
1506static void stm32_dma_set_config(struct stm32_dma_chan *chan,
1507				 struct stm32_dma_cfg *cfg)
1508{
1509	stm32_dma_clear_reg(&chan->chan_reg);
1510
1511	chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK;
1512	chan->chan_reg.dma_scr |= FIELD_PREP(STM32_DMA_SCR_REQ_MASK, cfg->request_line);
1513
1514	/* Enable Interrupts  */
1515	chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE;
1516
1517	chan->threshold = FIELD_GET(STM32_DMA_THRESHOLD_FTR_MASK, cfg->features);
1518	if (FIELD_GET(STM32_DMA_DIRECT_MODE_MASK, cfg->features))
1519		chan->threshold = STM32_DMA_FIFO_THRESHOLD_NONE;
1520	if (FIELD_GET(STM32_DMA_ALT_ACK_MODE_MASK, cfg->features))
1521		chan->chan_reg.dma_scr |= STM32_DMA_SCR_TRBUFF;
1522	chan->mdma_config.stream_id = FIELD_GET(STM32_DMA_MDMA_STREAM_ID_MASK, cfg->features);
1523}
1524
1525static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec,
1526					   struct of_dma *ofdma)
1527{
1528	struct stm32_dma_device *dmadev = ofdma->of_dma_data;
1529	struct device *dev = dmadev->ddev.dev;
1530	struct stm32_dma_cfg cfg;
1531	struct stm32_dma_chan *chan;
1532	struct dma_chan *c;
1533
1534	if (dma_spec->args_count < 4) {
1535		dev_err(dev, "Bad number of cells\n");
1536		return NULL;
1537	}
1538
1539	cfg.channel_id = dma_spec->args[0];
1540	cfg.request_line = dma_spec->args[1];
1541	cfg.stream_config = dma_spec->args[2];
1542	cfg.features = dma_spec->args[3];
1543
1544	if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS ||
1545	    cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) {
1546		dev_err(dev, "Bad channel and/or request id\n");
1547		return NULL;
1548	}
1549
1550	chan = &dmadev->chan[cfg.channel_id];
1551
1552	c = dma_get_slave_channel(&chan->vchan.chan);
1553	if (!c) {
1554		dev_err(dev, "No more channels available\n");
1555		return NULL;
1556	}
1557
1558	stm32_dma_set_config(chan, &cfg);
1559
1560	return c;
1561}
1562
1563static const struct of_device_id stm32_dma_of_match[] = {
1564	{ .compatible = "st,stm32-dma", },
1565	{ /* sentinel */ },
1566};
1567MODULE_DEVICE_TABLE(of, stm32_dma_of_match);
1568
1569static int stm32_dma_probe(struct platform_device *pdev)
1570{
1571	struct stm32_dma_chan *chan;
1572	struct stm32_dma_device *dmadev;
1573	struct dma_device *dd;
1574	const struct of_device_id *match;
1575	struct resource *res;
1576	struct reset_control *rst;
1577	int i, ret;
1578
1579	match = of_match_device(stm32_dma_of_match, &pdev->dev);
1580	if (!match) {
1581		dev_err(&pdev->dev, "Error: No device match found\n");
1582		return -ENODEV;
1583	}
1584
1585	dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL);
1586	if (!dmadev)
1587		return -ENOMEM;
1588
1589	dd = &dmadev->ddev;
1590
1591	dmadev->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1592	if (IS_ERR(dmadev->base))
1593		return PTR_ERR(dmadev->base);
1594
1595	dmadev->clk = devm_clk_get(&pdev->dev, NULL);
1596	if (IS_ERR(dmadev->clk))
1597		return dev_err_probe(&pdev->dev, PTR_ERR(dmadev->clk), "Can't get clock\n");
1598
1599	ret = clk_prepare_enable(dmadev->clk);
1600	if (ret < 0) {
1601		dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret);
1602		return ret;
1603	}
1604
1605	dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node,
1606						"st,mem2mem");
1607
1608	rst = devm_reset_control_get(&pdev->dev, NULL);
1609	if (IS_ERR(rst)) {
1610		ret = PTR_ERR(rst);
1611		if (ret == -EPROBE_DEFER)
1612			goto clk_free;
1613	} else {
1614		reset_control_assert(rst);
1615		udelay(2);
1616		reset_control_deassert(rst);
1617	}
1618
1619	dma_set_max_seg_size(&pdev->dev, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1620
1621	dma_cap_set(DMA_SLAVE, dd->cap_mask);
1622	dma_cap_set(DMA_PRIVATE, dd->cap_mask);
1623	dma_cap_set(DMA_CYCLIC, dd->cap_mask);
1624	dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources;
1625	dd->device_free_chan_resources = stm32_dma_free_chan_resources;
1626	dd->device_tx_status = stm32_dma_tx_status;
1627	dd->device_issue_pending = stm32_dma_issue_pending;
1628	dd->device_prep_slave_sg = stm32_dma_prep_slave_sg;
1629	dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic;
1630	dd->device_config = stm32_dma_slave_config;
1631	dd->device_pause = stm32_dma_pause;
1632	dd->device_resume = stm32_dma_resume;
1633	dd->device_terminate_all = stm32_dma_terminate_all;
1634	dd->device_synchronize = stm32_dma_synchronize;
1635	dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1636		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1637		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1638	dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1639		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1640		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1641	dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1642	dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1643	dd->copy_align = DMAENGINE_ALIGN_32_BYTES;
1644	dd->max_burst = STM32_DMA_MAX_BURST;
1645	dd->max_sg_burst = STM32_DMA_ALIGNED_MAX_DATA_ITEMS;
1646	dd->descriptor_reuse = true;
1647	dd->dev = &pdev->dev;
1648	INIT_LIST_HEAD(&dd->channels);
1649
1650	if (dmadev->mem2mem) {
1651		dma_cap_set(DMA_MEMCPY, dd->cap_mask);
1652		dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy;
1653		dd->directions |= BIT(DMA_MEM_TO_MEM);
1654	}
1655
1656	for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1657		chan = &dmadev->chan[i];
1658		chan->id = i;
1659		chan->vchan.desc_free = stm32_dma_desc_free;
1660		vchan_init(&chan->vchan, dd);
1661
1662		chan->mdma_config.ifcr = res->start;
1663		chan->mdma_config.ifcr += STM32_DMA_IFCR(chan->id);
1664
1665		chan->mdma_config.tcf = STM32_DMA_TCI;
1666		chan->mdma_config.tcf <<= STM32_DMA_FLAGS_SHIFT(chan->id);
1667	}
1668
1669	ret = dma_async_device_register(dd);
1670	if (ret)
1671		goto clk_free;
1672
1673	for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1674		chan = &dmadev->chan[i];
1675		ret = platform_get_irq(pdev, i);
1676		if (ret < 0)
1677			goto err_unregister;
1678		chan->irq = ret;
1679
1680		ret = devm_request_irq(&pdev->dev, chan->irq,
1681				       stm32_dma_chan_irq, 0,
1682				       dev_name(chan2dev(chan)), chan);
1683		if (ret) {
1684			dev_err(&pdev->dev,
1685				"request_irq failed with err %d channel %d\n",
1686				ret, i);
1687			goto err_unregister;
1688		}
1689	}
1690
1691	ret = of_dma_controller_register(pdev->dev.of_node,
1692					 stm32_dma_of_xlate, dmadev);
1693	if (ret < 0) {
1694		dev_err(&pdev->dev,
1695			"STM32 DMA DMA OF registration failed %d\n", ret);
1696		goto err_unregister;
1697	}
1698
1699	platform_set_drvdata(pdev, dmadev);
1700
1701	pm_runtime_set_active(&pdev->dev);
1702	pm_runtime_enable(&pdev->dev);
1703	pm_runtime_get_noresume(&pdev->dev);
1704	pm_runtime_put(&pdev->dev);
1705
1706	dev_info(&pdev->dev, "STM32 DMA driver registered\n");
1707
1708	return 0;
1709
1710err_unregister:
1711	dma_async_device_unregister(dd);
1712clk_free:
1713	clk_disable_unprepare(dmadev->clk);
1714
1715	return ret;
1716}
1717
1718#ifdef CONFIG_PM
1719static int stm32_dma_runtime_suspend(struct device *dev)
1720{
1721	struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1722
1723	clk_disable_unprepare(dmadev->clk);
1724
1725	return 0;
1726}
1727
1728static int stm32_dma_runtime_resume(struct device *dev)
1729{
1730	struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1731	int ret;
1732
1733	ret = clk_prepare_enable(dmadev->clk);
1734	if (ret) {
1735		dev_err(dev, "failed to prepare_enable clock\n");
1736		return ret;
1737	}
1738
1739	return 0;
1740}
1741#endif
1742
1743#ifdef CONFIG_PM_SLEEP
1744static int stm32_dma_pm_suspend(struct device *dev)
1745{
1746	struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1747	int id, ret, scr;
1748
1749	ret = pm_runtime_resume_and_get(dev);
1750	if (ret < 0)
1751		return ret;
1752
1753	for (id = 0; id < STM32_DMA_MAX_CHANNELS; id++) {
1754		scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1755		if (scr & STM32_DMA_SCR_EN) {
1756			dev_warn(dev, "Suspend is prevented by Chan %i\n", id);
1757			return -EBUSY;
1758		}
1759	}
1760
1761	pm_runtime_put_sync(dev);
1762
1763	pm_runtime_force_suspend(dev);
1764
1765	return 0;
1766}
1767
1768static int stm32_dma_pm_resume(struct device *dev)
1769{
1770	return pm_runtime_force_resume(dev);
1771}
1772#endif
1773
1774static const struct dev_pm_ops stm32_dma_pm_ops = {
1775	SET_SYSTEM_SLEEP_PM_OPS(stm32_dma_pm_suspend, stm32_dma_pm_resume)
1776	SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend,
1777			   stm32_dma_runtime_resume, NULL)
1778};
1779
1780static struct platform_driver stm32_dma_driver = {
1781	.driver = {
1782		.name = "stm32-dma",
1783		.of_match_table = stm32_dma_of_match,
1784		.pm = &stm32_dma_pm_ops,
1785	},
1786	.probe = stm32_dma_probe,
1787};
1788
1789static int __init stm32_dma_init(void)
1790{
1791	return platform_driver_register(&stm32_dma_driver);
1792}
1793subsys_initcall(stm32_dma_init);
1794