xref: /kernel/linux/linux-6.6/drivers/dma/imx-sdma.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0+
2//
3// drivers/dma/imx-sdma.c
4//
5// This file contains a driver for the Freescale Smart DMA engine
6//
7// Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
8//
9// Based on code from Freescale:
10//
11// Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
12
13#include <linux/init.h>
14#include <linux/iopoll.h>
15#include <linux/module.h>
16#include <linux/types.h>
17#include <linux/bitfield.h>
18#include <linux/bitops.h>
19#include <linux/mm.h>
20#include <linux/interrupt.h>
21#include <linux/clk.h>
22#include <linux/delay.h>
23#include <linux/sched.h>
24#include <linux/semaphore.h>
25#include <linux/spinlock.h>
26#include <linux/device.h>
27#include <linux/dma-mapping.h>
28#include <linux/firmware.h>
29#include <linux/slab.h>
30#include <linux/platform_device.h>
31#include <linux/dmaengine.h>
32#include <linux/of.h>
33#include <linux/of_address.h>
34#include <linux/of_dma.h>
35#include <linux/workqueue.h>
36
37#include <asm/irq.h>
38#include <linux/dma/imx-dma.h>
39#include <linux/regmap.h>
40#include <linux/mfd/syscon.h>
41#include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
42
43#include "dmaengine.h"
44#include "virt-dma.h"
45
46/* SDMA registers */
47#define SDMA_H_C0PTR		0x000
48#define SDMA_H_INTR		0x004
49#define SDMA_H_STATSTOP		0x008
50#define SDMA_H_START		0x00c
51#define SDMA_H_EVTOVR		0x010
52#define SDMA_H_DSPOVR		0x014
53#define SDMA_H_HOSTOVR		0x018
54#define SDMA_H_EVTPEND		0x01c
55#define SDMA_H_DSPENBL		0x020
56#define SDMA_H_RESET		0x024
57#define SDMA_H_EVTERR		0x028
58#define SDMA_H_INTRMSK		0x02c
59#define SDMA_H_PSW		0x030
60#define SDMA_H_EVTERRDBG	0x034
61#define SDMA_H_CONFIG		0x038
62#define SDMA_ONCE_ENB		0x040
63#define SDMA_ONCE_DATA		0x044
64#define SDMA_ONCE_INSTR		0x048
65#define SDMA_ONCE_STAT		0x04c
66#define SDMA_ONCE_CMD		0x050
67#define SDMA_EVT_MIRROR		0x054
68#define SDMA_ILLINSTADDR	0x058
69#define SDMA_CHN0ADDR		0x05c
70#define SDMA_ONCE_RTB		0x060
71#define SDMA_XTRIG_CONF1	0x070
72#define SDMA_XTRIG_CONF2	0x074
73#define SDMA_CHNENBL0_IMX35	0x200
74#define SDMA_CHNENBL0_IMX31	0x080
75#define SDMA_CHNPRI_0		0x100
76#define SDMA_DONE0_CONFIG	0x1000
77
78/*
79 * Buffer descriptor status values.
80 */
81#define BD_DONE  0x01
82#define BD_WRAP  0x02
83#define BD_CONT  0x04
84#define BD_INTR  0x08
85#define BD_RROR  0x10
86#define BD_LAST  0x20
87#define BD_EXTD  0x80
88
89/*
90 * Data Node descriptor status values.
91 */
92#define DND_END_OF_FRAME  0x80
93#define DND_END_OF_XFER   0x40
94#define DND_DONE          0x20
95#define DND_UNUSED        0x01
96
97/*
98 * IPCV2 descriptor status values.
99 */
100#define BD_IPCV2_END_OF_FRAME  0x40
101
102#define IPCV2_MAX_NODES        50
103/*
104 * Error bit set in the CCB status field by the SDMA,
105 * in setbd routine, in case of a transfer error
106 */
107#define DATA_ERROR  0x10000000
108
109/*
110 * Buffer descriptor commands.
111 */
112#define C0_ADDR             0x01
113#define C0_LOAD             0x02
114#define C0_DUMP             0x03
115#define C0_SETCTX           0x07
116#define C0_GETCTX           0x03
117#define C0_SETDM            0x01
118#define C0_SETPM            0x04
119#define C0_GETDM            0x02
120#define C0_GETPM            0x08
121/*
122 * Change endianness indicator in the BD command field
123 */
124#define CHANGE_ENDIANNESS   0x80
125
126/*
127 *  p_2_p watermark_level description
128 *	Bits		Name			Description
129 *	0-7		Lower WML		Lower watermark level
130 *	8		PS			1: Pad Swallowing
131 *						0: No Pad Swallowing
132 *	9		PA			1: Pad Adding
133 *						0: No Pad Adding
134 *	10		SPDIF			If this bit is set both source
135 *						and destination are on SPBA
136 *	11		Source Bit(SP)		1: Source on SPBA
137 *						0: Source on AIPS
138 *	12		Destination Bit(DP)	1: Destination on SPBA
139 *						0: Destination on AIPS
140 *	13-15		---------		MUST BE 0
141 *	16-23		Higher WML		HWML
142 *	24-27		N			Total number of samples after
143 *						which Pad adding/Swallowing
144 *						must be done. It must be odd.
145 *	28		Lower WML Event(LWE)	SDMA events reg to check for
146 *						LWML event mask
147 *						0: LWE in EVENTS register
148 *						1: LWE in EVENTS2 register
149 *	29		Higher WML Event(HWE)	SDMA events reg to check for
150 *						HWML event mask
151 *						0: HWE in EVENTS register
152 *						1: HWE in EVENTS2 register
153 *	30		---------		MUST BE 0
154 *	31		CONT			1: Amount of samples to be
155 *						transferred is unknown and
156 *						script will keep on
157 *						transferring samples as long as
158 *						both events are detected and
159 *						script must be manually stopped
160 *						by the application
161 *						0: The amount of samples to be
162 *						transferred is equal to the
163 *						count field of mode word
164 */
165#define SDMA_WATERMARK_LEVEL_LWML	0xFF
166#define SDMA_WATERMARK_LEVEL_PS		BIT(8)
167#define SDMA_WATERMARK_LEVEL_PA		BIT(9)
168#define SDMA_WATERMARK_LEVEL_SPDIF	BIT(10)
169#define SDMA_WATERMARK_LEVEL_SP		BIT(11)
170#define SDMA_WATERMARK_LEVEL_DP		BIT(12)
171#define SDMA_WATERMARK_LEVEL_HWML	(0xFF << 16)
172#define SDMA_WATERMARK_LEVEL_LWE	BIT(28)
173#define SDMA_WATERMARK_LEVEL_HWE	BIT(29)
174#define SDMA_WATERMARK_LEVEL_CONT	BIT(31)
175
176#define SDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
177				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
178				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
179
180#define SDMA_DMA_DIRECTIONS	(BIT(DMA_DEV_TO_MEM) | \
181				 BIT(DMA_MEM_TO_DEV) | \
182				 BIT(DMA_DEV_TO_DEV))
183
184#define SDMA_WATERMARK_LEVEL_N_FIFOS	GENMASK(15, 12)
185#define SDMA_WATERMARK_LEVEL_OFF_FIFOS  GENMASK(19, 16)
186#define SDMA_WATERMARK_LEVEL_WORDS_PER_FIFO   GENMASK(31, 28)
187#define SDMA_WATERMARK_LEVEL_SW_DONE	BIT(23)
188
189#define SDMA_DONE0_CONFIG_DONE_SEL	BIT(7)
190#define SDMA_DONE0_CONFIG_DONE_DIS	BIT(6)
191
192/*
193 * struct sdma_script_start_addrs - SDMA script start pointers
194 *
195 * start addresses of the different functions in the physical
196 * address space of the SDMA engine.
197 */
198struct sdma_script_start_addrs {
199	s32 ap_2_ap_addr;
200	s32 ap_2_bp_addr;
201	s32 ap_2_ap_fixed_addr;
202	s32 bp_2_ap_addr;
203	s32 loopback_on_dsp_side_addr;
204	s32 mcu_interrupt_only_addr;
205	s32 firi_2_per_addr;
206	s32 firi_2_mcu_addr;
207	s32 per_2_firi_addr;
208	s32 mcu_2_firi_addr;
209	s32 uart_2_per_addr;
210	s32 uart_2_mcu_addr;
211	s32 per_2_app_addr;
212	s32 mcu_2_app_addr;
213	s32 per_2_per_addr;
214	s32 uartsh_2_per_addr;
215	s32 uartsh_2_mcu_addr;
216	s32 per_2_shp_addr;
217	s32 mcu_2_shp_addr;
218	s32 ata_2_mcu_addr;
219	s32 mcu_2_ata_addr;
220	s32 app_2_per_addr;
221	s32 app_2_mcu_addr;
222	s32 shp_2_per_addr;
223	s32 shp_2_mcu_addr;
224	s32 mshc_2_mcu_addr;
225	s32 mcu_2_mshc_addr;
226	s32 spdif_2_mcu_addr;
227	s32 mcu_2_spdif_addr;
228	s32 asrc_2_mcu_addr;
229	s32 ext_mem_2_ipu_addr;
230	s32 descrambler_addr;
231	s32 dptc_dvfs_addr;
232	s32 utra_addr;
233	s32 ram_code_start_addr;
234	/* End of v1 array */
235	s32 mcu_2_ssish_addr;
236	s32 ssish_2_mcu_addr;
237	s32 hdmi_dma_addr;
238	/* End of v2 array */
239	s32 zcanfd_2_mcu_addr;
240	s32 zqspi_2_mcu_addr;
241	s32 mcu_2_ecspi_addr;
242	s32 mcu_2_sai_addr;
243	s32 sai_2_mcu_addr;
244	s32 uart_2_mcu_rom_addr;
245	s32 uartsh_2_mcu_rom_addr;
246	/* End of v3 array */
247	s32 mcu_2_zqspi_addr;
248	/* End of v4 array */
249};
250
251/*
252 * Mode/Count of data node descriptors - IPCv2
253 */
254struct sdma_mode_count {
255#define SDMA_BD_MAX_CNT	0xffff
256	u32 count   : 16; /* size of the buffer pointed by this BD */
257	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
258	u32 command :  8; /* command mostly used for channel 0 */
259};
260
261/*
262 * Buffer descriptor
263 */
264struct sdma_buffer_descriptor {
265	struct sdma_mode_count  mode;
266	u32 buffer_addr;	/* address of the buffer described */
267	u32 ext_buffer_addr;	/* extended buffer address */
268} __attribute__ ((packed));
269
270/**
271 * struct sdma_channel_control - Channel control Block
272 *
273 * @current_bd_ptr:	current buffer descriptor processed
274 * @base_bd_ptr:	first element of buffer descriptor array
275 * @unused:		padding. The SDMA engine expects an array of 128 byte
276 *			control blocks
277 */
278struct sdma_channel_control {
279	u32 current_bd_ptr;
280	u32 base_bd_ptr;
281	u32 unused[2];
282} __attribute__ ((packed));
283
284/**
285 * struct sdma_state_registers - SDMA context for a channel
286 *
287 * @pc:		program counter
288 * @unused1:	unused
289 * @t:		test bit: status of arithmetic & test instruction
290 * @rpc:	return program counter
291 * @unused0:	unused
292 * @sf:		source fault while loading data
293 * @spc:	loop start program counter
294 * @unused2:	unused
295 * @df:		destination fault while storing data
296 * @epc:	loop end program counter
297 * @lm:		loop mode
298 */
299struct sdma_state_registers {
300	u32 pc     :14;
301	u32 unused1: 1;
302	u32 t      : 1;
303	u32 rpc    :14;
304	u32 unused0: 1;
305	u32 sf     : 1;
306	u32 spc    :14;
307	u32 unused2: 1;
308	u32 df     : 1;
309	u32 epc    :14;
310	u32 lm     : 2;
311} __attribute__ ((packed));
312
313/**
314 * struct sdma_context_data - sdma context specific to a channel
315 *
316 * @channel_state:	channel state bits
317 * @gReg:		general registers
318 * @mda:		burst dma destination address register
319 * @msa:		burst dma source address register
320 * @ms:			burst dma status register
321 * @md:			burst dma data register
322 * @pda:		peripheral dma destination address register
323 * @psa:		peripheral dma source address register
324 * @ps:			peripheral dma status register
325 * @pd:			peripheral dma data register
326 * @ca:			CRC polynomial register
327 * @cs:			CRC accumulator register
328 * @dda:		dedicated core destination address register
329 * @dsa:		dedicated core source address register
330 * @ds:			dedicated core status register
331 * @dd:			dedicated core data register
332 * @scratch0:		1st word of dedicated ram for context switch
333 * @scratch1:		2nd word of dedicated ram for context switch
334 * @scratch2:		3rd word of dedicated ram for context switch
335 * @scratch3:		4th word of dedicated ram for context switch
336 * @scratch4:		5th word of dedicated ram for context switch
337 * @scratch5:		6th word of dedicated ram for context switch
338 * @scratch6:		7th word of dedicated ram for context switch
339 * @scratch7:		8th word of dedicated ram for context switch
340 */
341struct sdma_context_data {
342	struct sdma_state_registers  channel_state;
343	u32  gReg[8];
344	u32  mda;
345	u32  msa;
346	u32  ms;
347	u32  md;
348	u32  pda;
349	u32  psa;
350	u32  ps;
351	u32  pd;
352	u32  ca;
353	u32  cs;
354	u32  dda;
355	u32  dsa;
356	u32  ds;
357	u32  dd;
358	u32  scratch0;
359	u32  scratch1;
360	u32  scratch2;
361	u32  scratch3;
362	u32  scratch4;
363	u32  scratch5;
364	u32  scratch6;
365	u32  scratch7;
366} __attribute__ ((packed));
367
368
369struct sdma_engine;
370
371/**
372 * struct sdma_desc - descriptor structor for one transfer
373 * @vd:			descriptor for virt dma
374 * @num_bd:		number of descriptors currently handling
375 * @bd_phys:		physical address of bd
376 * @buf_tail:		ID of the buffer that was processed
377 * @buf_ptail:		ID of the previous buffer that was processed
378 * @period_len:		period length, used in cyclic.
379 * @chn_real_count:	the real count updated from bd->mode.count
380 * @chn_count:		the transfer count set
381 * @sdmac:		sdma_channel pointer
382 * @bd:			pointer of allocate bd
383 */
384struct sdma_desc {
385	struct virt_dma_desc	vd;
386	unsigned int		num_bd;
387	dma_addr_t		bd_phys;
388	unsigned int		buf_tail;
389	unsigned int		buf_ptail;
390	unsigned int		period_len;
391	unsigned int		chn_real_count;
392	unsigned int		chn_count;
393	struct sdma_channel	*sdmac;
394	struct sdma_buffer_descriptor *bd;
395};
396
397/**
398 * struct sdma_channel - housekeeping for a SDMA channel
399 *
400 * @vc:			virt_dma base structure
401 * @desc:		sdma description including vd and other special member
402 * @sdma:		pointer to the SDMA engine for this channel
403 * @channel:		the channel number, matches dmaengine chan_id + 1
404 * @direction:		transfer type. Needed for setting SDMA script
405 * @slave_config:	Slave configuration
406 * @peripheral_type:	Peripheral type. Needed for setting SDMA script
407 * @event_id0:		aka dma request line
408 * @event_id1:		for channels that use 2 events
409 * @word_size:		peripheral access size
410 * @pc_from_device:	script address for those device_2_memory
411 * @pc_to_device:	script address for those memory_2_device
412 * @device_to_device:	script address for those device_2_device
413 * @pc_to_pc:		script address for those memory_2_memory
414 * @flags:		loop mode or not
415 * @per_address:	peripheral source or destination address in common case
416 *                      destination address in p_2_p case
417 * @per_address2:	peripheral source address in p_2_p case
418 * @event_mask:		event mask used in p_2_p script
419 * @watermark_level:	value for gReg[7], some script will extend it from
420 *			basic watermark such as p_2_p
421 * @shp_addr:		value for gReg[6]
422 * @per_addr:		value for gReg[2]
423 * @status:		status of dma channel
424 * @context_loaded:	ensure context is only loaded once
425 * @data:		specific sdma interface structure
426 * @bd_pool:		dma_pool for bd
427 * @terminate_worker:	used to call back into terminate work function
428 * @terminated:		terminated list
429 * @is_ram_script:	flag for script in ram
430 * @n_fifos_src:	number of source device fifos
431 * @n_fifos_dst:	number of destination device fifos
432 * @sw_done:		software done flag
433 * @stride_fifos_src:	stride for source device FIFOs
434 * @stride_fifos_dst:	stride for destination device FIFOs
435 * @words_per_fifo:	copy number of words one time for one FIFO
436 */
437struct sdma_channel {
438	struct virt_dma_chan		vc;
439	struct sdma_desc		*desc;
440	struct sdma_engine		*sdma;
441	unsigned int			channel;
442	enum dma_transfer_direction		direction;
443	struct dma_slave_config		slave_config;
444	enum sdma_peripheral_type	peripheral_type;
445	unsigned int			event_id0;
446	unsigned int			event_id1;
447	enum dma_slave_buswidth		word_size;
448	unsigned int			pc_from_device, pc_to_device;
449	unsigned int			device_to_device;
450	unsigned int                    pc_to_pc;
451	unsigned long			flags;
452	dma_addr_t			per_address, per_address2;
453	unsigned long			event_mask[2];
454	unsigned long			watermark_level;
455	u32				shp_addr, per_addr;
456	enum dma_status			status;
457	struct imx_dma_data		data;
458	struct work_struct		terminate_worker;
459	struct list_head                terminated;
460	bool				is_ram_script;
461	unsigned int			n_fifos_src;
462	unsigned int			n_fifos_dst;
463	unsigned int			stride_fifos_src;
464	unsigned int			stride_fifos_dst;
465	unsigned int			words_per_fifo;
466	bool				sw_done;
467};
468
469#define IMX_DMA_SG_LOOP		BIT(0)
470
471#define MAX_DMA_CHANNELS 32
472#define MXC_SDMA_DEFAULT_PRIORITY 1
473#define MXC_SDMA_MIN_PRIORITY 1
474#define MXC_SDMA_MAX_PRIORITY 7
475
476#define SDMA_FIRMWARE_MAGIC 0x414d4453
477
478/**
479 * struct sdma_firmware_header - Layout of the firmware image
480 *
481 * @magic:		"SDMA"
482 * @version_major:	increased whenever layout of struct
483 *			sdma_script_start_addrs changes.
484 * @version_minor:	firmware minor version (for binary compatible changes)
485 * @script_addrs_start:	offset of struct sdma_script_start_addrs in this image
486 * @num_script_addrs:	Number of script addresses in this image
487 * @ram_code_start:	offset of SDMA ram image in this firmware image
488 * @ram_code_size:	size of SDMA ram image
489 * @script_addrs:	Stores the start address of the SDMA scripts
490 *			(in SDMA memory space)
491 */
492struct sdma_firmware_header {
493	u32	magic;
494	u32	version_major;
495	u32	version_minor;
496	u32	script_addrs_start;
497	u32	num_script_addrs;
498	u32	ram_code_start;
499	u32	ram_code_size;
500};
501
502struct sdma_driver_data {
503	int chnenbl0;
504	int num_events;
505	struct sdma_script_start_addrs	*script_addrs;
506	bool check_ratio;
507	/*
508	 * ecspi ERR009165 fixed should be done in sdma script
509	 * and it has been fixed in soc from i.mx6ul.
510	 * please get more information from the below link:
511	 * https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf
512	 */
513	bool ecspi_fixed;
514};
515
516struct sdma_engine {
517	struct device			*dev;
518	struct sdma_channel		channel[MAX_DMA_CHANNELS];
519	struct sdma_channel_control	*channel_control;
520	void __iomem			*regs;
521	struct sdma_context_data	*context;
522	dma_addr_t			context_phys;
523	struct dma_device		dma_device;
524	struct clk			*clk_ipg;
525	struct clk			*clk_ahb;
526	spinlock_t			channel_0_lock;
527	u32				script_number;
528	struct sdma_script_start_addrs	*script_addrs;
529	const struct sdma_driver_data	*drvdata;
530	u32				spba_start_addr;
531	u32				spba_end_addr;
532	unsigned int			irq;
533	dma_addr_t			bd0_phys;
534	struct sdma_buffer_descriptor	*bd0;
535	/* clock ratio for AHB:SDMA core. 1:1 is 1, 2:1 is 0*/
536	bool				clk_ratio;
537	bool                            fw_loaded;
538};
539
540static int sdma_config_write(struct dma_chan *chan,
541		       struct dma_slave_config *dmaengine_cfg,
542		       enum dma_transfer_direction direction);
543
544static struct sdma_driver_data sdma_imx31 = {
545	.chnenbl0 = SDMA_CHNENBL0_IMX31,
546	.num_events = 32,
547};
548
549static struct sdma_script_start_addrs sdma_script_imx25 = {
550	.ap_2_ap_addr = 729,
551	.uart_2_mcu_addr = 904,
552	.per_2_app_addr = 1255,
553	.mcu_2_app_addr = 834,
554	.uartsh_2_mcu_addr = 1120,
555	.per_2_shp_addr = 1329,
556	.mcu_2_shp_addr = 1048,
557	.ata_2_mcu_addr = 1560,
558	.mcu_2_ata_addr = 1479,
559	.app_2_per_addr = 1189,
560	.app_2_mcu_addr = 770,
561	.shp_2_per_addr = 1407,
562	.shp_2_mcu_addr = 979,
563};
564
565static struct sdma_driver_data sdma_imx25 = {
566	.chnenbl0 = SDMA_CHNENBL0_IMX35,
567	.num_events = 48,
568	.script_addrs = &sdma_script_imx25,
569};
570
571static struct sdma_driver_data sdma_imx35 = {
572	.chnenbl0 = SDMA_CHNENBL0_IMX35,
573	.num_events = 48,
574};
575
576static struct sdma_script_start_addrs sdma_script_imx51 = {
577	.ap_2_ap_addr = 642,
578	.uart_2_mcu_addr = 817,
579	.mcu_2_app_addr = 747,
580	.mcu_2_shp_addr = 961,
581	.ata_2_mcu_addr = 1473,
582	.mcu_2_ata_addr = 1392,
583	.app_2_per_addr = 1033,
584	.app_2_mcu_addr = 683,
585	.shp_2_per_addr = 1251,
586	.shp_2_mcu_addr = 892,
587};
588
589static struct sdma_driver_data sdma_imx51 = {
590	.chnenbl0 = SDMA_CHNENBL0_IMX35,
591	.num_events = 48,
592	.script_addrs = &sdma_script_imx51,
593};
594
595static struct sdma_script_start_addrs sdma_script_imx53 = {
596	.ap_2_ap_addr = 642,
597	.app_2_mcu_addr = 683,
598	.mcu_2_app_addr = 747,
599	.uart_2_mcu_addr = 817,
600	.shp_2_mcu_addr = 891,
601	.mcu_2_shp_addr = 960,
602	.uartsh_2_mcu_addr = 1032,
603	.spdif_2_mcu_addr = 1100,
604	.mcu_2_spdif_addr = 1134,
605	.firi_2_mcu_addr = 1193,
606	.mcu_2_firi_addr = 1290,
607};
608
609static struct sdma_driver_data sdma_imx53 = {
610	.chnenbl0 = SDMA_CHNENBL0_IMX35,
611	.num_events = 48,
612	.script_addrs = &sdma_script_imx53,
613};
614
615static struct sdma_script_start_addrs sdma_script_imx6q = {
616	.ap_2_ap_addr = 642,
617	.uart_2_mcu_addr = 817,
618	.mcu_2_app_addr = 747,
619	.per_2_per_addr = 6331,
620	.uartsh_2_mcu_addr = 1032,
621	.mcu_2_shp_addr = 960,
622	.app_2_mcu_addr = 683,
623	.shp_2_mcu_addr = 891,
624	.spdif_2_mcu_addr = 1100,
625	.mcu_2_spdif_addr = 1134,
626};
627
628static struct sdma_driver_data sdma_imx6q = {
629	.chnenbl0 = SDMA_CHNENBL0_IMX35,
630	.num_events = 48,
631	.script_addrs = &sdma_script_imx6q,
632};
633
634static struct sdma_driver_data sdma_imx6ul = {
635	.chnenbl0 = SDMA_CHNENBL0_IMX35,
636	.num_events = 48,
637	.script_addrs = &sdma_script_imx6q,
638	.ecspi_fixed = true,
639};
640
641static struct sdma_script_start_addrs sdma_script_imx7d = {
642	.ap_2_ap_addr = 644,
643	.uart_2_mcu_addr = 819,
644	.mcu_2_app_addr = 749,
645	.uartsh_2_mcu_addr = 1034,
646	.mcu_2_shp_addr = 962,
647	.app_2_mcu_addr = 685,
648	.shp_2_mcu_addr = 893,
649	.spdif_2_mcu_addr = 1102,
650	.mcu_2_spdif_addr = 1136,
651};
652
653static struct sdma_driver_data sdma_imx7d = {
654	.chnenbl0 = SDMA_CHNENBL0_IMX35,
655	.num_events = 48,
656	.script_addrs = &sdma_script_imx7d,
657};
658
659static struct sdma_driver_data sdma_imx8mq = {
660	.chnenbl0 = SDMA_CHNENBL0_IMX35,
661	.num_events = 48,
662	.script_addrs = &sdma_script_imx7d,
663	.check_ratio = 1,
664};
665
666static const struct of_device_id sdma_dt_ids[] = {
667	{ .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
668	{ .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
669	{ .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
670	{ .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
671	{ .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
672	{ .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
673	{ .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
674	{ .compatible = "fsl,imx6ul-sdma", .data = &sdma_imx6ul, },
675	{ .compatible = "fsl,imx8mq-sdma", .data = &sdma_imx8mq, },
676	{ /* sentinel */ }
677};
678MODULE_DEVICE_TABLE(of, sdma_dt_ids);
679
680#define SDMA_H_CONFIG_DSPDMA	BIT(12) /* indicates if the DSPDMA is used */
681#define SDMA_H_CONFIG_RTD_PINS	BIT(11) /* indicates if Real-Time Debug pins are enabled */
682#define SDMA_H_CONFIG_ACR	BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
683#define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/
684
685static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
686{
687	u32 chnenbl0 = sdma->drvdata->chnenbl0;
688	return chnenbl0 + event * 4;
689}
690
691static int sdma_config_ownership(struct sdma_channel *sdmac,
692		bool event_override, bool mcu_override, bool dsp_override)
693{
694	struct sdma_engine *sdma = sdmac->sdma;
695	int channel = sdmac->channel;
696	unsigned long evt, mcu, dsp;
697
698	if (event_override && mcu_override && dsp_override)
699		return -EINVAL;
700
701	evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
702	mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
703	dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
704
705	if (dsp_override)
706		__clear_bit(channel, &dsp);
707	else
708		__set_bit(channel, &dsp);
709
710	if (event_override)
711		__clear_bit(channel, &evt);
712	else
713		__set_bit(channel, &evt);
714
715	if (mcu_override)
716		__clear_bit(channel, &mcu);
717	else
718		__set_bit(channel, &mcu);
719
720	writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
721	writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
722	writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
723
724	return 0;
725}
726
727static int is_sdma_channel_enabled(struct sdma_engine *sdma, int channel)
728{
729	return !!(readl(sdma->regs + SDMA_H_STATSTOP) & BIT(channel));
730}
731
732static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
733{
734	writel(BIT(channel), sdma->regs + SDMA_H_START);
735}
736
737/*
738 * sdma_run_channel0 - run a channel and wait till it's done
739 */
740static int sdma_run_channel0(struct sdma_engine *sdma)
741{
742	int ret;
743	u32 reg;
744
745	sdma_enable_channel(sdma, 0);
746
747	ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
748						reg, !(reg & 1), 1, 500);
749	if (ret)
750		dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
751
752	/* Set bits of CONFIG register with dynamic context switching */
753	reg = readl(sdma->regs + SDMA_H_CONFIG);
754	if ((reg & SDMA_H_CONFIG_CSM) == 0) {
755		reg |= SDMA_H_CONFIG_CSM;
756		writel_relaxed(reg, sdma->regs + SDMA_H_CONFIG);
757	}
758
759	return ret;
760}
761
762static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
763		u32 address)
764{
765	struct sdma_buffer_descriptor *bd0 = sdma->bd0;
766	void *buf_virt;
767	dma_addr_t buf_phys;
768	int ret;
769	unsigned long flags;
770
771	buf_virt = dma_alloc_coherent(sdma->dev, size, &buf_phys, GFP_KERNEL);
772	if (!buf_virt)
773		return -ENOMEM;
774
775	spin_lock_irqsave(&sdma->channel_0_lock, flags);
776
777	bd0->mode.command = C0_SETPM;
778	bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
779	bd0->mode.count = size / 2;
780	bd0->buffer_addr = buf_phys;
781	bd0->ext_buffer_addr = address;
782
783	memcpy(buf_virt, buf, size);
784
785	ret = sdma_run_channel0(sdma);
786
787	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
788
789	dma_free_coherent(sdma->dev, size, buf_virt, buf_phys);
790
791	return ret;
792}
793
794static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
795{
796	struct sdma_engine *sdma = sdmac->sdma;
797	int channel = sdmac->channel;
798	unsigned long val;
799	u32 chnenbl = chnenbl_ofs(sdma, event);
800
801	val = readl_relaxed(sdma->regs + chnenbl);
802	__set_bit(channel, &val);
803	writel_relaxed(val, sdma->regs + chnenbl);
804
805	/* Set SDMA_DONEx_CONFIG is sw_done enabled */
806	if (sdmac->sw_done) {
807		val = readl_relaxed(sdma->regs + SDMA_DONE0_CONFIG);
808		val |= SDMA_DONE0_CONFIG_DONE_SEL;
809		val &= ~SDMA_DONE0_CONFIG_DONE_DIS;
810		writel_relaxed(val, sdma->regs + SDMA_DONE0_CONFIG);
811	}
812}
813
814static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
815{
816	struct sdma_engine *sdma = sdmac->sdma;
817	int channel = sdmac->channel;
818	u32 chnenbl = chnenbl_ofs(sdma, event);
819	unsigned long val;
820
821	val = readl_relaxed(sdma->regs + chnenbl);
822	__clear_bit(channel, &val);
823	writel_relaxed(val, sdma->regs + chnenbl);
824}
825
826static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t)
827{
828	return container_of(t, struct sdma_desc, vd.tx);
829}
830
831static void sdma_start_desc(struct sdma_channel *sdmac)
832{
833	struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc);
834	struct sdma_desc *desc;
835	struct sdma_engine *sdma = sdmac->sdma;
836	int channel = sdmac->channel;
837
838	if (!vd) {
839		sdmac->desc = NULL;
840		return;
841	}
842	sdmac->desc = desc = to_sdma_desc(&vd->tx);
843
844	list_del(&vd->node);
845
846	sdma->channel_control[channel].base_bd_ptr = desc->bd_phys;
847	sdma->channel_control[channel].current_bd_ptr = desc->bd_phys;
848	sdma_enable_channel(sdma, sdmac->channel);
849}
850
851static void sdma_update_channel_loop(struct sdma_channel *sdmac)
852{
853	struct sdma_buffer_descriptor *bd;
854	int error = 0;
855	enum dma_status	old_status = sdmac->status;
856
857	/*
858	 * loop mode. Iterate over descriptors, re-setup them and
859	 * call callback function.
860	 */
861	while (sdmac->desc) {
862		struct sdma_desc *desc = sdmac->desc;
863
864		bd = &desc->bd[desc->buf_tail];
865
866		if (bd->mode.status & BD_DONE)
867			break;
868
869		if (bd->mode.status & BD_RROR) {
870			bd->mode.status &= ~BD_RROR;
871			sdmac->status = DMA_ERROR;
872			error = -EIO;
873		}
874
875	       /*
876		* We use bd->mode.count to calculate the residue, since contains
877		* the number of bytes present in the current buffer descriptor.
878		*/
879
880		desc->chn_real_count = bd->mode.count;
881		bd->mode.count = desc->period_len;
882		desc->buf_ptail = desc->buf_tail;
883		desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd;
884
885		/*
886		 * The callback is called from the interrupt context in order
887		 * to reduce latency and to avoid the risk of altering the
888		 * SDMA transaction status by the time the client tasklet is
889		 * executed.
890		 */
891		spin_unlock(&sdmac->vc.lock);
892		dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL);
893		spin_lock(&sdmac->vc.lock);
894
895		/* Assign buffer ownership to SDMA */
896		bd->mode.status |= BD_DONE;
897
898		if (error)
899			sdmac->status = old_status;
900	}
901
902	/*
903	 * SDMA stops cyclic channel when DMA request triggers a channel and no SDMA
904	 * owned buffer is available (i.e. BD_DONE was set too late).
905	 */
906	if (sdmac->desc && !is_sdma_channel_enabled(sdmac->sdma, sdmac->channel)) {
907		dev_warn(sdmac->sdma->dev, "restart cyclic channel %d\n", sdmac->channel);
908		sdma_enable_channel(sdmac->sdma, sdmac->channel);
909	}
910}
911
912static void mxc_sdma_handle_channel_normal(struct sdma_channel *data)
913{
914	struct sdma_channel *sdmac = (struct sdma_channel *) data;
915	struct sdma_buffer_descriptor *bd;
916	int i, error = 0;
917
918	sdmac->desc->chn_real_count = 0;
919	/*
920	 * non loop mode. Iterate over all descriptors, collect
921	 * errors and call callback function
922	 */
923	for (i = 0; i < sdmac->desc->num_bd; i++) {
924		bd = &sdmac->desc->bd[i];
925
926		if (bd->mode.status & (BD_DONE | BD_RROR))
927			error = -EIO;
928		sdmac->desc->chn_real_count += bd->mode.count;
929	}
930
931	if (error)
932		sdmac->status = DMA_ERROR;
933	else
934		sdmac->status = DMA_COMPLETE;
935}
936
937static irqreturn_t sdma_int_handler(int irq, void *dev_id)
938{
939	struct sdma_engine *sdma = dev_id;
940	unsigned long stat;
941
942	stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
943	writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
944	/* channel 0 is special and not handled here, see run_channel0() */
945	stat &= ~1;
946
947	while (stat) {
948		int channel = fls(stat) - 1;
949		struct sdma_channel *sdmac = &sdma->channel[channel];
950		struct sdma_desc *desc;
951
952		spin_lock(&sdmac->vc.lock);
953		desc = sdmac->desc;
954		if (desc) {
955			if (sdmac->flags & IMX_DMA_SG_LOOP) {
956				if (sdmac->peripheral_type != IMX_DMATYPE_HDMI)
957					sdma_update_channel_loop(sdmac);
958				else
959					vchan_cyclic_callback(&desc->vd);
960			} else {
961				mxc_sdma_handle_channel_normal(sdmac);
962				vchan_cookie_complete(&desc->vd);
963				sdma_start_desc(sdmac);
964			}
965		}
966
967		spin_unlock(&sdmac->vc.lock);
968		__clear_bit(channel, &stat);
969	}
970
971	return IRQ_HANDLED;
972}
973
974/*
975 * sets the pc of SDMA script according to the peripheral type
976 */
977static int sdma_get_pc(struct sdma_channel *sdmac,
978		enum sdma_peripheral_type peripheral_type)
979{
980	struct sdma_engine *sdma = sdmac->sdma;
981	int per_2_emi = 0, emi_2_per = 0;
982	/*
983	 * These are needed once we start to support transfers between
984	 * two peripherals or memory-to-memory transfers
985	 */
986	int per_2_per = 0, emi_2_emi = 0;
987
988	sdmac->pc_from_device = 0;
989	sdmac->pc_to_device = 0;
990	sdmac->device_to_device = 0;
991	sdmac->pc_to_pc = 0;
992	sdmac->is_ram_script = false;
993
994	switch (peripheral_type) {
995	case IMX_DMATYPE_MEMORY:
996		emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
997		break;
998	case IMX_DMATYPE_DSP:
999		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
1000		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
1001		break;
1002	case IMX_DMATYPE_FIRI:
1003		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
1004		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
1005		break;
1006	case IMX_DMATYPE_UART:
1007		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
1008		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
1009		break;
1010	case IMX_DMATYPE_UART_SP:
1011		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
1012		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1013		break;
1014	case IMX_DMATYPE_ATA:
1015		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
1016		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
1017		break;
1018	case IMX_DMATYPE_CSPI:
1019		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
1020
1021		/* Use rom script mcu_2_app if ERR009165 fixed */
1022		if (sdmac->sdma->drvdata->ecspi_fixed) {
1023			emi_2_per = sdma->script_addrs->mcu_2_app_addr;
1024		} else {
1025			emi_2_per = sdma->script_addrs->mcu_2_ecspi_addr;
1026			sdmac->is_ram_script = true;
1027		}
1028
1029		break;
1030	case IMX_DMATYPE_EXT:
1031	case IMX_DMATYPE_SSI:
1032	case IMX_DMATYPE_SAI:
1033		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
1034		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
1035		break;
1036	case IMX_DMATYPE_SSI_DUAL:
1037		per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
1038		emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
1039		sdmac->is_ram_script = true;
1040		break;
1041	case IMX_DMATYPE_SSI_SP:
1042	case IMX_DMATYPE_MMC:
1043	case IMX_DMATYPE_SDHC:
1044	case IMX_DMATYPE_CSPI_SP:
1045	case IMX_DMATYPE_ESAI:
1046	case IMX_DMATYPE_MSHC_SP:
1047		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
1048		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1049		break;
1050	case IMX_DMATYPE_ASRC:
1051		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
1052		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
1053		per_2_per = sdma->script_addrs->per_2_per_addr;
1054		sdmac->is_ram_script = true;
1055		break;
1056	case IMX_DMATYPE_ASRC_SP:
1057		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
1058		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1059		per_2_per = sdma->script_addrs->per_2_per_addr;
1060		break;
1061	case IMX_DMATYPE_MSHC:
1062		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
1063		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
1064		break;
1065	case IMX_DMATYPE_CCM:
1066		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
1067		break;
1068	case IMX_DMATYPE_SPDIF:
1069		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
1070		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
1071		break;
1072	case IMX_DMATYPE_IPU_MEMORY:
1073		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
1074		break;
1075	case IMX_DMATYPE_MULTI_SAI:
1076		per_2_emi = sdma->script_addrs->sai_2_mcu_addr;
1077		emi_2_per = sdma->script_addrs->mcu_2_sai_addr;
1078		break;
1079	case IMX_DMATYPE_HDMI:
1080		emi_2_per = sdma->script_addrs->hdmi_dma_addr;
1081		sdmac->is_ram_script = true;
1082		break;
1083	default:
1084		dev_err(sdma->dev, "Unsupported transfer type %d\n",
1085			peripheral_type);
1086		return -EINVAL;
1087	}
1088
1089	sdmac->pc_from_device = per_2_emi;
1090	sdmac->pc_to_device = emi_2_per;
1091	sdmac->device_to_device = per_2_per;
1092	sdmac->pc_to_pc = emi_2_emi;
1093
1094	return 0;
1095}
1096
1097static int sdma_load_context(struct sdma_channel *sdmac)
1098{
1099	struct sdma_engine *sdma = sdmac->sdma;
1100	int channel = sdmac->channel;
1101	int load_address;
1102	struct sdma_context_data *context = sdma->context;
1103	struct sdma_buffer_descriptor *bd0 = sdma->bd0;
1104	int ret;
1105	unsigned long flags;
1106
1107	if (sdmac->direction == DMA_DEV_TO_MEM)
1108		load_address = sdmac->pc_from_device;
1109	else if (sdmac->direction == DMA_DEV_TO_DEV)
1110		load_address = sdmac->device_to_device;
1111	else if (sdmac->direction == DMA_MEM_TO_MEM)
1112		load_address = sdmac->pc_to_pc;
1113	else
1114		load_address = sdmac->pc_to_device;
1115
1116	if (load_address < 0)
1117		return load_address;
1118
1119	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
1120	dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
1121	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
1122	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
1123	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
1124	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
1125
1126	spin_lock_irqsave(&sdma->channel_0_lock, flags);
1127
1128	memset(context, 0, sizeof(*context));
1129	context->channel_state.pc = load_address;
1130
1131	/* Send by context the event mask,base address for peripheral
1132	 * and watermark level
1133	 */
1134	if (sdmac->peripheral_type == IMX_DMATYPE_HDMI) {
1135		context->gReg[4] = sdmac->per_addr;
1136		context->gReg[6] = sdmac->shp_addr;
1137	} else {
1138		context->gReg[0] = sdmac->event_mask[1];
1139		context->gReg[1] = sdmac->event_mask[0];
1140		context->gReg[2] = sdmac->per_addr;
1141		context->gReg[6] = sdmac->shp_addr;
1142		context->gReg[7] = sdmac->watermark_level;
1143	}
1144
1145	bd0->mode.command = C0_SETDM;
1146	bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
1147	bd0->mode.count = sizeof(*context) / 4;
1148	bd0->buffer_addr = sdma->context_phys;
1149	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
1150	ret = sdma_run_channel0(sdma);
1151
1152	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
1153
1154	return ret;
1155}
1156
1157static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
1158{
1159	return container_of(chan, struct sdma_channel, vc.chan);
1160}
1161
1162static int sdma_disable_channel(struct dma_chan *chan)
1163{
1164	struct sdma_channel *sdmac = to_sdma_chan(chan);
1165	struct sdma_engine *sdma = sdmac->sdma;
1166	int channel = sdmac->channel;
1167
1168	writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
1169	sdmac->status = DMA_ERROR;
1170
1171	return 0;
1172}
1173static void sdma_channel_terminate_work(struct work_struct *work)
1174{
1175	struct sdma_channel *sdmac = container_of(work, struct sdma_channel,
1176						  terminate_worker);
1177	/*
1178	 * According to NXP R&D team a delay of one BD SDMA cost time
1179	 * (maximum is 1ms) should be added after disable of the channel
1180	 * bit, to ensure SDMA core has really been stopped after SDMA
1181	 * clients call .device_terminate_all.
1182	 */
1183	usleep_range(1000, 2000);
1184
1185	vchan_dma_desc_free_list(&sdmac->vc, &sdmac->terminated);
1186}
1187
1188static int sdma_terminate_all(struct dma_chan *chan)
1189{
1190	struct sdma_channel *sdmac = to_sdma_chan(chan);
1191	unsigned long flags;
1192
1193	spin_lock_irqsave(&sdmac->vc.lock, flags);
1194
1195	sdma_disable_channel(chan);
1196
1197	if (sdmac->desc) {
1198		vchan_terminate_vdesc(&sdmac->desc->vd);
1199		/*
1200		 * move out current descriptor into terminated list so that
1201		 * it could be free in sdma_channel_terminate_work alone
1202		 * later without potential involving next descriptor raised
1203		 * up before the last descriptor terminated.
1204		 */
1205		vchan_get_all_descriptors(&sdmac->vc, &sdmac->terminated);
1206		sdmac->desc = NULL;
1207		schedule_work(&sdmac->terminate_worker);
1208	}
1209
1210	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1211
1212	return 0;
1213}
1214
1215static void sdma_channel_synchronize(struct dma_chan *chan)
1216{
1217	struct sdma_channel *sdmac = to_sdma_chan(chan);
1218
1219	vchan_synchronize(&sdmac->vc);
1220
1221	flush_work(&sdmac->terminate_worker);
1222}
1223
1224static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
1225{
1226	struct sdma_engine *sdma = sdmac->sdma;
1227
1228	int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
1229	int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
1230
1231	set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
1232	set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
1233
1234	if (sdmac->event_id0 > 31)
1235		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
1236
1237	if (sdmac->event_id1 > 31)
1238		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
1239
1240	/*
1241	 * If LWML(src_maxburst) > HWML(dst_maxburst), we need
1242	 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
1243	 * r0(event_mask[1]) and r1(event_mask[0]).
1244	 */
1245	if (lwml > hwml) {
1246		sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
1247						SDMA_WATERMARK_LEVEL_HWML);
1248		sdmac->watermark_level |= hwml;
1249		sdmac->watermark_level |= lwml << 16;
1250		swap(sdmac->event_mask[0], sdmac->event_mask[1]);
1251	}
1252
1253	if (sdmac->per_address2 >= sdma->spba_start_addr &&
1254			sdmac->per_address2 <= sdma->spba_end_addr)
1255		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
1256
1257	if (sdmac->per_address >= sdma->spba_start_addr &&
1258			sdmac->per_address <= sdma->spba_end_addr)
1259		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
1260
1261	sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
1262}
1263
1264static void sdma_set_watermarklevel_for_sais(struct sdma_channel *sdmac)
1265{
1266	unsigned int n_fifos;
1267	unsigned int stride_fifos;
1268	unsigned int words_per_fifo;
1269
1270	if (sdmac->sw_done)
1271		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SW_DONE;
1272
1273	if (sdmac->direction == DMA_DEV_TO_MEM) {
1274		n_fifos = sdmac->n_fifos_src;
1275		stride_fifos = sdmac->stride_fifos_src;
1276	} else {
1277		n_fifos = sdmac->n_fifos_dst;
1278		stride_fifos = sdmac->stride_fifos_dst;
1279	}
1280
1281	words_per_fifo = sdmac->words_per_fifo;
1282
1283	sdmac->watermark_level |=
1284			FIELD_PREP(SDMA_WATERMARK_LEVEL_N_FIFOS, n_fifos);
1285	sdmac->watermark_level |=
1286			FIELD_PREP(SDMA_WATERMARK_LEVEL_OFF_FIFOS, stride_fifos);
1287	if (words_per_fifo)
1288		sdmac->watermark_level |=
1289			FIELD_PREP(SDMA_WATERMARK_LEVEL_WORDS_PER_FIFO, (words_per_fifo - 1));
1290}
1291
1292static int sdma_config_channel(struct dma_chan *chan)
1293{
1294	struct sdma_channel *sdmac = to_sdma_chan(chan);
1295	int ret;
1296
1297	sdma_disable_channel(chan);
1298
1299	sdmac->event_mask[0] = 0;
1300	sdmac->event_mask[1] = 0;
1301	sdmac->shp_addr = 0;
1302	sdmac->per_addr = 0;
1303
1304	switch (sdmac->peripheral_type) {
1305	case IMX_DMATYPE_DSP:
1306		sdma_config_ownership(sdmac, false, true, true);
1307		break;
1308	case IMX_DMATYPE_MEMORY:
1309		sdma_config_ownership(sdmac, false, true, false);
1310		break;
1311	default:
1312		sdma_config_ownership(sdmac, true, true, false);
1313		break;
1314	}
1315
1316	ret = sdma_get_pc(sdmac, sdmac->peripheral_type);
1317	if (ret)
1318		return ret;
1319
1320	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1321			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1322		/* Handle multiple event channels differently */
1323		if (sdmac->event_id1) {
1324			if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1325			    sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1326				sdma_set_watermarklevel_for_p2p(sdmac);
1327		} else {
1328			if (sdmac->peripheral_type ==
1329					IMX_DMATYPE_MULTI_SAI)
1330				sdma_set_watermarklevel_for_sais(sdmac);
1331
1332			__set_bit(sdmac->event_id0, sdmac->event_mask);
1333		}
1334
1335		/* Address */
1336		sdmac->shp_addr = sdmac->per_address;
1337		sdmac->per_addr = sdmac->per_address2;
1338	} else {
1339		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1340	}
1341
1342	return 0;
1343}
1344
1345static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1346				     unsigned int priority)
1347{
1348	struct sdma_engine *sdma = sdmac->sdma;
1349	int channel = sdmac->channel;
1350
1351	if (priority < MXC_SDMA_MIN_PRIORITY
1352	    || priority > MXC_SDMA_MAX_PRIORITY) {
1353		return -EINVAL;
1354	}
1355
1356	writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1357
1358	return 0;
1359}
1360
1361static int sdma_request_channel0(struct sdma_engine *sdma)
1362{
1363	int ret = -EBUSY;
1364
1365	sdma->bd0 = dma_alloc_coherent(sdma->dev, PAGE_SIZE, &sdma->bd0_phys,
1366				       GFP_NOWAIT);
1367	if (!sdma->bd0) {
1368		ret = -ENOMEM;
1369		goto out;
1370	}
1371
1372	sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys;
1373	sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys;
1374
1375	sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY);
1376	return 0;
1377out:
1378
1379	return ret;
1380}
1381
1382
1383static int sdma_alloc_bd(struct sdma_desc *desc)
1384{
1385	u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1386	int ret = 0;
1387
1388	desc->bd = dma_alloc_coherent(desc->sdmac->sdma->dev, bd_size,
1389				      &desc->bd_phys, GFP_NOWAIT);
1390	if (!desc->bd) {
1391		ret = -ENOMEM;
1392		goto out;
1393	}
1394out:
1395	return ret;
1396}
1397
1398static void sdma_free_bd(struct sdma_desc *desc)
1399{
1400	u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1401
1402	dma_free_coherent(desc->sdmac->sdma->dev, bd_size, desc->bd,
1403			  desc->bd_phys);
1404}
1405
1406static void sdma_desc_free(struct virt_dma_desc *vd)
1407{
1408	struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd);
1409
1410	sdma_free_bd(desc);
1411	kfree(desc);
1412}
1413
1414static int sdma_alloc_chan_resources(struct dma_chan *chan)
1415{
1416	struct sdma_channel *sdmac = to_sdma_chan(chan);
1417	struct imx_dma_data *data = chan->private;
1418	struct imx_dma_data mem_data;
1419	int prio, ret;
1420
1421	/*
1422	 * MEMCPY may never setup chan->private by filter function such as
1423	 * dmatest, thus create 'struct imx_dma_data mem_data' for this case.
1424	 * Please note in any other slave case, you have to setup chan->private
1425	 * with 'struct imx_dma_data' in your own filter function if you want to
1426	 * request dma channel by dma_request_channel() rather than
1427	 * dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear
1428	 * to warn you to correct your filter function.
1429	 */
1430	if (!data) {
1431		dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n");
1432		mem_data.priority = 2;
1433		mem_data.peripheral_type = IMX_DMATYPE_MEMORY;
1434		mem_data.dma_request = 0;
1435		mem_data.dma_request2 = 0;
1436		data = &mem_data;
1437
1438		ret = sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY);
1439		if (ret)
1440			return ret;
1441	}
1442
1443	switch (data->priority) {
1444	case DMA_PRIO_HIGH:
1445		prio = 3;
1446		break;
1447	case DMA_PRIO_MEDIUM:
1448		prio = 2;
1449		break;
1450	case DMA_PRIO_LOW:
1451	default:
1452		prio = 1;
1453		break;
1454	}
1455
1456	sdmac->peripheral_type = data->peripheral_type;
1457	sdmac->event_id0 = data->dma_request;
1458	sdmac->event_id1 = data->dma_request2;
1459
1460	ret = clk_enable(sdmac->sdma->clk_ipg);
1461	if (ret)
1462		return ret;
1463	ret = clk_enable(sdmac->sdma->clk_ahb);
1464	if (ret)
1465		goto disable_clk_ipg;
1466
1467	ret = sdma_set_channel_priority(sdmac, prio);
1468	if (ret)
1469		goto disable_clk_ahb;
1470
1471	return 0;
1472
1473disable_clk_ahb:
1474	clk_disable(sdmac->sdma->clk_ahb);
1475disable_clk_ipg:
1476	clk_disable(sdmac->sdma->clk_ipg);
1477	return ret;
1478}
1479
1480static void sdma_free_chan_resources(struct dma_chan *chan)
1481{
1482	struct sdma_channel *sdmac = to_sdma_chan(chan);
1483	struct sdma_engine *sdma = sdmac->sdma;
1484
1485	sdma_terminate_all(chan);
1486
1487	sdma_channel_synchronize(chan);
1488
1489	sdma_event_disable(sdmac, sdmac->event_id0);
1490	if (sdmac->event_id1)
1491		sdma_event_disable(sdmac, sdmac->event_id1);
1492
1493	sdmac->event_id0 = 0;
1494	sdmac->event_id1 = 0;
1495
1496	sdma_set_channel_priority(sdmac, 0);
1497
1498	clk_disable(sdma->clk_ipg);
1499	clk_disable(sdma->clk_ahb);
1500}
1501
1502static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac,
1503				enum dma_transfer_direction direction, u32 bds)
1504{
1505	struct sdma_desc *desc;
1506
1507	if (!sdmac->sdma->fw_loaded && sdmac->is_ram_script) {
1508		dev_warn_once(sdmac->sdma->dev, "sdma firmware not ready!\n");
1509		goto err_out;
1510	}
1511
1512	desc = kzalloc((sizeof(*desc)), GFP_NOWAIT);
1513	if (!desc)
1514		goto err_out;
1515
1516	sdmac->status = DMA_IN_PROGRESS;
1517	sdmac->direction = direction;
1518	sdmac->flags = 0;
1519
1520	desc->chn_count = 0;
1521	desc->chn_real_count = 0;
1522	desc->buf_tail = 0;
1523	desc->buf_ptail = 0;
1524	desc->sdmac = sdmac;
1525	desc->num_bd = bds;
1526
1527	if (bds && sdma_alloc_bd(desc))
1528		goto err_desc_out;
1529
1530	/* No slave_config called in MEMCPY case, so do here */
1531	if (direction == DMA_MEM_TO_MEM)
1532		sdma_config_ownership(sdmac, false, true, false);
1533
1534	if (sdma_load_context(sdmac))
1535		goto err_bd_out;
1536
1537	return desc;
1538
1539err_bd_out:
1540	sdma_free_bd(desc);
1541err_desc_out:
1542	kfree(desc);
1543err_out:
1544	return NULL;
1545}
1546
1547static struct dma_async_tx_descriptor *sdma_prep_memcpy(
1548		struct dma_chan *chan, dma_addr_t dma_dst,
1549		dma_addr_t dma_src, size_t len, unsigned long flags)
1550{
1551	struct sdma_channel *sdmac = to_sdma_chan(chan);
1552	struct sdma_engine *sdma = sdmac->sdma;
1553	int channel = sdmac->channel;
1554	size_t count;
1555	int i = 0, param;
1556	struct sdma_buffer_descriptor *bd;
1557	struct sdma_desc *desc;
1558
1559	if (!chan || !len)
1560		return NULL;
1561
1562	dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n",
1563		&dma_src, &dma_dst, len, channel);
1564
1565	desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM,
1566					len / SDMA_BD_MAX_CNT + 1);
1567	if (!desc)
1568		return NULL;
1569
1570	do {
1571		count = min_t(size_t, len, SDMA_BD_MAX_CNT);
1572		bd = &desc->bd[i];
1573		bd->buffer_addr = dma_src;
1574		bd->ext_buffer_addr = dma_dst;
1575		bd->mode.count = count;
1576		desc->chn_count += count;
1577		bd->mode.command = 0;
1578
1579		dma_src += count;
1580		dma_dst += count;
1581		len -= count;
1582		i++;
1583
1584		param = BD_DONE | BD_EXTD | BD_CONT;
1585		/* last bd */
1586		if (!len) {
1587			param |= BD_INTR;
1588			param |= BD_LAST;
1589			param &= ~BD_CONT;
1590		}
1591
1592		dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n",
1593				i, count, bd->buffer_addr,
1594				param & BD_WRAP ? "wrap" : "",
1595				param & BD_INTR ? " intr" : "");
1596
1597		bd->mode.status = param;
1598	} while (len);
1599
1600	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1601}
1602
1603static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1604		struct dma_chan *chan, struct scatterlist *sgl,
1605		unsigned int sg_len, enum dma_transfer_direction direction,
1606		unsigned long flags, void *context)
1607{
1608	struct sdma_channel *sdmac = to_sdma_chan(chan);
1609	struct sdma_engine *sdma = sdmac->sdma;
1610	int i, count;
1611	int channel = sdmac->channel;
1612	struct scatterlist *sg;
1613	struct sdma_desc *desc;
1614
1615	sdma_config_write(chan, &sdmac->slave_config, direction);
1616
1617	desc = sdma_transfer_init(sdmac, direction, sg_len);
1618	if (!desc)
1619		goto err_out;
1620
1621	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1622			sg_len, channel);
1623
1624	for_each_sg(sgl, sg, sg_len, i) {
1625		struct sdma_buffer_descriptor *bd = &desc->bd[i];
1626		int param;
1627
1628		bd->buffer_addr = sg->dma_address;
1629
1630		count = sg_dma_len(sg);
1631
1632		if (count > SDMA_BD_MAX_CNT) {
1633			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1634					channel, count, SDMA_BD_MAX_CNT);
1635			goto err_bd_out;
1636		}
1637
1638		bd->mode.count = count;
1639		desc->chn_count += count;
1640
1641		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1642			goto err_bd_out;
1643
1644		switch (sdmac->word_size) {
1645		case DMA_SLAVE_BUSWIDTH_4_BYTES:
1646			bd->mode.command = 0;
1647			if (count & 3 || sg->dma_address & 3)
1648				goto err_bd_out;
1649			break;
1650		case DMA_SLAVE_BUSWIDTH_2_BYTES:
1651			bd->mode.command = 2;
1652			if (count & 1 || sg->dma_address & 1)
1653				goto err_bd_out;
1654			break;
1655		case DMA_SLAVE_BUSWIDTH_1_BYTE:
1656			bd->mode.command = 1;
1657			break;
1658		default:
1659			goto err_bd_out;
1660		}
1661
1662		param = BD_DONE | BD_EXTD | BD_CONT;
1663
1664		if (i + 1 == sg_len) {
1665			param |= BD_INTR;
1666			param |= BD_LAST;
1667			param &= ~BD_CONT;
1668		}
1669
1670		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1671				i, count, (u64)sg->dma_address,
1672				param & BD_WRAP ? "wrap" : "",
1673				param & BD_INTR ? " intr" : "");
1674
1675		bd->mode.status = param;
1676	}
1677
1678	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1679err_bd_out:
1680	sdma_free_bd(desc);
1681	kfree(desc);
1682err_out:
1683	sdmac->status = DMA_ERROR;
1684	return NULL;
1685}
1686
1687static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1688		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1689		size_t period_len, enum dma_transfer_direction direction,
1690		unsigned long flags)
1691{
1692	struct sdma_channel *sdmac = to_sdma_chan(chan);
1693	struct sdma_engine *sdma = sdmac->sdma;
1694	int num_periods = 0;
1695	int channel = sdmac->channel;
1696	int i = 0, buf = 0;
1697	struct sdma_desc *desc;
1698
1699	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1700
1701	if (sdmac->peripheral_type != IMX_DMATYPE_HDMI)
1702		num_periods = buf_len / period_len;
1703
1704	sdma_config_write(chan, &sdmac->slave_config, direction);
1705
1706	desc = sdma_transfer_init(sdmac, direction, num_periods);
1707	if (!desc)
1708		goto err_out;
1709
1710	desc->period_len = period_len;
1711
1712	sdmac->flags |= IMX_DMA_SG_LOOP;
1713
1714	if (period_len > SDMA_BD_MAX_CNT) {
1715		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1716				channel, period_len, SDMA_BD_MAX_CNT);
1717		goto err_bd_out;
1718	}
1719
1720	if (sdmac->peripheral_type == IMX_DMATYPE_HDMI)
1721		return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1722
1723	while (buf < buf_len) {
1724		struct sdma_buffer_descriptor *bd = &desc->bd[i];
1725		int param;
1726
1727		bd->buffer_addr = dma_addr;
1728
1729		bd->mode.count = period_len;
1730
1731		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1732			goto err_bd_out;
1733		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1734			bd->mode.command = 0;
1735		else
1736			bd->mode.command = sdmac->word_size;
1737
1738		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1739		if (i + 1 == num_periods)
1740			param |= BD_WRAP;
1741
1742		dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1743				i, period_len, (u64)dma_addr,
1744				param & BD_WRAP ? "wrap" : "",
1745				param & BD_INTR ? " intr" : "");
1746
1747		bd->mode.status = param;
1748
1749		dma_addr += period_len;
1750		buf += period_len;
1751
1752		i++;
1753	}
1754
1755	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1756err_bd_out:
1757	sdma_free_bd(desc);
1758	kfree(desc);
1759err_out:
1760	sdmac->status = DMA_ERROR;
1761	return NULL;
1762}
1763
1764static int sdma_config_write(struct dma_chan *chan,
1765		       struct dma_slave_config *dmaengine_cfg,
1766		       enum dma_transfer_direction direction)
1767{
1768	struct sdma_channel *sdmac = to_sdma_chan(chan);
1769
1770	if (direction == DMA_DEV_TO_MEM) {
1771		sdmac->per_address = dmaengine_cfg->src_addr;
1772		sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1773			dmaengine_cfg->src_addr_width;
1774		sdmac->word_size = dmaengine_cfg->src_addr_width;
1775	} else if (direction == DMA_DEV_TO_DEV) {
1776		sdmac->per_address2 = dmaengine_cfg->src_addr;
1777		sdmac->per_address = dmaengine_cfg->dst_addr;
1778		sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1779			SDMA_WATERMARK_LEVEL_LWML;
1780		sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1781			SDMA_WATERMARK_LEVEL_HWML;
1782		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1783	} else if (sdmac->peripheral_type == IMX_DMATYPE_HDMI) {
1784		sdmac->per_address = dmaengine_cfg->dst_addr;
1785		sdmac->per_address2 = dmaengine_cfg->src_addr;
1786		sdmac->watermark_level = 0;
1787	} else {
1788		sdmac->per_address = dmaengine_cfg->dst_addr;
1789		sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1790			dmaengine_cfg->dst_addr_width;
1791		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1792	}
1793	sdmac->direction = direction;
1794	return sdma_config_channel(chan);
1795}
1796
1797static int sdma_config(struct dma_chan *chan,
1798		       struct dma_slave_config *dmaengine_cfg)
1799{
1800	struct sdma_channel *sdmac = to_sdma_chan(chan);
1801	struct sdma_engine *sdma = sdmac->sdma;
1802
1803	memcpy(&sdmac->slave_config, dmaengine_cfg, sizeof(*dmaengine_cfg));
1804
1805	if (dmaengine_cfg->peripheral_config) {
1806		struct sdma_peripheral_config *sdmacfg = dmaengine_cfg->peripheral_config;
1807		if (dmaengine_cfg->peripheral_size != sizeof(struct sdma_peripheral_config)) {
1808			dev_err(sdma->dev, "Invalid peripheral size %zu, expected %zu\n",
1809				dmaengine_cfg->peripheral_size,
1810				sizeof(struct sdma_peripheral_config));
1811			return -EINVAL;
1812		}
1813		sdmac->n_fifos_src = sdmacfg->n_fifos_src;
1814		sdmac->n_fifos_dst = sdmacfg->n_fifos_dst;
1815		sdmac->stride_fifos_src = sdmacfg->stride_fifos_src;
1816		sdmac->stride_fifos_dst = sdmacfg->stride_fifos_dst;
1817		sdmac->words_per_fifo = sdmacfg->words_per_fifo;
1818		sdmac->sw_done = sdmacfg->sw_done;
1819	}
1820
1821	/* Set ENBLn earlier to make sure dma request triggered after that */
1822	if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1823		return -EINVAL;
1824	sdma_event_enable(sdmac, sdmac->event_id0);
1825
1826	if (sdmac->event_id1) {
1827		if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
1828			return -EINVAL;
1829		sdma_event_enable(sdmac, sdmac->event_id1);
1830	}
1831
1832	return 0;
1833}
1834
1835static enum dma_status sdma_tx_status(struct dma_chan *chan,
1836				      dma_cookie_t cookie,
1837				      struct dma_tx_state *txstate)
1838{
1839	struct sdma_channel *sdmac = to_sdma_chan(chan);
1840	struct sdma_desc *desc = NULL;
1841	u32 residue;
1842	struct virt_dma_desc *vd;
1843	enum dma_status ret;
1844	unsigned long flags;
1845
1846	ret = dma_cookie_status(chan, cookie, txstate);
1847	if (ret == DMA_COMPLETE || !txstate)
1848		return ret;
1849
1850	spin_lock_irqsave(&sdmac->vc.lock, flags);
1851
1852	vd = vchan_find_desc(&sdmac->vc, cookie);
1853	if (vd)
1854		desc = to_sdma_desc(&vd->tx);
1855	else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie)
1856		desc = sdmac->desc;
1857
1858	if (desc) {
1859		if (sdmac->flags & IMX_DMA_SG_LOOP)
1860			residue = (desc->num_bd - desc->buf_ptail) *
1861				desc->period_len - desc->chn_real_count;
1862		else
1863			residue = desc->chn_count - desc->chn_real_count;
1864	} else {
1865		residue = 0;
1866	}
1867
1868	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1869
1870	dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1871			 residue);
1872
1873	return sdmac->status;
1874}
1875
1876static void sdma_issue_pending(struct dma_chan *chan)
1877{
1878	struct sdma_channel *sdmac = to_sdma_chan(chan);
1879	unsigned long flags;
1880
1881	spin_lock_irqsave(&sdmac->vc.lock, flags);
1882	if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc)
1883		sdma_start_desc(sdmac);
1884	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1885}
1886
1887#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	34
1888#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2	38
1889#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3	45
1890#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4	46
1891
1892static void sdma_add_scripts(struct sdma_engine *sdma,
1893			     const struct sdma_script_start_addrs *addr)
1894{
1895	s32 *addr_arr = (u32 *)addr;
1896	s32 *saddr_arr = (u32 *)sdma->script_addrs;
1897	int i;
1898
1899	/* use the default firmware in ROM if missing external firmware */
1900	if (!sdma->script_number)
1901		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1902
1903	if (sdma->script_number > sizeof(struct sdma_script_start_addrs)
1904				  / sizeof(s32)) {
1905		dev_err(sdma->dev,
1906			"SDMA script number %d not match with firmware.\n",
1907			sdma->script_number);
1908		return;
1909	}
1910
1911	for (i = 0; i < sdma->script_number; i++)
1912		if (addr_arr[i] > 0)
1913			saddr_arr[i] = addr_arr[i];
1914
1915	/*
1916	 * For compatibility with NXP internal legacy kernel before 4.19 which
1917	 * is based on uart ram script and mainline kernel based on uart rom
1918	 * script, both uart ram/rom scripts are present in newer sdma
1919	 * firmware. Use the rom versions if they are present (V3 or newer).
1920	 */
1921	if (sdma->script_number >= SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3) {
1922		if (addr->uart_2_mcu_rom_addr)
1923			sdma->script_addrs->uart_2_mcu_addr = addr->uart_2_mcu_rom_addr;
1924		if (addr->uartsh_2_mcu_rom_addr)
1925			sdma->script_addrs->uartsh_2_mcu_addr = addr->uartsh_2_mcu_rom_addr;
1926	}
1927}
1928
1929static void sdma_load_firmware(const struct firmware *fw, void *context)
1930{
1931	struct sdma_engine *sdma = context;
1932	const struct sdma_firmware_header *header;
1933	const struct sdma_script_start_addrs *addr;
1934	unsigned short *ram_code;
1935
1936	if (!fw) {
1937		dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1938		/* In this case we just use the ROM firmware. */
1939		return;
1940	}
1941
1942	if (fw->size < sizeof(*header))
1943		goto err_firmware;
1944
1945	header = (struct sdma_firmware_header *)fw->data;
1946
1947	if (header->magic != SDMA_FIRMWARE_MAGIC)
1948		goto err_firmware;
1949	if (header->ram_code_start + header->ram_code_size > fw->size)
1950		goto err_firmware;
1951	switch (header->version_major) {
1952	case 1:
1953		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1954		break;
1955	case 2:
1956		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1957		break;
1958	case 3:
1959		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1960		break;
1961	case 4:
1962		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
1963		break;
1964	default:
1965		dev_err(sdma->dev, "unknown firmware version\n");
1966		goto err_firmware;
1967	}
1968
1969	addr = (void *)header + header->script_addrs_start;
1970	ram_code = (void *)header + header->ram_code_start;
1971
1972	clk_enable(sdma->clk_ipg);
1973	clk_enable(sdma->clk_ahb);
1974	/* download the RAM image for SDMA */
1975	sdma_load_script(sdma, ram_code,
1976			 header->ram_code_size,
1977			 addr->ram_code_start_addr);
1978	clk_disable(sdma->clk_ipg);
1979	clk_disable(sdma->clk_ahb);
1980
1981	sdma_add_scripts(sdma, addr);
1982
1983	sdma->fw_loaded = true;
1984
1985	dev_info(sdma->dev, "loaded firmware %d.%d\n",
1986		 header->version_major,
1987		 header->version_minor);
1988
1989err_firmware:
1990	release_firmware(fw);
1991}
1992
1993#define EVENT_REMAP_CELLS 3
1994
1995static int sdma_event_remap(struct sdma_engine *sdma)
1996{
1997	struct device_node *np = sdma->dev->of_node;
1998	struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1999	struct property *event_remap;
2000	struct regmap *gpr;
2001	char propname[] = "fsl,sdma-event-remap";
2002	u32 reg, val, shift, num_map, i;
2003	int ret = 0;
2004
2005	if (IS_ERR(np) || !gpr_np)
2006		goto out;
2007
2008	event_remap = of_find_property(np, propname, NULL);
2009	num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
2010	if (!num_map) {
2011		dev_dbg(sdma->dev, "no event needs to be remapped\n");
2012		goto out;
2013	} else if (num_map % EVENT_REMAP_CELLS) {
2014		dev_err(sdma->dev, "the property %s must modulo %d\n",
2015				propname, EVENT_REMAP_CELLS);
2016		ret = -EINVAL;
2017		goto out;
2018	}
2019
2020	gpr = syscon_node_to_regmap(gpr_np);
2021	if (IS_ERR(gpr)) {
2022		dev_err(sdma->dev, "failed to get gpr regmap\n");
2023		ret = PTR_ERR(gpr);
2024		goto out;
2025	}
2026
2027	for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
2028		ret = of_property_read_u32_index(np, propname, i, &reg);
2029		if (ret) {
2030			dev_err(sdma->dev, "failed to read property %s index %d\n",
2031					propname, i);
2032			goto out;
2033		}
2034
2035		ret = of_property_read_u32_index(np, propname, i + 1, &shift);
2036		if (ret) {
2037			dev_err(sdma->dev, "failed to read property %s index %d\n",
2038					propname, i + 1);
2039			goto out;
2040		}
2041
2042		ret = of_property_read_u32_index(np, propname, i + 2, &val);
2043		if (ret) {
2044			dev_err(sdma->dev, "failed to read property %s index %d\n",
2045					propname, i + 2);
2046			goto out;
2047		}
2048
2049		regmap_update_bits(gpr, reg, BIT(shift), val << shift);
2050	}
2051
2052out:
2053	if (gpr_np)
2054		of_node_put(gpr_np);
2055
2056	return ret;
2057}
2058
2059static int sdma_get_firmware(struct sdma_engine *sdma,
2060		const char *fw_name)
2061{
2062	int ret;
2063
2064	ret = request_firmware_nowait(THIS_MODULE,
2065			FW_ACTION_UEVENT, fw_name, sdma->dev,
2066			GFP_KERNEL, sdma, sdma_load_firmware);
2067
2068	return ret;
2069}
2070
2071static int sdma_init(struct sdma_engine *sdma)
2072{
2073	int i, ret;
2074	dma_addr_t ccb_phys;
2075
2076	ret = clk_enable(sdma->clk_ipg);
2077	if (ret)
2078		return ret;
2079	ret = clk_enable(sdma->clk_ahb);
2080	if (ret)
2081		goto disable_clk_ipg;
2082
2083	if (sdma->drvdata->check_ratio &&
2084	    (clk_get_rate(sdma->clk_ahb) == clk_get_rate(sdma->clk_ipg)))
2085		sdma->clk_ratio = 1;
2086
2087	/* Be sure SDMA has not started yet */
2088	writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
2089
2090	sdma->channel_control = dma_alloc_coherent(sdma->dev,
2091			MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control) +
2092			sizeof(struct sdma_context_data),
2093			&ccb_phys, GFP_KERNEL);
2094
2095	if (!sdma->channel_control) {
2096		ret = -ENOMEM;
2097		goto err_dma_alloc;
2098	}
2099
2100	sdma->context = (void *)sdma->channel_control +
2101		MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control);
2102	sdma->context_phys = ccb_phys +
2103		MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control);
2104
2105	/* disable all channels */
2106	for (i = 0; i < sdma->drvdata->num_events; i++)
2107		writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
2108
2109	/* All channels have priority 0 */
2110	for (i = 0; i < MAX_DMA_CHANNELS; i++)
2111		writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
2112
2113	ret = sdma_request_channel0(sdma);
2114	if (ret)
2115		goto err_dma_alloc;
2116
2117	sdma_config_ownership(&sdma->channel[0], false, true, false);
2118
2119	/* Set Command Channel (Channel Zero) */
2120	writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
2121
2122	/* Set bits of CONFIG register but with static context switching */
2123	if (sdma->clk_ratio)
2124		writel_relaxed(SDMA_H_CONFIG_ACR, sdma->regs + SDMA_H_CONFIG);
2125	else
2126		writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
2127
2128	writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
2129
2130	/* Initializes channel's priorities */
2131	sdma_set_channel_priority(&sdma->channel[0], 7);
2132
2133	clk_disable(sdma->clk_ipg);
2134	clk_disable(sdma->clk_ahb);
2135
2136	return 0;
2137
2138err_dma_alloc:
2139	clk_disable(sdma->clk_ahb);
2140disable_clk_ipg:
2141	clk_disable(sdma->clk_ipg);
2142	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
2143	return ret;
2144}
2145
2146static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
2147{
2148	struct sdma_channel *sdmac = to_sdma_chan(chan);
2149	struct imx_dma_data *data = fn_param;
2150
2151	if (!imx_dma_is_general_purpose(chan))
2152		return false;
2153
2154	sdmac->data = *data;
2155	chan->private = &sdmac->data;
2156
2157	return true;
2158}
2159
2160static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
2161				   struct of_dma *ofdma)
2162{
2163	struct sdma_engine *sdma = ofdma->of_dma_data;
2164	dma_cap_mask_t mask = sdma->dma_device.cap_mask;
2165	struct imx_dma_data data;
2166
2167	if (dma_spec->args_count != 3)
2168		return NULL;
2169
2170	data.dma_request = dma_spec->args[0];
2171	data.peripheral_type = dma_spec->args[1];
2172	data.priority = dma_spec->args[2];
2173	/*
2174	 * init dma_request2 to zero, which is not used by the dts.
2175	 * For P2P, dma_request2 is init from dma_request_channel(),
2176	 * chan->private will point to the imx_dma_data, and in
2177	 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
2178	 * be set to sdmac->event_id1.
2179	 */
2180	data.dma_request2 = 0;
2181
2182	return __dma_request_channel(&mask, sdma_filter_fn, &data,
2183				     ofdma->of_node);
2184}
2185
2186static int sdma_probe(struct platform_device *pdev)
2187{
2188	struct device_node *np = pdev->dev.of_node;
2189	struct device_node *spba_bus;
2190	const char *fw_name;
2191	int ret;
2192	int irq;
2193	struct resource spba_res;
2194	int i;
2195	struct sdma_engine *sdma;
2196	s32 *saddr_arr;
2197
2198	ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2199	if (ret)
2200		return ret;
2201
2202	sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
2203	if (!sdma)
2204		return -ENOMEM;
2205
2206	spin_lock_init(&sdma->channel_0_lock);
2207
2208	sdma->dev = &pdev->dev;
2209	sdma->drvdata = of_device_get_match_data(sdma->dev);
2210
2211	irq = platform_get_irq(pdev, 0);
2212	if (irq < 0)
2213		return irq;
2214
2215	sdma->regs = devm_platform_ioremap_resource(pdev, 0);
2216	if (IS_ERR(sdma->regs))
2217		return PTR_ERR(sdma->regs);
2218
2219	sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2220	if (IS_ERR(sdma->clk_ipg))
2221		return PTR_ERR(sdma->clk_ipg);
2222
2223	sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2224	if (IS_ERR(sdma->clk_ahb))
2225		return PTR_ERR(sdma->clk_ahb);
2226
2227	ret = clk_prepare(sdma->clk_ipg);
2228	if (ret)
2229		return ret;
2230
2231	ret = clk_prepare(sdma->clk_ahb);
2232	if (ret)
2233		goto err_clk;
2234
2235	ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0,
2236				dev_name(&pdev->dev), sdma);
2237	if (ret)
2238		goto err_irq;
2239
2240	sdma->irq = irq;
2241
2242	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
2243	if (!sdma->script_addrs) {
2244		ret = -ENOMEM;
2245		goto err_irq;
2246	}
2247
2248	/* initially no scripts available */
2249	saddr_arr = (s32 *)sdma->script_addrs;
2250	for (i = 0; i < sizeof(*sdma->script_addrs) / sizeof(s32); i++)
2251		saddr_arr[i] = -EINVAL;
2252
2253	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
2254	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
2255	dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask);
2256	dma_cap_set(DMA_PRIVATE, sdma->dma_device.cap_mask);
2257
2258	INIT_LIST_HEAD(&sdma->dma_device.channels);
2259	/* Initialize channel parameters */
2260	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2261		struct sdma_channel *sdmac = &sdma->channel[i];
2262
2263		sdmac->sdma = sdma;
2264
2265		sdmac->channel = i;
2266		sdmac->vc.desc_free = sdma_desc_free;
2267		INIT_LIST_HEAD(&sdmac->terminated);
2268		INIT_WORK(&sdmac->terminate_worker,
2269				sdma_channel_terminate_work);
2270		/*
2271		 * Add the channel to the DMAC list. Do not add channel 0 though
2272		 * because we need it internally in the SDMA driver. This also means
2273		 * that channel 0 in dmaengine counting matches sdma channel 1.
2274		 */
2275		if (i)
2276			vchan_init(&sdmac->vc, &sdma->dma_device);
2277	}
2278
2279	ret = sdma_init(sdma);
2280	if (ret)
2281		goto err_init;
2282
2283	ret = sdma_event_remap(sdma);
2284	if (ret)
2285		goto err_init;
2286
2287	if (sdma->drvdata->script_addrs)
2288		sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
2289
2290	sdma->dma_device.dev = &pdev->dev;
2291
2292	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
2293	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
2294	sdma->dma_device.device_tx_status = sdma_tx_status;
2295	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
2296	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
2297	sdma->dma_device.device_config = sdma_config;
2298	sdma->dma_device.device_terminate_all = sdma_terminate_all;
2299	sdma->dma_device.device_synchronize = sdma_channel_synchronize;
2300	sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
2301	sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
2302	sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
2303	sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2304	sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy;
2305	sdma->dma_device.device_issue_pending = sdma_issue_pending;
2306	sdma->dma_device.copy_align = 2;
2307	dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT);
2308
2309	platform_set_drvdata(pdev, sdma);
2310
2311	ret = dma_async_device_register(&sdma->dma_device);
2312	if (ret) {
2313		dev_err(&pdev->dev, "unable to register\n");
2314		goto err_init;
2315	}
2316
2317	if (np) {
2318		ret = of_dma_controller_register(np, sdma_xlate, sdma);
2319		if (ret) {
2320			dev_err(&pdev->dev, "failed to register controller\n");
2321			goto err_register;
2322		}
2323
2324		spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
2325		ret = of_address_to_resource(spba_bus, 0, &spba_res);
2326		if (!ret) {
2327			sdma->spba_start_addr = spba_res.start;
2328			sdma->spba_end_addr = spba_res.end;
2329		}
2330		of_node_put(spba_bus);
2331	}
2332
2333	/*
2334	 * Because that device tree does not encode ROM script address,
2335	 * the RAM script in firmware is mandatory for device tree
2336	 * probe, otherwise it fails.
2337	 */
2338	ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
2339				      &fw_name);
2340	if (ret) {
2341		dev_warn(&pdev->dev, "failed to get firmware name\n");
2342	} else {
2343		ret = sdma_get_firmware(sdma, fw_name);
2344		if (ret)
2345			dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
2346	}
2347
2348	return 0;
2349
2350err_register:
2351	dma_async_device_unregister(&sdma->dma_device);
2352err_init:
2353	kfree(sdma->script_addrs);
2354err_irq:
2355	clk_unprepare(sdma->clk_ahb);
2356err_clk:
2357	clk_unprepare(sdma->clk_ipg);
2358	return ret;
2359}
2360
2361static int sdma_remove(struct platform_device *pdev)
2362{
2363	struct sdma_engine *sdma = platform_get_drvdata(pdev);
2364	int i;
2365
2366	devm_free_irq(&pdev->dev, sdma->irq, sdma);
2367	dma_async_device_unregister(&sdma->dma_device);
2368	kfree(sdma->script_addrs);
2369	clk_unprepare(sdma->clk_ahb);
2370	clk_unprepare(sdma->clk_ipg);
2371	/* Kill the tasklet */
2372	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2373		struct sdma_channel *sdmac = &sdma->channel[i];
2374
2375		tasklet_kill(&sdmac->vc.task);
2376		sdma_free_chan_resources(&sdmac->vc.chan);
2377	}
2378
2379	platform_set_drvdata(pdev, NULL);
2380	return 0;
2381}
2382
2383static struct platform_driver sdma_driver = {
2384	.driver		= {
2385		.name	= "imx-sdma",
2386		.of_match_table = sdma_dt_ids,
2387	},
2388	.remove		= sdma_remove,
2389	.probe		= sdma_probe,
2390};
2391
2392module_platform_driver(sdma_driver);
2393
2394MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
2395MODULE_DESCRIPTION("i.MX SDMA driver");
2396#if IS_ENABLED(CONFIG_SOC_IMX6Q)
2397MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
2398#endif
2399#if IS_ENABLED(CONFIG_SOC_IMX7D) || IS_ENABLED(CONFIG_SOC_IMX8M)
2400MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
2401#endif
2402MODULE_LICENSE("GPL");
2403