xref: /kernel/linux/linux-6.6/drivers/dma/ste_dma40.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) Ericsson AB 2007-2008
4 * Copyright (C) ST-Ericsson SA 2008-2010
5 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
6 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
7 */
8
9#include <linux/dma-mapping.h>
10#include <linux/kernel.h>
11#include <linux/slab.h>
12#include <linux/export.h>
13#include <linux/dmaengine.h>
14#include <linux/platform_device.h>
15#include <linux/clk.h>
16#include <linux/delay.h>
17#include <linux/log2.h>
18#include <linux/pm.h>
19#include <linux/pm_runtime.h>
20#include <linux/err.h>
21#include <linux/of.h>
22#include <linux/of_address.h>
23#include <linux/of_dma.h>
24#include <linux/amba/bus.h>
25#include <linux/regulator/consumer.h>
26
27#include "dmaengine.h"
28#include "ste_dma40.h"
29#include "ste_dma40_ll.h"
30
31/**
32 * struct stedma40_platform_data - Configuration struct for the dma device.
33 *
34 * @dev_tx: mapping between destination event line and io address
35 * @dev_rx: mapping between source event line and io address
36 * @disabled_channels: A vector, ending with -1, that marks physical channels
37 * that are for different reasons not available for the driver.
38 * @soft_lli_chans: A vector, that marks physical channels will use LLI by SW
39 * which avoids HW bug that exists in some versions of the controller.
40 * SoftLLI introduces relink overhead that could impact performace for
41 * certain use cases.
42 * @num_of_soft_lli_chans: The number of channels that needs to be configured
43 * to use SoftLLI.
44 * @use_esram_lcla: flag for mapping the lcla into esram region
45 * @num_of_memcpy_chans: The number of channels reserved for memcpy.
46 * @num_of_phy_chans: The number of physical channels implemented in HW.
47 * 0 means reading the number of channels from DMA HW but this is only valid
48 * for 'multiple of 4' channels, like 8.
49 */
50struct stedma40_platform_data {
51	int				 disabled_channels[STEDMA40_MAX_PHYS];
52	int				*soft_lli_chans;
53	int				 num_of_soft_lli_chans;
54	bool				 use_esram_lcla;
55	int				 num_of_memcpy_chans;
56	int				 num_of_phy_chans;
57};
58
59#define D40_NAME "dma40"
60
61#define D40_PHY_CHAN -1
62
63/* For masking out/in 2 bit channel positions */
64#define D40_CHAN_POS(chan)  (2 * (chan / 2))
65#define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
66
67/* Maximum iterations taken before giving up suspending a channel */
68#define D40_SUSPEND_MAX_IT 500
69
70/* Milliseconds */
71#define DMA40_AUTOSUSPEND_DELAY	100
72
73/* Hardware requirement on LCLA alignment */
74#define LCLA_ALIGNMENT 0x40000
75
76/* Max number of links per event group */
77#define D40_LCLA_LINK_PER_EVENT_GRP 128
78#define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
79
80/* Max number of logical channels per physical channel */
81#define D40_MAX_LOG_CHAN_PER_PHY 32
82
83/* Attempts before giving up to trying to get pages that are aligned */
84#define MAX_LCLA_ALLOC_ATTEMPTS 256
85
86/* Bit markings for allocation map */
87#define D40_ALLOC_FREE		BIT(31)
88#define D40_ALLOC_PHY		BIT(30)
89#define D40_ALLOC_LOG_FREE	0
90
91#define D40_MEMCPY_MAX_CHANS	8
92
93/* Reserved event lines for memcpy only. */
94#define DB8500_DMA_MEMCPY_EV_0	51
95#define DB8500_DMA_MEMCPY_EV_1	56
96#define DB8500_DMA_MEMCPY_EV_2	57
97#define DB8500_DMA_MEMCPY_EV_3	58
98#define DB8500_DMA_MEMCPY_EV_4	59
99#define DB8500_DMA_MEMCPY_EV_5	60
100
101static int dma40_memcpy_channels[] = {
102	DB8500_DMA_MEMCPY_EV_0,
103	DB8500_DMA_MEMCPY_EV_1,
104	DB8500_DMA_MEMCPY_EV_2,
105	DB8500_DMA_MEMCPY_EV_3,
106	DB8500_DMA_MEMCPY_EV_4,
107	DB8500_DMA_MEMCPY_EV_5,
108};
109
110/* Default configuration for physical memcpy */
111static const struct stedma40_chan_cfg dma40_memcpy_conf_phy = {
112	.mode = STEDMA40_MODE_PHYSICAL,
113	.dir = DMA_MEM_TO_MEM,
114
115	.src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
116	.src_info.psize = STEDMA40_PSIZE_PHY_1,
117	.src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
118
119	.dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
120	.dst_info.psize = STEDMA40_PSIZE_PHY_1,
121	.dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
122};
123
124/* Default configuration for logical memcpy */
125static const struct stedma40_chan_cfg dma40_memcpy_conf_log = {
126	.mode = STEDMA40_MODE_LOGICAL,
127	.dir = DMA_MEM_TO_MEM,
128
129	.src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
130	.src_info.psize = STEDMA40_PSIZE_LOG_1,
131	.src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
132
133	.dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
134	.dst_info.psize = STEDMA40_PSIZE_LOG_1,
135	.dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
136};
137
138/**
139 * enum d40_command - The different commands and/or statuses.
140 *
141 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
142 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
143 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
144 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
145 */
146enum d40_command {
147	D40_DMA_STOP		= 0,
148	D40_DMA_RUN		= 1,
149	D40_DMA_SUSPEND_REQ	= 2,
150	D40_DMA_SUSPENDED	= 3
151};
152
153/*
154 * enum d40_events - The different Event Enables for the event lines.
155 *
156 * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
157 * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
158 * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
159 * @D40_ROUND_EVENTLINE: Status check for event line.
160 */
161
162enum d40_events {
163	D40_DEACTIVATE_EVENTLINE	= 0,
164	D40_ACTIVATE_EVENTLINE		= 1,
165	D40_SUSPEND_REQ_EVENTLINE	= 2,
166	D40_ROUND_EVENTLINE		= 3
167};
168
169/*
170 * These are the registers that has to be saved and later restored
171 * when the DMA hw is powered off.
172 * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
173 */
174static __maybe_unused u32 d40_backup_regs[] = {
175	D40_DREG_LCPA,
176	D40_DREG_LCLA,
177	D40_DREG_PRMSE,
178	D40_DREG_PRMSO,
179	D40_DREG_PRMOE,
180	D40_DREG_PRMOO,
181};
182
183#define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
184
185/*
186 * since 9540 and 8540 has the same HW revision
187 * use v4a for 9540 or ealier
188 * use v4b for 8540 or later
189 * HW revision:
190 * DB8500ed has revision 0
191 * DB8500v1 has revision 2
192 * DB8500v2 has revision 3
193 * AP9540v1 has revision 4
194 * DB8540v1 has revision 4
195 * TODO: Check if all these registers have to be saved/restored on dma40 v4a
196 */
197static u32 d40_backup_regs_v4a[] = {
198	D40_DREG_PSEG1,
199	D40_DREG_PSEG2,
200	D40_DREG_PSEG3,
201	D40_DREG_PSEG4,
202	D40_DREG_PCEG1,
203	D40_DREG_PCEG2,
204	D40_DREG_PCEG3,
205	D40_DREG_PCEG4,
206	D40_DREG_RSEG1,
207	D40_DREG_RSEG2,
208	D40_DREG_RSEG3,
209	D40_DREG_RSEG4,
210	D40_DREG_RCEG1,
211	D40_DREG_RCEG2,
212	D40_DREG_RCEG3,
213	D40_DREG_RCEG4,
214};
215
216#define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
217
218static u32 d40_backup_regs_v4b[] = {
219	D40_DREG_CPSEG1,
220	D40_DREG_CPSEG2,
221	D40_DREG_CPSEG3,
222	D40_DREG_CPSEG4,
223	D40_DREG_CPSEG5,
224	D40_DREG_CPCEG1,
225	D40_DREG_CPCEG2,
226	D40_DREG_CPCEG3,
227	D40_DREG_CPCEG4,
228	D40_DREG_CPCEG5,
229	D40_DREG_CRSEG1,
230	D40_DREG_CRSEG2,
231	D40_DREG_CRSEG3,
232	D40_DREG_CRSEG4,
233	D40_DREG_CRSEG5,
234	D40_DREG_CRCEG1,
235	D40_DREG_CRCEG2,
236	D40_DREG_CRCEG3,
237	D40_DREG_CRCEG4,
238	D40_DREG_CRCEG5,
239};
240
241#define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
242
243static __maybe_unused u32 d40_backup_regs_chan[] = {
244	D40_CHAN_REG_SSCFG,
245	D40_CHAN_REG_SSELT,
246	D40_CHAN_REG_SSPTR,
247	D40_CHAN_REG_SSLNK,
248	D40_CHAN_REG_SDCFG,
249	D40_CHAN_REG_SDELT,
250	D40_CHAN_REG_SDPTR,
251	D40_CHAN_REG_SDLNK,
252};
253
254#define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
255			     BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)
256
257/**
258 * struct d40_interrupt_lookup - lookup table for interrupt handler
259 *
260 * @src: Interrupt mask register.
261 * @clr: Interrupt clear register.
262 * @is_error: true if this is an error interrupt.
263 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
264 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
265 */
266struct d40_interrupt_lookup {
267	u32 src;
268	u32 clr;
269	bool is_error;
270	int offset;
271};
272
273
274static struct d40_interrupt_lookup il_v4a[] = {
275	{D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
276	{D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
277	{D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
278	{D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
279	{D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
280	{D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
281	{D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
282	{D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
283	{D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
284	{D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
285};
286
287static struct d40_interrupt_lookup il_v4b[] = {
288	{D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false,  0},
289	{D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
290	{D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
291	{D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
292	{D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
293	{D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true,   0},
294	{D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true,  32},
295	{D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true,  64},
296	{D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true,  96},
297	{D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true,  128},
298	{D40_DREG_CPCTIS,  D40_DREG_CPCICR,  false, D40_PHY_CHAN},
299	{D40_DREG_CPCEIS,  D40_DREG_CPCICR,  true,  D40_PHY_CHAN},
300};
301
302/**
303 * struct d40_reg_val - simple lookup struct
304 *
305 * @reg: The register.
306 * @val: The value that belongs to the register in reg.
307 */
308struct d40_reg_val {
309	unsigned int reg;
310	unsigned int val;
311};
312
313static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
314	/* Clock every part of the DMA block from start */
315	{ .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
316
317	/* Interrupts on all logical channels */
318	{ .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
319	{ .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
320	{ .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
321	{ .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
322	{ .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
323	{ .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
324	{ .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
325	{ .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
326	{ .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
327	{ .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
328	{ .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
329	{ .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
330};
331static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
332	/* Clock every part of the DMA block from start */
333	{ .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
334
335	/* Interrupts on all logical channels */
336	{ .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
337	{ .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
338	{ .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
339	{ .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
340	{ .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
341	{ .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
342	{ .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
343	{ .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
344	{ .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
345	{ .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
346	{ .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
347	{ .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
348	{ .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
349	{ .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
350	{ .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
351};
352
353/**
354 * struct d40_lli_pool - Structure for keeping LLIs in memory
355 *
356 * @base: Pointer to memory area when the pre_alloc_lli's are not large
357 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
358 * pre_alloc_lli is used.
359 * @dma_addr: DMA address, if mapped
360 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
361 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
362 * one buffer to one buffer.
363 */
364struct d40_lli_pool {
365	void	*base;
366	int	 size;
367	dma_addr_t	dma_addr;
368	/* Space for dst and src, plus an extra for padding */
369	u8	 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
370};
371
372/**
373 * struct d40_desc - A descriptor is one DMA job.
374 *
375 * @lli_phy: LLI settings for physical channel. Both src and dst=
376 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
377 * lli_len equals one.
378 * @lli_log: Same as above but for logical channels.
379 * @lli_pool: The pool with two entries pre-allocated.
380 * @lli_len: Number of llis of current descriptor.
381 * @lli_current: Number of transferred llis.
382 * @lcla_alloc: Number of LCLA entries allocated.
383 * @txd: DMA engine struct. Used for among other things for communication
384 * during a transfer.
385 * @node: List entry.
386 * @is_in_client_list: true if the client owns this descriptor.
387 * @cyclic: true if this is a cyclic job
388 *
389 * This descriptor is used for both logical and physical transfers.
390 */
391struct d40_desc {
392	/* LLI physical */
393	struct d40_phy_lli_bidir	 lli_phy;
394	/* LLI logical */
395	struct d40_log_lli_bidir	 lli_log;
396
397	struct d40_lli_pool		 lli_pool;
398	int				 lli_len;
399	int				 lli_current;
400	int				 lcla_alloc;
401
402	struct dma_async_tx_descriptor	 txd;
403	struct list_head		 node;
404
405	bool				 is_in_client_list;
406	bool				 cyclic;
407};
408
409/**
410 * struct d40_lcla_pool - LCLA pool settings and data.
411 *
412 * @base: The virtual address of LCLA. 18 bit aligned.
413 * @dma_addr: DMA address, if mapped
414 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
415 * This pointer is only there for clean-up on error.
416 * @pages: The number of pages needed for all physical channels.
417 * Only used later for clean-up on error
418 * @lock: Lock to protect the content in this struct.
419 * @alloc_map: big map over which LCLA entry is own by which job.
420 */
421struct d40_lcla_pool {
422	void		*base;
423	dma_addr_t	dma_addr;
424	void		*base_unaligned;
425	int		 pages;
426	spinlock_t	 lock;
427	struct d40_desc	**alloc_map;
428};
429
430/**
431 * struct d40_phy_res - struct for handling eventlines mapped to physical
432 * channels.
433 *
434 * @lock: A lock protection this entity.
435 * @reserved: True if used by secure world or otherwise.
436 * @num: The physical channel number of this entity.
437 * @allocated_src: Bit mapped to show which src event line's are mapped to
438 * this physical channel. Can also be free or physically allocated.
439 * @allocated_dst: Same as for src but is dst.
440 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
441 * event line number.
442 * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
443 */
444struct d40_phy_res {
445	spinlock_t lock;
446	bool	   reserved;
447	int	   num;
448	u32	   allocated_src;
449	u32	   allocated_dst;
450	bool	   use_soft_lli;
451};
452
453struct d40_base;
454
455/**
456 * struct d40_chan - Struct that describes a channel.
457 *
458 * @lock: A spinlock to protect this struct.
459 * @log_num: The logical number, if any of this channel.
460 * @pending_tx: The number of pending transfers. Used between interrupt handler
461 * and tasklet.
462 * @busy: Set to true when transfer is ongoing on this channel.
463 * @phy_chan: Pointer to physical channel which this instance runs on. If this
464 * point is NULL, then the channel is not allocated.
465 * @chan: DMA engine handle.
466 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
467 * transfer and call client callback.
468 * @client: Cliented owned descriptor list.
469 * @pending_queue: Submitted jobs, to be issued by issue_pending()
470 * @active: Active descriptor.
471 * @done: Completed jobs
472 * @queue: Queued jobs.
473 * @prepare_queue: Prepared jobs.
474 * @dma_cfg: The client configuration of this dma channel.
475 * @slave_config: DMA slave configuration.
476 * @configured: whether the dma_cfg configuration is valid
477 * @base: Pointer to the device instance struct.
478 * @src_def_cfg: Default cfg register setting for src.
479 * @dst_def_cfg: Default cfg register setting for dst.
480 * @log_def: Default logical channel settings.
481 * @lcpa: Pointer to dst and src lcpa settings.
482 * @runtime_addr: runtime configured address.
483 * @runtime_direction: runtime configured direction.
484 *
485 * This struct can either "be" a logical or a physical channel.
486 */
487struct d40_chan {
488	spinlock_t			 lock;
489	int				 log_num;
490	int				 pending_tx;
491	bool				 busy;
492	struct d40_phy_res		*phy_chan;
493	struct dma_chan			 chan;
494	struct tasklet_struct		 tasklet;
495	struct list_head		 client;
496	struct list_head		 pending_queue;
497	struct list_head		 active;
498	struct list_head		 done;
499	struct list_head		 queue;
500	struct list_head		 prepare_queue;
501	struct stedma40_chan_cfg	 dma_cfg;
502	struct dma_slave_config		 slave_config;
503	bool				 configured;
504	struct d40_base			*base;
505	/* Default register configurations */
506	u32				 src_def_cfg;
507	u32				 dst_def_cfg;
508	struct d40_def_lcsp		 log_def;
509	struct d40_log_lli_full		*lcpa;
510	/* Runtime reconfiguration */
511	dma_addr_t			runtime_addr;
512	enum dma_transfer_direction	runtime_direction;
513};
514
515/**
516 * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
517 * controller
518 *
519 * @backup: the pointer to the registers address array for backup
520 * @backup_size: the size of the registers address array for backup
521 * @realtime_en: the realtime enable register
522 * @realtime_clear: the realtime clear register
523 * @high_prio_en: the high priority enable register
524 * @high_prio_clear: the high priority clear register
525 * @interrupt_en: the interrupt enable register
526 * @interrupt_clear: the interrupt clear register
527 * @il: the pointer to struct d40_interrupt_lookup
528 * @il_size: the size of d40_interrupt_lookup array
529 * @init_reg: the pointer to the struct d40_reg_val
530 * @init_reg_size: the size of d40_reg_val array
531 */
532struct d40_gen_dmac {
533	u32				*backup;
534	u32				 backup_size;
535	u32				 realtime_en;
536	u32				 realtime_clear;
537	u32				 high_prio_en;
538	u32				 high_prio_clear;
539	u32				 interrupt_en;
540	u32				 interrupt_clear;
541	struct d40_interrupt_lookup	*il;
542	u32				 il_size;
543	struct d40_reg_val		*init_reg;
544	u32				 init_reg_size;
545};
546
547/**
548 * struct d40_base - The big global struct, one for each probe'd instance.
549 *
550 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
551 * @execmd_lock: Lock for execute command usage since several channels share
552 * the same physical register.
553 * @dev: The device structure.
554 * @virtbase: The virtual base address of the DMA's register.
555 * @rev: silicon revision detected.
556 * @clk: Pointer to the DMA clock structure.
557 * @irq: The IRQ number.
558 * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem
559 * transfers).
560 * @num_phy_chans: The number of physical channels. Read from HW. This
561 * is the number of available channels for this driver, not counting "Secure
562 * mode" allocated physical channels.
563 * @num_log_chans: The number of logical channels. Calculated from
564 * num_phy_chans.
565 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
566 * @dma_slave: dma_device channels that can do only do slave transfers.
567 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
568 * @phy_chans: Room for all possible physical channels in system.
569 * @log_chans: Room for all possible logical channels in system.
570 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
571 * to log_chans entries.
572 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
573 * to phy_chans entries.
574 * @plat_data: Pointer to provided platform_data which is the driver
575 * configuration.
576 * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
577 * @phy_res: Vector containing all physical channels.
578 * @lcla_pool: lcla pool settings and data.
579 * @lcpa_base: The virtual mapped address of LCPA.
580 * @phy_lcpa: The physical address of the LCPA.
581 * @lcpa_size: The size of the LCPA area.
582 * @desc_slab: cache for descriptors.
583 * @reg_val_backup: Here the values of some hardware registers are stored
584 * before the DMA is powered off. They are restored when the power is back on.
585 * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
586 * later
587 * @reg_val_backup_chan: Backup data for standard channel parameter registers.
588 * @regs_interrupt: Scratch space for registers during interrupt.
589 * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
590 * @gen_dmac: the struct for generic registers values to represent u8500/8540
591 * DMA controller
592 */
593struct d40_base {
594	spinlock_t			 interrupt_lock;
595	spinlock_t			 execmd_lock;
596	struct device			 *dev;
597	void __iomem			 *virtbase;
598	u8				  rev:4;
599	struct clk			 *clk;
600	int				  irq;
601	int				  num_memcpy_chans;
602	int				  num_phy_chans;
603	int				  num_log_chans;
604	struct dma_device		  dma_both;
605	struct dma_device		  dma_slave;
606	struct dma_device		  dma_memcpy;
607	struct d40_chan			 *phy_chans;
608	struct d40_chan			 *log_chans;
609	struct d40_chan			**lookup_log_chans;
610	struct d40_chan			**lookup_phy_chans;
611	struct stedma40_platform_data	 *plat_data;
612	struct regulator		 *lcpa_regulator;
613	/* Physical half channels */
614	struct d40_phy_res		 *phy_res;
615	struct d40_lcla_pool		  lcla_pool;
616	void				 *lcpa_base;
617	dma_addr_t			  phy_lcpa;
618	resource_size_t			  lcpa_size;
619	struct kmem_cache		 *desc_slab;
620	u32				  reg_val_backup[BACKUP_REGS_SZ];
621	u32				  reg_val_backup_v4[BACKUP_REGS_SZ_MAX];
622	u32				 *reg_val_backup_chan;
623	u32				 *regs_interrupt;
624	u16				  gcc_pwr_off_mask;
625	struct d40_gen_dmac		  gen_dmac;
626};
627
628static struct device *chan2dev(struct d40_chan *d40c)
629{
630	return &d40c->chan.dev->device;
631}
632
633static bool chan_is_physical(struct d40_chan *chan)
634{
635	return chan->log_num == D40_PHY_CHAN;
636}
637
638static bool chan_is_logical(struct d40_chan *chan)
639{
640	return !chan_is_physical(chan);
641}
642
643static void __iomem *chan_base(struct d40_chan *chan)
644{
645	return chan->base->virtbase + D40_DREG_PCBASE +
646	       chan->phy_chan->num * D40_DREG_PCDELTA;
647}
648
649#define d40_err(dev, format, arg...)		\
650	dev_err(dev, "[%s] " format, __func__, ## arg)
651
652#define chan_err(d40c, format, arg...)		\
653	d40_err(chan2dev(d40c), format, ## arg)
654
655static int d40_set_runtime_config_write(struct dma_chan *chan,
656				  struct dma_slave_config *config,
657				  enum dma_transfer_direction direction);
658
659static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
660			      int lli_len)
661{
662	bool is_log = chan_is_logical(d40c);
663	u32 align;
664	void *base;
665
666	if (is_log)
667		align = sizeof(struct d40_log_lli);
668	else
669		align = sizeof(struct d40_phy_lli);
670
671	if (lli_len == 1) {
672		base = d40d->lli_pool.pre_alloc_lli;
673		d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
674		d40d->lli_pool.base = NULL;
675	} else {
676		d40d->lli_pool.size = lli_len * 2 * align;
677
678		base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
679		d40d->lli_pool.base = base;
680
681		if (d40d->lli_pool.base == NULL)
682			return -ENOMEM;
683	}
684
685	if (is_log) {
686		d40d->lli_log.src = PTR_ALIGN(base, align);
687		d40d->lli_log.dst = d40d->lli_log.src + lli_len;
688
689		d40d->lli_pool.dma_addr = 0;
690	} else {
691		d40d->lli_phy.src = PTR_ALIGN(base, align);
692		d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
693
694		d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
695							 d40d->lli_phy.src,
696							 d40d->lli_pool.size,
697							 DMA_TO_DEVICE);
698
699		if (dma_mapping_error(d40c->base->dev,
700				      d40d->lli_pool.dma_addr)) {
701			kfree(d40d->lli_pool.base);
702			d40d->lli_pool.base = NULL;
703			d40d->lli_pool.dma_addr = 0;
704			return -ENOMEM;
705		}
706	}
707
708	return 0;
709}
710
711static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
712{
713	if (d40d->lli_pool.dma_addr)
714		dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
715				 d40d->lli_pool.size, DMA_TO_DEVICE);
716
717	kfree(d40d->lli_pool.base);
718	d40d->lli_pool.base = NULL;
719	d40d->lli_pool.size = 0;
720	d40d->lli_log.src = NULL;
721	d40d->lli_log.dst = NULL;
722	d40d->lli_phy.src = NULL;
723	d40d->lli_phy.dst = NULL;
724}
725
726static int d40_lcla_alloc_one(struct d40_chan *d40c,
727			      struct d40_desc *d40d)
728{
729	unsigned long flags;
730	int i;
731	int ret = -EINVAL;
732
733	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
734
735	/*
736	 * Allocate both src and dst at the same time, therefore the half
737	 * start on 1 since 0 can't be used since zero is used as end marker.
738	 */
739	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
740		int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
741
742		if (!d40c->base->lcla_pool.alloc_map[idx]) {
743			d40c->base->lcla_pool.alloc_map[idx] = d40d;
744			d40d->lcla_alloc++;
745			ret = i;
746			break;
747		}
748	}
749
750	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
751
752	return ret;
753}
754
755static int d40_lcla_free_all(struct d40_chan *d40c,
756			     struct d40_desc *d40d)
757{
758	unsigned long flags;
759	int i;
760	int ret = -EINVAL;
761
762	if (chan_is_physical(d40c))
763		return 0;
764
765	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
766
767	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
768		int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
769
770		if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
771			d40c->base->lcla_pool.alloc_map[idx] = NULL;
772			d40d->lcla_alloc--;
773			if (d40d->lcla_alloc == 0) {
774				ret = 0;
775				break;
776			}
777		}
778	}
779
780	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
781
782	return ret;
783
784}
785
786static void d40_desc_remove(struct d40_desc *d40d)
787{
788	list_del(&d40d->node);
789}
790
791static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
792{
793	struct d40_desc *desc = NULL;
794
795	if (!list_empty(&d40c->client)) {
796		struct d40_desc *d;
797		struct d40_desc *_d;
798
799		list_for_each_entry_safe(d, _d, &d40c->client, node) {
800			if (async_tx_test_ack(&d->txd)) {
801				d40_desc_remove(d);
802				desc = d;
803				memset(desc, 0, sizeof(*desc));
804				break;
805			}
806		}
807	}
808
809	if (!desc)
810		desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
811
812	if (desc)
813		INIT_LIST_HEAD(&desc->node);
814
815	return desc;
816}
817
818static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
819{
820
821	d40_pool_lli_free(d40c, d40d);
822	d40_lcla_free_all(d40c, d40d);
823	kmem_cache_free(d40c->base->desc_slab, d40d);
824}
825
826static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
827{
828	list_add_tail(&desc->node, &d40c->active);
829}
830
831static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
832{
833	struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
834	struct d40_phy_lli *lli_src = desc->lli_phy.src;
835	void __iomem *base = chan_base(chan);
836
837	writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
838	writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
839	writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
840	writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
841
842	writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
843	writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
844	writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
845	writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
846}
847
848static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
849{
850	list_add_tail(&desc->node, &d40c->done);
851}
852
853static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
854{
855	struct d40_lcla_pool *pool = &chan->base->lcla_pool;
856	struct d40_log_lli_bidir *lli = &desc->lli_log;
857	int lli_current = desc->lli_current;
858	int lli_len = desc->lli_len;
859	bool cyclic = desc->cyclic;
860	int curr_lcla = -EINVAL;
861	int first_lcla = 0;
862	bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
863	bool linkback;
864
865	/*
866	 * We may have partially running cyclic transfers, in case we did't get
867	 * enough LCLA entries.
868	 */
869	linkback = cyclic && lli_current == 0;
870
871	/*
872	 * For linkback, we need one LCLA even with only one link, because we
873	 * can't link back to the one in LCPA space
874	 */
875	if (linkback || (lli_len - lli_current > 1)) {
876		/*
877		 * If the channel is expected to use only soft_lli don't
878		 * allocate a lcla. This is to avoid a HW issue that exists
879		 * in some controller during a peripheral to memory transfer
880		 * that uses linked lists.
881		 */
882		if (!(chan->phy_chan->use_soft_lli &&
883			chan->dma_cfg.dir == DMA_DEV_TO_MEM))
884			curr_lcla = d40_lcla_alloc_one(chan, desc);
885
886		first_lcla = curr_lcla;
887	}
888
889	/*
890	 * For linkback, we normally load the LCPA in the loop since we need to
891	 * link it to the second LCLA and not the first.  However, if we
892	 * couldn't even get a first LCLA, then we have to run in LCPA and
893	 * reload manually.
894	 */
895	if (!linkback || curr_lcla == -EINVAL) {
896		unsigned int flags = 0;
897
898		if (curr_lcla == -EINVAL)
899			flags |= LLI_TERM_INT;
900
901		d40_log_lli_lcpa_write(chan->lcpa,
902				       &lli->dst[lli_current],
903				       &lli->src[lli_current],
904				       curr_lcla,
905				       flags);
906		lli_current++;
907	}
908
909	if (curr_lcla < 0)
910		goto set_current;
911
912	for (; lli_current < lli_len; lli_current++) {
913		unsigned int lcla_offset = chan->phy_chan->num * 1024 +
914					   8 * curr_lcla * 2;
915		struct d40_log_lli *lcla = pool->base + lcla_offset;
916		unsigned int flags = 0;
917		int next_lcla;
918
919		if (lli_current + 1 < lli_len)
920			next_lcla = d40_lcla_alloc_one(chan, desc);
921		else
922			next_lcla = linkback ? first_lcla : -EINVAL;
923
924		if (cyclic || next_lcla == -EINVAL)
925			flags |= LLI_TERM_INT;
926
927		if (linkback && curr_lcla == first_lcla) {
928			/* First link goes in both LCPA and LCLA */
929			d40_log_lli_lcpa_write(chan->lcpa,
930					       &lli->dst[lli_current],
931					       &lli->src[lli_current],
932					       next_lcla, flags);
933		}
934
935		/*
936		 * One unused LCLA in the cyclic case if the very first
937		 * next_lcla fails...
938		 */
939		d40_log_lli_lcla_write(lcla,
940				       &lli->dst[lli_current],
941				       &lli->src[lli_current],
942				       next_lcla, flags);
943
944		/*
945		 * Cache maintenance is not needed if lcla is
946		 * mapped in esram
947		 */
948		if (!use_esram_lcla) {
949			dma_sync_single_range_for_device(chan->base->dev,
950						pool->dma_addr, lcla_offset,
951						2 * sizeof(struct d40_log_lli),
952						DMA_TO_DEVICE);
953		}
954		curr_lcla = next_lcla;
955
956		if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
957			lli_current++;
958			break;
959		}
960	}
961 set_current:
962	desc->lli_current = lli_current;
963}
964
965static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
966{
967	if (chan_is_physical(d40c)) {
968		d40_phy_lli_load(d40c, d40d);
969		d40d->lli_current = d40d->lli_len;
970	} else
971		d40_log_lli_to_lcxa(d40c, d40d);
972}
973
974static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
975{
976	return list_first_entry_or_null(&d40c->active, struct d40_desc, node);
977}
978
979/* remove desc from current queue and add it to the pending_queue */
980static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
981{
982	d40_desc_remove(desc);
983	desc->is_in_client_list = false;
984	list_add_tail(&desc->node, &d40c->pending_queue);
985}
986
987static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
988{
989	return list_first_entry_or_null(&d40c->pending_queue, struct d40_desc,
990					node);
991}
992
993static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
994{
995	return list_first_entry_or_null(&d40c->queue, struct d40_desc, node);
996}
997
998static struct d40_desc *d40_first_done(struct d40_chan *d40c)
999{
1000	return list_first_entry_or_null(&d40c->done, struct d40_desc, node);
1001}
1002
1003static int d40_psize_2_burst_size(bool is_log, int psize)
1004{
1005	if (is_log) {
1006		if (psize == STEDMA40_PSIZE_LOG_1)
1007			return 1;
1008	} else {
1009		if (psize == STEDMA40_PSIZE_PHY_1)
1010			return 1;
1011	}
1012
1013	return 2 << psize;
1014}
1015
1016/*
1017 * The dma only supports transmitting packages up to
1018 * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes.
1019 *
1020 * Calculate the total number of dma elements required to send the entire sg list.
1021 */
1022static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
1023{
1024	int dmalen;
1025	u32 max_w = max(data_width1, data_width2);
1026	u32 min_w = min(data_width1, data_width2);
1027	u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE * min_w, max_w);
1028
1029	if (seg_max > STEDMA40_MAX_SEG_SIZE)
1030		seg_max -= max_w;
1031
1032	if (!IS_ALIGNED(size, max_w))
1033		return -EINVAL;
1034
1035	if (size <= seg_max)
1036		dmalen = 1;
1037	else {
1038		dmalen = size / seg_max;
1039		if (dmalen * seg_max < size)
1040			dmalen++;
1041	}
1042	return dmalen;
1043}
1044
1045static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
1046			   u32 data_width1, u32 data_width2)
1047{
1048	struct scatterlist *sg;
1049	int i;
1050	int len = 0;
1051	int ret;
1052
1053	for_each_sg(sgl, sg, sg_len, i) {
1054		ret = d40_size_2_dmalen(sg_dma_len(sg),
1055					data_width1, data_width2);
1056		if (ret < 0)
1057			return ret;
1058		len += ret;
1059	}
1060	return len;
1061}
1062
1063static int __d40_execute_command_phy(struct d40_chan *d40c,
1064				     enum d40_command command)
1065{
1066	u32 status;
1067	int i;
1068	void __iomem *active_reg;
1069	int ret = 0;
1070	unsigned long flags;
1071	u32 wmask;
1072
1073	if (command == D40_DMA_STOP) {
1074		ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
1075		if (ret)
1076			return ret;
1077	}
1078
1079	spin_lock_irqsave(&d40c->base->execmd_lock, flags);
1080
1081	if (d40c->phy_chan->num % 2 == 0)
1082		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1083	else
1084		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1085
1086	if (command == D40_DMA_SUSPEND_REQ) {
1087		status = (readl(active_reg) &
1088			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1089			D40_CHAN_POS(d40c->phy_chan->num);
1090
1091		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1092			goto unlock;
1093	}
1094
1095	wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
1096	writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
1097	       active_reg);
1098
1099	if (command == D40_DMA_SUSPEND_REQ) {
1100
1101		for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
1102			status = (readl(active_reg) &
1103				  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1104				D40_CHAN_POS(d40c->phy_chan->num);
1105
1106			cpu_relax();
1107			/*
1108			 * Reduce the number of bus accesses while
1109			 * waiting for the DMA to suspend.
1110			 */
1111			udelay(3);
1112
1113			if (status == D40_DMA_STOP ||
1114			    status == D40_DMA_SUSPENDED)
1115				break;
1116		}
1117
1118		if (i == D40_SUSPEND_MAX_IT) {
1119			chan_err(d40c,
1120				"unable to suspend the chl %d (log: %d) status %x\n",
1121				d40c->phy_chan->num, d40c->log_num,
1122				status);
1123			dump_stack();
1124			ret = -EBUSY;
1125		}
1126
1127	}
1128 unlock:
1129	spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
1130	return ret;
1131}
1132
1133static void d40_term_all(struct d40_chan *d40c)
1134{
1135	struct d40_desc *d40d;
1136	struct d40_desc *_d;
1137
1138	/* Release completed descriptors */
1139	while ((d40d = d40_first_done(d40c))) {
1140		d40_desc_remove(d40d);
1141		d40_desc_free(d40c, d40d);
1142	}
1143
1144	/* Release active descriptors */
1145	while ((d40d = d40_first_active_get(d40c))) {
1146		d40_desc_remove(d40d);
1147		d40_desc_free(d40c, d40d);
1148	}
1149
1150	/* Release queued descriptors waiting for transfer */
1151	while ((d40d = d40_first_queued(d40c))) {
1152		d40_desc_remove(d40d);
1153		d40_desc_free(d40c, d40d);
1154	}
1155
1156	/* Release pending descriptors */
1157	while ((d40d = d40_first_pending(d40c))) {
1158		d40_desc_remove(d40d);
1159		d40_desc_free(d40c, d40d);
1160	}
1161
1162	/* Release client owned descriptors */
1163	if (!list_empty(&d40c->client))
1164		list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
1165			d40_desc_remove(d40d);
1166			d40_desc_free(d40c, d40d);
1167		}
1168
1169	/* Release descriptors in prepare queue */
1170	if (!list_empty(&d40c->prepare_queue))
1171		list_for_each_entry_safe(d40d, _d,
1172					 &d40c->prepare_queue, node) {
1173			d40_desc_remove(d40d);
1174			d40_desc_free(d40c, d40d);
1175		}
1176
1177	d40c->pending_tx = 0;
1178}
1179
1180static void __d40_config_set_event(struct d40_chan *d40c,
1181				   enum d40_events event_type, u32 event,
1182				   int reg)
1183{
1184	void __iomem *addr = chan_base(d40c) + reg;
1185	int tries;
1186	u32 status;
1187
1188	switch (event_type) {
1189
1190	case D40_DEACTIVATE_EVENTLINE:
1191
1192		writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
1193		       | ~D40_EVENTLINE_MASK(event), addr);
1194		break;
1195
1196	case D40_SUSPEND_REQ_EVENTLINE:
1197		status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1198			  D40_EVENTLINE_POS(event);
1199
1200		if (status == D40_DEACTIVATE_EVENTLINE ||
1201		    status == D40_SUSPEND_REQ_EVENTLINE)
1202			break;
1203
1204		writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
1205		       | ~D40_EVENTLINE_MASK(event), addr);
1206
1207		for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
1208
1209			status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1210				  D40_EVENTLINE_POS(event);
1211
1212			cpu_relax();
1213			/*
1214			 * Reduce the number of bus accesses while
1215			 * waiting for the DMA to suspend.
1216			 */
1217			udelay(3);
1218
1219			if (status == D40_DEACTIVATE_EVENTLINE)
1220				break;
1221		}
1222
1223		if (tries == D40_SUSPEND_MAX_IT) {
1224			chan_err(d40c,
1225				"unable to stop the event_line chl %d (log: %d)"
1226				"status %x\n", d40c->phy_chan->num,
1227				 d40c->log_num, status);
1228		}
1229		break;
1230
1231	case D40_ACTIVATE_EVENTLINE:
1232	/*
1233	 * The hardware sometimes doesn't register the enable when src and dst
1234	 * event lines are active on the same logical channel.  Retry to ensure
1235	 * it does.  Usually only one retry is sufficient.
1236	 */
1237		tries = 100;
1238		while (--tries) {
1239			writel((D40_ACTIVATE_EVENTLINE <<
1240				D40_EVENTLINE_POS(event)) |
1241				~D40_EVENTLINE_MASK(event), addr);
1242
1243			if (readl(addr) & D40_EVENTLINE_MASK(event))
1244				break;
1245		}
1246
1247		if (tries != 99)
1248			dev_dbg(chan2dev(d40c),
1249				"[%s] workaround enable S%cLNK (%d tries)\n",
1250				__func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
1251				100 - tries);
1252
1253		WARN_ON(!tries);
1254		break;
1255
1256	case D40_ROUND_EVENTLINE:
1257		BUG();
1258		break;
1259
1260	}
1261}
1262
1263static void d40_config_set_event(struct d40_chan *d40c,
1264				 enum d40_events event_type)
1265{
1266	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1267
1268	/* Enable event line connected to device (or memcpy) */
1269	if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
1270	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
1271		__d40_config_set_event(d40c, event_type, event,
1272				       D40_CHAN_REG_SSLNK);
1273
1274	if (d40c->dma_cfg.dir !=  DMA_DEV_TO_MEM)
1275		__d40_config_set_event(d40c, event_type, event,
1276				       D40_CHAN_REG_SDLNK);
1277}
1278
1279static u32 d40_chan_has_events(struct d40_chan *d40c)
1280{
1281	void __iomem *chanbase = chan_base(d40c);
1282	u32 val;
1283
1284	val = readl(chanbase + D40_CHAN_REG_SSLNK);
1285	val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1286
1287	return val;
1288}
1289
1290static int
1291__d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
1292{
1293	unsigned long flags;
1294	int ret = 0;
1295	u32 active_status;
1296	void __iomem *active_reg;
1297
1298	if (d40c->phy_chan->num % 2 == 0)
1299		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1300	else
1301		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1302
1303
1304	spin_lock_irqsave(&d40c->phy_chan->lock, flags);
1305
1306	switch (command) {
1307	case D40_DMA_STOP:
1308	case D40_DMA_SUSPEND_REQ:
1309
1310		active_status = (readl(active_reg) &
1311				 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1312				 D40_CHAN_POS(d40c->phy_chan->num);
1313
1314		if (active_status == D40_DMA_RUN)
1315			d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
1316		else
1317			d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
1318
1319		if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
1320			ret = __d40_execute_command_phy(d40c, command);
1321
1322		break;
1323
1324	case D40_DMA_RUN:
1325
1326		d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
1327		ret = __d40_execute_command_phy(d40c, command);
1328		break;
1329
1330	case D40_DMA_SUSPENDED:
1331		BUG();
1332		break;
1333	}
1334
1335	spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
1336	return ret;
1337}
1338
1339static int d40_channel_execute_command(struct d40_chan *d40c,
1340				       enum d40_command command)
1341{
1342	if (chan_is_logical(d40c))
1343		return __d40_execute_command_log(d40c, command);
1344	else
1345		return __d40_execute_command_phy(d40c, command);
1346}
1347
1348static u32 d40_get_prmo(struct d40_chan *d40c)
1349{
1350	static const unsigned int phy_map[] = {
1351		[STEDMA40_PCHAN_BASIC_MODE]
1352			= D40_DREG_PRMO_PCHAN_BASIC,
1353		[STEDMA40_PCHAN_MODULO_MODE]
1354			= D40_DREG_PRMO_PCHAN_MODULO,
1355		[STEDMA40_PCHAN_DOUBLE_DST_MODE]
1356			= D40_DREG_PRMO_PCHAN_DOUBLE_DST,
1357	};
1358	static const unsigned int log_map[] = {
1359		[STEDMA40_LCHAN_SRC_PHY_DST_LOG]
1360			= D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
1361		[STEDMA40_LCHAN_SRC_LOG_DST_PHY]
1362			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
1363		[STEDMA40_LCHAN_SRC_LOG_DST_LOG]
1364			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
1365	};
1366
1367	if (chan_is_physical(d40c))
1368		return phy_map[d40c->dma_cfg.mode_opt];
1369	else
1370		return log_map[d40c->dma_cfg.mode_opt];
1371}
1372
1373static void d40_config_write(struct d40_chan *d40c)
1374{
1375	u32 addr_base;
1376	u32 var;
1377
1378	/* Odd addresses are even addresses + 4 */
1379	addr_base = (d40c->phy_chan->num % 2) * 4;
1380	/* Setup channel mode to logical or physical */
1381	var = ((u32)(chan_is_logical(d40c)) + 1) <<
1382		D40_CHAN_POS(d40c->phy_chan->num);
1383	writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
1384
1385	/* Setup operational mode option register */
1386	var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1387
1388	writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
1389
1390	if (chan_is_logical(d40c)) {
1391		int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
1392			   & D40_SREG_ELEM_LOG_LIDX_MASK;
1393		void __iomem *chanbase = chan_base(d40c);
1394
1395		/* Set default config for CFG reg */
1396		writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
1397		writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1398
1399		/* Set LIDX for lcla */
1400		writel(lidx, chanbase + D40_CHAN_REG_SSELT);
1401		writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1402
1403		/* Clear LNK which will be used by d40_chan_has_events() */
1404		writel(0, chanbase + D40_CHAN_REG_SSLNK);
1405		writel(0, chanbase + D40_CHAN_REG_SDLNK);
1406	}
1407}
1408
1409static u32 d40_residue(struct d40_chan *d40c)
1410{
1411	u32 num_elt;
1412
1413	if (chan_is_logical(d40c))
1414		num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
1415			>> D40_MEM_LCSP2_ECNT_POS;
1416	else {
1417		u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
1418		num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
1419			  >> D40_SREG_ELEM_PHY_ECNT_POS;
1420	}
1421
1422	return num_elt * d40c->dma_cfg.dst_info.data_width;
1423}
1424
1425static bool d40_tx_is_linked(struct d40_chan *d40c)
1426{
1427	bool is_link;
1428
1429	if (chan_is_logical(d40c))
1430		is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
1431	else
1432		is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
1433			  & D40_SREG_LNK_PHYS_LNK_MASK;
1434
1435	return is_link;
1436}
1437
1438static int d40_pause(struct dma_chan *chan)
1439{
1440	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1441	int res = 0;
1442	unsigned long flags;
1443
1444	if (d40c->phy_chan == NULL) {
1445		chan_err(d40c, "Channel is not allocated!\n");
1446		return -EINVAL;
1447	}
1448
1449	if (!d40c->busy)
1450		return 0;
1451
1452	spin_lock_irqsave(&d40c->lock, flags);
1453	pm_runtime_get_sync(d40c->base->dev);
1454
1455	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1456
1457	pm_runtime_mark_last_busy(d40c->base->dev);
1458	pm_runtime_put_autosuspend(d40c->base->dev);
1459	spin_unlock_irqrestore(&d40c->lock, flags);
1460	return res;
1461}
1462
1463static int d40_resume(struct dma_chan *chan)
1464{
1465	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1466	int res = 0;
1467	unsigned long flags;
1468
1469	if (d40c->phy_chan == NULL) {
1470		chan_err(d40c, "Channel is not allocated!\n");
1471		return -EINVAL;
1472	}
1473
1474	if (!d40c->busy)
1475		return 0;
1476
1477	spin_lock_irqsave(&d40c->lock, flags);
1478	pm_runtime_get_sync(d40c->base->dev);
1479
1480	/* If bytes left to transfer or linked tx resume job */
1481	if (d40_residue(d40c) || d40_tx_is_linked(d40c))
1482		res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1483
1484	pm_runtime_mark_last_busy(d40c->base->dev);
1485	pm_runtime_put_autosuspend(d40c->base->dev);
1486	spin_unlock_irqrestore(&d40c->lock, flags);
1487	return res;
1488}
1489
1490static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1491{
1492	struct d40_chan *d40c = container_of(tx->chan,
1493					     struct d40_chan,
1494					     chan);
1495	struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1496	unsigned long flags;
1497	dma_cookie_t cookie;
1498
1499	spin_lock_irqsave(&d40c->lock, flags);
1500	cookie = dma_cookie_assign(tx);
1501	d40_desc_queue(d40c, d40d);
1502	spin_unlock_irqrestore(&d40c->lock, flags);
1503
1504	return cookie;
1505}
1506
1507static int d40_start(struct d40_chan *d40c)
1508{
1509	return d40_channel_execute_command(d40c, D40_DMA_RUN);
1510}
1511
1512static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1513{
1514	struct d40_desc *d40d;
1515	int err;
1516
1517	/* Start queued jobs, if any */
1518	d40d = d40_first_queued(d40c);
1519
1520	if (d40d != NULL) {
1521		if (!d40c->busy) {
1522			d40c->busy = true;
1523			pm_runtime_get_sync(d40c->base->dev);
1524		}
1525
1526		/* Remove from queue */
1527		d40_desc_remove(d40d);
1528
1529		/* Add to active queue */
1530		d40_desc_submit(d40c, d40d);
1531
1532		/* Initiate DMA job */
1533		d40_desc_load(d40c, d40d);
1534
1535		/* Start dma job */
1536		err = d40_start(d40c);
1537
1538		if (err)
1539			return NULL;
1540	}
1541
1542	return d40d;
1543}
1544
1545/* called from interrupt context */
1546static void dma_tc_handle(struct d40_chan *d40c)
1547{
1548	struct d40_desc *d40d;
1549
1550	/* Get first active entry from list */
1551	d40d = d40_first_active_get(d40c);
1552
1553	if (d40d == NULL)
1554		return;
1555
1556	if (d40d->cyclic) {
1557		/*
1558		 * If this was a paritially loaded list, we need to reloaded
1559		 * it, and only when the list is completed.  We need to check
1560		 * for done because the interrupt will hit for every link, and
1561		 * not just the last one.
1562		 */
1563		if (d40d->lli_current < d40d->lli_len
1564		    && !d40_tx_is_linked(d40c)
1565		    && !d40_residue(d40c)) {
1566			d40_lcla_free_all(d40c, d40d);
1567			d40_desc_load(d40c, d40d);
1568			(void) d40_start(d40c);
1569
1570			if (d40d->lli_current == d40d->lli_len)
1571				d40d->lli_current = 0;
1572		}
1573	} else {
1574		d40_lcla_free_all(d40c, d40d);
1575
1576		if (d40d->lli_current < d40d->lli_len) {
1577			d40_desc_load(d40c, d40d);
1578			/* Start dma job */
1579			(void) d40_start(d40c);
1580			return;
1581		}
1582
1583		if (d40_queue_start(d40c) == NULL) {
1584			d40c->busy = false;
1585
1586			pm_runtime_mark_last_busy(d40c->base->dev);
1587			pm_runtime_put_autosuspend(d40c->base->dev);
1588		}
1589
1590		d40_desc_remove(d40d);
1591		d40_desc_done(d40c, d40d);
1592	}
1593
1594	d40c->pending_tx++;
1595	tasklet_schedule(&d40c->tasklet);
1596
1597}
1598
1599static void dma_tasklet(struct tasklet_struct *t)
1600{
1601	struct d40_chan *d40c = from_tasklet(d40c, t, tasklet);
1602	struct d40_desc *d40d;
1603	unsigned long flags;
1604	bool callback_active;
1605	struct dmaengine_desc_callback cb;
1606
1607	spin_lock_irqsave(&d40c->lock, flags);
1608
1609	/* Get first entry from the done list */
1610	d40d = d40_first_done(d40c);
1611	if (d40d == NULL) {
1612		/* Check if we have reached here for cyclic job */
1613		d40d = d40_first_active_get(d40c);
1614		if (d40d == NULL || !d40d->cyclic)
1615			goto check_pending_tx;
1616	}
1617
1618	if (!d40d->cyclic)
1619		dma_cookie_complete(&d40d->txd);
1620
1621	/*
1622	 * If terminating a channel pending_tx is set to zero.
1623	 * This prevents any finished active jobs to return to the client.
1624	 */
1625	if (d40c->pending_tx == 0) {
1626		spin_unlock_irqrestore(&d40c->lock, flags);
1627		return;
1628	}
1629
1630	/* Callback to client */
1631	callback_active = !!(d40d->txd.flags & DMA_PREP_INTERRUPT);
1632	dmaengine_desc_get_callback(&d40d->txd, &cb);
1633
1634	if (!d40d->cyclic) {
1635		if (async_tx_test_ack(&d40d->txd)) {
1636			d40_desc_remove(d40d);
1637			d40_desc_free(d40c, d40d);
1638		} else if (!d40d->is_in_client_list) {
1639			d40_desc_remove(d40d);
1640			d40_lcla_free_all(d40c, d40d);
1641			list_add_tail(&d40d->node, &d40c->client);
1642			d40d->is_in_client_list = true;
1643		}
1644	}
1645
1646	d40c->pending_tx--;
1647
1648	if (d40c->pending_tx)
1649		tasklet_schedule(&d40c->tasklet);
1650
1651	spin_unlock_irqrestore(&d40c->lock, flags);
1652
1653	if (callback_active)
1654		dmaengine_desc_callback_invoke(&cb, NULL);
1655
1656	return;
1657 check_pending_tx:
1658	/* Rescue manouver if receiving double interrupts */
1659	if (d40c->pending_tx > 0)
1660		d40c->pending_tx--;
1661	spin_unlock_irqrestore(&d40c->lock, flags);
1662}
1663
1664static irqreturn_t d40_handle_interrupt(int irq, void *data)
1665{
1666	int i;
1667	u32 idx;
1668	u32 row;
1669	long chan = -1;
1670	struct d40_chan *d40c;
1671	struct d40_base *base = data;
1672	u32 *regs = base->regs_interrupt;
1673	struct d40_interrupt_lookup *il = base->gen_dmac.il;
1674	u32 il_size = base->gen_dmac.il_size;
1675
1676	spin_lock(&base->interrupt_lock);
1677
1678	/* Read interrupt status of both logical and physical channels */
1679	for (i = 0; i < il_size; i++)
1680		regs[i] = readl(base->virtbase + il[i].src);
1681
1682	for (;;) {
1683
1684		chan = find_next_bit((unsigned long *)regs,
1685				     BITS_PER_LONG * il_size, chan + 1);
1686
1687		/* No more set bits found? */
1688		if (chan == BITS_PER_LONG * il_size)
1689			break;
1690
1691		row = chan / BITS_PER_LONG;
1692		idx = chan & (BITS_PER_LONG - 1);
1693
1694		if (il[row].offset == D40_PHY_CHAN)
1695			d40c = base->lookup_phy_chans[idx];
1696		else
1697			d40c = base->lookup_log_chans[il[row].offset + idx];
1698
1699		if (!d40c) {
1700			/*
1701			 * No error because this can happen if something else
1702			 * in the system is using the channel.
1703			 */
1704			continue;
1705		}
1706
1707		/* ACK interrupt */
1708		writel(BIT(idx), base->virtbase + il[row].clr);
1709
1710		spin_lock(&d40c->lock);
1711
1712		if (!il[row].is_error)
1713			dma_tc_handle(d40c);
1714		else
1715			d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1716				chan, il[row].offset, idx);
1717
1718		spin_unlock(&d40c->lock);
1719	}
1720
1721	spin_unlock(&base->interrupt_lock);
1722
1723	return IRQ_HANDLED;
1724}
1725
1726static int d40_validate_conf(struct d40_chan *d40c,
1727			     struct stedma40_chan_cfg *conf)
1728{
1729	int res = 0;
1730	bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1731
1732	if (!conf->dir) {
1733		chan_err(d40c, "Invalid direction.\n");
1734		res = -EINVAL;
1735	}
1736
1737	if ((is_log && conf->dev_type > d40c->base->num_log_chans)  ||
1738	    (!is_log && conf->dev_type > d40c->base->num_phy_chans) ||
1739	    (conf->dev_type < 0)) {
1740		chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type);
1741		res = -EINVAL;
1742	}
1743
1744	if (conf->dir == DMA_DEV_TO_DEV) {
1745		/*
1746		 * DMAC HW supports it. Will be added to this driver,
1747		 * in case any dma client requires it.
1748		 */
1749		chan_err(d40c, "periph to periph not supported\n");
1750		res = -EINVAL;
1751	}
1752
1753	if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1754	    conf->src_info.data_width !=
1755	    d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1756	    conf->dst_info.data_width) {
1757		/*
1758		 * The DMAC hardware only supports
1759		 * src (burst x width) == dst (burst x width)
1760		 */
1761
1762		chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1763		res = -EINVAL;
1764	}
1765
1766	return res;
1767}
1768
1769static bool d40_alloc_mask_set(struct d40_phy_res *phy,
1770			       bool is_src, int log_event_line, bool is_log,
1771			       bool *first_user)
1772{
1773	unsigned long flags;
1774	spin_lock_irqsave(&phy->lock, flags);
1775
1776	*first_user = ((phy->allocated_src | phy->allocated_dst)
1777			== D40_ALLOC_FREE);
1778
1779	if (!is_log) {
1780		/* Physical interrupts are masked per physical full channel */
1781		if (phy->allocated_src == D40_ALLOC_FREE &&
1782		    phy->allocated_dst == D40_ALLOC_FREE) {
1783			phy->allocated_dst = D40_ALLOC_PHY;
1784			phy->allocated_src = D40_ALLOC_PHY;
1785			goto found_unlock;
1786		} else
1787			goto not_found_unlock;
1788	}
1789
1790	/* Logical channel */
1791	if (is_src) {
1792		if (phy->allocated_src == D40_ALLOC_PHY)
1793			goto not_found_unlock;
1794
1795		if (phy->allocated_src == D40_ALLOC_FREE)
1796			phy->allocated_src = D40_ALLOC_LOG_FREE;
1797
1798		if (!(phy->allocated_src & BIT(log_event_line))) {
1799			phy->allocated_src |= BIT(log_event_line);
1800			goto found_unlock;
1801		} else
1802			goto not_found_unlock;
1803	} else {
1804		if (phy->allocated_dst == D40_ALLOC_PHY)
1805			goto not_found_unlock;
1806
1807		if (phy->allocated_dst == D40_ALLOC_FREE)
1808			phy->allocated_dst = D40_ALLOC_LOG_FREE;
1809
1810		if (!(phy->allocated_dst & BIT(log_event_line))) {
1811			phy->allocated_dst |= BIT(log_event_line);
1812			goto found_unlock;
1813		}
1814	}
1815 not_found_unlock:
1816	spin_unlock_irqrestore(&phy->lock, flags);
1817	return false;
1818 found_unlock:
1819	spin_unlock_irqrestore(&phy->lock, flags);
1820	return true;
1821}
1822
1823static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1824			       int log_event_line)
1825{
1826	unsigned long flags;
1827	bool is_free = false;
1828
1829	spin_lock_irqsave(&phy->lock, flags);
1830	if (!log_event_line) {
1831		phy->allocated_dst = D40_ALLOC_FREE;
1832		phy->allocated_src = D40_ALLOC_FREE;
1833		is_free = true;
1834		goto unlock;
1835	}
1836
1837	/* Logical channel */
1838	if (is_src) {
1839		phy->allocated_src &= ~BIT(log_event_line);
1840		if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1841			phy->allocated_src = D40_ALLOC_FREE;
1842	} else {
1843		phy->allocated_dst &= ~BIT(log_event_line);
1844		if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1845			phy->allocated_dst = D40_ALLOC_FREE;
1846	}
1847
1848	is_free = ((phy->allocated_src | phy->allocated_dst) ==
1849		   D40_ALLOC_FREE);
1850 unlock:
1851	spin_unlock_irqrestore(&phy->lock, flags);
1852
1853	return is_free;
1854}
1855
1856static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
1857{
1858	int dev_type = d40c->dma_cfg.dev_type;
1859	int event_group;
1860	int event_line;
1861	struct d40_phy_res *phys;
1862	int i;
1863	int j;
1864	int log_num;
1865	int num_phy_chans;
1866	bool is_src;
1867	bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1868
1869	phys = d40c->base->phy_res;
1870	num_phy_chans = d40c->base->num_phy_chans;
1871
1872	if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
1873		log_num = 2 * dev_type;
1874		is_src = true;
1875	} else if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
1876		   d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1877		/* dst event lines are used for logical memcpy */
1878		log_num = 2 * dev_type + 1;
1879		is_src = false;
1880	} else
1881		return -EINVAL;
1882
1883	event_group = D40_TYPE_TO_GROUP(dev_type);
1884	event_line = D40_TYPE_TO_EVENT(dev_type);
1885
1886	if (!is_log) {
1887		if (d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1888			/* Find physical half channel */
1889			if (d40c->dma_cfg.use_fixed_channel) {
1890				i = d40c->dma_cfg.phy_channel;
1891				if (d40_alloc_mask_set(&phys[i], is_src,
1892						       0, is_log,
1893						       first_phy_user))
1894					goto found_phy;
1895			} else {
1896				for (i = 0; i < num_phy_chans; i++) {
1897					if (d40_alloc_mask_set(&phys[i], is_src,
1898						       0, is_log,
1899						       first_phy_user))
1900						goto found_phy;
1901				}
1902			}
1903		} else
1904			for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1905				int phy_num = j  + event_group * 2;
1906				for (i = phy_num; i < phy_num + 2; i++) {
1907					if (d40_alloc_mask_set(&phys[i],
1908							       is_src,
1909							       0,
1910							       is_log,
1911							       first_phy_user))
1912						goto found_phy;
1913				}
1914			}
1915		return -EINVAL;
1916found_phy:
1917		d40c->phy_chan = &phys[i];
1918		d40c->log_num = D40_PHY_CHAN;
1919		goto out;
1920	}
1921	if (dev_type == -1)
1922		return -EINVAL;
1923
1924	/* Find logical channel */
1925	for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1926		int phy_num = j + event_group * 2;
1927
1928		if (d40c->dma_cfg.use_fixed_channel) {
1929			i = d40c->dma_cfg.phy_channel;
1930
1931			if ((i != phy_num) && (i != phy_num + 1)) {
1932				dev_err(chan2dev(d40c),
1933					"invalid fixed phy channel %d\n", i);
1934				return -EINVAL;
1935			}
1936
1937			if (d40_alloc_mask_set(&phys[i], is_src, event_line,
1938					       is_log, first_phy_user))
1939				goto found_log;
1940
1941			dev_err(chan2dev(d40c),
1942				"could not allocate fixed phy channel %d\n", i);
1943			return -EINVAL;
1944		}
1945
1946		/*
1947		 * Spread logical channels across all available physical rather
1948		 * than pack every logical channel at the first available phy
1949		 * channels.
1950		 */
1951		if (is_src) {
1952			for (i = phy_num; i < phy_num + 2; i++) {
1953				if (d40_alloc_mask_set(&phys[i], is_src,
1954						       event_line, is_log,
1955						       first_phy_user))
1956					goto found_log;
1957			}
1958		} else {
1959			for (i = phy_num + 1; i >= phy_num; i--) {
1960				if (d40_alloc_mask_set(&phys[i], is_src,
1961						       event_line, is_log,
1962						       first_phy_user))
1963					goto found_log;
1964			}
1965		}
1966	}
1967	return -EINVAL;
1968
1969found_log:
1970	d40c->phy_chan = &phys[i];
1971	d40c->log_num = log_num;
1972out:
1973
1974	if (is_log)
1975		d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1976	else
1977		d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1978
1979	return 0;
1980
1981}
1982
1983static int d40_config_memcpy(struct d40_chan *d40c)
1984{
1985	dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1986
1987	if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1988		d40c->dma_cfg = dma40_memcpy_conf_log;
1989		d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id];
1990
1991		d40_log_cfg(&d40c->dma_cfg,
1992			    &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
1993
1994	} else if (dma_has_cap(DMA_MEMCPY, cap) &&
1995		   dma_has_cap(DMA_SLAVE, cap)) {
1996		d40c->dma_cfg = dma40_memcpy_conf_phy;
1997
1998		/* Generate interrupt at end of transfer or relink. */
1999		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_TIM_POS);
2000
2001		/* Generate interrupt on error. */
2002		d40c->src_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
2003		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
2004
2005	} else {
2006		chan_err(d40c, "No memcpy\n");
2007		return -EINVAL;
2008	}
2009
2010	return 0;
2011}
2012
2013static int d40_free_dma(struct d40_chan *d40c)
2014{
2015
2016	int res = 0;
2017	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2018	struct d40_phy_res *phy = d40c->phy_chan;
2019	bool is_src;
2020
2021	/* Terminate all queued and active transfers */
2022	d40_term_all(d40c);
2023
2024	if (phy == NULL) {
2025		chan_err(d40c, "phy == null\n");
2026		return -EINVAL;
2027	}
2028
2029	if (phy->allocated_src == D40_ALLOC_FREE &&
2030	    phy->allocated_dst == D40_ALLOC_FREE) {
2031		chan_err(d40c, "channel already free\n");
2032		return -EINVAL;
2033	}
2034
2035	if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2036	    d40c->dma_cfg.dir == DMA_MEM_TO_MEM)
2037		is_src = false;
2038	else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2039		is_src = true;
2040	else {
2041		chan_err(d40c, "Unknown direction\n");
2042		return -EINVAL;
2043	}
2044
2045	pm_runtime_get_sync(d40c->base->dev);
2046	res = d40_channel_execute_command(d40c, D40_DMA_STOP);
2047	if (res) {
2048		chan_err(d40c, "stop failed\n");
2049		goto mark_last_busy;
2050	}
2051
2052	d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
2053
2054	if (chan_is_logical(d40c))
2055		d40c->base->lookup_log_chans[d40c->log_num] = NULL;
2056	else
2057		d40c->base->lookup_phy_chans[phy->num] = NULL;
2058
2059	if (d40c->busy) {
2060		pm_runtime_mark_last_busy(d40c->base->dev);
2061		pm_runtime_put_autosuspend(d40c->base->dev);
2062	}
2063
2064	d40c->busy = false;
2065	d40c->phy_chan = NULL;
2066	d40c->configured = false;
2067 mark_last_busy:
2068	pm_runtime_mark_last_busy(d40c->base->dev);
2069	pm_runtime_put_autosuspend(d40c->base->dev);
2070	return res;
2071}
2072
2073static bool d40_is_paused(struct d40_chan *d40c)
2074{
2075	void __iomem *chanbase = chan_base(d40c);
2076	bool is_paused = false;
2077	unsigned long flags;
2078	void __iomem *active_reg;
2079	u32 status;
2080	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2081
2082	spin_lock_irqsave(&d40c->lock, flags);
2083
2084	if (chan_is_physical(d40c)) {
2085		if (d40c->phy_chan->num % 2 == 0)
2086			active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
2087		else
2088			active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
2089
2090		status = (readl(active_reg) &
2091			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
2092			D40_CHAN_POS(d40c->phy_chan->num);
2093		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
2094			is_paused = true;
2095		goto unlock;
2096	}
2097
2098	if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2099	    d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
2100		status = readl(chanbase + D40_CHAN_REG_SDLNK);
2101	} else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
2102		status = readl(chanbase + D40_CHAN_REG_SSLNK);
2103	} else {
2104		chan_err(d40c, "Unknown direction\n");
2105		goto unlock;
2106	}
2107
2108	status = (status & D40_EVENTLINE_MASK(event)) >>
2109		D40_EVENTLINE_POS(event);
2110
2111	if (status != D40_DMA_RUN)
2112		is_paused = true;
2113 unlock:
2114	spin_unlock_irqrestore(&d40c->lock, flags);
2115	return is_paused;
2116
2117}
2118
2119static u32 stedma40_residue(struct dma_chan *chan)
2120{
2121	struct d40_chan *d40c =
2122		container_of(chan, struct d40_chan, chan);
2123	u32 bytes_left;
2124	unsigned long flags;
2125
2126	spin_lock_irqsave(&d40c->lock, flags);
2127	bytes_left = d40_residue(d40c);
2128	spin_unlock_irqrestore(&d40c->lock, flags);
2129
2130	return bytes_left;
2131}
2132
2133static int
2134d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
2135		struct scatterlist *sg_src, struct scatterlist *sg_dst,
2136		unsigned int sg_len, dma_addr_t src_dev_addr,
2137		dma_addr_t dst_dev_addr)
2138{
2139	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2140	struct stedma40_half_channel_info *src_info = &cfg->src_info;
2141	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2142	int ret;
2143
2144	ret = d40_log_sg_to_lli(sg_src, sg_len,
2145				src_dev_addr,
2146				desc->lli_log.src,
2147				chan->log_def.lcsp1,
2148				src_info->data_width,
2149				dst_info->data_width);
2150
2151	ret = d40_log_sg_to_lli(sg_dst, sg_len,
2152				dst_dev_addr,
2153				desc->lli_log.dst,
2154				chan->log_def.lcsp3,
2155				dst_info->data_width,
2156				src_info->data_width);
2157
2158	return ret < 0 ? ret : 0;
2159}
2160
2161static int
2162d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
2163		struct scatterlist *sg_src, struct scatterlist *sg_dst,
2164		unsigned int sg_len, dma_addr_t src_dev_addr,
2165		dma_addr_t dst_dev_addr)
2166{
2167	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2168	struct stedma40_half_channel_info *src_info = &cfg->src_info;
2169	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2170	unsigned long flags = 0;
2171	int ret;
2172
2173	if (desc->cyclic)
2174		flags |= LLI_CYCLIC | LLI_TERM_INT;
2175
2176	ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
2177				desc->lli_phy.src,
2178				virt_to_phys(desc->lli_phy.src),
2179				chan->src_def_cfg,
2180				src_info, dst_info, flags);
2181
2182	ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
2183				desc->lli_phy.dst,
2184				virt_to_phys(desc->lli_phy.dst),
2185				chan->dst_def_cfg,
2186				dst_info, src_info, flags);
2187
2188	dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
2189				   desc->lli_pool.size, DMA_TO_DEVICE);
2190
2191	return ret < 0 ? ret : 0;
2192}
2193
2194static struct d40_desc *
2195d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
2196	      unsigned int sg_len, unsigned long dma_flags)
2197{
2198	struct stedma40_chan_cfg *cfg;
2199	struct d40_desc *desc;
2200	int ret;
2201
2202	desc = d40_desc_get(chan);
2203	if (!desc)
2204		return NULL;
2205
2206	cfg = &chan->dma_cfg;
2207	desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
2208					cfg->dst_info.data_width);
2209	if (desc->lli_len < 0) {
2210		chan_err(chan, "Unaligned size\n");
2211		goto free_desc;
2212	}
2213
2214	ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
2215	if (ret < 0) {
2216		chan_err(chan, "Could not allocate lli\n");
2217		goto free_desc;
2218	}
2219
2220	desc->lli_current = 0;
2221	desc->txd.flags = dma_flags;
2222	desc->txd.tx_submit = d40_tx_submit;
2223
2224	dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
2225
2226	return desc;
2227 free_desc:
2228	d40_desc_free(chan, desc);
2229	return NULL;
2230}
2231
2232static struct dma_async_tx_descriptor *
2233d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
2234	    struct scatterlist *sg_dst, unsigned int sg_len,
2235	    enum dma_transfer_direction direction, unsigned long dma_flags)
2236{
2237	struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
2238	dma_addr_t src_dev_addr;
2239	dma_addr_t dst_dev_addr;
2240	struct d40_desc *desc;
2241	unsigned long flags;
2242	int ret;
2243
2244	if (!chan->phy_chan) {
2245		chan_err(chan, "Cannot prepare unallocated channel\n");
2246		return NULL;
2247	}
2248
2249	d40_set_runtime_config_write(dchan, &chan->slave_config, direction);
2250
2251	spin_lock_irqsave(&chan->lock, flags);
2252
2253	desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
2254	if (desc == NULL)
2255		goto unlock;
2256
2257	if (sg_next(&sg_src[sg_len - 1]) == sg_src)
2258		desc->cyclic = true;
2259
2260	src_dev_addr = 0;
2261	dst_dev_addr = 0;
2262	if (direction == DMA_DEV_TO_MEM)
2263		src_dev_addr = chan->runtime_addr;
2264	else if (direction == DMA_MEM_TO_DEV)
2265		dst_dev_addr = chan->runtime_addr;
2266
2267	if (chan_is_logical(chan))
2268		ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
2269				      sg_len, src_dev_addr, dst_dev_addr);
2270	else
2271		ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
2272				      sg_len, src_dev_addr, dst_dev_addr);
2273
2274	if (ret) {
2275		chan_err(chan, "Failed to prepare %s sg job: %d\n",
2276			 chan_is_logical(chan) ? "log" : "phy", ret);
2277		goto free_desc;
2278	}
2279
2280	/*
2281	 * add descriptor to the prepare queue in order to be able
2282	 * to free them later in terminate_all
2283	 */
2284	list_add_tail(&desc->node, &chan->prepare_queue);
2285
2286	spin_unlock_irqrestore(&chan->lock, flags);
2287
2288	return &desc->txd;
2289 free_desc:
2290	d40_desc_free(chan, desc);
2291 unlock:
2292	spin_unlock_irqrestore(&chan->lock, flags);
2293	return NULL;
2294}
2295
2296static bool stedma40_filter(struct dma_chan *chan, void *data)
2297{
2298	struct stedma40_chan_cfg *info = data;
2299	struct d40_chan *d40c =
2300		container_of(chan, struct d40_chan, chan);
2301	int err;
2302
2303	if (data) {
2304		err = d40_validate_conf(d40c, info);
2305		if (!err)
2306			d40c->dma_cfg = *info;
2307	} else
2308		err = d40_config_memcpy(d40c);
2309
2310	if (!err)
2311		d40c->configured = true;
2312
2313	return err == 0;
2314}
2315
2316static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
2317{
2318	bool realtime = d40c->dma_cfg.realtime;
2319	bool highprio = d40c->dma_cfg.high_priority;
2320	u32 rtreg;
2321	u32 event = D40_TYPE_TO_EVENT(dev_type);
2322	u32 group = D40_TYPE_TO_GROUP(dev_type);
2323	u32 bit = BIT(event);
2324	u32 prioreg;
2325	struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
2326
2327	rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
2328	/*
2329	 * Due to a hardware bug, in some cases a logical channel triggered by
2330	 * a high priority destination event line can generate extra packet
2331	 * transactions.
2332	 *
2333	 * The workaround is to not set the high priority level for the
2334	 * destination event lines that trigger logical channels.
2335	 */
2336	if (!src && chan_is_logical(d40c))
2337		highprio = false;
2338
2339	prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
2340
2341	/* Destination event lines are stored in the upper halfword */
2342	if (!src)
2343		bit <<= 16;
2344
2345	writel(bit, d40c->base->virtbase + prioreg + group * 4);
2346	writel(bit, d40c->base->virtbase + rtreg + group * 4);
2347}
2348
2349static void d40_set_prio_realtime(struct d40_chan *d40c)
2350{
2351	if (d40c->base->rev < 3)
2352		return;
2353
2354	if ((d40c->dma_cfg.dir ==  DMA_DEV_TO_MEM) ||
2355	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2356		__d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true);
2357
2358	if ((d40c->dma_cfg.dir ==  DMA_MEM_TO_DEV) ||
2359	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2360		__d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false);
2361}
2362
2363#define D40_DT_FLAGS_MODE(flags)       ((flags >> 0) & 0x1)
2364#define D40_DT_FLAGS_DIR(flags)        ((flags >> 1) & 0x1)
2365#define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1)
2366#define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1)
2367#define D40_DT_FLAGS_HIGH_PRIO(flags)  ((flags >> 4) & 0x1)
2368
2369static struct dma_chan *d40_xlate(struct of_phandle_args *dma_spec,
2370				  struct of_dma *ofdma)
2371{
2372	struct stedma40_chan_cfg cfg;
2373	dma_cap_mask_t cap;
2374	u32 flags;
2375
2376	memset(&cfg, 0, sizeof(struct stedma40_chan_cfg));
2377
2378	dma_cap_zero(cap);
2379	dma_cap_set(DMA_SLAVE, cap);
2380
2381	cfg.dev_type = dma_spec->args[0];
2382	flags = dma_spec->args[2];
2383
2384	switch (D40_DT_FLAGS_MODE(flags)) {
2385	case 0: cfg.mode = STEDMA40_MODE_LOGICAL; break;
2386	case 1: cfg.mode = STEDMA40_MODE_PHYSICAL; break;
2387	}
2388
2389	switch (D40_DT_FLAGS_DIR(flags)) {
2390	case 0:
2391		cfg.dir = DMA_MEM_TO_DEV;
2392		cfg.dst_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2393		break;
2394	case 1:
2395		cfg.dir = DMA_DEV_TO_MEM;
2396		cfg.src_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2397		break;
2398	}
2399
2400	if (D40_DT_FLAGS_FIXED_CHAN(flags)) {
2401		cfg.phy_channel = dma_spec->args[1];
2402		cfg.use_fixed_channel = true;
2403	}
2404
2405	if (D40_DT_FLAGS_HIGH_PRIO(flags))
2406		cfg.high_priority = true;
2407
2408	return dma_request_channel(cap, stedma40_filter, &cfg);
2409}
2410
2411/* DMA ENGINE functions */
2412static int d40_alloc_chan_resources(struct dma_chan *chan)
2413{
2414	int err;
2415	unsigned long flags;
2416	struct d40_chan *d40c =
2417		container_of(chan, struct d40_chan, chan);
2418	bool is_free_phy;
2419	spin_lock_irqsave(&d40c->lock, flags);
2420
2421	dma_cookie_init(chan);
2422
2423	/* If no dma configuration is set use default configuration (memcpy) */
2424	if (!d40c->configured) {
2425		err = d40_config_memcpy(d40c);
2426		if (err) {
2427			chan_err(d40c, "Failed to configure memcpy channel\n");
2428			goto mark_last_busy;
2429		}
2430	}
2431
2432	err = d40_allocate_channel(d40c, &is_free_phy);
2433	if (err) {
2434		chan_err(d40c, "Failed to allocate channel\n");
2435		d40c->configured = false;
2436		goto mark_last_busy;
2437	}
2438
2439	pm_runtime_get_sync(d40c->base->dev);
2440
2441	d40_set_prio_realtime(d40c);
2442
2443	if (chan_is_logical(d40c)) {
2444		if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2445			d40c->lcpa = d40c->base->lcpa_base +
2446				d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE;
2447		else
2448			d40c->lcpa = d40c->base->lcpa_base +
2449				d40c->dma_cfg.dev_type *
2450				D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2451
2452		/* Unmask the Global Interrupt Mask. */
2453		d40c->src_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2454		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2455	}
2456
2457	dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
2458		 chan_is_logical(d40c) ? "logical" : "physical",
2459		 d40c->phy_chan->num,
2460		 d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
2461
2462
2463	/*
2464	 * Only write channel configuration to the DMA if the physical
2465	 * resource is free. In case of multiple logical channels
2466	 * on the same physical resource, only the first write is necessary.
2467	 */
2468	if (is_free_phy)
2469		d40_config_write(d40c);
2470 mark_last_busy:
2471	pm_runtime_mark_last_busy(d40c->base->dev);
2472	pm_runtime_put_autosuspend(d40c->base->dev);
2473	spin_unlock_irqrestore(&d40c->lock, flags);
2474	return err;
2475}
2476
2477static void d40_free_chan_resources(struct dma_chan *chan)
2478{
2479	struct d40_chan *d40c =
2480		container_of(chan, struct d40_chan, chan);
2481	int err;
2482	unsigned long flags;
2483
2484	if (d40c->phy_chan == NULL) {
2485		chan_err(d40c, "Cannot free unallocated channel\n");
2486		return;
2487	}
2488
2489	spin_lock_irqsave(&d40c->lock, flags);
2490
2491	err = d40_free_dma(d40c);
2492
2493	if (err)
2494		chan_err(d40c, "Failed to free channel\n");
2495	spin_unlock_irqrestore(&d40c->lock, flags);
2496}
2497
2498static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2499						       dma_addr_t dst,
2500						       dma_addr_t src,
2501						       size_t size,
2502						       unsigned long dma_flags)
2503{
2504	struct scatterlist dst_sg;
2505	struct scatterlist src_sg;
2506
2507	sg_init_table(&dst_sg, 1);
2508	sg_init_table(&src_sg, 1);
2509
2510	sg_dma_address(&dst_sg) = dst;
2511	sg_dma_address(&src_sg) = src;
2512
2513	sg_dma_len(&dst_sg) = size;
2514	sg_dma_len(&src_sg) = size;
2515
2516	return d40_prep_sg(chan, &src_sg, &dst_sg, 1,
2517			   DMA_MEM_TO_MEM, dma_flags);
2518}
2519
2520static struct dma_async_tx_descriptor *
2521d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2522		  unsigned int sg_len, enum dma_transfer_direction direction,
2523		  unsigned long dma_flags, void *context)
2524{
2525	if (!is_slave_direction(direction))
2526		return NULL;
2527
2528	return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2529}
2530
2531static struct dma_async_tx_descriptor *
2532dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2533		     size_t buf_len, size_t period_len,
2534		     enum dma_transfer_direction direction, unsigned long flags)
2535{
2536	unsigned int periods = buf_len / period_len;
2537	struct dma_async_tx_descriptor *txd;
2538	struct scatterlist *sg;
2539	int i;
2540
2541	sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2542	if (!sg)
2543		return NULL;
2544
2545	for (i = 0; i < periods; i++) {
2546		sg_dma_address(&sg[i]) = dma_addr;
2547		sg_dma_len(&sg[i]) = period_len;
2548		dma_addr += period_len;
2549	}
2550
2551	sg_chain(sg, periods + 1, sg);
2552
2553	txd = d40_prep_sg(chan, sg, sg, periods, direction,
2554			  DMA_PREP_INTERRUPT);
2555
2556	kfree(sg);
2557
2558	return txd;
2559}
2560
2561static enum dma_status d40_tx_status(struct dma_chan *chan,
2562				     dma_cookie_t cookie,
2563				     struct dma_tx_state *txstate)
2564{
2565	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2566	enum dma_status ret;
2567
2568	if (d40c->phy_chan == NULL) {
2569		chan_err(d40c, "Cannot read status of unallocated channel\n");
2570		return -EINVAL;
2571	}
2572
2573	ret = dma_cookie_status(chan, cookie, txstate);
2574	if (ret != DMA_COMPLETE && txstate)
2575		dma_set_residue(txstate, stedma40_residue(chan));
2576
2577	if (d40_is_paused(d40c))
2578		ret = DMA_PAUSED;
2579
2580	return ret;
2581}
2582
2583static void d40_issue_pending(struct dma_chan *chan)
2584{
2585	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2586	unsigned long flags;
2587
2588	if (d40c->phy_chan == NULL) {
2589		chan_err(d40c, "Channel is not allocated!\n");
2590		return;
2591	}
2592
2593	spin_lock_irqsave(&d40c->lock, flags);
2594
2595	list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
2596
2597	/* Busy means that queued jobs are already being processed */
2598	if (!d40c->busy)
2599		(void) d40_queue_start(d40c);
2600
2601	spin_unlock_irqrestore(&d40c->lock, flags);
2602}
2603
2604static int d40_terminate_all(struct dma_chan *chan)
2605{
2606	unsigned long flags;
2607	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2608	int ret;
2609
2610	if (d40c->phy_chan == NULL) {
2611		chan_err(d40c, "Channel is not allocated!\n");
2612		return -EINVAL;
2613	}
2614
2615	spin_lock_irqsave(&d40c->lock, flags);
2616
2617	pm_runtime_get_sync(d40c->base->dev);
2618	ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
2619	if (ret)
2620		chan_err(d40c, "Failed to stop channel\n");
2621
2622	d40_term_all(d40c);
2623	pm_runtime_mark_last_busy(d40c->base->dev);
2624	pm_runtime_put_autosuspend(d40c->base->dev);
2625	if (d40c->busy) {
2626		pm_runtime_mark_last_busy(d40c->base->dev);
2627		pm_runtime_put_autosuspend(d40c->base->dev);
2628	}
2629	d40c->busy = false;
2630
2631	spin_unlock_irqrestore(&d40c->lock, flags);
2632	return 0;
2633}
2634
2635static int
2636dma40_config_to_halfchannel(struct d40_chan *d40c,
2637			    struct stedma40_half_channel_info *info,
2638			    u32 maxburst)
2639{
2640	int psize;
2641
2642	if (chan_is_logical(d40c)) {
2643		if (maxburst >= 16)
2644			psize = STEDMA40_PSIZE_LOG_16;
2645		else if (maxburst >= 8)
2646			psize = STEDMA40_PSIZE_LOG_8;
2647		else if (maxburst >= 4)
2648			psize = STEDMA40_PSIZE_LOG_4;
2649		else
2650			psize = STEDMA40_PSIZE_LOG_1;
2651	} else {
2652		if (maxburst >= 16)
2653			psize = STEDMA40_PSIZE_PHY_16;
2654		else if (maxburst >= 8)
2655			psize = STEDMA40_PSIZE_PHY_8;
2656		else if (maxburst >= 4)
2657			psize = STEDMA40_PSIZE_PHY_4;
2658		else
2659			psize = STEDMA40_PSIZE_PHY_1;
2660	}
2661
2662	info->psize = psize;
2663	info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2664
2665	return 0;
2666}
2667
2668static int d40_set_runtime_config(struct dma_chan *chan,
2669				  struct dma_slave_config *config)
2670{
2671	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2672
2673	memcpy(&d40c->slave_config, config, sizeof(*config));
2674
2675	return 0;
2676}
2677
2678/* Runtime reconfiguration extension */
2679static int d40_set_runtime_config_write(struct dma_chan *chan,
2680				  struct dma_slave_config *config,
2681				  enum dma_transfer_direction direction)
2682{
2683	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2684	struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2685	enum dma_slave_buswidth src_addr_width, dst_addr_width;
2686	dma_addr_t config_addr;
2687	u32 src_maxburst, dst_maxburst;
2688	int ret;
2689
2690	if (d40c->phy_chan == NULL) {
2691		chan_err(d40c, "Channel is not allocated!\n");
2692		return -EINVAL;
2693	}
2694
2695	src_addr_width = config->src_addr_width;
2696	src_maxburst = config->src_maxburst;
2697	dst_addr_width = config->dst_addr_width;
2698	dst_maxburst = config->dst_maxburst;
2699
2700	if (direction == DMA_DEV_TO_MEM) {
2701		config_addr = config->src_addr;
2702
2703		if (cfg->dir != DMA_DEV_TO_MEM)
2704			dev_dbg(d40c->base->dev,
2705				"channel was not configured for peripheral "
2706				"to memory transfer (%d) overriding\n",
2707				cfg->dir);
2708		cfg->dir = DMA_DEV_TO_MEM;
2709
2710		/* Configure the memory side */
2711		if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2712			dst_addr_width = src_addr_width;
2713		if (dst_maxburst == 0)
2714			dst_maxburst = src_maxburst;
2715
2716	} else if (direction == DMA_MEM_TO_DEV) {
2717		config_addr = config->dst_addr;
2718
2719		if (cfg->dir != DMA_MEM_TO_DEV)
2720			dev_dbg(d40c->base->dev,
2721				"channel was not configured for memory "
2722				"to peripheral transfer (%d) overriding\n",
2723				cfg->dir);
2724		cfg->dir = DMA_MEM_TO_DEV;
2725
2726		/* Configure the memory side */
2727		if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2728			src_addr_width = dst_addr_width;
2729		if (src_maxburst == 0)
2730			src_maxburst = dst_maxburst;
2731	} else {
2732		dev_err(d40c->base->dev,
2733			"unrecognized channel direction %d\n",
2734			direction);
2735		return -EINVAL;
2736	}
2737
2738	if (config_addr <= 0) {
2739		dev_err(d40c->base->dev, "no address supplied\n");
2740		return -EINVAL;
2741	}
2742
2743	if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2744		dev_err(d40c->base->dev,
2745			"src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2746			src_maxburst,
2747			src_addr_width,
2748			dst_maxburst,
2749			dst_addr_width);
2750		return -EINVAL;
2751	}
2752
2753	if (src_maxburst > 16) {
2754		src_maxburst = 16;
2755		dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
2756	} else if (dst_maxburst > 16) {
2757		dst_maxburst = 16;
2758		src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
2759	}
2760
2761	/* Only valid widths are; 1, 2, 4 and 8. */
2762	if (src_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2763	    src_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2764	    dst_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2765	    dst_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2766	    !is_power_of_2(src_addr_width) ||
2767	    !is_power_of_2(dst_addr_width))
2768		return -EINVAL;
2769
2770	cfg->src_info.data_width = src_addr_width;
2771	cfg->dst_info.data_width = dst_addr_width;
2772
2773	ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
2774					  src_maxburst);
2775	if (ret)
2776		return ret;
2777
2778	ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
2779					  dst_maxburst);
2780	if (ret)
2781		return ret;
2782
2783	/* Fill in register values */
2784	if (chan_is_logical(d40c))
2785		d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2786	else
2787		d40_phy_cfg(cfg, &d40c->src_def_cfg, &d40c->dst_def_cfg);
2788
2789	/* These settings will take precedence later */
2790	d40c->runtime_addr = config_addr;
2791	d40c->runtime_direction = direction;
2792	dev_dbg(d40c->base->dev,
2793		"configured channel %s for %s, data width %d/%d, "
2794		"maxburst %d/%d elements, LE, no flow control\n",
2795		dma_chan_name(chan),
2796		(direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2797		src_addr_width, dst_addr_width,
2798		src_maxburst, dst_maxburst);
2799
2800	return 0;
2801}
2802
2803/* Initialization functions */
2804
2805static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2806				 struct d40_chan *chans, int offset,
2807				 int num_chans)
2808{
2809	int i = 0;
2810	struct d40_chan *d40c;
2811
2812	INIT_LIST_HEAD(&dma->channels);
2813
2814	for (i = offset; i < offset + num_chans; i++) {
2815		d40c = &chans[i];
2816		d40c->base = base;
2817		d40c->chan.device = dma;
2818
2819		spin_lock_init(&d40c->lock);
2820
2821		d40c->log_num = D40_PHY_CHAN;
2822
2823		INIT_LIST_HEAD(&d40c->done);
2824		INIT_LIST_HEAD(&d40c->active);
2825		INIT_LIST_HEAD(&d40c->queue);
2826		INIT_LIST_HEAD(&d40c->pending_queue);
2827		INIT_LIST_HEAD(&d40c->client);
2828		INIT_LIST_HEAD(&d40c->prepare_queue);
2829
2830		tasklet_setup(&d40c->tasklet, dma_tasklet);
2831
2832		list_add_tail(&d40c->chan.device_node,
2833			      &dma->channels);
2834	}
2835}
2836
2837static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2838{
2839	if (dma_has_cap(DMA_SLAVE, dev->cap_mask)) {
2840		dev->device_prep_slave_sg = d40_prep_slave_sg;
2841		dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2842	}
2843
2844	if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2845		dev->device_prep_dma_memcpy = d40_prep_memcpy;
2846		dev->directions = BIT(DMA_MEM_TO_MEM);
2847		/*
2848		 * This controller can only access address at even
2849		 * 32bit boundaries, i.e. 2^2
2850		 */
2851		dev->copy_align = DMAENGINE_ALIGN_4_BYTES;
2852	}
2853
2854	if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2855		dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2856
2857	dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2858	dev->device_free_chan_resources = d40_free_chan_resources;
2859	dev->device_issue_pending = d40_issue_pending;
2860	dev->device_tx_status = d40_tx_status;
2861	dev->device_config = d40_set_runtime_config;
2862	dev->device_pause = d40_pause;
2863	dev->device_resume = d40_resume;
2864	dev->device_terminate_all = d40_terminate_all;
2865	dev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2866	dev->dev = base->dev;
2867}
2868
2869static int __init d40_dmaengine_init(struct d40_base *base,
2870				     int num_reserved_chans)
2871{
2872	int err ;
2873
2874	d40_chan_init(base, &base->dma_slave, base->log_chans,
2875		      0, base->num_log_chans);
2876
2877	dma_cap_zero(base->dma_slave.cap_mask);
2878	dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2879	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2880
2881	d40_ops_init(base, &base->dma_slave);
2882
2883	err = dmaenginem_async_device_register(&base->dma_slave);
2884
2885	if (err) {
2886		d40_err(base->dev, "Failed to register slave channels\n");
2887		goto exit;
2888	}
2889
2890	d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2891		      base->num_log_chans, base->num_memcpy_chans);
2892
2893	dma_cap_zero(base->dma_memcpy.cap_mask);
2894	dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2895
2896	d40_ops_init(base, &base->dma_memcpy);
2897
2898	err = dmaenginem_async_device_register(&base->dma_memcpy);
2899
2900	if (err) {
2901		d40_err(base->dev,
2902			"Failed to register memcpy only channels\n");
2903		goto exit;
2904	}
2905
2906	d40_chan_init(base, &base->dma_both, base->phy_chans,
2907		      0, num_reserved_chans);
2908
2909	dma_cap_zero(base->dma_both.cap_mask);
2910	dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2911	dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2912	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2913
2914	d40_ops_init(base, &base->dma_both);
2915	err = dmaenginem_async_device_register(&base->dma_both);
2916
2917	if (err) {
2918		d40_err(base->dev,
2919			"Failed to register logical and physical capable channels\n");
2920		goto exit;
2921	}
2922	return 0;
2923 exit:
2924	return err;
2925}
2926
2927/* Suspend resume functionality */
2928#ifdef CONFIG_PM_SLEEP
2929static int dma40_suspend(struct device *dev)
2930{
2931	struct d40_base *base = dev_get_drvdata(dev);
2932	int ret;
2933
2934	ret = pm_runtime_force_suspend(dev);
2935	if (ret)
2936		return ret;
2937
2938	if (base->lcpa_regulator)
2939		ret = regulator_disable(base->lcpa_regulator);
2940	return ret;
2941}
2942
2943static int dma40_resume(struct device *dev)
2944{
2945	struct d40_base *base = dev_get_drvdata(dev);
2946	int ret = 0;
2947
2948	if (base->lcpa_regulator) {
2949		ret = regulator_enable(base->lcpa_regulator);
2950		if (ret)
2951			return ret;
2952	}
2953
2954	return pm_runtime_force_resume(dev);
2955}
2956#endif
2957
2958#ifdef CONFIG_PM
2959static void dma40_backup(void __iomem *baseaddr, u32 *backup,
2960			 u32 *regaddr, int num, bool save)
2961{
2962	int i;
2963
2964	for (i = 0; i < num; i++) {
2965		void __iomem *addr = baseaddr + regaddr[i];
2966
2967		if (save)
2968			backup[i] = readl_relaxed(addr);
2969		else
2970			writel_relaxed(backup[i], addr);
2971	}
2972}
2973
2974static void d40_save_restore_registers(struct d40_base *base, bool save)
2975{
2976	int i;
2977
2978	/* Save/Restore channel specific registers */
2979	for (i = 0; i < base->num_phy_chans; i++) {
2980		void __iomem *addr;
2981		int idx;
2982
2983		if (base->phy_res[i].reserved)
2984			continue;
2985
2986		addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
2987		idx = i * ARRAY_SIZE(d40_backup_regs_chan);
2988
2989		dma40_backup(addr, &base->reg_val_backup_chan[idx],
2990			     d40_backup_regs_chan,
2991			     ARRAY_SIZE(d40_backup_regs_chan),
2992			     save);
2993	}
2994
2995	/* Save/Restore global registers */
2996	dma40_backup(base->virtbase, base->reg_val_backup,
2997		     d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
2998		     save);
2999
3000	/* Save/Restore registers only existing on dma40 v3 and later */
3001	if (base->gen_dmac.backup)
3002		dma40_backup(base->virtbase, base->reg_val_backup_v4,
3003			     base->gen_dmac.backup,
3004			base->gen_dmac.backup_size,
3005			save);
3006}
3007
3008static int dma40_runtime_suspend(struct device *dev)
3009{
3010	struct d40_base *base = dev_get_drvdata(dev);
3011
3012	d40_save_restore_registers(base, true);
3013
3014	/* Don't disable/enable clocks for v1 due to HW bugs */
3015	if (base->rev != 1)
3016		writel_relaxed(base->gcc_pwr_off_mask,
3017			       base->virtbase + D40_DREG_GCC);
3018
3019	return 0;
3020}
3021
3022static int dma40_runtime_resume(struct device *dev)
3023{
3024	struct d40_base *base = dev_get_drvdata(dev);
3025
3026	d40_save_restore_registers(base, false);
3027
3028	writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
3029		       base->virtbase + D40_DREG_GCC);
3030	return 0;
3031}
3032#endif
3033
3034static const struct dev_pm_ops dma40_pm_ops = {
3035	SET_LATE_SYSTEM_SLEEP_PM_OPS(dma40_suspend, dma40_resume)
3036	SET_RUNTIME_PM_OPS(dma40_runtime_suspend,
3037				dma40_runtime_resume,
3038				NULL)
3039};
3040
3041/* Initialization functions. */
3042
3043static int __init d40_phy_res_init(struct d40_base *base)
3044{
3045	int i;
3046	int num_phy_chans_avail = 0;
3047	u32 val[2];
3048	int odd_even_bit = -2;
3049	int gcc = D40_DREG_GCC_ENA;
3050
3051	val[0] = readl(base->virtbase + D40_DREG_PRSME);
3052	val[1] = readl(base->virtbase + D40_DREG_PRSMO);
3053
3054	for (i = 0; i < base->num_phy_chans; i++) {
3055		base->phy_res[i].num = i;
3056		odd_even_bit += 2 * ((i % 2) == 0);
3057		if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
3058			/* Mark security only channels as occupied */
3059			base->phy_res[i].allocated_src = D40_ALLOC_PHY;
3060			base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
3061			base->phy_res[i].reserved = true;
3062			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3063						       D40_DREG_GCC_SRC);
3064			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3065						       D40_DREG_GCC_DST);
3066
3067
3068		} else {
3069			base->phy_res[i].allocated_src = D40_ALLOC_FREE;
3070			base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
3071			base->phy_res[i].reserved = false;
3072			num_phy_chans_avail++;
3073		}
3074		spin_lock_init(&base->phy_res[i].lock);
3075	}
3076
3077	/* Mark disabled channels as occupied */
3078	for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
3079		int chan = base->plat_data->disabled_channels[i];
3080
3081		base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
3082		base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
3083		base->phy_res[chan].reserved = true;
3084		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3085					       D40_DREG_GCC_SRC);
3086		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3087					       D40_DREG_GCC_DST);
3088		num_phy_chans_avail--;
3089	}
3090
3091	/* Mark soft_lli channels */
3092	for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
3093		int chan = base->plat_data->soft_lli_chans[i];
3094
3095		base->phy_res[chan].use_soft_lli = true;
3096	}
3097
3098	dev_info(base->dev, "%d of %d physical DMA channels available\n",
3099		 num_phy_chans_avail, base->num_phy_chans);
3100
3101	/* Verify settings extended vs standard */
3102	val[0] = readl(base->virtbase + D40_DREG_PRTYP);
3103
3104	for (i = 0; i < base->num_phy_chans; i++) {
3105
3106		if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
3107		    (val[0] & 0x3) != 1)
3108			dev_info(base->dev,
3109				 "[%s] INFO: channel %d is misconfigured (%d)\n",
3110				 __func__, i, val[0] & 0x3);
3111
3112		val[0] = val[0] >> 2;
3113	}
3114
3115	/*
3116	 * To keep things simple, Enable all clocks initially.
3117	 * The clocks will get managed later post channel allocation.
3118	 * The clocks for the event lines on which reserved channels exists
3119	 * are not managed here.
3120	 */
3121	writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3122	base->gcc_pwr_off_mask = gcc;
3123
3124	return num_phy_chans_avail;
3125}
3126
3127/* Called from the registered devm action */
3128static void d40_drop_kmem_cache_action(void *d)
3129{
3130	struct kmem_cache *desc_slab = d;
3131
3132	kmem_cache_destroy(desc_slab);
3133}
3134
3135static int __init d40_hw_detect_init(struct platform_device *pdev,
3136				     struct d40_base **retbase)
3137{
3138	struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3139	struct device *dev = &pdev->dev;
3140	struct clk *clk;
3141	void __iomem *virtbase;
3142	struct d40_base *base;
3143	int num_log_chans;
3144	int num_phy_chans;
3145	int num_memcpy_chans;
3146	int i;
3147	u32 pid;
3148	u32 cid;
3149	u8 rev;
3150	int ret;
3151
3152	clk = devm_clk_get_enabled(dev, NULL);
3153	if (IS_ERR(clk))
3154		return PTR_ERR(clk);
3155
3156	/* Get IO for DMAC base address */
3157	virtbase = devm_platform_ioremap_resource_byname(pdev, "base");
3158	if (IS_ERR(virtbase))
3159		return PTR_ERR(virtbase);
3160
3161	/* This is just a regular AMBA PrimeCell ID actually */
3162	for (pid = 0, i = 0; i < 4; i++)
3163		pid |= (readl(virtbase + SZ_4K - 0x20 + 4 * i)
3164			& 255) << (i * 8);
3165	for (cid = 0, i = 0; i < 4; i++)
3166		cid |= (readl(virtbase + SZ_4K - 0x10 + 4 * i)
3167			& 255) << (i * 8);
3168
3169	if (cid != AMBA_CID) {
3170		d40_err(dev, "Unknown hardware! No PrimeCell ID\n");
3171		return -EINVAL;
3172	}
3173	if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
3174		d40_err(dev, "Unknown designer! Got %x wanted %x\n",
3175			AMBA_MANF_BITS(pid),
3176			AMBA_VENDOR_ST);
3177		return -EINVAL;
3178	}
3179	/*
3180	 * HW revision:
3181	 * DB8500ed has revision 0
3182	 * ? has revision 1
3183	 * DB8500v1 has revision 2
3184	 * DB8500v2 has revision 3
3185	 * AP9540v1 has revision 4
3186	 * DB8540v1 has revision 4
3187	 */
3188	rev = AMBA_REV_BITS(pid);
3189	if (rev < 2) {
3190		d40_err(dev, "hardware revision: %d is not supported", rev);
3191		return -EINVAL;
3192	}
3193
3194	/* The number of physical channels on this HW */
3195	if (plat_data->num_of_phy_chans)
3196		num_phy_chans = plat_data->num_of_phy_chans;
3197	else
3198		num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
3199
3200	/* The number of channels used for memcpy */
3201	if (plat_data->num_of_memcpy_chans)
3202		num_memcpy_chans = plat_data->num_of_memcpy_chans;
3203	else
3204		num_memcpy_chans = ARRAY_SIZE(dma40_memcpy_channels);
3205
3206	num_log_chans = num_phy_chans * D40_MAX_LOG_CHAN_PER_PHY;
3207
3208	dev_info(dev,
3209		 "hardware rev: %d with %d physical and %d logical channels\n",
3210		 rev, num_phy_chans, num_log_chans);
3211
3212	base = devm_kzalloc(dev,
3213		ALIGN(sizeof(struct d40_base), 4) +
3214		(num_phy_chans + num_log_chans + num_memcpy_chans) *
3215		sizeof(struct d40_chan), GFP_KERNEL);
3216
3217	if (!base)
3218		return -ENOMEM;
3219
3220	base->rev = rev;
3221	base->clk = clk;
3222	base->num_memcpy_chans = num_memcpy_chans;
3223	base->num_phy_chans = num_phy_chans;
3224	base->num_log_chans = num_log_chans;
3225	base->virtbase = virtbase;
3226	base->plat_data = plat_data;
3227	base->dev = dev;
3228	base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
3229	base->log_chans = &base->phy_chans[num_phy_chans];
3230
3231	if (base->plat_data->num_of_phy_chans == 14) {
3232		base->gen_dmac.backup = d40_backup_regs_v4b;
3233		base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
3234		base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
3235		base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
3236		base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
3237		base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
3238		base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
3239		base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
3240		base->gen_dmac.il = il_v4b;
3241		base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
3242		base->gen_dmac.init_reg = dma_init_reg_v4b;
3243		base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
3244	} else {
3245		if (base->rev >= 3) {
3246			base->gen_dmac.backup = d40_backup_regs_v4a;
3247			base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
3248		}
3249		base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
3250		base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
3251		base->gen_dmac.realtime_en = D40_DREG_RSEG1;
3252		base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
3253		base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
3254		base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
3255		base->gen_dmac.il = il_v4a;
3256		base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
3257		base->gen_dmac.init_reg = dma_init_reg_v4a;
3258		base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
3259	}
3260
3261	base->phy_res = devm_kcalloc(dev, num_phy_chans,
3262				     sizeof(*base->phy_res),
3263				     GFP_KERNEL);
3264	if (!base->phy_res)
3265		return -ENOMEM;
3266
3267	base->lookup_phy_chans = devm_kcalloc(dev, num_phy_chans,
3268					      sizeof(*base->lookup_phy_chans),
3269					      GFP_KERNEL);
3270	if (!base->lookup_phy_chans)
3271		return -ENOMEM;
3272
3273	base->lookup_log_chans = devm_kcalloc(dev, num_log_chans,
3274					      sizeof(*base->lookup_log_chans),
3275					      GFP_KERNEL);
3276	if (!base->lookup_log_chans)
3277		return -ENOMEM;
3278
3279	base->reg_val_backup_chan = devm_kmalloc_array(dev, base->num_phy_chans,
3280						  sizeof(d40_backup_regs_chan),
3281						  GFP_KERNEL);
3282	if (!base->reg_val_backup_chan)
3283		return -ENOMEM;
3284
3285	base->lcla_pool.alloc_map = devm_kcalloc(dev, num_phy_chans
3286					    * D40_LCLA_LINK_PER_EVENT_GRP,
3287					    sizeof(*base->lcla_pool.alloc_map),
3288					    GFP_KERNEL);
3289	if (!base->lcla_pool.alloc_map)
3290		return -ENOMEM;
3291
3292	base->regs_interrupt = devm_kmalloc_array(dev, base->gen_dmac.il_size,
3293					     sizeof(*base->regs_interrupt),
3294					     GFP_KERNEL);
3295	if (!base->regs_interrupt)
3296		return -ENOMEM;
3297
3298	base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
3299					    0, SLAB_HWCACHE_ALIGN,
3300					    NULL);
3301	if (!base->desc_slab)
3302		return -ENOMEM;
3303
3304	ret = devm_add_action_or_reset(dev, d40_drop_kmem_cache_action,
3305				       base->desc_slab);
3306	if (ret)
3307		return ret;
3308
3309	*retbase = base;
3310
3311	return 0;
3312}
3313
3314static void __init d40_hw_init(struct d40_base *base)
3315{
3316
3317	int i;
3318	u32 prmseo[2] = {0, 0};
3319	u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
3320	u32 pcmis = 0;
3321	u32 pcicr = 0;
3322	struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
3323	u32 reg_size = base->gen_dmac.init_reg_size;
3324
3325	for (i = 0; i < reg_size; i++)
3326		writel(dma_init_reg[i].val,
3327		       base->virtbase + dma_init_reg[i].reg);
3328
3329	/* Configure all our dma channels to default settings */
3330	for (i = 0; i < base->num_phy_chans; i++) {
3331
3332		activeo[i % 2] = activeo[i % 2] << 2;
3333
3334		if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
3335		    == D40_ALLOC_PHY) {
3336			activeo[i % 2] |= 3;
3337			continue;
3338		}
3339
3340		/* Enable interrupt # */
3341		pcmis = (pcmis << 1) | 1;
3342
3343		/* Clear interrupt # */
3344		pcicr = (pcicr << 1) | 1;
3345
3346		/* Set channel to physical mode */
3347		prmseo[i % 2] = prmseo[i % 2] << 2;
3348		prmseo[i % 2] |= 1;
3349
3350	}
3351
3352	writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
3353	writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
3354	writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
3355	writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
3356
3357	/* Write which interrupt to enable */
3358	writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
3359
3360	/* Write which interrupt to clear */
3361	writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
3362
3363	/* These are __initdata and cannot be accessed after init */
3364	base->gen_dmac.init_reg = NULL;
3365	base->gen_dmac.init_reg_size = 0;
3366}
3367
3368static int __init d40_lcla_allocate(struct d40_base *base)
3369{
3370	struct d40_lcla_pool *pool = &base->lcla_pool;
3371	unsigned long *page_list;
3372	int i, j;
3373	int ret;
3374
3375	/*
3376	 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
3377	 * To full fill this hardware requirement without wasting 256 kb
3378	 * we allocate pages until we get an aligned one.
3379	 */
3380	page_list = kmalloc_array(MAX_LCLA_ALLOC_ATTEMPTS,
3381				  sizeof(*page_list),
3382				  GFP_KERNEL);
3383	if (!page_list)
3384		return -ENOMEM;
3385
3386	/* Calculating how many pages that are required */
3387	base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
3388
3389	for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
3390		page_list[i] = __get_free_pages(GFP_KERNEL,
3391						base->lcla_pool.pages);
3392		if (!page_list[i]) {
3393
3394			d40_err(base->dev, "Failed to allocate %d pages.\n",
3395				base->lcla_pool.pages);
3396			ret = -ENOMEM;
3397
3398			for (j = 0; j < i; j++)
3399				free_pages(page_list[j], base->lcla_pool.pages);
3400			goto free_page_list;
3401		}
3402
3403		if ((virt_to_phys((void *)page_list[i]) &
3404		     (LCLA_ALIGNMENT - 1)) == 0)
3405			break;
3406	}
3407
3408	for (j = 0; j < i; j++)
3409		free_pages(page_list[j], base->lcla_pool.pages);
3410
3411	if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
3412		base->lcla_pool.base = (void *)page_list[i];
3413	} else {
3414		/*
3415		 * After many attempts and no succees with finding the correct
3416		 * alignment, try with allocating a big buffer.
3417		 */
3418		dev_warn(base->dev,
3419			 "[%s] Failed to get %d pages @ 18 bit align.\n",
3420			 __func__, base->lcla_pool.pages);
3421		base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
3422							 base->num_phy_chans +
3423							 LCLA_ALIGNMENT,
3424							 GFP_KERNEL);
3425		if (!base->lcla_pool.base_unaligned) {
3426			ret = -ENOMEM;
3427			goto free_page_list;
3428		}
3429
3430		base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
3431						 LCLA_ALIGNMENT);
3432	}
3433
3434	pool->dma_addr = dma_map_single(base->dev, pool->base,
3435					SZ_1K * base->num_phy_chans,
3436					DMA_TO_DEVICE);
3437	if (dma_mapping_error(base->dev, pool->dma_addr)) {
3438		pool->dma_addr = 0;
3439		ret = -ENOMEM;
3440		goto free_page_list;
3441	}
3442
3443	writel(virt_to_phys(base->lcla_pool.base),
3444	       base->virtbase + D40_DREG_LCLA);
3445	ret = 0;
3446 free_page_list:
3447	kfree(page_list);
3448	return ret;
3449}
3450
3451static int __init d40_of_probe(struct device *dev,
3452			       struct device_node *np)
3453{
3454	struct stedma40_platform_data *pdata;
3455	int num_phy = 0, num_memcpy = 0, num_disabled = 0;
3456	const __be32 *list;
3457
3458	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3459	if (!pdata)
3460		return -ENOMEM;
3461
3462	/* If absent this value will be obtained from h/w. */
3463	of_property_read_u32(np, "dma-channels", &num_phy);
3464	if (num_phy > 0)
3465		pdata->num_of_phy_chans = num_phy;
3466
3467	list = of_get_property(np, "memcpy-channels", &num_memcpy);
3468	num_memcpy /= sizeof(*list);
3469
3470	if (num_memcpy > D40_MEMCPY_MAX_CHANS || num_memcpy <= 0) {
3471		d40_err(dev,
3472			"Invalid number of memcpy channels specified (%d)\n",
3473			num_memcpy);
3474		return -EINVAL;
3475	}
3476	pdata->num_of_memcpy_chans = num_memcpy;
3477
3478	of_property_read_u32_array(np, "memcpy-channels",
3479				   dma40_memcpy_channels,
3480				   num_memcpy);
3481
3482	list = of_get_property(np, "disabled-channels", &num_disabled);
3483	num_disabled /= sizeof(*list);
3484
3485	if (num_disabled >= STEDMA40_MAX_PHYS || num_disabled < 0) {
3486		d40_err(dev,
3487			"Invalid number of disabled channels specified (%d)\n",
3488			num_disabled);
3489		return -EINVAL;
3490	}
3491
3492	of_property_read_u32_array(np, "disabled-channels",
3493				   pdata->disabled_channels,
3494				   num_disabled);
3495	pdata->disabled_channels[num_disabled] = -1;
3496
3497	dev->platform_data = pdata;
3498
3499	return 0;
3500}
3501
3502static int __init d40_probe(struct platform_device *pdev)
3503{
3504	struct device *dev = &pdev->dev;
3505	struct device_node *np = pdev->dev.of_node;
3506	struct device_node *np_lcpa;
3507	struct d40_base *base;
3508	struct resource *res;
3509	struct resource res_lcpa;
3510	int num_reserved_chans;
3511	u32 val;
3512	int ret;
3513
3514	if (d40_of_probe(dev, np)) {
3515		ret = -ENOMEM;
3516		goto report_failure;
3517	}
3518
3519	ret = d40_hw_detect_init(pdev, &base);
3520	if (ret)
3521		goto report_failure;
3522
3523	num_reserved_chans = d40_phy_res_init(base);
3524
3525	platform_set_drvdata(pdev, base);
3526
3527	spin_lock_init(&base->interrupt_lock);
3528	spin_lock_init(&base->execmd_lock);
3529
3530	/* Get IO for logical channel parameter address (LCPA) */
3531	np_lcpa = of_parse_phandle(np, "sram", 0);
3532	if (!np_lcpa) {
3533		dev_err(dev, "no LCPA SRAM node\n");
3534		ret = -EINVAL;
3535		goto report_failure;
3536	}
3537	/* This is no device so read the address directly from the node */
3538	ret = of_address_to_resource(np_lcpa, 0, &res_lcpa);
3539	if (ret) {
3540		dev_err(dev, "no LCPA SRAM resource\n");
3541		goto report_failure;
3542	}
3543	base->lcpa_size = resource_size(&res_lcpa);
3544	base->phy_lcpa = res_lcpa.start;
3545	dev_info(dev, "found LCPA SRAM at %pad, size %pa\n",
3546		 &base->phy_lcpa, &base->lcpa_size);
3547
3548	/* We make use of ESRAM memory for this. */
3549	val = readl(base->virtbase + D40_DREG_LCPA);
3550	if (base->phy_lcpa != val && val != 0) {
3551		dev_warn(dev,
3552			 "[%s] Mismatch LCPA dma 0x%x, def %08x\n",
3553			 __func__, val, (u32)base->phy_lcpa);
3554	} else
3555		writel(base->phy_lcpa, base->virtbase + D40_DREG_LCPA);
3556
3557	base->lcpa_base = devm_ioremap(dev, base->phy_lcpa, base->lcpa_size);
3558	if (!base->lcpa_base) {
3559		ret = -ENOMEM;
3560		d40_err(dev, "Failed to ioremap LCPA region\n");
3561		goto report_failure;
3562	}
3563	/* If lcla has to be located in ESRAM we don't need to allocate */
3564	if (base->plat_data->use_esram_lcla) {
3565		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
3566							"lcla_esram");
3567		if (!res) {
3568			ret = -ENOENT;
3569			d40_err(dev,
3570				"No \"lcla_esram\" memory resource\n");
3571			goto report_failure;
3572		}
3573		base->lcla_pool.base = devm_ioremap(dev, res->start,
3574						    resource_size(res));
3575		if (!base->lcla_pool.base) {
3576			ret = -ENOMEM;
3577			d40_err(dev, "Failed to ioremap LCLA region\n");
3578			goto report_failure;
3579		}
3580		writel(res->start, base->virtbase + D40_DREG_LCLA);
3581
3582	} else {
3583		ret = d40_lcla_allocate(base);
3584		if (ret) {
3585			d40_err(dev, "Failed to allocate LCLA area\n");
3586			goto destroy_cache;
3587		}
3588	}
3589
3590	spin_lock_init(&base->lcla_pool.lock);
3591
3592	base->irq = platform_get_irq(pdev, 0);
3593	if (base->irq < 0) {
3594		ret = base->irq;
3595		goto destroy_cache;
3596	}
3597
3598	ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
3599	if (ret) {
3600		d40_err(dev, "No IRQ defined\n");
3601		goto destroy_cache;
3602	}
3603
3604	if (base->plat_data->use_esram_lcla) {
3605
3606		base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
3607		if (IS_ERR(base->lcpa_regulator)) {
3608			d40_err(dev, "Failed to get lcpa_regulator\n");
3609			ret = PTR_ERR(base->lcpa_regulator);
3610			base->lcpa_regulator = NULL;
3611			goto destroy_cache;
3612		}
3613
3614		ret = regulator_enable(base->lcpa_regulator);
3615		if (ret) {
3616			d40_err(dev,
3617				"Failed to enable lcpa_regulator\n");
3618			regulator_put(base->lcpa_regulator);
3619			base->lcpa_regulator = NULL;
3620			goto destroy_cache;
3621		}
3622	}
3623
3624	writel_relaxed(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3625
3626	pm_runtime_irq_safe(base->dev);
3627	pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
3628	pm_runtime_use_autosuspend(base->dev);
3629	pm_runtime_mark_last_busy(base->dev);
3630	pm_runtime_set_active(base->dev);
3631	pm_runtime_enable(base->dev);
3632
3633	ret = d40_dmaengine_init(base, num_reserved_chans);
3634	if (ret)
3635		goto destroy_cache;
3636
3637	ret = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
3638	if (ret) {
3639		d40_err(dev, "Failed to set dma max seg size\n");
3640		goto destroy_cache;
3641	}
3642
3643	d40_hw_init(base);
3644
3645	ret = of_dma_controller_register(np, d40_xlate, NULL);
3646	if (ret) {
3647		dev_err(dev,
3648			"could not register of_dma_controller\n");
3649		goto destroy_cache;
3650	}
3651
3652	dev_info(base->dev, "initialized\n");
3653	return 0;
3654
3655 destroy_cache:
3656	if (base->lcla_pool.dma_addr)
3657		dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
3658				 SZ_1K * base->num_phy_chans,
3659				 DMA_TO_DEVICE);
3660
3661	if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
3662		free_pages((unsigned long)base->lcla_pool.base,
3663			   base->lcla_pool.pages);
3664
3665	kfree(base->lcla_pool.base_unaligned);
3666
3667	if (base->lcpa_regulator) {
3668		regulator_disable(base->lcpa_regulator);
3669		regulator_put(base->lcpa_regulator);
3670	}
3671	pm_runtime_disable(base->dev);
3672
3673 report_failure:
3674	d40_err(dev, "probe failed\n");
3675	return ret;
3676}
3677
3678static const struct of_device_id d40_match[] = {
3679        { .compatible = "stericsson,dma40", },
3680        {}
3681};
3682
3683static struct platform_driver d40_driver = {
3684	.driver = {
3685		.name  = D40_NAME,
3686		.pm = &dma40_pm_ops,
3687		.of_match_table = d40_match,
3688	},
3689};
3690
3691static int __init stedma40_init(void)
3692{
3693	return platform_driver_probe(&d40_driver, d40_probe);
3694}
3695subsys_initcall(stedma40_init);
3696