xref: /kernel/linux/linux-6.6/drivers/dma/hsu/hsu.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Core driver for the High Speed UART DMA
4 *
5 * Copyright (C) 2015 Intel Corporation
6 * Author: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
7 *
8 * Partially based on the bits found in drivers/tty/serial/mfd.c.
9 */
10
11/*
12 * DMA channel allocation:
13 * 1. Even number chans are used for DMA Read (UART TX), odd chans for DMA
14 *    Write (UART RX).
15 * 2. 0/1 channel are assigned to port 0, 2/3 chan to port 1, 4/5 chan to
16 *    port 3, and so on.
17 */
18
19#include <linux/bits.h>
20#include <linux/delay.h>
21#include <linux/device.h>
22#include <linux/dmaengine.h>
23#include <linux/dma-mapping.h>
24#include <linux/init.h>
25#include <linux/interrupt.h>
26#include <linux/list.h>
27#include <linux/module.h>
28#include <linux/percpu-defs.h>
29#include <linux/scatterlist.h>
30#include <linux/slab.h>
31#include <linux/string.h>
32#include <linux/spinlock.h>
33
34#include "hsu.h"
35
36#define HSU_DMA_BUSWIDTHS				\
37	BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED)	|	\
38	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE)		|	\
39	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES)		|	\
40	BIT(DMA_SLAVE_BUSWIDTH_3_BYTES)		|	\
41	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)		|	\
42	BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)		|	\
43	BIT(DMA_SLAVE_BUSWIDTH_16_BYTES)
44
45static inline void hsu_chan_disable(struct hsu_dma_chan *hsuc)
46{
47	hsu_chan_writel(hsuc, HSU_CH_CR, 0);
48}
49
50static inline void hsu_chan_enable(struct hsu_dma_chan *hsuc)
51{
52	u32 cr = HSU_CH_CR_CHA;
53
54	if (hsuc->direction == DMA_MEM_TO_DEV)
55		cr &= ~HSU_CH_CR_CHD;
56	else if (hsuc->direction == DMA_DEV_TO_MEM)
57		cr |= HSU_CH_CR_CHD;
58
59	hsu_chan_writel(hsuc, HSU_CH_CR, cr);
60}
61
62static void hsu_dma_chan_start(struct hsu_dma_chan *hsuc)
63{
64	struct dma_slave_config *config = &hsuc->config;
65	struct hsu_dma_desc *desc = hsuc->desc;
66	u32 bsr = 0, mtsr = 0;	/* to shut the compiler up */
67	u32 dcr = HSU_CH_DCR_CHSOE | HSU_CH_DCR_CHEI;
68	unsigned int i, count;
69
70	if (hsuc->direction == DMA_MEM_TO_DEV) {
71		bsr = config->dst_maxburst;
72		mtsr = config->dst_addr_width;
73	} else if (hsuc->direction == DMA_DEV_TO_MEM) {
74		bsr = config->src_maxburst;
75		mtsr = config->src_addr_width;
76	}
77
78	hsu_chan_disable(hsuc);
79
80	hsu_chan_writel(hsuc, HSU_CH_DCR, 0);
81	hsu_chan_writel(hsuc, HSU_CH_BSR, bsr);
82	hsu_chan_writel(hsuc, HSU_CH_MTSR, mtsr);
83
84	/* Set descriptors */
85	count = desc->nents - desc->active;
86	for (i = 0; i < count && i < HSU_DMA_CHAN_NR_DESC; i++) {
87		hsu_chan_writel(hsuc, HSU_CH_DxSAR(i), desc->sg[i].addr);
88		hsu_chan_writel(hsuc, HSU_CH_DxTSR(i), desc->sg[i].len);
89
90		/* Prepare value for DCR */
91		dcr |= HSU_CH_DCR_DESCA(i);
92		dcr |= HSU_CH_DCR_CHTOI(i);	/* timeout bit, see HSU Errata 1 */
93
94		desc->active++;
95	}
96	/* Only for the last descriptor in the chain */
97	dcr |= HSU_CH_DCR_CHSOD(count - 1);
98	dcr |= HSU_CH_DCR_CHDI(count - 1);
99
100	hsu_chan_writel(hsuc, HSU_CH_DCR, dcr);
101
102	hsu_chan_enable(hsuc);
103}
104
105static void hsu_dma_stop_channel(struct hsu_dma_chan *hsuc)
106{
107	hsu_chan_disable(hsuc);
108	hsu_chan_writel(hsuc, HSU_CH_DCR, 0);
109}
110
111static void hsu_dma_start_channel(struct hsu_dma_chan *hsuc)
112{
113	hsu_dma_chan_start(hsuc);
114}
115
116static void hsu_dma_start_transfer(struct hsu_dma_chan *hsuc)
117{
118	struct virt_dma_desc *vdesc;
119
120	/* Get the next descriptor */
121	vdesc = vchan_next_desc(&hsuc->vchan);
122	if (!vdesc) {
123		hsuc->desc = NULL;
124		return;
125	}
126
127	list_del(&vdesc->node);
128	hsuc->desc = to_hsu_dma_desc(vdesc);
129
130	/* Start the channel with a new descriptor */
131	hsu_dma_start_channel(hsuc);
132}
133
134/*
135 *      hsu_dma_get_status() - get DMA channel status
136 *      @chip: HSUART DMA chip
137 *      @nr: DMA channel number
138 *      @status: pointer for DMA Channel Status Register value
139 *
140 *      Description:
141 *      The function reads and clears the DMA Channel Status Register, checks
142 *      if it was a timeout interrupt and returns a corresponding value.
143 *
144 *      Caller should provide a valid pointer for the DMA Channel Status
145 *      Register value that will be returned in @status.
146 *
147 *      Return:
148 *      1 for DMA timeout status, 0 for other DMA status, or error code for
149 *      invalid parameters or no interrupt pending.
150 */
151int hsu_dma_get_status(struct hsu_dma_chip *chip, unsigned short nr,
152		       u32 *status)
153{
154	struct hsu_dma_chan *hsuc;
155	unsigned long flags;
156	u32 sr;
157
158	/* Sanity check */
159	if (nr >= chip->hsu->nr_channels)
160		return -EINVAL;
161
162	hsuc = &chip->hsu->chan[nr];
163
164	/*
165	 * No matter what situation, need read clear the IRQ status
166	 * There is a bug, see Errata 5, HSD 2900918
167	 */
168	spin_lock_irqsave(&hsuc->vchan.lock, flags);
169	sr = hsu_chan_readl(hsuc, HSU_CH_SR);
170	spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
171
172	/* Check if any interrupt is pending */
173	sr &= ~(HSU_CH_SR_DESCE_ANY | HSU_CH_SR_CDESC_ANY);
174	if (!sr)
175		return -EIO;
176
177	/* Timeout IRQ, need wait some time, see Errata 2 */
178	if (sr & HSU_CH_SR_DESCTO_ANY)
179		udelay(2);
180
181	/*
182	 * At this point, at least one of Descriptor Time Out, Channel Error
183	 * or Descriptor Done bits must be set. Clear the Descriptor Time Out
184	 * bits and if sr is still non-zero, it must be channel error or
185	 * descriptor done which are higher priority than timeout and handled
186	 * in hsu_dma_do_irq(). Else, it must be a timeout.
187	 */
188	sr &= ~HSU_CH_SR_DESCTO_ANY;
189
190	*status = sr;
191
192	return sr ? 0 : 1;
193}
194EXPORT_SYMBOL_GPL(hsu_dma_get_status);
195
196/*
197 *      hsu_dma_do_irq() - DMA interrupt handler
198 *      @chip: HSUART DMA chip
199 *      @nr: DMA channel number
200 *      @status: Channel Status Register value
201 *
202 *      Description:
203 *      This function handles Channel Error and Descriptor Done interrupts.
204 *      This function should be called after determining that the DMA interrupt
205 *      is not a normal timeout interrupt, ie. hsu_dma_get_status() returned 0.
206 *
207 *      Return:
208 *      0 for invalid channel number, 1 otherwise.
209 */
210int hsu_dma_do_irq(struct hsu_dma_chip *chip, unsigned short nr, u32 status)
211{
212	struct dma_chan_percpu *stat;
213	struct hsu_dma_chan *hsuc;
214	struct hsu_dma_desc *desc;
215	unsigned long flags;
216
217	/* Sanity check */
218	if (nr >= chip->hsu->nr_channels)
219		return 0;
220
221	hsuc = &chip->hsu->chan[nr];
222	stat = this_cpu_ptr(hsuc->vchan.chan.local);
223
224	spin_lock_irqsave(&hsuc->vchan.lock, flags);
225	desc = hsuc->desc;
226	if (desc) {
227		if (status & HSU_CH_SR_CHE) {
228			desc->status = DMA_ERROR;
229		} else if (desc->active < desc->nents) {
230			hsu_dma_start_channel(hsuc);
231		} else {
232			vchan_cookie_complete(&desc->vdesc);
233			desc->status = DMA_COMPLETE;
234			stat->bytes_transferred += desc->length;
235			hsu_dma_start_transfer(hsuc);
236		}
237	}
238	spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
239
240	return 1;
241}
242EXPORT_SYMBOL_GPL(hsu_dma_do_irq);
243
244static struct hsu_dma_desc *hsu_dma_alloc_desc(unsigned int nents)
245{
246	struct hsu_dma_desc *desc;
247
248	desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
249	if (!desc)
250		return NULL;
251
252	desc->sg = kcalloc(nents, sizeof(*desc->sg), GFP_NOWAIT);
253	if (!desc->sg) {
254		kfree(desc);
255		return NULL;
256	}
257
258	return desc;
259}
260
261static void hsu_dma_desc_free(struct virt_dma_desc *vdesc)
262{
263	struct hsu_dma_desc *desc = to_hsu_dma_desc(vdesc);
264
265	kfree(desc->sg);
266	kfree(desc);
267}
268
269static struct dma_async_tx_descriptor *hsu_dma_prep_slave_sg(
270		struct dma_chan *chan, struct scatterlist *sgl,
271		unsigned int sg_len, enum dma_transfer_direction direction,
272		unsigned long flags, void *context)
273{
274	struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
275	struct hsu_dma_desc *desc;
276	struct scatterlist *sg;
277	unsigned int i;
278
279	desc = hsu_dma_alloc_desc(sg_len);
280	if (!desc)
281		return NULL;
282
283	for_each_sg(sgl, sg, sg_len, i) {
284		desc->sg[i].addr = sg_dma_address(sg);
285		desc->sg[i].len = sg_dma_len(sg);
286
287		desc->length += sg_dma_len(sg);
288	}
289
290	desc->nents = sg_len;
291	desc->direction = direction;
292	/* desc->active = 0 by kzalloc */
293	desc->status = DMA_IN_PROGRESS;
294
295	return vchan_tx_prep(&hsuc->vchan, &desc->vdesc, flags);
296}
297
298static void hsu_dma_issue_pending(struct dma_chan *chan)
299{
300	struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
301	unsigned long flags;
302
303	spin_lock_irqsave(&hsuc->vchan.lock, flags);
304	if (vchan_issue_pending(&hsuc->vchan) && !hsuc->desc)
305		hsu_dma_start_transfer(hsuc);
306	spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
307}
308
309static size_t hsu_dma_active_desc_size(struct hsu_dma_chan *hsuc)
310{
311	struct hsu_dma_desc *desc = hsuc->desc;
312	size_t bytes = 0;
313	int i;
314
315	for (i = desc->active; i < desc->nents; i++)
316		bytes += desc->sg[i].len;
317
318	i = HSU_DMA_CHAN_NR_DESC - 1;
319	do {
320		bytes += hsu_chan_readl(hsuc, HSU_CH_DxTSR(i));
321	} while (--i >= 0);
322
323	return bytes;
324}
325
326static enum dma_status hsu_dma_tx_status(struct dma_chan *chan,
327	dma_cookie_t cookie, struct dma_tx_state *state)
328{
329	struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
330	struct virt_dma_desc *vdesc;
331	enum dma_status status;
332	size_t bytes;
333	unsigned long flags;
334
335	status = dma_cookie_status(chan, cookie, state);
336	if (status == DMA_COMPLETE)
337		return status;
338
339	spin_lock_irqsave(&hsuc->vchan.lock, flags);
340	vdesc = vchan_find_desc(&hsuc->vchan, cookie);
341	if (hsuc->desc && cookie == hsuc->desc->vdesc.tx.cookie) {
342		bytes = hsu_dma_active_desc_size(hsuc);
343		dma_set_residue(state, bytes);
344		status = hsuc->desc->status;
345	} else if (vdesc) {
346		bytes = to_hsu_dma_desc(vdesc)->length;
347		dma_set_residue(state, bytes);
348	}
349	spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
350
351	return status;
352}
353
354static int hsu_dma_slave_config(struct dma_chan *chan,
355				struct dma_slave_config *config)
356{
357	struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
358
359	memcpy(&hsuc->config, config, sizeof(hsuc->config));
360
361	return 0;
362}
363
364static int hsu_dma_pause(struct dma_chan *chan)
365{
366	struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
367	unsigned long flags;
368
369	spin_lock_irqsave(&hsuc->vchan.lock, flags);
370	if (hsuc->desc && hsuc->desc->status == DMA_IN_PROGRESS) {
371		hsu_chan_disable(hsuc);
372		hsuc->desc->status = DMA_PAUSED;
373	}
374	spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
375
376	return 0;
377}
378
379static int hsu_dma_resume(struct dma_chan *chan)
380{
381	struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
382	unsigned long flags;
383
384	spin_lock_irqsave(&hsuc->vchan.lock, flags);
385	if (hsuc->desc && hsuc->desc->status == DMA_PAUSED) {
386		hsuc->desc->status = DMA_IN_PROGRESS;
387		hsu_chan_enable(hsuc);
388	}
389	spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
390
391	return 0;
392}
393
394static int hsu_dma_terminate_all(struct dma_chan *chan)
395{
396	struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
397	unsigned long flags;
398	LIST_HEAD(head);
399
400	spin_lock_irqsave(&hsuc->vchan.lock, flags);
401
402	hsu_dma_stop_channel(hsuc);
403	if (hsuc->desc) {
404		hsu_dma_desc_free(&hsuc->desc->vdesc);
405		hsuc->desc = NULL;
406	}
407
408	vchan_get_all_descriptors(&hsuc->vchan, &head);
409	spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
410	vchan_dma_desc_free_list(&hsuc->vchan, &head);
411
412	return 0;
413}
414
415static void hsu_dma_free_chan_resources(struct dma_chan *chan)
416{
417	vchan_free_chan_resources(to_virt_chan(chan));
418}
419
420static void hsu_dma_synchronize(struct dma_chan *chan)
421{
422	struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
423
424	vchan_synchronize(&hsuc->vchan);
425}
426
427int hsu_dma_probe(struct hsu_dma_chip *chip)
428{
429	struct hsu_dma *hsu;
430	void __iomem *addr = chip->regs + chip->offset;
431	unsigned short i;
432	int ret;
433
434	hsu = devm_kzalloc(chip->dev, sizeof(*hsu), GFP_KERNEL);
435	if (!hsu)
436		return -ENOMEM;
437
438	chip->hsu = hsu;
439
440	/* Calculate nr_channels from the IO space length */
441	hsu->nr_channels = (chip->length - chip->offset) / HSU_DMA_CHAN_LENGTH;
442
443	hsu->chan = devm_kcalloc(chip->dev, hsu->nr_channels,
444				 sizeof(*hsu->chan), GFP_KERNEL);
445	if (!hsu->chan)
446		return -ENOMEM;
447
448	INIT_LIST_HEAD(&hsu->dma.channels);
449	for (i = 0; i < hsu->nr_channels; i++) {
450		struct hsu_dma_chan *hsuc = &hsu->chan[i];
451
452		hsuc->vchan.desc_free = hsu_dma_desc_free;
453		vchan_init(&hsuc->vchan, &hsu->dma);
454
455		hsuc->direction = (i & 0x1) ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
456		hsuc->reg = addr + i * HSU_DMA_CHAN_LENGTH;
457	}
458
459	dma_cap_set(DMA_SLAVE, hsu->dma.cap_mask);
460	dma_cap_set(DMA_PRIVATE, hsu->dma.cap_mask);
461
462	hsu->dma.device_free_chan_resources = hsu_dma_free_chan_resources;
463
464	hsu->dma.device_prep_slave_sg = hsu_dma_prep_slave_sg;
465
466	hsu->dma.device_issue_pending = hsu_dma_issue_pending;
467	hsu->dma.device_tx_status = hsu_dma_tx_status;
468
469	hsu->dma.device_config = hsu_dma_slave_config;
470	hsu->dma.device_pause = hsu_dma_pause;
471	hsu->dma.device_resume = hsu_dma_resume;
472	hsu->dma.device_terminate_all = hsu_dma_terminate_all;
473	hsu->dma.device_synchronize = hsu_dma_synchronize;
474
475	hsu->dma.src_addr_widths = HSU_DMA_BUSWIDTHS;
476	hsu->dma.dst_addr_widths = HSU_DMA_BUSWIDTHS;
477	hsu->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
478	hsu->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
479
480	hsu->dma.dev = chip->dev;
481
482	dma_set_max_seg_size(hsu->dma.dev, HSU_CH_DxTSR_MASK);
483
484	ret = dma_async_device_register(&hsu->dma);
485	if (ret)
486		return ret;
487
488	dev_info(chip->dev, "Found HSU DMA, %d channels\n", hsu->nr_channels);
489	return 0;
490}
491EXPORT_SYMBOL_GPL(hsu_dma_probe);
492
493int hsu_dma_remove(struct hsu_dma_chip *chip)
494{
495	struct hsu_dma *hsu = chip->hsu;
496	unsigned short i;
497
498	dma_async_device_unregister(&hsu->dma);
499
500	for (i = 0; i < hsu->nr_channels; i++) {
501		struct hsu_dma_chan *hsuc = &hsu->chan[i];
502
503		tasklet_kill(&hsuc->vchan.task);
504	}
505
506	return 0;
507}
508EXPORT_SYMBOL_GPL(hsu_dma_remove);
509
510MODULE_LICENSE("GPL v2");
511MODULE_DESCRIPTION("High Speed UART DMA core driver");
512MODULE_AUTHOR("Andy Shevchenko <andriy.shevchenko@linux.intel.com>");
513