xref: /kernel/linux/linux-6.6/drivers/dax/super.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright(c) 2017 Intel Corporation. All rights reserved.
4 */
5#include <linux/pagemap.h>
6#include <linux/module.h>
7#include <linux/mount.h>
8#include <linux/pseudo_fs.h>
9#include <linux/magic.h>
10#include <linux/pfn_t.h>
11#include <linux/cdev.h>
12#include <linux/slab.h>
13#include <linux/uio.h>
14#include <linux/dax.h>
15#include <linux/fs.h>
16#include "dax-private.h"
17
18/**
19 * struct dax_device - anchor object for dax services
20 * @inode: core vfs
21 * @cdev: optional character interface for "device dax"
22 * @private: dax driver private data
23 * @flags: state and boolean properties
24 * @ops: operations for this device
25 * @holder_data: holder of a dax_device: could be filesystem or mapped device
26 * @holder_ops: operations for the inner holder
27 */
28struct dax_device {
29	struct inode inode;
30	struct cdev cdev;
31	void *private;
32	unsigned long flags;
33	const struct dax_operations *ops;
34	void *holder_data;
35	const struct dax_holder_operations *holder_ops;
36};
37
38static dev_t dax_devt;
39DEFINE_STATIC_SRCU(dax_srcu);
40static struct vfsmount *dax_mnt;
41static DEFINE_IDA(dax_minor_ida);
42static struct kmem_cache *dax_cache __read_mostly;
43static struct super_block *dax_superblock __read_mostly;
44
45int dax_read_lock(void)
46{
47	return srcu_read_lock(&dax_srcu);
48}
49EXPORT_SYMBOL_GPL(dax_read_lock);
50
51void dax_read_unlock(int id)
52{
53	srcu_read_unlock(&dax_srcu, id);
54}
55EXPORT_SYMBOL_GPL(dax_read_unlock);
56
57#if defined(CONFIG_BLOCK) && defined(CONFIG_FS_DAX)
58#include <linux/blkdev.h>
59
60static DEFINE_XARRAY(dax_hosts);
61
62int dax_add_host(struct dax_device *dax_dev, struct gendisk *disk)
63{
64	return xa_insert(&dax_hosts, (unsigned long)disk, dax_dev, GFP_KERNEL);
65}
66EXPORT_SYMBOL_GPL(dax_add_host);
67
68void dax_remove_host(struct gendisk *disk)
69{
70	xa_erase(&dax_hosts, (unsigned long)disk);
71}
72EXPORT_SYMBOL_GPL(dax_remove_host);
73
74/**
75 * fs_dax_get_by_bdev() - temporary lookup mechanism for filesystem-dax
76 * @bdev: block device to find a dax_device for
77 * @start_off: returns the byte offset into the dax_device that @bdev starts
78 * @holder: filesystem or mapped device inside the dax_device
79 * @ops: operations for the inner holder
80 */
81struct dax_device *fs_dax_get_by_bdev(struct block_device *bdev, u64 *start_off,
82		void *holder, const struct dax_holder_operations *ops)
83{
84	struct dax_device *dax_dev;
85	u64 part_size;
86	int id;
87
88	if (!blk_queue_dax(bdev->bd_disk->queue))
89		return NULL;
90
91	*start_off = get_start_sect(bdev) * SECTOR_SIZE;
92	part_size = bdev_nr_sectors(bdev) * SECTOR_SIZE;
93	if (*start_off % PAGE_SIZE || part_size % PAGE_SIZE) {
94		pr_info("%pg: error: unaligned partition for dax\n", bdev);
95		return NULL;
96	}
97
98	id = dax_read_lock();
99	dax_dev = xa_load(&dax_hosts, (unsigned long)bdev->bd_disk);
100	if (!dax_dev || !dax_alive(dax_dev) || !igrab(&dax_dev->inode))
101		dax_dev = NULL;
102	else if (holder) {
103		if (!cmpxchg(&dax_dev->holder_data, NULL, holder))
104			dax_dev->holder_ops = ops;
105		else
106			dax_dev = NULL;
107	}
108	dax_read_unlock(id);
109
110	return dax_dev;
111}
112EXPORT_SYMBOL_GPL(fs_dax_get_by_bdev);
113
114void fs_put_dax(struct dax_device *dax_dev, void *holder)
115{
116	if (dax_dev && holder &&
117	    cmpxchg(&dax_dev->holder_data, holder, NULL) == holder)
118		dax_dev->holder_ops = NULL;
119	put_dax(dax_dev);
120}
121EXPORT_SYMBOL_GPL(fs_put_dax);
122#endif /* CONFIG_BLOCK && CONFIG_FS_DAX */
123
124enum dax_device_flags {
125	/* !alive + rcu grace period == no new operations / mappings */
126	DAXDEV_ALIVE,
127	/* gate whether dax_flush() calls the low level flush routine */
128	DAXDEV_WRITE_CACHE,
129	/* flag to check if device supports synchronous flush */
130	DAXDEV_SYNC,
131	/* do not leave the caches dirty after writes */
132	DAXDEV_NOCACHE,
133	/* handle CPU fetch exceptions during reads */
134	DAXDEV_NOMC,
135};
136
137/**
138 * dax_direct_access() - translate a device pgoff to an absolute pfn
139 * @dax_dev: a dax_device instance representing the logical memory range
140 * @pgoff: offset in pages from the start of the device to translate
141 * @nr_pages: number of consecutive pages caller can handle relative to @pfn
142 * @mode: indicator on normal access or recovery write
143 * @kaddr: output parameter that returns a virtual address mapping of pfn
144 * @pfn: output parameter that returns an absolute pfn translation of @pgoff
145 *
146 * Return: negative errno if an error occurs, otherwise the number of
147 * pages accessible at the device relative @pgoff.
148 */
149long dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, long nr_pages,
150		enum dax_access_mode mode, void **kaddr, pfn_t *pfn)
151{
152	long avail;
153
154	if (!dax_dev)
155		return -EOPNOTSUPP;
156
157	if (!dax_alive(dax_dev))
158		return -ENXIO;
159
160	if (nr_pages < 0)
161		return -EINVAL;
162
163	avail = dax_dev->ops->direct_access(dax_dev, pgoff, nr_pages,
164			mode, kaddr, pfn);
165	if (!avail)
166		return -ERANGE;
167	return min(avail, nr_pages);
168}
169EXPORT_SYMBOL_GPL(dax_direct_access);
170
171size_t dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, void *addr,
172		size_t bytes, struct iov_iter *i)
173{
174	if (!dax_alive(dax_dev))
175		return 0;
176
177	/*
178	 * The userspace address for the memory copy has already been validated
179	 * via access_ok() in vfs_write, so use the 'no check' version to bypass
180	 * the HARDENED_USERCOPY overhead.
181	 */
182	if (test_bit(DAXDEV_NOCACHE, &dax_dev->flags))
183		return _copy_from_iter_flushcache(addr, bytes, i);
184	return _copy_from_iter(addr, bytes, i);
185}
186
187size_t dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, void *addr,
188		size_t bytes, struct iov_iter *i)
189{
190	if (!dax_alive(dax_dev))
191		return 0;
192
193	/*
194	 * The userspace address for the memory copy has already been validated
195	 * via access_ok() in vfs_red, so use the 'no check' version to bypass
196	 * the HARDENED_USERCOPY overhead.
197	 */
198	if (test_bit(DAXDEV_NOMC, &dax_dev->flags))
199		return _copy_mc_to_iter(addr, bytes, i);
200	return _copy_to_iter(addr, bytes, i);
201}
202
203int dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
204			size_t nr_pages)
205{
206	int ret;
207
208	if (!dax_alive(dax_dev))
209		return -ENXIO;
210	/*
211	 * There are no callers that want to zero more than one page as of now.
212	 * Once users are there, this check can be removed after the
213	 * device mapper code has been updated to split ranges across targets.
214	 */
215	if (nr_pages != 1)
216		return -EIO;
217
218	ret = dax_dev->ops->zero_page_range(dax_dev, pgoff, nr_pages);
219	return dax_mem2blk_err(ret);
220}
221EXPORT_SYMBOL_GPL(dax_zero_page_range);
222
223size_t dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
224		void *addr, size_t bytes, struct iov_iter *iter)
225{
226	if (!dax_dev->ops->recovery_write)
227		return 0;
228	return dax_dev->ops->recovery_write(dax_dev, pgoff, addr, bytes, iter);
229}
230EXPORT_SYMBOL_GPL(dax_recovery_write);
231
232int dax_holder_notify_failure(struct dax_device *dax_dev, u64 off,
233			      u64 len, int mf_flags)
234{
235	int rc, id;
236
237	id = dax_read_lock();
238	if (!dax_alive(dax_dev)) {
239		rc = -ENXIO;
240		goto out;
241	}
242
243	if (!dax_dev->holder_ops) {
244		rc = -EOPNOTSUPP;
245		goto out;
246	}
247
248	rc = dax_dev->holder_ops->notify_failure(dax_dev, off, len, mf_flags);
249out:
250	dax_read_unlock(id);
251	return rc;
252}
253EXPORT_SYMBOL_GPL(dax_holder_notify_failure);
254
255#ifdef CONFIG_ARCH_HAS_PMEM_API
256void arch_wb_cache_pmem(void *addr, size_t size);
257void dax_flush(struct dax_device *dax_dev, void *addr, size_t size)
258{
259	if (unlikely(!dax_write_cache_enabled(dax_dev)))
260		return;
261
262	arch_wb_cache_pmem(addr, size);
263}
264#else
265void dax_flush(struct dax_device *dax_dev, void *addr, size_t size)
266{
267}
268#endif
269EXPORT_SYMBOL_GPL(dax_flush);
270
271void dax_write_cache(struct dax_device *dax_dev, bool wc)
272{
273	if (wc)
274		set_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags);
275	else
276		clear_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags);
277}
278EXPORT_SYMBOL_GPL(dax_write_cache);
279
280bool dax_write_cache_enabled(struct dax_device *dax_dev)
281{
282	return test_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags);
283}
284EXPORT_SYMBOL_GPL(dax_write_cache_enabled);
285
286bool dax_synchronous(struct dax_device *dax_dev)
287{
288	return test_bit(DAXDEV_SYNC, &dax_dev->flags);
289}
290EXPORT_SYMBOL_GPL(dax_synchronous);
291
292void set_dax_synchronous(struct dax_device *dax_dev)
293{
294	set_bit(DAXDEV_SYNC, &dax_dev->flags);
295}
296EXPORT_SYMBOL_GPL(set_dax_synchronous);
297
298void set_dax_nocache(struct dax_device *dax_dev)
299{
300	set_bit(DAXDEV_NOCACHE, &dax_dev->flags);
301}
302EXPORT_SYMBOL_GPL(set_dax_nocache);
303
304void set_dax_nomc(struct dax_device *dax_dev)
305{
306	set_bit(DAXDEV_NOMC, &dax_dev->flags);
307}
308EXPORT_SYMBOL_GPL(set_dax_nomc);
309
310bool dax_alive(struct dax_device *dax_dev)
311{
312	lockdep_assert_held(&dax_srcu);
313	return test_bit(DAXDEV_ALIVE, &dax_dev->flags);
314}
315EXPORT_SYMBOL_GPL(dax_alive);
316
317/*
318 * Note, rcu is not protecting the liveness of dax_dev, rcu is ensuring
319 * that any fault handlers or operations that might have seen
320 * dax_alive(), have completed.  Any operations that start after
321 * synchronize_srcu() has run will abort upon seeing !dax_alive().
322 */
323void kill_dax(struct dax_device *dax_dev)
324{
325	if (!dax_dev)
326		return;
327
328	if (dax_dev->holder_data != NULL)
329		dax_holder_notify_failure(dax_dev, 0, U64_MAX, 0);
330
331	clear_bit(DAXDEV_ALIVE, &dax_dev->flags);
332	synchronize_srcu(&dax_srcu);
333
334	/* clear holder data */
335	dax_dev->holder_ops = NULL;
336	dax_dev->holder_data = NULL;
337}
338EXPORT_SYMBOL_GPL(kill_dax);
339
340void run_dax(struct dax_device *dax_dev)
341{
342	set_bit(DAXDEV_ALIVE, &dax_dev->flags);
343}
344EXPORT_SYMBOL_GPL(run_dax);
345
346static struct inode *dax_alloc_inode(struct super_block *sb)
347{
348	struct dax_device *dax_dev;
349	struct inode *inode;
350
351	dax_dev = alloc_inode_sb(sb, dax_cache, GFP_KERNEL);
352	if (!dax_dev)
353		return NULL;
354
355	inode = &dax_dev->inode;
356	inode->i_rdev = 0;
357	return inode;
358}
359
360static struct dax_device *to_dax_dev(struct inode *inode)
361{
362	return container_of(inode, struct dax_device, inode);
363}
364
365static void dax_free_inode(struct inode *inode)
366{
367	struct dax_device *dax_dev = to_dax_dev(inode);
368	if (inode->i_rdev)
369		ida_free(&dax_minor_ida, iminor(inode));
370	kmem_cache_free(dax_cache, dax_dev);
371}
372
373static void dax_destroy_inode(struct inode *inode)
374{
375	struct dax_device *dax_dev = to_dax_dev(inode);
376	WARN_ONCE(test_bit(DAXDEV_ALIVE, &dax_dev->flags),
377			"kill_dax() must be called before final iput()\n");
378}
379
380static const struct super_operations dax_sops = {
381	.statfs = simple_statfs,
382	.alloc_inode = dax_alloc_inode,
383	.destroy_inode = dax_destroy_inode,
384	.free_inode = dax_free_inode,
385	.drop_inode = generic_delete_inode,
386};
387
388static int dax_init_fs_context(struct fs_context *fc)
389{
390	struct pseudo_fs_context *ctx = init_pseudo(fc, DAXFS_MAGIC);
391	if (!ctx)
392		return -ENOMEM;
393	ctx->ops = &dax_sops;
394	return 0;
395}
396
397static struct file_system_type dax_fs_type = {
398	.name		= "dax",
399	.init_fs_context = dax_init_fs_context,
400	.kill_sb	= kill_anon_super,
401};
402
403static int dax_test(struct inode *inode, void *data)
404{
405	dev_t devt = *(dev_t *) data;
406
407	return inode->i_rdev == devt;
408}
409
410static int dax_set(struct inode *inode, void *data)
411{
412	dev_t devt = *(dev_t *) data;
413
414	inode->i_rdev = devt;
415	return 0;
416}
417
418static struct dax_device *dax_dev_get(dev_t devt)
419{
420	struct dax_device *dax_dev;
421	struct inode *inode;
422
423	inode = iget5_locked(dax_superblock, hash_32(devt + DAXFS_MAGIC, 31),
424			dax_test, dax_set, &devt);
425
426	if (!inode)
427		return NULL;
428
429	dax_dev = to_dax_dev(inode);
430	if (inode->i_state & I_NEW) {
431		set_bit(DAXDEV_ALIVE, &dax_dev->flags);
432		inode->i_cdev = &dax_dev->cdev;
433		inode->i_mode = S_IFCHR;
434		inode->i_flags = S_DAX;
435		mapping_set_gfp_mask(&inode->i_data, GFP_USER);
436		unlock_new_inode(inode);
437	}
438
439	return dax_dev;
440}
441
442struct dax_device *alloc_dax(void *private, const struct dax_operations *ops)
443{
444	struct dax_device *dax_dev;
445	dev_t devt;
446	int minor;
447
448	if (WARN_ON_ONCE(ops && !ops->zero_page_range))
449		return ERR_PTR(-EINVAL);
450
451	minor = ida_alloc_max(&dax_minor_ida, MINORMASK, GFP_KERNEL);
452	if (minor < 0)
453		return ERR_PTR(-ENOMEM);
454
455	devt = MKDEV(MAJOR(dax_devt), minor);
456	dax_dev = dax_dev_get(devt);
457	if (!dax_dev)
458		goto err_dev;
459
460	dax_dev->ops = ops;
461	dax_dev->private = private;
462	return dax_dev;
463
464 err_dev:
465	ida_free(&dax_minor_ida, minor);
466	return ERR_PTR(-ENOMEM);
467}
468EXPORT_SYMBOL_GPL(alloc_dax);
469
470void put_dax(struct dax_device *dax_dev)
471{
472	if (!dax_dev)
473		return;
474	iput(&dax_dev->inode);
475}
476EXPORT_SYMBOL_GPL(put_dax);
477
478/**
479 * dax_holder() - obtain the holder of a dax device
480 * @dax_dev: a dax_device instance
481 *
482 * Return: the holder's data which represents the holder if registered,
483 * otherwize NULL.
484 */
485void *dax_holder(struct dax_device *dax_dev)
486{
487	return dax_dev->holder_data;
488}
489EXPORT_SYMBOL_GPL(dax_holder);
490
491/**
492 * inode_dax: convert a public inode into its dax_dev
493 * @inode: An inode with i_cdev pointing to a dax_dev
494 *
495 * Note this is not equivalent to to_dax_dev() which is for private
496 * internal use where we know the inode filesystem type == dax_fs_type.
497 */
498struct dax_device *inode_dax(struct inode *inode)
499{
500	struct cdev *cdev = inode->i_cdev;
501
502	return container_of(cdev, struct dax_device, cdev);
503}
504EXPORT_SYMBOL_GPL(inode_dax);
505
506struct inode *dax_inode(struct dax_device *dax_dev)
507{
508	return &dax_dev->inode;
509}
510EXPORT_SYMBOL_GPL(dax_inode);
511
512void *dax_get_private(struct dax_device *dax_dev)
513{
514	if (!test_bit(DAXDEV_ALIVE, &dax_dev->flags))
515		return NULL;
516	return dax_dev->private;
517}
518EXPORT_SYMBOL_GPL(dax_get_private);
519
520static void init_once(void *_dax_dev)
521{
522	struct dax_device *dax_dev = _dax_dev;
523	struct inode *inode = &dax_dev->inode;
524
525	memset(dax_dev, 0, sizeof(*dax_dev));
526	inode_init_once(inode);
527}
528
529static int dax_fs_init(void)
530{
531	int rc;
532
533	dax_cache = kmem_cache_create("dax_cache", sizeof(struct dax_device), 0,
534			(SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
535			 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
536			init_once);
537	if (!dax_cache)
538		return -ENOMEM;
539
540	dax_mnt = kern_mount(&dax_fs_type);
541	if (IS_ERR(dax_mnt)) {
542		rc = PTR_ERR(dax_mnt);
543		goto err_mount;
544	}
545	dax_superblock = dax_mnt->mnt_sb;
546
547	return 0;
548
549 err_mount:
550	kmem_cache_destroy(dax_cache);
551
552	return rc;
553}
554
555static void dax_fs_exit(void)
556{
557	kern_unmount(dax_mnt);
558	rcu_barrier();
559	kmem_cache_destroy(dax_cache);
560}
561
562static int __init dax_core_init(void)
563{
564	int rc;
565
566	rc = dax_fs_init();
567	if (rc)
568		return rc;
569
570	rc = alloc_chrdev_region(&dax_devt, 0, MINORMASK+1, "dax");
571	if (rc)
572		goto err_chrdev;
573
574	rc = dax_bus_init();
575	if (rc)
576		goto err_bus;
577	return 0;
578
579err_bus:
580	unregister_chrdev_region(dax_devt, MINORMASK+1);
581err_chrdev:
582	dax_fs_exit();
583	return 0;
584}
585
586static void __exit dax_core_exit(void)
587{
588	dax_bus_exit();
589	unregister_chrdev_region(dax_devt, MINORMASK+1);
590	ida_destroy(&dax_minor_ida);
591	dax_fs_exit();
592}
593
594MODULE_AUTHOR("Intel Corporation");
595MODULE_LICENSE("GPL v2");
596subsys_initcall(dax_core_init);
597module_exit(dax_core_exit);
598