xref: /kernel/linux/linux-6.6/drivers/dma/at_hdmac.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems)
4 *
5 * Copyright (C) 2008 Atmel Corporation
6 * Copyright (C) 2022 Microchip Technology, Inc. and its subsidiaries
7 *
8 * This supports the Atmel AHB DMA Controller found in several Atmel SoCs.
9 * The only Atmel DMA Controller that is not covered by this driver is the one
10 * found on AT91SAM9263.
11 */
12
13#include <dt-bindings/dma/at91.h>
14#include <linux/bitfield.h>
15#include <linux/clk.h>
16#include <linux/dmaengine.h>
17#include <linux/dmapool.h>
18#include <linux/dma-mapping.h>
19#include <linux/interrupt.h>
20#include <linux/module.h>
21#include <linux/of.h>
22#include <linux/overflow.h>
23#include <linux/of_platform.h>
24#include <linux/of_dma.h>
25#include <linux/platform_device.h>
26#include <linux/slab.h>
27
28#include "dmaengine.h"
29#include "virt-dma.h"
30
31/*
32 * Glossary
33 * --------
34 *
35 * at_hdmac		: Name of the ATmel AHB DMA Controller
36 * at_dma_ / atdma	: ATmel DMA controller entity related
37 * atc_	/ atchan	: ATmel DMA Channel entity related
38 */
39
40#define	AT_DMA_MAX_NR_CHANNELS	8
41
42/* Global Configuration Register */
43#define AT_DMA_GCFG		0x00
44#define AT_DMA_IF_BIGEND(i)	BIT((i))	/* AHB-Lite Interface i in Big-endian mode */
45#define AT_DMA_ARB_CFG		BIT(4)		/* Arbiter mode. */
46
47/* Controller Enable Register */
48#define AT_DMA_EN		0x04
49#define AT_DMA_ENABLE		BIT(0)
50
51/* Software Single Request Register */
52#define AT_DMA_SREQ		0x08
53#define AT_DMA_SSREQ(x)		BIT((x) << 1)		/* Request a source single transfer on channel x */
54#define AT_DMA_DSREQ(x)		BIT(1 + ((x) << 1))	/* Request a destination single transfer on channel x */
55
56/* Software Chunk Transfer Request Register */
57#define AT_DMA_CREQ		0x0c
58#define AT_DMA_SCREQ(x)		BIT((x) << 1)		/* Request a source chunk transfer on channel x */
59#define AT_DMA_DCREQ(x)		BIT(1 + ((x) << 1))	/* Request a destination chunk transfer on channel x */
60
61/* Software Last Transfer Flag Register */
62#define AT_DMA_LAST		0x10
63#define AT_DMA_SLAST(x)		BIT((x) << 1)		/* This src rq is last tx of buffer on channel x */
64#define AT_DMA_DLAST(x)		BIT(1 + ((x) << 1))	/* This dst rq is last tx of buffer on channel x */
65
66/* Request Synchronization Register */
67#define AT_DMA_SYNC		0x14
68#define AT_DMA_SYR(h)		BIT((h))		/* Synchronize handshake line h */
69
70/* Error, Chained Buffer transfer completed and Buffer transfer completed Interrupt registers */
71#define AT_DMA_EBCIER		0x18			/* Enable register */
72#define AT_DMA_EBCIDR		0x1c			/* Disable register */
73#define AT_DMA_EBCIMR		0x20			/* Mask Register */
74#define AT_DMA_EBCISR		0x24			/* Status Register */
75#define AT_DMA_CBTC_OFFSET	8
76#define AT_DMA_ERR_OFFSET	16
77#define AT_DMA_BTC(x)		BIT((x))
78#define AT_DMA_CBTC(x)		BIT(AT_DMA_CBTC_OFFSET + (x))
79#define AT_DMA_ERR(x)		BIT(AT_DMA_ERR_OFFSET + (x))
80
81/* Channel Handler Enable Register */
82#define AT_DMA_CHER		0x28
83#define AT_DMA_ENA(x)		BIT((x))
84#define AT_DMA_SUSP(x)		BIT(8 + (x))
85#define AT_DMA_KEEP(x)		BIT(24 + (x))
86
87/* Channel Handler Disable Register */
88#define AT_DMA_CHDR		0x2c
89#define AT_DMA_DIS(x)		BIT(x)
90#define AT_DMA_RES(x)		BIT(8 + (x))
91
92/* Channel Handler Status Register */
93#define AT_DMA_CHSR		0x30
94#define AT_DMA_EMPT(x)		BIT(16 + (x))
95#define AT_DMA_STAL(x)		BIT(24 + (x))
96
97/* Channel registers base address */
98#define AT_DMA_CH_REGS_BASE	0x3c
99#define ch_regs(x)		(AT_DMA_CH_REGS_BASE + (x) * 0x28) /* Channel x base addr */
100
101/* Hardware register offset for each channel */
102#define ATC_SADDR_OFFSET	0x00	/* Source Address Register */
103#define ATC_DADDR_OFFSET	0x04	/* Destination Address Register */
104#define ATC_DSCR_OFFSET		0x08	/* Descriptor Address Register */
105#define ATC_CTRLA_OFFSET	0x0c	/* Control A Register */
106#define ATC_CTRLB_OFFSET	0x10	/* Control B Register */
107#define ATC_CFG_OFFSET		0x14	/* Configuration Register */
108#define ATC_SPIP_OFFSET		0x18	/* Src PIP Configuration Register */
109#define ATC_DPIP_OFFSET		0x1c	/* Dst PIP Configuration Register */
110
111
112/* Bitfield definitions */
113
114/* Bitfields in DSCR */
115#define ATC_DSCR_IF		GENMASK(1, 0)	/* Dsc feched via AHB-Lite Interface */
116
117/* Bitfields in CTRLA */
118#define ATC_BTSIZE_MAX		GENMASK(15, 0)	/* Maximum Buffer Transfer Size */
119#define ATC_BTSIZE		GENMASK(15, 0)	/* Buffer Transfer Size */
120#define ATC_SCSIZE		GENMASK(18, 16)	/* Source Chunk Transfer Size */
121#define ATC_DCSIZE		GENMASK(22, 20)	/* Destination Chunk Transfer Size */
122#define ATC_SRC_WIDTH		GENMASK(25, 24)	/* Source Single Transfer Size */
123#define ATC_DST_WIDTH		GENMASK(29, 28)	/* Destination Single Transfer Size */
124#define ATC_DONE		BIT(31)	/* Tx Done (only written back in descriptor) */
125
126/* Bitfields in CTRLB */
127#define ATC_SIF			GENMASK(1, 0)	/* Src tx done via AHB-Lite Interface i */
128#define ATC_DIF			GENMASK(5, 4)	/* Dst tx done via AHB-Lite Interface i */
129#define AT_DMA_MEM_IF		0x0		/* interface 0 as memory interface */
130#define AT_DMA_PER_IF		0x1		/* interface 1 as peripheral interface */
131#define ATC_SRC_PIP		BIT(8)		/* Source Picture-in-Picture enabled */
132#define ATC_DST_PIP		BIT(12)		/* Destination Picture-in-Picture enabled */
133#define ATC_SRC_DSCR_DIS	BIT(16)		/* Src Descriptor fetch disable */
134#define ATC_DST_DSCR_DIS	BIT(20)		/* Dst Descriptor fetch disable */
135#define ATC_FC			GENMASK(23, 21)	/* Choose Flow Controller */
136#define ATC_FC_MEM2MEM		0x0		/* Mem-to-Mem (DMA) */
137#define ATC_FC_MEM2PER		0x1		/* Mem-to-Periph (DMA) */
138#define ATC_FC_PER2MEM		0x2		/* Periph-to-Mem (DMA) */
139#define ATC_FC_PER2PER		0x3		/* Periph-to-Periph (DMA) */
140#define ATC_FC_PER2MEM_PER	0x4		/* Periph-to-Mem (Peripheral) */
141#define ATC_FC_MEM2PER_PER	0x5		/* Mem-to-Periph (Peripheral) */
142#define ATC_FC_PER2PER_SRCPER	0x6		/* Periph-to-Periph (Src Peripheral) */
143#define ATC_FC_PER2PER_DSTPER	0x7		/* Periph-to-Periph (Dst Peripheral) */
144#define ATC_SRC_ADDR_MODE	GENMASK(25, 24)
145#define ATC_SRC_ADDR_MODE_INCR	0x0		/* Incrementing Mode */
146#define ATC_SRC_ADDR_MODE_DECR	0x1		/* Decrementing Mode */
147#define ATC_SRC_ADDR_MODE_FIXED	0x2		/* Fixed Mode */
148#define ATC_DST_ADDR_MODE	GENMASK(29, 28)
149#define ATC_DST_ADDR_MODE_INCR	0x0		/* Incrementing Mode */
150#define ATC_DST_ADDR_MODE_DECR	0x1		/* Decrementing Mode */
151#define ATC_DST_ADDR_MODE_FIXED	0x2		/* Fixed Mode */
152#define ATC_IEN			BIT(30)		/* BTC interrupt enable (active low) */
153#define ATC_AUTO		BIT(31)		/* Auto multiple buffer tx enable */
154
155/* Bitfields in CFG */
156#define ATC_SRC_PER		GENMASK(3, 0)	/* Channel src rq associated with periph handshaking ifc h */
157#define ATC_DST_PER		GENMASK(7, 4)	/* Channel dst rq associated with periph handshaking ifc h */
158#define ATC_SRC_REP		BIT(8)		/* Source Replay Mod */
159#define ATC_SRC_H2SEL		BIT(9)		/* Source Handshaking Mod */
160#define ATC_SRC_PER_MSB		GENMASK(11, 10)	/* Channel src rq (most significant bits) */
161#define ATC_DST_REP		BIT(12)		/* Destination Replay Mod */
162#define ATC_DST_H2SEL		BIT(13)		/* Destination Handshaking Mod */
163#define ATC_DST_PER_MSB		GENMASK(15, 14)	/* Channel dst rq (most significant bits) */
164#define ATC_SOD			BIT(16)		/* Stop On Done */
165#define ATC_LOCK_IF		BIT(20)		/* Interface Lock */
166#define ATC_LOCK_B		BIT(21)		/* AHB Bus Lock */
167#define ATC_LOCK_IF_L		BIT(22)		/* Master Interface Arbiter Lock */
168#define ATC_AHB_PROT		GENMASK(26, 24)	/* AHB Protection */
169#define ATC_FIFOCFG		GENMASK(29, 28)	/* FIFO Request Configuration */
170#define ATC_FIFOCFG_LARGESTBURST	0x0
171#define ATC_FIFOCFG_HALFFIFO		0x1
172#define ATC_FIFOCFG_ENOUGHSPACE		0x2
173
174/* Bitfields in SPIP */
175#define ATC_SPIP_HOLE		GENMASK(15, 0)
176#define ATC_SPIP_BOUNDARY	GENMASK(25, 16)
177
178/* Bitfields in DPIP */
179#define ATC_DPIP_HOLE		GENMASK(15, 0)
180#define ATC_DPIP_BOUNDARY	GENMASK(25, 16)
181
182#define ATC_PER_MSB		GENMASK(5, 4)	/* Extract MSBs of a handshaking identifier */
183#define ATC_SRC_PER_ID(id)					       \
184	({ typeof(id) _id = (id);				       \
185	   FIELD_PREP(ATC_SRC_PER_MSB, FIELD_GET(ATC_PER_MSB, _id)) |  \
186	   FIELD_PREP(ATC_SRC_PER, _id); })
187#define ATC_DST_PER_ID(id)					       \
188	({ typeof(id) _id = (id);				       \
189	   FIELD_PREP(ATC_DST_PER_MSB, FIELD_GET(ATC_PER_MSB, _id)) |  \
190	   FIELD_PREP(ATC_DST_PER, _id); })
191
192
193
194/*--  descriptors  -----------------------------------------------------*/
195
196/* LLI == Linked List Item; aka DMA buffer descriptor */
197struct at_lli {
198	/* values that are not changed by hardware */
199	u32 saddr;
200	u32 daddr;
201	/* value that may get written back: */
202	u32 ctrla;
203	/* more values that are not changed by hardware */
204	u32 ctrlb;
205	u32 dscr;	/* chain to next lli */
206};
207
208/**
209 * struct atdma_sg - atdma scatter gather entry
210 * @len: length of the current Linked List Item.
211 * @lli: linked list item that is passed to the DMA controller
212 * @lli_phys: physical address of the LLI.
213 */
214struct atdma_sg {
215	unsigned int len;
216	struct at_lli *lli;
217	dma_addr_t lli_phys;
218};
219
220/**
221 * struct at_desc - software descriptor
222 * @vd: pointer to the virtual dma descriptor.
223 * @atchan: pointer to the atmel dma channel.
224 * @total_len: total transaction byte count
225 * @sg_len: number of sg entries.
226 * @sg: array of sgs.
227 */
228struct at_desc {
229	struct				virt_dma_desc vd;
230	struct				at_dma_chan *atchan;
231	size_t				total_len;
232	unsigned int			sglen;
233	/* Interleaved data */
234	size_t				boundary;
235	size_t				dst_hole;
236	size_t				src_hole;
237
238	/* Memset temporary buffer */
239	bool				memset_buffer;
240	dma_addr_t			memset_paddr;
241	int				*memset_vaddr;
242	struct atdma_sg			sg[];
243};
244
245/*--  Channels  --------------------------------------------------------*/
246
247/**
248 * atc_status - information bits stored in channel status flag
249 *
250 * Manipulated with atomic operations.
251 */
252enum atc_status {
253	ATC_IS_PAUSED = 1,
254	ATC_IS_CYCLIC = 24,
255};
256
257/**
258 * struct at_dma_chan - internal representation of an Atmel HDMAC channel
259 * @vc: virtual dma channel entry.
260 * @atdma: pointer to the driver data.
261 * @ch_regs: memory mapped register base
262 * @mask: channel index in a mask
263 * @per_if: peripheral interface
264 * @mem_if: memory interface
265 * @status: transmit status information from irq/prep* functions
266 *                to tasklet (use atomic operations)
267 * @save_cfg: configuration register that is saved on suspend/resume cycle
268 * @save_dscr: for cyclic operations, preserve next descriptor address in
269 *             the cyclic list on suspend/resume cycle
270 * @dma_sconfig: configuration for slave transfers, passed via
271 * .device_config
272 * @desc: pointer to the atmel dma descriptor.
273 */
274struct at_dma_chan {
275	struct virt_dma_chan	vc;
276	struct at_dma		*atdma;
277	void __iomem		*ch_regs;
278	u8			mask;
279	u8			per_if;
280	u8			mem_if;
281	unsigned long		status;
282	u32			save_cfg;
283	u32			save_dscr;
284	struct dma_slave_config	dma_sconfig;
285	bool			cyclic;
286	struct at_desc		*desc;
287};
288
289#define	channel_readl(atchan, name) \
290	__raw_readl((atchan)->ch_regs + ATC_##name##_OFFSET)
291
292#define	channel_writel(atchan, name, val) \
293	__raw_writel((val), (atchan)->ch_regs + ATC_##name##_OFFSET)
294
295/*
296 * Fix sconfig's burst size according to at_hdmac. We need to convert them as:
297 * 1 -> 0, 4 -> 1, 8 -> 2, 16 -> 3, 32 -> 4, 64 -> 5, 128 -> 6, 256 -> 7.
298 *
299 * This can be done by finding most significant bit set.
300 */
301static inline void convert_burst(u32 *maxburst)
302{
303	if (*maxburst > 1)
304		*maxburst = fls(*maxburst) - 2;
305	else
306		*maxburst = 0;
307}
308
309/*
310 * Fix sconfig's bus width according to at_hdmac.
311 * 1 byte -> 0, 2 bytes -> 1, 4 bytes -> 2.
312 */
313static inline u8 convert_buswidth(enum dma_slave_buswidth addr_width)
314{
315	switch (addr_width) {
316	case DMA_SLAVE_BUSWIDTH_2_BYTES:
317		return 1;
318	case DMA_SLAVE_BUSWIDTH_4_BYTES:
319		return 2;
320	default:
321		/* For 1 byte width or fallback */
322		return 0;
323	}
324}
325
326/*--  Controller  ------------------------------------------------------*/
327
328/**
329 * struct at_dma - internal representation of an Atmel HDMA Controller
330 * @dma_device: dmaengine dma_device object members
331 * @atdma_devtype: identifier of DMA controller compatibility
332 * @ch_regs: memory mapped register base
333 * @clk: dma controller clock
334 * @save_imr: interrupt mask register that is saved on suspend/resume cycle
335 * @all_chan_mask: all channels availlable in a mask
336 * @lli_pool: hw lli table
337 * @chan: channels table to store at_dma_chan structures
338 */
339struct at_dma {
340	struct dma_device	dma_device;
341	void __iomem		*regs;
342	struct clk		*clk;
343	u32			save_imr;
344
345	u8			all_chan_mask;
346
347	struct dma_pool		*lli_pool;
348	struct dma_pool		*memset_pool;
349	/* AT THE END channels table */
350	struct at_dma_chan	chan[];
351};
352
353#define	dma_readl(atdma, name) \
354	__raw_readl((atdma)->regs + AT_DMA_##name)
355#define	dma_writel(atdma, name, val) \
356	__raw_writel((val), (atdma)->regs + AT_DMA_##name)
357
358static inline struct at_desc *to_atdma_desc(struct dma_async_tx_descriptor *t)
359{
360	return container_of(t, struct at_desc, vd.tx);
361}
362
363static inline struct at_dma_chan *to_at_dma_chan(struct dma_chan *chan)
364{
365	return container_of(chan, struct at_dma_chan, vc.chan);
366}
367
368static inline struct at_dma *to_at_dma(struct dma_device *ddev)
369{
370	return container_of(ddev, struct at_dma, dma_device);
371}
372
373
374/*--  Helper functions  ------------------------------------------------*/
375
376static struct device *chan2dev(struct dma_chan *chan)
377{
378	return &chan->dev->device;
379}
380
381#if defined(VERBOSE_DEBUG)
382static void vdbg_dump_regs(struct at_dma_chan *atchan)
383{
384	struct at_dma	*atdma = to_at_dma(atchan->vc.chan.device);
385
386	dev_err(chan2dev(&atchan->vc.chan),
387		"  channel %d : imr = 0x%x, chsr = 0x%x\n",
388		atchan->vc.chan.chan_id,
389		dma_readl(atdma, EBCIMR),
390		dma_readl(atdma, CHSR));
391
392	dev_err(chan2dev(&atchan->vc.chan),
393		"  channel: s0x%x d0x%x ctrl0x%x:0x%x cfg0x%x l0x%x\n",
394		channel_readl(atchan, SADDR),
395		channel_readl(atchan, DADDR),
396		channel_readl(atchan, CTRLA),
397		channel_readl(atchan, CTRLB),
398		channel_readl(atchan, CFG),
399		channel_readl(atchan, DSCR));
400}
401#else
402static void vdbg_dump_regs(struct at_dma_chan *atchan) {}
403#endif
404
405static void atc_dump_lli(struct at_dma_chan *atchan, struct at_lli *lli)
406{
407	dev_crit(chan2dev(&atchan->vc.chan),
408		 "desc: s%pad d%pad ctrl0x%x:0x%x l%pad\n",
409		 &lli->saddr, &lli->daddr,
410		 lli->ctrla, lli->ctrlb, &lli->dscr);
411}
412
413
414static void atc_setup_irq(struct at_dma *atdma, int chan_id, int on)
415{
416	u32 ebci;
417
418	/* enable interrupts on buffer transfer completion & error */
419	ebci =    AT_DMA_BTC(chan_id)
420		| AT_DMA_ERR(chan_id);
421	if (on)
422		dma_writel(atdma, EBCIER, ebci);
423	else
424		dma_writel(atdma, EBCIDR, ebci);
425}
426
427static void atc_enable_chan_irq(struct at_dma *atdma, int chan_id)
428{
429	atc_setup_irq(atdma, chan_id, 1);
430}
431
432static void atc_disable_chan_irq(struct at_dma *atdma, int chan_id)
433{
434	atc_setup_irq(atdma, chan_id, 0);
435}
436
437
438/**
439 * atc_chan_is_enabled - test if given channel is enabled
440 * @atchan: channel we want to test status
441 */
442static inline int atc_chan_is_enabled(struct at_dma_chan *atchan)
443{
444	struct at_dma *atdma = to_at_dma(atchan->vc.chan.device);
445
446	return !!(dma_readl(atdma, CHSR) & atchan->mask);
447}
448
449/**
450 * atc_chan_is_paused - test channel pause/resume status
451 * @atchan: channel we want to test status
452 */
453static inline int atc_chan_is_paused(struct at_dma_chan *atchan)
454{
455	return test_bit(ATC_IS_PAUSED, &atchan->status);
456}
457
458/**
459 * atc_chan_is_cyclic - test if given channel has cyclic property set
460 * @atchan: channel we want to test status
461 */
462static inline int atc_chan_is_cyclic(struct at_dma_chan *atchan)
463{
464	return test_bit(ATC_IS_CYCLIC, &atchan->status);
465}
466
467/**
468 * set_lli_eol - set end-of-link to descriptor so it will end transfer
469 * @desc: descriptor, signle or at the end of a chain, to end chain on
470 * @i: index of the atmel scatter gather entry that is at the end of the chain.
471 */
472static void set_lli_eol(struct at_desc *desc, unsigned int i)
473{
474	u32 ctrlb = desc->sg[i].lli->ctrlb;
475
476	ctrlb &= ~ATC_IEN;
477	ctrlb |= ATC_SRC_DSCR_DIS | ATC_DST_DSCR_DIS;
478
479	desc->sg[i].lli->ctrlb = ctrlb;
480	desc->sg[i].lli->dscr = 0;
481}
482
483#define	ATC_DEFAULT_CFG		FIELD_PREP(ATC_FIFOCFG, ATC_FIFOCFG_HALFFIFO)
484#define	ATC_DEFAULT_CTRLB	(FIELD_PREP(ATC_SIF, AT_DMA_MEM_IF) | \
485				 FIELD_PREP(ATC_DIF, AT_DMA_MEM_IF))
486#define ATC_DMA_BUSWIDTHS\
487	(BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
488	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
489	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
490	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
491
492#define ATC_MAX_DSCR_TRIALS	10
493
494/*
495 * Initial number of descriptors to allocate for each channel. This could
496 * be increased during dma usage.
497 */
498static unsigned int init_nr_desc_per_channel = 64;
499module_param(init_nr_desc_per_channel, uint, 0644);
500MODULE_PARM_DESC(init_nr_desc_per_channel,
501		 "initial descriptors per channel (default: 64)");
502
503/**
504 * struct at_dma_platform_data - Controller configuration parameters
505 * @nr_channels: Number of channels supported by hardware (max 8)
506 * @cap_mask: dma_capability flags supported by the platform
507 */
508struct at_dma_platform_data {
509	unsigned int	nr_channels;
510	dma_cap_mask_t  cap_mask;
511};
512
513/**
514 * struct at_dma_slave - Controller-specific information about a slave
515 * @dma_dev: required DMA master device
516 * @cfg: Platform-specific initializer for the CFG register
517 */
518struct at_dma_slave {
519	struct device		*dma_dev;
520	u32			cfg;
521};
522
523static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst,
524						size_t len)
525{
526	unsigned int width;
527
528	if (!((src | dst  | len) & 3))
529		width = 2;
530	else if (!((src | dst | len) & 1))
531		width = 1;
532	else
533		width = 0;
534
535	return width;
536}
537
538static void atdma_lli_chain(struct at_desc *desc, unsigned int i)
539{
540	struct atdma_sg *atdma_sg = &desc->sg[i];
541
542	if (i)
543		desc->sg[i - 1].lli->dscr = atdma_sg->lli_phys;
544}
545
546/**
547 * atc_dostart - starts the DMA engine for real
548 * @atchan: the channel we want to start
549 */
550static void atc_dostart(struct at_dma_chan *atchan)
551{
552	struct virt_dma_desc *vd = vchan_next_desc(&atchan->vc);
553	struct at_desc *desc;
554
555	if (!vd) {
556		atchan->desc = NULL;
557		return;
558	}
559
560	vdbg_dump_regs(atchan);
561
562	list_del(&vd->node);
563	atchan->desc = desc = to_atdma_desc(&vd->tx);
564
565	channel_writel(atchan, SADDR, 0);
566	channel_writel(atchan, DADDR, 0);
567	channel_writel(atchan, CTRLA, 0);
568	channel_writel(atchan, CTRLB, 0);
569	channel_writel(atchan, DSCR, desc->sg[0].lli_phys);
570	channel_writel(atchan, SPIP,
571		       FIELD_PREP(ATC_SPIP_HOLE, desc->src_hole) |
572		       FIELD_PREP(ATC_SPIP_BOUNDARY, desc->boundary));
573	channel_writel(atchan, DPIP,
574		       FIELD_PREP(ATC_DPIP_HOLE, desc->dst_hole) |
575		       FIELD_PREP(ATC_DPIP_BOUNDARY, desc->boundary));
576
577	/* Don't allow CPU to reorder channel enable. */
578	wmb();
579	dma_writel(atchan->atdma, CHER, atchan->mask);
580
581	vdbg_dump_regs(atchan);
582}
583
584static void atdma_desc_free(struct virt_dma_desc *vd)
585{
586	struct at_dma *atdma = to_at_dma(vd->tx.chan->device);
587	struct at_desc *desc = to_atdma_desc(&vd->tx);
588	unsigned int i;
589
590	for (i = 0; i < desc->sglen; i++) {
591		if (desc->sg[i].lli)
592			dma_pool_free(atdma->lli_pool, desc->sg[i].lli,
593				      desc->sg[i].lli_phys);
594	}
595
596	/* If the transfer was a memset, free our temporary buffer */
597	if (desc->memset_buffer) {
598		dma_pool_free(atdma->memset_pool, desc->memset_vaddr,
599			      desc->memset_paddr);
600		desc->memset_buffer = false;
601	}
602
603	kfree(desc);
604}
605
606/**
607 * atc_calc_bytes_left - calculates the number of bytes left according to the
608 * value read from CTRLA.
609 *
610 * @current_len: the number of bytes left before reading CTRLA
611 * @ctrla: the value of CTRLA
612 */
613static inline u32 atc_calc_bytes_left(u32 current_len, u32 ctrla)
614{
615	u32 btsize = FIELD_GET(ATC_BTSIZE, ctrla);
616	u32 src_width = FIELD_GET(ATC_SRC_WIDTH, ctrla);
617
618	/*
619	 * According to the datasheet, when reading the Control A Register
620	 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the
621	 * number of transfers completed on the Source Interface.
622	 * So btsize is always a number of source width transfers.
623	 */
624	return current_len - (btsize << src_width);
625}
626
627/**
628 * atc_get_llis_residue - Get residue for a hardware linked list transfer
629 *
630 * Calculate the residue by removing the length of the Linked List Item (LLI)
631 * already transferred from the total length. To get the current LLI we can use
632 * the value of the channel's DSCR register and compare it against the DSCR
633 * value of each LLI.
634 *
635 * The CTRLA register provides us with the amount of data already read from the
636 * source for the LLI. So we can compute a more accurate residue by also
637 * removing the number of bytes corresponding to this amount of data.
638 *
639 * However, the DSCR and CTRLA registers cannot be read both atomically. Hence a
640 * race condition may occur: the first read register may refer to one LLI
641 * whereas the second read may refer to a later LLI in the list because of the
642 * DMA transfer progression inbetween the two reads.
643 *
644 * One solution could have been to pause the DMA transfer, read the DSCR and
645 * CTRLA then resume the DMA transfer. Nonetheless, this approach presents some
646 * drawbacks:
647 * - If the DMA transfer is paused, RX overruns or TX underruns are more likey
648 *   to occur depending on the system latency. Taking the USART driver as an
649 *   example, it uses a cyclic DMA transfer to read data from the Receive
650 *   Holding Register (RHR) to avoid RX overruns since the RHR is not protected
651 *   by any FIFO on most Atmel SoCs. So pausing the DMA transfer to compute the
652 *   residue would break the USART driver design.
653 * - The atc_pause() function masks interrupts but we'd rather avoid to do so
654 * for system latency purpose.
655 *
656 * Then we'd rather use another solution: the DSCR is read a first time, the
657 * CTRLA is read in turn, next the DSCR is read a second time. If the two
658 * consecutive read values of the DSCR are the same then we assume both refers
659 * to the very same LLI as well as the CTRLA value read inbetween does. For
660 * cyclic tranfers, the assumption is that a full loop is "not so fast". If the
661 * two DSCR values are different, we read again the CTRLA then the DSCR till two
662 * consecutive read values from DSCR are equal or till the maximum trials is
663 * reach. This algorithm is very unlikely not to find a stable value for DSCR.
664 * @atchan: pointer to an atmel hdmac channel.
665 * @desc: pointer to the descriptor for which the residue is calculated.
666 * @residue: residue to be set to dma_tx_state.
667 * Returns 0 on success, -errno otherwise.
668 */
669static int atc_get_llis_residue(struct at_dma_chan *atchan,
670				struct at_desc *desc, u32 *residue)
671{
672	u32 len, ctrla, dscr;
673	unsigned int i;
674
675	len = desc->total_len;
676	dscr = channel_readl(atchan, DSCR);
677	rmb(); /* ensure DSCR is read before CTRLA */
678	ctrla = channel_readl(atchan, CTRLA);
679	for (i = 0; i < ATC_MAX_DSCR_TRIALS; ++i) {
680		u32 new_dscr;
681
682		rmb(); /* ensure DSCR is read after CTRLA */
683		new_dscr = channel_readl(atchan, DSCR);
684
685		/*
686		 * If the DSCR register value has not changed inside the DMA
687		 * controller since the previous read, we assume that both the
688		 * dscr and ctrla values refers to the very same descriptor.
689		 */
690		if (likely(new_dscr == dscr))
691			break;
692
693		/*
694		 * DSCR has changed inside the DMA controller, so the previouly
695		 * read value of CTRLA may refer to an already processed
696		 * descriptor hence could be outdated. We need to update ctrla
697		 * to match the current descriptor.
698		 */
699		dscr = new_dscr;
700		rmb(); /* ensure DSCR is read before CTRLA */
701		ctrla = channel_readl(atchan, CTRLA);
702	}
703	if (unlikely(i == ATC_MAX_DSCR_TRIALS))
704		return -ETIMEDOUT;
705
706	/* For the first descriptor we can be more accurate. */
707	if (desc->sg[0].lli->dscr == dscr) {
708		*residue = atc_calc_bytes_left(len, ctrla);
709		return 0;
710	}
711	len -= desc->sg[0].len;
712
713	for (i = 1; i < desc->sglen; i++) {
714		if (desc->sg[i].lli && desc->sg[i].lli->dscr == dscr)
715			break;
716		len -= desc->sg[i].len;
717	}
718
719	/*
720	 * For the current LLI in the chain we can calculate the remaining bytes
721	 * using the channel's CTRLA register.
722	 */
723	*residue = atc_calc_bytes_left(len, ctrla);
724	return 0;
725
726}
727
728/**
729 * atc_get_residue - get the number of bytes residue for a cookie.
730 * The residue is passed by address and updated on success.
731 * @chan: DMA channel
732 * @cookie: transaction identifier to check status of
733 * @residue: residue to be updated.
734 * Return 0 on success, -errono otherwise.
735 */
736static int atc_get_residue(struct dma_chan *chan, dma_cookie_t cookie,
737			   u32 *residue)
738{
739	struct at_dma_chan *atchan = to_at_dma_chan(chan);
740	struct virt_dma_desc *vd;
741	struct at_desc *desc = NULL;
742	u32 len, ctrla;
743
744	vd = vchan_find_desc(&atchan->vc, cookie);
745	if (vd)
746		desc = to_atdma_desc(&vd->tx);
747	else if (atchan->desc && atchan->desc->vd.tx.cookie == cookie)
748		desc = atchan->desc;
749
750	if (!desc)
751		return -EINVAL;
752
753	if (desc->sg[0].lli->dscr)
754		/* hardware linked list transfer */
755		return atc_get_llis_residue(atchan, desc, residue);
756
757	/* single transfer */
758	len = desc->total_len;
759	ctrla = channel_readl(atchan, CTRLA);
760	*residue = atc_calc_bytes_left(len, ctrla);
761	return 0;
762}
763
764/**
765 * atc_handle_error - handle errors reported by DMA controller
766 * @atchan: channel where error occurs.
767 * @i: channel index
768 */
769static void atc_handle_error(struct at_dma_chan *atchan, unsigned int i)
770{
771	struct at_desc *desc = atchan->desc;
772
773	/* Disable channel on AHB error */
774	dma_writel(atchan->atdma, CHDR, AT_DMA_RES(i) | atchan->mask);
775
776	/*
777	 * KERN_CRITICAL may seem harsh, but since this only happens
778	 * when someone submits a bad physical address in a
779	 * descriptor, we should consider ourselves lucky that the
780	 * controller flagged an error instead of scribbling over
781	 * random memory locations.
782	 */
783	dev_crit(chan2dev(&atchan->vc.chan), "Bad descriptor submitted for DMA!\n");
784	dev_crit(chan2dev(&atchan->vc.chan), "cookie: %d\n",
785		 desc->vd.tx.cookie);
786	for (i = 0; i < desc->sglen; i++)
787		atc_dump_lli(atchan, desc->sg[i].lli);
788}
789
790static void atdma_handle_chan_done(struct at_dma_chan *atchan, u32 pending,
791				   unsigned int i)
792{
793	struct at_desc *desc;
794
795	spin_lock(&atchan->vc.lock);
796	desc = atchan->desc;
797
798	if (desc) {
799		if (pending & AT_DMA_ERR(i)) {
800			atc_handle_error(atchan, i);
801			/* Pretend the descriptor completed successfully */
802		}
803
804		if (atc_chan_is_cyclic(atchan)) {
805			vchan_cyclic_callback(&desc->vd);
806		} else {
807			vchan_cookie_complete(&desc->vd);
808			atchan->desc = NULL;
809			if (!(atc_chan_is_enabled(atchan)))
810				atc_dostart(atchan);
811		}
812	}
813	spin_unlock(&atchan->vc.lock);
814}
815
816static irqreturn_t at_dma_interrupt(int irq, void *dev_id)
817{
818	struct at_dma		*atdma = dev_id;
819	struct at_dma_chan	*atchan;
820	int			i;
821	u32			status, pending, imr;
822	int			ret = IRQ_NONE;
823
824	do {
825		imr = dma_readl(atdma, EBCIMR);
826		status = dma_readl(atdma, EBCISR);
827		pending = status & imr;
828
829		if (!pending)
830			break;
831
832		dev_vdbg(atdma->dma_device.dev,
833			"interrupt: status = 0x%08x, 0x%08x, 0x%08x\n",
834			 status, imr, pending);
835
836		for (i = 0; i < atdma->dma_device.chancnt; i++) {
837			atchan = &atdma->chan[i];
838			if (!(pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))))
839				continue;
840			atdma_handle_chan_done(atchan, pending, i);
841			ret = IRQ_HANDLED;
842		}
843
844	} while (pending);
845
846	return ret;
847}
848
849/*--  DMA Engine API  --------------------------------------------------*/
850/**
851 * atc_prep_dma_interleaved - prepare memory to memory interleaved operation
852 * @chan: the channel to prepare operation on
853 * @xt: Interleaved transfer template
854 * @flags: tx descriptor status flags
855 */
856static struct dma_async_tx_descriptor *
857atc_prep_dma_interleaved(struct dma_chan *chan,
858			 struct dma_interleaved_template *xt,
859			 unsigned long flags)
860{
861	struct at_dma		*atdma = to_at_dma(chan->device);
862	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
863	struct data_chunk	*first;
864	struct atdma_sg		*atdma_sg;
865	struct at_desc		*desc;
866	struct at_lli		*lli;
867	size_t			xfer_count;
868	unsigned int		dwidth;
869	u32			ctrla;
870	u32			ctrlb;
871	size_t			len = 0;
872	int			i;
873
874	if (unlikely(!xt || xt->numf != 1 || !xt->frame_size))
875		return NULL;
876
877	first = xt->sgl;
878
879	dev_info(chan2dev(chan),
880		 "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n",
881		__func__, &xt->src_start, &xt->dst_start, xt->numf,
882		xt->frame_size, flags);
883
884	/*
885	 * The controller can only "skip" X bytes every Y bytes, so we
886	 * need to make sure we are given a template that fit that
887	 * description, ie a template with chunks that always have the
888	 * same size, with the same ICGs.
889	 */
890	for (i = 0; i < xt->frame_size; i++) {
891		struct data_chunk *chunk = xt->sgl + i;
892
893		if ((chunk->size != xt->sgl->size) ||
894		    (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) ||
895		    (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) {
896			dev_err(chan2dev(chan),
897				"%s: the controller can transfer only identical chunks\n",
898				__func__);
899			return NULL;
900		}
901
902		len += chunk->size;
903	}
904
905	dwidth = atc_get_xfer_width(xt->src_start, xt->dst_start, len);
906
907	xfer_count = len >> dwidth;
908	if (xfer_count > ATC_BTSIZE_MAX) {
909		dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
910		return NULL;
911	}
912
913	ctrla = FIELD_PREP(ATC_SRC_WIDTH, dwidth) |
914		FIELD_PREP(ATC_DST_WIDTH, dwidth);
915
916	ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
917		FIELD_PREP(ATC_SRC_ADDR_MODE, ATC_SRC_ADDR_MODE_INCR) |
918		FIELD_PREP(ATC_DST_ADDR_MODE, ATC_DST_ADDR_MODE_INCR) |
919		ATC_SRC_PIP | ATC_DST_PIP |
920		FIELD_PREP(ATC_FC, ATC_FC_MEM2MEM);
921
922	desc = kzalloc(struct_size(desc, sg, 1), GFP_ATOMIC);
923	if (!desc)
924		return NULL;
925	desc->sglen = 1;
926
927	atdma_sg = desc->sg;
928	atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, GFP_NOWAIT,
929				       &atdma_sg->lli_phys);
930	if (!atdma_sg->lli) {
931		kfree(desc);
932		return NULL;
933	}
934	lli = atdma_sg->lli;
935
936	lli->saddr = xt->src_start;
937	lli->daddr = xt->dst_start;
938	lli->ctrla = ctrla | xfer_count;
939	lli->ctrlb = ctrlb;
940
941	desc->boundary = first->size >> dwidth;
942	desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1;
943	desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1;
944
945	atdma_sg->len = len;
946	desc->total_len = len;
947
948	set_lli_eol(desc, 0);
949	return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
950}
951
952/**
953 * atc_prep_dma_memcpy - prepare a memcpy operation
954 * @chan: the channel to prepare operation on
955 * @dest: operation virtual destination address
956 * @src: operation virtual source address
957 * @len: operation length
958 * @flags: tx descriptor status flags
959 */
960static struct dma_async_tx_descriptor *
961atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
962		size_t len, unsigned long flags)
963{
964	struct at_dma		*atdma = to_at_dma(chan->device);
965	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
966	struct at_desc		*desc = NULL;
967	size_t			xfer_count;
968	size_t			offset;
969	size_t			sg_len;
970	unsigned int		src_width;
971	unsigned int		dst_width;
972	unsigned int		i;
973	u32			ctrla;
974	u32			ctrlb;
975
976	dev_dbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n",
977		&dest, &src, len, flags);
978
979	if (unlikely(!len)) {
980		dev_err(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
981		return NULL;
982	}
983
984	sg_len = DIV_ROUND_UP(len, ATC_BTSIZE_MAX);
985	desc = kzalloc(struct_size(desc, sg, sg_len), GFP_ATOMIC);
986	if (!desc)
987		return NULL;
988	desc->sglen = sg_len;
989
990	ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
991		FIELD_PREP(ATC_SRC_ADDR_MODE, ATC_SRC_ADDR_MODE_INCR) |
992		FIELD_PREP(ATC_DST_ADDR_MODE, ATC_DST_ADDR_MODE_INCR) |
993		FIELD_PREP(ATC_FC, ATC_FC_MEM2MEM);
994
995	/*
996	 * We can be a lot more clever here, but this should take care
997	 * of the most common optimization.
998	 */
999	src_width = dst_width = atc_get_xfer_width(src, dest, len);
1000
1001	ctrla = FIELD_PREP(ATC_SRC_WIDTH, src_width) |
1002		FIELD_PREP(ATC_DST_WIDTH, dst_width);
1003
1004	for (offset = 0, i = 0; offset < len;
1005	     offset += xfer_count << src_width, i++) {
1006		struct atdma_sg *atdma_sg = &desc->sg[i];
1007		struct at_lli *lli;
1008
1009		atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, GFP_NOWAIT,
1010					       &atdma_sg->lli_phys);
1011		if (!atdma_sg->lli)
1012			goto err_desc_get;
1013		lli = atdma_sg->lli;
1014
1015		xfer_count = min_t(size_t, (len - offset) >> src_width,
1016				   ATC_BTSIZE_MAX);
1017
1018		lli->saddr = src + offset;
1019		lli->daddr = dest + offset;
1020		lli->ctrla = ctrla | xfer_count;
1021		lli->ctrlb = ctrlb;
1022
1023		desc->sg[i].len = xfer_count << src_width;
1024
1025		atdma_lli_chain(desc, i);
1026	}
1027
1028	desc->total_len = len;
1029
1030	/* set end-of-link to the last link descriptor of list*/
1031	set_lli_eol(desc, i - 1);
1032
1033	return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
1034
1035err_desc_get:
1036	atdma_desc_free(&desc->vd);
1037	return NULL;
1038}
1039
1040static int atdma_create_memset_lli(struct dma_chan *chan,
1041				   struct atdma_sg *atdma_sg,
1042				   dma_addr_t psrc, dma_addr_t pdst, size_t len)
1043{
1044	struct at_dma *atdma = to_at_dma(chan->device);
1045	struct at_lli *lli;
1046	size_t xfer_count;
1047	u32 ctrla = FIELD_PREP(ATC_SRC_WIDTH, 2) | FIELD_PREP(ATC_DST_WIDTH, 2);
1048	u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
1049		    FIELD_PREP(ATC_SRC_ADDR_MODE, ATC_SRC_ADDR_MODE_FIXED) |
1050		    FIELD_PREP(ATC_DST_ADDR_MODE, ATC_DST_ADDR_MODE_INCR) |
1051		    FIELD_PREP(ATC_FC, ATC_FC_MEM2MEM);
1052
1053	xfer_count = len >> 2;
1054	if (xfer_count > ATC_BTSIZE_MAX) {
1055		dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
1056		return -EINVAL;
1057	}
1058
1059	atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, GFP_NOWAIT,
1060				       &atdma_sg->lli_phys);
1061	if (!atdma_sg->lli)
1062		return -ENOMEM;
1063	lli = atdma_sg->lli;
1064
1065	lli->saddr = psrc;
1066	lli->daddr = pdst;
1067	lli->ctrla = ctrla | xfer_count;
1068	lli->ctrlb = ctrlb;
1069
1070	atdma_sg->len = len;
1071
1072	return 0;
1073}
1074
1075/**
1076 * atc_prep_dma_memset - prepare a memcpy operation
1077 * @chan: the channel to prepare operation on
1078 * @dest: operation virtual destination address
1079 * @value: value to set memory buffer to
1080 * @len: operation length
1081 * @flags: tx descriptor status flags
1082 */
1083static struct dma_async_tx_descriptor *
1084atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
1085		    size_t len, unsigned long flags)
1086{
1087	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1088	struct at_dma		*atdma = to_at_dma(chan->device);
1089	struct at_desc		*desc;
1090	void __iomem		*vaddr;
1091	dma_addr_t		paddr;
1092	char			fill_pattern;
1093	int			ret;
1094
1095	dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__,
1096		&dest, value, len, flags);
1097
1098	if (unlikely(!len)) {
1099		dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__);
1100		return NULL;
1101	}
1102
1103	if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
1104		dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n",
1105			__func__);
1106		return NULL;
1107	}
1108
1109	vaddr = dma_pool_alloc(atdma->memset_pool, GFP_NOWAIT, &paddr);
1110	if (!vaddr) {
1111		dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
1112			__func__);
1113		return NULL;
1114	}
1115
1116	/* Only the first byte of value is to be used according to dmaengine */
1117	fill_pattern = (char)value;
1118
1119	*(u32*)vaddr = (fill_pattern << 24) |
1120		       (fill_pattern << 16) |
1121		       (fill_pattern << 8) |
1122		       fill_pattern;
1123
1124	desc = kzalloc(struct_size(desc, sg, 1), GFP_ATOMIC);
1125	if (!desc)
1126		goto err_free_buffer;
1127	desc->sglen = 1;
1128
1129	ret = atdma_create_memset_lli(chan, desc->sg, paddr, dest, len);
1130	if (ret)
1131		goto err_free_desc;
1132
1133	desc->memset_paddr = paddr;
1134	desc->memset_vaddr = vaddr;
1135	desc->memset_buffer = true;
1136
1137	desc->total_len = len;
1138
1139	/* set end-of-link on the descriptor */
1140	set_lli_eol(desc, 0);
1141
1142	return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
1143
1144err_free_desc:
1145	kfree(desc);
1146err_free_buffer:
1147	dma_pool_free(atdma->memset_pool, vaddr, paddr);
1148	return NULL;
1149}
1150
1151static struct dma_async_tx_descriptor *
1152atc_prep_dma_memset_sg(struct dma_chan *chan,
1153		       struct scatterlist *sgl,
1154		       unsigned int sg_len, int value,
1155		       unsigned long flags)
1156{
1157	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1158	struct at_dma		*atdma = to_at_dma(chan->device);
1159	struct at_desc		*desc;
1160	struct scatterlist	*sg;
1161	void __iomem		*vaddr;
1162	dma_addr_t		paddr;
1163	size_t			total_len = 0;
1164	int			i;
1165	int			ret;
1166
1167	dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__,
1168		 value, sg_len, flags);
1169
1170	if (unlikely(!sgl || !sg_len)) {
1171		dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n",
1172			__func__);
1173		return NULL;
1174	}
1175
1176	vaddr = dma_pool_alloc(atdma->memset_pool, GFP_NOWAIT, &paddr);
1177	if (!vaddr) {
1178		dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
1179			__func__);
1180		return NULL;
1181	}
1182	*(u32*)vaddr = value;
1183
1184	desc = kzalloc(struct_size(desc, sg, sg_len), GFP_ATOMIC);
1185	if (!desc)
1186		goto err_free_dma_buf;
1187	desc->sglen = sg_len;
1188
1189	for_each_sg(sgl, sg, sg_len, i) {
1190		dma_addr_t dest = sg_dma_address(sg);
1191		size_t len = sg_dma_len(sg);
1192
1193		dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n",
1194			 __func__, &dest, len);
1195
1196		if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
1197			dev_err(chan2dev(chan), "%s: buffer is not aligned\n",
1198				__func__);
1199			goto err_free_desc;
1200		}
1201
1202		ret = atdma_create_memset_lli(chan, &desc->sg[i], paddr, dest,
1203					      len);
1204		if (ret)
1205			goto err_free_desc;
1206
1207		atdma_lli_chain(desc, i);
1208		total_len += len;
1209	}
1210
1211	desc->memset_paddr = paddr;
1212	desc->memset_vaddr = vaddr;
1213	desc->memset_buffer = true;
1214
1215	desc->total_len = total_len;
1216
1217	/* set end-of-link on the descriptor */
1218	set_lli_eol(desc, i - 1);
1219
1220	return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
1221
1222err_free_desc:
1223	atdma_desc_free(&desc->vd);
1224err_free_dma_buf:
1225	dma_pool_free(atdma->memset_pool, vaddr, paddr);
1226	return NULL;
1227}
1228
1229/**
1230 * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
1231 * @chan: DMA channel
1232 * @sgl: scatterlist to transfer to/from
1233 * @sg_len: number of entries in @scatterlist
1234 * @direction: DMA direction
1235 * @flags: tx descriptor status flags
1236 * @context: transaction context (ignored)
1237 */
1238static struct dma_async_tx_descriptor *
1239atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1240		unsigned int sg_len, enum dma_transfer_direction direction,
1241		unsigned long flags, void *context)
1242{
1243	struct at_dma		*atdma = to_at_dma(chan->device);
1244	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1245	struct at_dma_slave	*atslave = chan->private;
1246	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1247	struct at_desc		*desc;
1248	u32			ctrla;
1249	u32			ctrlb;
1250	dma_addr_t		reg;
1251	unsigned int		reg_width;
1252	unsigned int		mem_width;
1253	unsigned int		i;
1254	struct scatterlist	*sg;
1255	size_t			total_len = 0;
1256
1257	dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n",
1258			sg_len,
1259			direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1260			flags);
1261
1262	if (unlikely(!atslave || !sg_len)) {
1263		dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n");
1264		return NULL;
1265	}
1266
1267	desc = kzalloc(struct_size(desc, sg, sg_len), GFP_ATOMIC);
1268	if (!desc)
1269		return NULL;
1270	desc->sglen = sg_len;
1271
1272	ctrla = FIELD_PREP(ATC_SCSIZE, sconfig->src_maxburst) |
1273		FIELD_PREP(ATC_DCSIZE, sconfig->dst_maxburst);
1274	ctrlb = ATC_IEN;
1275
1276	switch (direction) {
1277	case DMA_MEM_TO_DEV:
1278		reg_width = convert_buswidth(sconfig->dst_addr_width);
1279		ctrla |= FIELD_PREP(ATC_DST_WIDTH, reg_width);
1280		ctrlb |= FIELD_PREP(ATC_DST_ADDR_MODE,
1281				    ATC_DST_ADDR_MODE_FIXED) |
1282			 FIELD_PREP(ATC_SRC_ADDR_MODE, ATC_SRC_ADDR_MODE_INCR) |
1283			 FIELD_PREP(ATC_FC, ATC_FC_MEM2PER) |
1284			 FIELD_PREP(ATC_SIF, atchan->mem_if) |
1285			 FIELD_PREP(ATC_DIF, atchan->per_if);
1286		reg = sconfig->dst_addr;
1287		for_each_sg(sgl, sg, sg_len, i) {
1288			struct atdma_sg *atdma_sg = &desc->sg[i];
1289			struct at_lli *lli;
1290			u32		len;
1291			u32		mem;
1292
1293			atdma_sg->lli = dma_pool_alloc(atdma->lli_pool,
1294						       GFP_NOWAIT,
1295						       &atdma_sg->lli_phys);
1296			if (!atdma_sg->lli)
1297				goto err_desc_get;
1298			lli = atdma_sg->lli;
1299
1300			mem = sg_dma_address(sg);
1301			len = sg_dma_len(sg);
1302			if (unlikely(!len)) {
1303				dev_dbg(chan2dev(chan),
1304					"prep_slave_sg: sg(%d) data length is zero\n", i);
1305				goto err;
1306			}
1307			mem_width = 2;
1308			if (unlikely(mem & 3 || len & 3))
1309				mem_width = 0;
1310
1311			lli->saddr = mem;
1312			lli->daddr = reg;
1313			lli->ctrla = ctrla |
1314				     FIELD_PREP(ATC_SRC_WIDTH, mem_width) |
1315				     len >> mem_width;
1316			lli->ctrlb = ctrlb;
1317
1318			atdma_sg->len = len;
1319			total_len += len;
1320
1321			desc->sg[i].len = len;
1322			atdma_lli_chain(desc, i);
1323		}
1324		break;
1325	case DMA_DEV_TO_MEM:
1326		reg_width = convert_buswidth(sconfig->src_addr_width);
1327		ctrla |= FIELD_PREP(ATC_SRC_WIDTH, reg_width);
1328		ctrlb |= FIELD_PREP(ATC_DST_ADDR_MODE, ATC_DST_ADDR_MODE_INCR) |
1329			 FIELD_PREP(ATC_SRC_ADDR_MODE,
1330				    ATC_SRC_ADDR_MODE_FIXED) |
1331			 FIELD_PREP(ATC_FC, ATC_FC_PER2MEM) |
1332			 FIELD_PREP(ATC_SIF, atchan->per_if) |
1333			 FIELD_PREP(ATC_DIF, atchan->mem_if);
1334
1335		reg = sconfig->src_addr;
1336		for_each_sg(sgl, sg, sg_len, i) {
1337			struct atdma_sg *atdma_sg = &desc->sg[i];
1338			struct at_lli *lli;
1339			u32		len;
1340			u32		mem;
1341
1342			atdma_sg->lli = dma_pool_alloc(atdma->lli_pool,
1343						       GFP_NOWAIT,
1344						       &atdma_sg->lli_phys);
1345			if (!atdma_sg->lli)
1346				goto err_desc_get;
1347			lli = atdma_sg->lli;
1348
1349			mem = sg_dma_address(sg);
1350			len = sg_dma_len(sg);
1351			if (unlikely(!len)) {
1352				dev_dbg(chan2dev(chan),
1353					"prep_slave_sg: sg(%d) data length is zero\n", i);
1354				goto err;
1355			}
1356			mem_width = 2;
1357			if (unlikely(mem & 3 || len & 3))
1358				mem_width = 0;
1359
1360			lli->saddr = reg;
1361			lli->daddr = mem;
1362			lli->ctrla = ctrla |
1363				     FIELD_PREP(ATC_DST_WIDTH, mem_width) |
1364				     len >> reg_width;
1365			lli->ctrlb = ctrlb;
1366
1367			desc->sg[i].len = len;
1368			total_len += len;
1369
1370			atdma_lli_chain(desc, i);
1371		}
1372		break;
1373	default:
1374		return NULL;
1375	}
1376
1377	/* set end-of-link to the last link descriptor of list*/
1378	set_lli_eol(desc, i - 1);
1379
1380	desc->total_len = total_len;
1381
1382	return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
1383
1384err_desc_get:
1385	dev_err(chan2dev(chan), "not enough descriptors available\n");
1386err:
1387	atdma_desc_free(&desc->vd);
1388	return NULL;
1389}
1390
1391/*
1392 * atc_dma_cyclic_check_values
1393 * Check for too big/unaligned periods and unaligned DMA buffer
1394 */
1395static int
1396atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr,
1397		size_t period_len)
1398{
1399	if (period_len > (ATC_BTSIZE_MAX << reg_width))
1400		goto err_out;
1401	if (unlikely(period_len & ((1 << reg_width) - 1)))
1402		goto err_out;
1403	if (unlikely(buf_addr & ((1 << reg_width) - 1)))
1404		goto err_out;
1405
1406	return 0;
1407
1408err_out:
1409	return -EINVAL;
1410}
1411
1412/*
1413 * atc_dma_cyclic_fill_desc - Fill one period descriptor
1414 */
1415static int
1416atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc,
1417		unsigned int i, dma_addr_t buf_addr,
1418		unsigned int reg_width, size_t period_len,
1419		enum dma_transfer_direction direction)
1420{
1421	struct at_dma		*atdma = to_at_dma(chan->device);
1422	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1423	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1424	struct atdma_sg		*atdma_sg = &desc->sg[i];
1425	struct at_lli		*lli;
1426
1427	atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, GFP_ATOMIC,
1428				       &atdma_sg->lli_phys);
1429	if (!atdma_sg->lli)
1430		return -ENOMEM;
1431	lli = atdma_sg->lli;
1432
1433	switch (direction) {
1434	case DMA_MEM_TO_DEV:
1435		lli->saddr = buf_addr + (period_len * i);
1436		lli->daddr = sconfig->dst_addr;
1437		lli->ctrlb = FIELD_PREP(ATC_DST_ADDR_MODE,
1438					ATC_DST_ADDR_MODE_FIXED) |
1439			     FIELD_PREP(ATC_SRC_ADDR_MODE,
1440					ATC_SRC_ADDR_MODE_INCR) |
1441			     FIELD_PREP(ATC_FC, ATC_FC_MEM2PER) |
1442			     FIELD_PREP(ATC_SIF, atchan->mem_if) |
1443			     FIELD_PREP(ATC_DIF, atchan->per_if);
1444
1445		break;
1446
1447	case DMA_DEV_TO_MEM:
1448		lli->saddr = sconfig->src_addr;
1449		lli->daddr = buf_addr + (period_len * i);
1450		lli->ctrlb = FIELD_PREP(ATC_DST_ADDR_MODE,
1451					ATC_DST_ADDR_MODE_INCR) |
1452			     FIELD_PREP(ATC_SRC_ADDR_MODE,
1453					ATC_SRC_ADDR_MODE_FIXED) |
1454			     FIELD_PREP(ATC_FC, ATC_FC_PER2MEM) |
1455			     FIELD_PREP(ATC_SIF, atchan->per_if) |
1456			     FIELD_PREP(ATC_DIF, atchan->mem_if);
1457		break;
1458
1459	default:
1460		return -EINVAL;
1461	}
1462
1463	lli->ctrla = FIELD_PREP(ATC_SCSIZE, sconfig->src_maxburst) |
1464		     FIELD_PREP(ATC_DCSIZE, sconfig->dst_maxburst) |
1465		     FIELD_PREP(ATC_DST_WIDTH, reg_width) |
1466		     FIELD_PREP(ATC_SRC_WIDTH, reg_width) |
1467		     period_len >> reg_width;
1468	desc->sg[i].len = period_len;
1469
1470	return 0;
1471}
1472
1473/**
1474 * atc_prep_dma_cyclic - prepare the cyclic DMA transfer
1475 * @chan: the DMA channel to prepare
1476 * @buf_addr: physical DMA address where the buffer starts
1477 * @buf_len: total number of bytes for the entire buffer
1478 * @period_len: number of bytes for each period
1479 * @direction: transfer direction, to or from device
1480 * @flags: tx descriptor status flags
1481 */
1482static struct dma_async_tx_descriptor *
1483atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1484		size_t period_len, enum dma_transfer_direction direction,
1485		unsigned long flags)
1486{
1487	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1488	struct at_dma_slave	*atslave = chan->private;
1489	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1490	struct at_desc		*desc;
1491	unsigned long		was_cyclic;
1492	unsigned int		reg_width;
1493	unsigned int		periods = buf_len / period_len;
1494	unsigned int		i;
1495
1496	dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n",
1497			direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1498			&buf_addr,
1499			periods, buf_len, period_len);
1500
1501	if (unlikely(!atslave || !buf_len || !period_len)) {
1502		dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n");
1503		return NULL;
1504	}
1505
1506	was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status);
1507	if (was_cyclic) {
1508		dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n");
1509		return NULL;
1510	}
1511
1512	if (unlikely(!is_slave_direction(direction)))
1513		goto err_out;
1514
1515	if (direction == DMA_MEM_TO_DEV)
1516		reg_width = convert_buswidth(sconfig->dst_addr_width);
1517	else
1518		reg_width = convert_buswidth(sconfig->src_addr_width);
1519
1520	/* Check for too big/unaligned periods and unaligned DMA buffer */
1521	if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len))
1522		goto err_out;
1523
1524	desc = kzalloc(struct_size(desc, sg, periods), GFP_ATOMIC);
1525	if (!desc)
1526		goto err_out;
1527	desc->sglen = periods;
1528
1529	/* build cyclic linked list */
1530	for (i = 0; i < periods; i++) {
1531		if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr,
1532					     reg_width, period_len, direction))
1533			goto err_fill_desc;
1534		atdma_lli_chain(desc, i);
1535	}
1536	desc->total_len = buf_len;
1537	/* lets make a cyclic list */
1538	desc->sg[i - 1].lli->dscr = desc->sg[0].lli_phys;
1539
1540	return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
1541
1542err_fill_desc:
1543	atdma_desc_free(&desc->vd);
1544err_out:
1545	clear_bit(ATC_IS_CYCLIC, &atchan->status);
1546	return NULL;
1547}
1548
1549static int atc_config(struct dma_chan *chan,
1550		      struct dma_slave_config *sconfig)
1551{
1552	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1553
1554	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1555
1556	/* Check if it is chan is configured for slave transfers */
1557	if (!chan->private)
1558		return -EINVAL;
1559
1560	memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig));
1561
1562	convert_burst(&atchan->dma_sconfig.src_maxburst);
1563	convert_burst(&atchan->dma_sconfig.dst_maxburst);
1564
1565	return 0;
1566}
1567
1568static int atc_pause(struct dma_chan *chan)
1569{
1570	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1571	struct at_dma		*atdma = to_at_dma(chan->device);
1572	int			chan_id = atchan->vc.chan.chan_id;
1573	unsigned long		flags;
1574
1575	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1576
1577	spin_lock_irqsave(&atchan->vc.lock, flags);
1578
1579	dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id));
1580	set_bit(ATC_IS_PAUSED, &atchan->status);
1581
1582	spin_unlock_irqrestore(&atchan->vc.lock, flags);
1583
1584	return 0;
1585}
1586
1587static int atc_resume(struct dma_chan *chan)
1588{
1589	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1590	struct at_dma		*atdma = to_at_dma(chan->device);
1591	int			chan_id = atchan->vc.chan.chan_id;
1592	unsigned long		flags;
1593
1594	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1595
1596	if (!atc_chan_is_paused(atchan))
1597		return 0;
1598
1599	spin_lock_irqsave(&atchan->vc.lock, flags);
1600
1601	dma_writel(atdma, CHDR, AT_DMA_RES(chan_id));
1602	clear_bit(ATC_IS_PAUSED, &atchan->status);
1603
1604	spin_unlock_irqrestore(&atchan->vc.lock, flags);
1605
1606	return 0;
1607}
1608
1609static int atc_terminate_all(struct dma_chan *chan)
1610{
1611	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1612	struct at_dma		*atdma = to_at_dma(chan->device);
1613	int			chan_id = atchan->vc.chan.chan_id;
1614	unsigned long		flags;
1615
1616	LIST_HEAD(list);
1617
1618	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1619
1620	/*
1621	 * This is only called when something went wrong elsewhere, so
1622	 * we don't really care about the data. Just disable the
1623	 * channel. We still have to poll the channel enable bit due
1624	 * to AHB/HSB limitations.
1625	 */
1626	spin_lock_irqsave(&atchan->vc.lock, flags);
1627
1628	/* disabling channel: must also remove suspend state */
1629	dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask);
1630
1631	/* confirm that this channel is disabled */
1632	while (dma_readl(atdma, CHSR) & atchan->mask)
1633		cpu_relax();
1634
1635	if (atchan->desc) {
1636		vchan_terminate_vdesc(&atchan->desc->vd);
1637		atchan->desc = NULL;
1638	}
1639
1640	vchan_get_all_descriptors(&atchan->vc, &list);
1641
1642	clear_bit(ATC_IS_PAUSED, &atchan->status);
1643	/* if channel dedicated to cyclic operations, free it */
1644	clear_bit(ATC_IS_CYCLIC, &atchan->status);
1645
1646	spin_unlock_irqrestore(&atchan->vc.lock, flags);
1647
1648	vchan_dma_desc_free_list(&atchan->vc, &list);
1649
1650	return 0;
1651}
1652
1653/**
1654 * atc_tx_status - poll for transaction completion
1655 * @chan: DMA channel
1656 * @cookie: transaction identifier to check status of
1657 * @txstate: if not %NULL updated with transaction state
1658 *
1659 * If @txstate is passed in, upon return it reflect the driver
1660 * internal state and can be used with dma_async_is_complete() to check
1661 * the status of multiple cookies without re-checking hardware state.
1662 */
1663static enum dma_status
1664atc_tx_status(struct dma_chan *chan,
1665		dma_cookie_t cookie,
1666		struct dma_tx_state *txstate)
1667{
1668	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1669	unsigned long		flags;
1670	enum dma_status		dma_status;
1671	u32 residue;
1672	int ret;
1673
1674	dma_status = dma_cookie_status(chan, cookie, txstate);
1675	if (dma_status == DMA_COMPLETE || !txstate)
1676		return dma_status;
1677
1678	spin_lock_irqsave(&atchan->vc.lock, flags);
1679	/*  Get number of bytes left in the active transactions */
1680	ret = atc_get_residue(chan, cookie, &residue);
1681	spin_unlock_irqrestore(&atchan->vc.lock, flags);
1682
1683	if (unlikely(ret < 0)) {
1684		dev_vdbg(chan2dev(chan), "get residual bytes error\n");
1685		return DMA_ERROR;
1686	} else {
1687		dma_set_residue(txstate, residue);
1688	}
1689
1690	dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %u\n",
1691		 dma_status, cookie, residue);
1692
1693	return dma_status;
1694}
1695
1696static void atc_issue_pending(struct dma_chan *chan)
1697{
1698	struct at_dma_chan *atchan = to_at_dma_chan(chan);
1699	unsigned long flags;
1700
1701	spin_lock_irqsave(&atchan->vc.lock, flags);
1702	if (vchan_issue_pending(&atchan->vc) && !atchan->desc) {
1703		if (!(atc_chan_is_enabled(atchan)))
1704			atc_dostart(atchan);
1705	}
1706	spin_unlock_irqrestore(&atchan->vc.lock, flags);
1707}
1708
1709/**
1710 * atc_alloc_chan_resources - allocate resources for DMA channel
1711 * @chan: allocate descriptor resources for this channel
1712 *
1713 * return - the number of allocated descriptors
1714 */
1715static int atc_alloc_chan_resources(struct dma_chan *chan)
1716{
1717	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1718	struct at_dma		*atdma = to_at_dma(chan->device);
1719	struct at_dma_slave	*atslave;
1720	u32			cfg;
1721
1722	dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
1723
1724	/* ASSERT:  channel is idle */
1725	if (atc_chan_is_enabled(atchan)) {
1726		dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
1727		return -EIO;
1728	}
1729
1730	cfg = ATC_DEFAULT_CFG;
1731
1732	atslave = chan->private;
1733	if (atslave) {
1734		/*
1735		 * We need controller-specific data to set up slave
1736		 * transfers.
1737		 */
1738		BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_device.dev);
1739
1740		/* if cfg configuration specified take it instead of default */
1741		if (atslave->cfg)
1742			cfg = atslave->cfg;
1743	}
1744
1745	/* channel parameters */
1746	channel_writel(atchan, CFG, cfg);
1747
1748	return 0;
1749}
1750
1751/**
1752 * atc_free_chan_resources - free all channel resources
1753 * @chan: DMA channel
1754 */
1755static void atc_free_chan_resources(struct dma_chan *chan)
1756{
1757	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1758
1759	BUG_ON(atc_chan_is_enabled(atchan));
1760
1761	vchan_free_chan_resources(to_virt_chan(chan));
1762	atchan->status = 0;
1763
1764	/*
1765	 * Free atslave allocated in at_dma_xlate()
1766	 */
1767	kfree(chan->private);
1768	chan->private = NULL;
1769
1770	dev_vdbg(chan2dev(chan), "free_chan_resources: done\n");
1771}
1772
1773#ifdef CONFIG_OF
1774static bool at_dma_filter(struct dma_chan *chan, void *slave)
1775{
1776	struct at_dma_slave *atslave = slave;
1777
1778	if (atslave->dma_dev == chan->device->dev) {
1779		chan->private = atslave;
1780		return true;
1781	} else {
1782		return false;
1783	}
1784}
1785
1786static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1787				     struct of_dma *of_dma)
1788{
1789	struct dma_chan *chan;
1790	struct at_dma_chan *atchan;
1791	struct at_dma_slave *atslave;
1792	dma_cap_mask_t mask;
1793	unsigned int per_id;
1794	struct platform_device *dmac_pdev;
1795
1796	if (dma_spec->args_count != 2)
1797		return NULL;
1798
1799	dmac_pdev = of_find_device_by_node(dma_spec->np);
1800	if (!dmac_pdev)
1801		return NULL;
1802
1803	dma_cap_zero(mask);
1804	dma_cap_set(DMA_SLAVE, mask);
1805
1806	atslave = kmalloc(sizeof(*atslave), GFP_KERNEL);
1807	if (!atslave) {
1808		put_device(&dmac_pdev->dev);
1809		return NULL;
1810	}
1811
1812	atslave->cfg = ATC_DST_H2SEL | ATC_SRC_H2SEL;
1813	/*
1814	 * We can fill both SRC_PER and DST_PER, one of these fields will be
1815	 * ignored depending on DMA transfer direction.
1816	 */
1817	per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK;
1818	atslave->cfg |= ATC_DST_PER_ID(per_id) |  ATC_SRC_PER_ID(per_id);
1819	/*
1820	 * We have to translate the value we get from the device tree since
1821	 * the half FIFO configuration value had to be 0 to keep backward
1822	 * compatibility.
1823	 */
1824	switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) {
1825	case AT91_DMA_CFG_FIFOCFG_ALAP:
1826		atslave->cfg |= FIELD_PREP(ATC_FIFOCFG,
1827					   ATC_FIFOCFG_LARGESTBURST);
1828		break;
1829	case AT91_DMA_CFG_FIFOCFG_ASAP:
1830		atslave->cfg |= FIELD_PREP(ATC_FIFOCFG,
1831					   ATC_FIFOCFG_ENOUGHSPACE);
1832		break;
1833	case AT91_DMA_CFG_FIFOCFG_HALF:
1834	default:
1835		atslave->cfg |= FIELD_PREP(ATC_FIFOCFG, ATC_FIFOCFG_HALFFIFO);
1836	}
1837	atslave->dma_dev = &dmac_pdev->dev;
1838
1839	chan = dma_request_channel(mask, at_dma_filter, atslave);
1840	if (!chan) {
1841		put_device(&dmac_pdev->dev);
1842		kfree(atslave);
1843		return NULL;
1844	}
1845
1846	atchan = to_at_dma_chan(chan);
1847	atchan->per_if = dma_spec->args[0] & 0xff;
1848	atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff;
1849
1850	return chan;
1851}
1852#else
1853static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1854				     struct of_dma *of_dma)
1855{
1856	return NULL;
1857}
1858#endif
1859
1860/*--  Module Management  -----------------------------------------------*/
1861
1862/* cap_mask is a multi-u32 bitfield, fill it with proper C code. */
1863static struct at_dma_platform_data at91sam9rl_config = {
1864	.nr_channels = 2,
1865};
1866static struct at_dma_platform_data at91sam9g45_config = {
1867	.nr_channels = 8,
1868};
1869
1870#if defined(CONFIG_OF)
1871static const struct of_device_id atmel_dma_dt_ids[] = {
1872	{
1873		.compatible = "atmel,at91sam9rl-dma",
1874		.data = &at91sam9rl_config,
1875	}, {
1876		.compatible = "atmel,at91sam9g45-dma",
1877		.data = &at91sam9g45_config,
1878	}, {
1879		/* sentinel */
1880	}
1881};
1882
1883MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids);
1884#endif
1885
1886static const struct platform_device_id atdma_devtypes[] = {
1887	{
1888		.name = "at91sam9rl_dma",
1889		.driver_data = (unsigned long) &at91sam9rl_config,
1890	}, {
1891		.name = "at91sam9g45_dma",
1892		.driver_data = (unsigned long) &at91sam9g45_config,
1893	}, {
1894		/* sentinel */
1895	}
1896};
1897
1898static inline const struct at_dma_platform_data * __init at_dma_get_driver_data(
1899						struct platform_device *pdev)
1900{
1901	if (pdev->dev.of_node) {
1902		const struct of_device_id *match;
1903		match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node);
1904		if (match == NULL)
1905			return NULL;
1906		return match->data;
1907	}
1908	return (struct at_dma_platform_data *)
1909			platform_get_device_id(pdev)->driver_data;
1910}
1911
1912/**
1913 * at_dma_off - disable DMA controller
1914 * @atdma: the Atmel HDAMC device
1915 */
1916static void at_dma_off(struct at_dma *atdma)
1917{
1918	dma_writel(atdma, EN, 0);
1919
1920	/* disable all interrupts */
1921	dma_writel(atdma, EBCIDR, -1L);
1922
1923	/* confirm that all channels are disabled */
1924	while (dma_readl(atdma, CHSR) & atdma->all_chan_mask)
1925		cpu_relax();
1926}
1927
1928static int __init at_dma_probe(struct platform_device *pdev)
1929{
1930	struct at_dma		*atdma;
1931	int			irq;
1932	int			err;
1933	int			i;
1934	const struct at_dma_platform_data *plat_dat;
1935
1936	/* setup platform data for each SoC */
1937	dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask);
1938	dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask);
1939	dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask);
1940	dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask);
1941	dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask);
1942	dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask);
1943	dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask);
1944
1945	/* get DMA parameters from controller type */
1946	plat_dat = at_dma_get_driver_data(pdev);
1947	if (!plat_dat)
1948		return -ENODEV;
1949
1950	atdma = devm_kzalloc(&pdev->dev,
1951			     struct_size(atdma, chan, plat_dat->nr_channels),
1952			     GFP_KERNEL);
1953	if (!atdma)
1954		return -ENOMEM;
1955
1956	atdma->regs = devm_platform_ioremap_resource(pdev, 0);
1957	if (IS_ERR(atdma->regs))
1958		return PTR_ERR(atdma->regs);
1959
1960	irq = platform_get_irq(pdev, 0);
1961	if (irq < 0)
1962		return irq;
1963
1964	/* discover transaction capabilities */
1965	atdma->dma_device.cap_mask = plat_dat->cap_mask;
1966	atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1;
1967
1968	atdma->clk = devm_clk_get(&pdev->dev, "dma_clk");
1969	if (IS_ERR(atdma->clk))
1970		return PTR_ERR(atdma->clk);
1971
1972	err = clk_prepare_enable(atdma->clk);
1973	if (err)
1974		return err;
1975
1976	/* force dma off, just in case */
1977	at_dma_off(atdma);
1978
1979	err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma);
1980	if (err)
1981		goto err_irq;
1982
1983	platform_set_drvdata(pdev, atdma);
1984
1985	/* create a pool of consistent memory blocks for hardware descriptors */
1986	atdma->lli_pool = dma_pool_create("at_hdmac_lli_pool",
1987					  &pdev->dev, sizeof(struct at_lli),
1988					  4 /* word alignment */, 0);
1989	if (!atdma->lli_pool) {
1990		dev_err(&pdev->dev, "Unable to allocate DMA LLI descriptor pool\n");
1991		err = -ENOMEM;
1992		goto err_desc_pool_create;
1993	}
1994
1995	/* create a pool of consistent memory blocks for memset blocks */
1996	atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool",
1997					     &pdev->dev, sizeof(int), 4, 0);
1998	if (!atdma->memset_pool) {
1999		dev_err(&pdev->dev, "No memory for memset dma pool\n");
2000		err = -ENOMEM;
2001		goto err_memset_pool_create;
2002	}
2003
2004	/* clear any pending interrupt */
2005	while (dma_readl(atdma, EBCISR))
2006		cpu_relax();
2007
2008	/* initialize channels related values */
2009	INIT_LIST_HEAD(&atdma->dma_device.channels);
2010	for (i = 0; i < plat_dat->nr_channels; i++) {
2011		struct at_dma_chan	*atchan = &atdma->chan[i];
2012
2013		atchan->mem_if = AT_DMA_MEM_IF;
2014		atchan->per_if = AT_DMA_PER_IF;
2015
2016		atchan->ch_regs = atdma->regs + ch_regs(i);
2017		atchan->mask = 1 << i;
2018
2019		atchan->atdma = atdma;
2020		atchan->vc.desc_free = atdma_desc_free;
2021		vchan_init(&atchan->vc, &atdma->dma_device);
2022		atc_enable_chan_irq(atdma, i);
2023	}
2024
2025	/* set base routines */
2026	atdma->dma_device.device_alloc_chan_resources = atc_alloc_chan_resources;
2027	atdma->dma_device.device_free_chan_resources = atc_free_chan_resources;
2028	atdma->dma_device.device_tx_status = atc_tx_status;
2029	atdma->dma_device.device_issue_pending = atc_issue_pending;
2030	atdma->dma_device.dev = &pdev->dev;
2031
2032	/* set prep routines based on capability */
2033	if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_device.cap_mask))
2034		atdma->dma_device.device_prep_interleaved_dma = atc_prep_dma_interleaved;
2035
2036	if (dma_has_cap(DMA_MEMCPY, atdma->dma_device.cap_mask))
2037		atdma->dma_device.device_prep_dma_memcpy = atc_prep_dma_memcpy;
2038
2039	if (dma_has_cap(DMA_MEMSET, atdma->dma_device.cap_mask)) {
2040		atdma->dma_device.device_prep_dma_memset = atc_prep_dma_memset;
2041		atdma->dma_device.device_prep_dma_memset_sg = atc_prep_dma_memset_sg;
2042		atdma->dma_device.fill_align = DMAENGINE_ALIGN_4_BYTES;
2043	}
2044
2045	if (dma_has_cap(DMA_SLAVE, atdma->dma_device.cap_mask)) {
2046		atdma->dma_device.device_prep_slave_sg = atc_prep_slave_sg;
2047		/* controller can do slave DMA: can trigger cyclic transfers */
2048		dma_cap_set(DMA_CYCLIC, atdma->dma_device.cap_mask);
2049		atdma->dma_device.device_prep_dma_cyclic = atc_prep_dma_cyclic;
2050		atdma->dma_device.device_config = atc_config;
2051		atdma->dma_device.device_pause = atc_pause;
2052		atdma->dma_device.device_resume = atc_resume;
2053		atdma->dma_device.device_terminate_all = atc_terminate_all;
2054		atdma->dma_device.src_addr_widths = ATC_DMA_BUSWIDTHS;
2055		atdma->dma_device.dst_addr_widths = ATC_DMA_BUSWIDTHS;
2056		atdma->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2057		atdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2058	}
2059
2060	dma_writel(atdma, EN, AT_DMA_ENABLE);
2061
2062	dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s), %d channels\n",
2063	  dma_has_cap(DMA_MEMCPY, atdma->dma_device.cap_mask) ? "cpy " : "",
2064	  dma_has_cap(DMA_MEMSET, atdma->dma_device.cap_mask) ? "set " : "",
2065	  dma_has_cap(DMA_SLAVE, atdma->dma_device.cap_mask)  ? "slave " : "",
2066	  plat_dat->nr_channels);
2067
2068	err = dma_async_device_register(&atdma->dma_device);
2069	if (err) {
2070		dev_err(&pdev->dev, "Unable to register: %d.\n", err);
2071		goto err_dma_async_device_register;
2072	}
2073
2074	/*
2075	 * Do not return an error if the dmac node is not present in order to
2076	 * not break the existing way of requesting channel with
2077	 * dma_request_channel().
2078	 */
2079	if (pdev->dev.of_node) {
2080		err = of_dma_controller_register(pdev->dev.of_node,
2081						 at_dma_xlate, atdma);
2082		if (err) {
2083			dev_err(&pdev->dev, "could not register of_dma_controller\n");
2084			goto err_of_dma_controller_register;
2085		}
2086	}
2087
2088	return 0;
2089
2090err_of_dma_controller_register:
2091	dma_async_device_unregister(&atdma->dma_device);
2092err_dma_async_device_register:
2093	dma_pool_destroy(atdma->memset_pool);
2094err_memset_pool_create:
2095	dma_pool_destroy(atdma->lli_pool);
2096err_desc_pool_create:
2097	free_irq(platform_get_irq(pdev, 0), atdma);
2098err_irq:
2099	clk_disable_unprepare(atdma->clk);
2100	return err;
2101}
2102
2103static int at_dma_remove(struct platform_device *pdev)
2104{
2105	struct at_dma		*atdma = platform_get_drvdata(pdev);
2106	struct dma_chan		*chan, *_chan;
2107
2108	at_dma_off(atdma);
2109	if (pdev->dev.of_node)
2110		of_dma_controller_free(pdev->dev.of_node);
2111	dma_async_device_unregister(&atdma->dma_device);
2112
2113	dma_pool_destroy(atdma->memset_pool);
2114	dma_pool_destroy(atdma->lli_pool);
2115	free_irq(platform_get_irq(pdev, 0), atdma);
2116
2117	list_for_each_entry_safe(chan, _chan, &atdma->dma_device.channels,
2118			device_node) {
2119		/* Disable interrupts */
2120		atc_disable_chan_irq(atdma, chan->chan_id);
2121		list_del(&chan->device_node);
2122	}
2123
2124	clk_disable_unprepare(atdma->clk);
2125
2126	return 0;
2127}
2128
2129static void at_dma_shutdown(struct platform_device *pdev)
2130{
2131	struct at_dma	*atdma = platform_get_drvdata(pdev);
2132
2133	at_dma_off(platform_get_drvdata(pdev));
2134	clk_disable_unprepare(atdma->clk);
2135}
2136
2137static int at_dma_prepare(struct device *dev)
2138{
2139	struct at_dma *atdma = dev_get_drvdata(dev);
2140	struct dma_chan *chan, *_chan;
2141
2142	list_for_each_entry_safe(chan, _chan, &atdma->dma_device.channels,
2143			device_node) {
2144		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2145		/* wait for transaction completion (except in cyclic case) */
2146		if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan))
2147			return -EAGAIN;
2148	}
2149	return 0;
2150}
2151
2152static void atc_suspend_cyclic(struct at_dma_chan *atchan)
2153{
2154	struct dma_chan	*chan = &atchan->vc.chan;
2155
2156	/* Channel should be paused by user
2157	 * do it anyway even if it is not done already */
2158	if (!atc_chan_is_paused(atchan)) {
2159		dev_warn(chan2dev(chan),
2160		"cyclic channel not paused, should be done by channel user\n");
2161		atc_pause(chan);
2162	}
2163
2164	/* now preserve additional data for cyclic operations */
2165	/* next descriptor address in the cyclic list */
2166	atchan->save_dscr = channel_readl(atchan, DSCR);
2167
2168	vdbg_dump_regs(atchan);
2169}
2170
2171static int at_dma_suspend_noirq(struct device *dev)
2172{
2173	struct at_dma *atdma = dev_get_drvdata(dev);
2174	struct dma_chan *chan, *_chan;
2175
2176	/* preserve data */
2177	list_for_each_entry_safe(chan, _chan, &atdma->dma_device.channels,
2178			device_node) {
2179		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2180
2181		if (atc_chan_is_cyclic(atchan))
2182			atc_suspend_cyclic(atchan);
2183		atchan->save_cfg = channel_readl(atchan, CFG);
2184	}
2185	atdma->save_imr = dma_readl(atdma, EBCIMR);
2186
2187	/* disable DMA controller */
2188	at_dma_off(atdma);
2189	clk_disable_unprepare(atdma->clk);
2190	return 0;
2191}
2192
2193static void atc_resume_cyclic(struct at_dma_chan *atchan)
2194{
2195	struct at_dma	*atdma = to_at_dma(atchan->vc.chan.device);
2196
2197	/* restore channel status for cyclic descriptors list:
2198	 * next descriptor in the cyclic list at the time of suspend */
2199	channel_writel(atchan, SADDR, 0);
2200	channel_writel(atchan, DADDR, 0);
2201	channel_writel(atchan, CTRLA, 0);
2202	channel_writel(atchan, CTRLB, 0);
2203	channel_writel(atchan, DSCR, atchan->save_dscr);
2204	dma_writel(atdma, CHER, atchan->mask);
2205
2206	/* channel pause status should be removed by channel user
2207	 * We cannot take the initiative to do it here */
2208
2209	vdbg_dump_regs(atchan);
2210}
2211
2212static int at_dma_resume_noirq(struct device *dev)
2213{
2214	struct at_dma *atdma = dev_get_drvdata(dev);
2215	struct dma_chan *chan, *_chan;
2216
2217	/* bring back DMA controller */
2218	clk_prepare_enable(atdma->clk);
2219	dma_writel(atdma, EN, AT_DMA_ENABLE);
2220
2221	/* clear any pending interrupt */
2222	while (dma_readl(atdma, EBCISR))
2223		cpu_relax();
2224
2225	/* restore saved data */
2226	dma_writel(atdma, EBCIER, atdma->save_imr);
2227	list_for_each_entry_safe(chan, _chan, &atdma->dma_device.channels,
2228			device_node) {
2229		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2230
2231		channel_writel(atchan, CFG, atchan->save_cfg);
2232		if (atc_chan_is_cyclic(atchan))
2233			atc_resume_cyclic(atchan);
2234	}
2235	return 0;
2236}
2237
2238static const struct dev_pm_ops __maybe_unused at_dma_dev_pm_ops = {
2239	.prepare = at_dma_prepare,
2240	.suspend_noirq = at_dma_suspend_noirq,
2241	.resume_noirq = at_dma_resume_noirq,
2242};
2243
2244static struct platform_driver at_dma_driver = {
2245	.remove		= at_dma_remove,
2246	.shutdown	= at_dma_shutdown,
2247	.id_table	= atdma_devtypes,
2248	.driver = {
2249		.name	= "at_hdmac",
2250		.pm	= pm_ptr(&at_dma_dev_pm_ops),
2251		.of_match_table	= of_match_ptr(atmel_dma_dt_ids),
2252	},
2253};
2254
2255static int __init at_dma_init(void)
2256{
2257	return platform_driver_probe(&at_dma_driver, at_dma_probe);
2258}
2259subsys_initcall(at_dma_init);
2260
2261static void __exit at_dma_exit(void)
2262{
2263	platform_driver_unregister(&at_dma_driver);
2264}
2265module_exit(at_dma_exit);
2266
2267MODULE_DESCRIPTION("Atmel AHB DMA Controller driver");
2268MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>");
2269MODULE_AUTHOR("Tudor Ambarus <tudor.ambarus@microchip.com>");
2270MODULE_LICENSE("GPL");
2271MODULE_ALIAS("platform:at_hdmac");
2272