1// SPDX-License-Identifier: GPL-2.0
2//
3// Cryptographic API.
4//
5// Support for Samsung S5PV210 and Exynos HW acceleration.
6//
7// Copyright (C) 2011 NetUP Inc. All rights reserved.
8// Copyright (c) 2017 Samsung Electronics Co., Ltd. All rights reserved.
9//
10// Hash part based on omap-sham.c driver.
11
12#include <linux/clk.h>
13#include <linux/crypto.h>
14#include <linux/dma-mapping.h>
15#include <linux/err.h>
16#include <linux/errno.h>
17#include <linux/init.h>
18#include <linux/interrupt.h>
19#include <linux/io.h>
20#include <linux/kernel.h>
21#include <linux/module.h>
22#include <linux/of.h>
23#include <linux/platform_device.h>
24#include <linux/scatterlist.h>
25
26#include <crypto/ctr.h>
27#include <crypto/aes.h>
28#include <crypto/algapi.h>
29#include <crypto/scatterwalk.h>
30
31#include <crypto/hash.h>
32#include <crypto/md5.h>
33#include <crypto/sha1.h>
34#include <crypto/sha2.h>
35#include <crypto/internal/hash.h>
36
37#define _SBF(s, v)			((v) << (s))
38
39/* Feed control registers */
40#define SSS_REG_FCINTSTAT		0x0000
41#define SSS_FCINTSTAT_HPARTINT		BIT(7)
42#define SSS_FCINTSTAT_HDONEINT		BIT(5)
43#define SSS_FCINTSTAT_BRDMAINT		BIT(3)
44#define SSS_FCINTSTAT_BTDMAINT		BIT(2)
45#define SSS_FCINTSTAT_HRDMAINT		BIT(1)
46#define SSS_FCINTSTAT_PKDMAINT		BIT(0)
47
48#define SSS_REG_FCINTENSET		0x0004
49#define SSS_FCINTENSET_HPARTINTENSET	BIT(7)
50#define SSS_FCINTENSET_HDONEINTENSET	BIT(5)
51#define SSS_FCINTENSET_BRDMAINTENSET	BIT(3)
52#define SSS_FCINTENSET_BTDMAINTENSET	BIT(2)
53#define SSS_FCINTENSET_HRDMAINTENSET	BIT(1)
54#define SSS_FCINTENSET_PKDMAINTENSET	BIT(0)
55
56#define SSS_REG_FCINTENCLR		0x0008
57#define SSS_FCINTENCLR_HPARTINTENCLR	BIT(7)
58#define SSS_FCINTENCLR_HDONEINTENCLR	BIT(5)
59#define SSS_FCINTENCLR_BRDMAINTENCLR	BIT(3)
60#define SSS_FCINTENCLR_BTDMAINTENCLR	BIT(2)
61#define SSS_FCINTENCLR_HRDMAINTENCLR	BIT(1)
62#define SSS_FCINTENCLR_PKDMAINTENCLR	BIT(0)
63
64#define SSS_REG_FCINTPEND		0x000C
65#define SSS_FCINTPEND_HPARTINTP		BIT(7)
66#define SSS_FCINTPEND_HDONEINTP		BIT(5)
67#define SSS_FCINTPEND_BRDMAINTP		BIT(3)
68#define SSS_FCINTPEND_BTDMAINTP		BIT(2)
69#define SSS_FCINTPEND_HRDMAINTP		BIT(1)
70#define SSS_FCINTPEND_PKDMAINTP		BIT(0)
71
72#define SSS_REG_FCFIFOSTAT		0x0010
73#define SSS_FCFIFOSTAT_BRFIFOFUL	BIT(7)
74#define SSS_FCFIFOSTAT_BRFIFOEMP	BIT(6)
75#define SSS_FCFIFOSTAT_BTFIFOFUL	BIT(5)
76#define SSS_FCFIFOSTAT_BTFIFOEMP	BIT(4)
77#define SSS_FCFIFOSTAT_HRFIFOFUL	BIT(3)
78#define SSS_FCFIFOSTAT_HRFIFOEMP	BIT(2)
79#define SSS_FCFIFOSTAT_PKFIFOFUL	BIT(1)
80#define SSS_FCFIFOSTAT_PKFIFOEMP	BIT(0)
81
82#define SSS_REG_FCFIFOCTRL		0x0014
83#define SSS_FCFIFOCTRL_DESSEL		BIT(2)
84#define SSS_HASHIN_INDEPENDENT		_SBF(0, 0x00)
85#define SSS_HASHIN_CIPHER_INPUT		_SBF(0, 0x01)
86#define SSS_HASHIN_CIPHER_OUTPUT	_SBF(0, 0x02)
87#define SSS_HASHIN_MASK			_SBF(0, 0x03)
88
89#define SSS_REG_FCBRDMAS		0x0020
90#define SSS_REG_FCBRDMAL		0x0024
91#define SSS_REG_FCBRDMAC		0x0028
92#define SSS_FCBRDMAC_BYTESWAP		BIT(1)
93#define SSS_FCBRDMAC_FLUSH		BIT(0)
94
95#define SSS_REG_FCBTDMAS		0x0030
96#define SSS_REG_FCBTDMAL		0x0034
97#define SSS_REG_FCBTDMAC		0x0038
98#define SSS_FCBTDMAC_BYTESWAP		BIT(1)
99#define SSS_FCBTDMAC_FLUSH		BIT(0)
100
101#define SSS_REG_FCHRDMAS		0x0040
102#define SSS_REG_FCHRDMAL		0x0044
103#define SSS_REG_FCHRDMAC		0x0048
104#define SSS_FCHRDMAC_BYTESWAP		BIT(1)
105#define SSS_FCHRDMAC_FLUSH		BIT(0)
106
107#define SSS_REG_FCPKDMAS		0x0050
108#define SSS_REG_FCPKDMAL		0x0054
109#define SSS_REG_FCPKDMAC		0x0058
110#define SSS_FCPKDMAC_BYTESWAP		BIT(3)
111#define SSS_FCPKDMAC_DESCEND		BIT(2)
112#define SSS_FCPKDMAC_TRANSMIT		BIT(1)
113#define SSS_FCPKDMAC_FLUSH		BIT(0)
114
115#define SSS_REG_FCPKDMAO		0x005C
116
117/* AES registers */
118#define SSS_REG_AES_CONTROL		0x00
119#define SSS_AES_BYTESWAP_DI		BIT(11)
120#define SSS_AES_BYTESWAP_DO		BIT(10)
121#define SSS_AES_BYTESWAP_IV		BIT(9)
122#define SSS_AES_BYTESWAP_CNT		BIT(8)
123#define SSS_AES_BYTESWAP_KEY		BIT(7)
124#define SSS_AES_KEY_CHANGE_MODE		BIT(6)
125#define SSS_AES_KEY_SIZE_128		_SBF(4, 0x00)
126#define SSS_AES_KEY_SIZE_192		_SBF(4, 0x01)
127#define SSS_AES_KEY_SIZE_256		_SBF(4, 0x02)
128#define SSS_AES_FIFO_MODE		BIT(3)
129#define SSS_AES_CHAIN_MODE_ECB		_SBF(1, 0x00)
130#define SSS_AES_CHAIN_MODE_CBC		_SBF(1, 0x01)
131#define SSS_AES_CHAIN_MODE_CTR		_SBF(1, 0x02)
132#define SSS_AES_MODE_DECRYPT		BIT(0)
133
134#define SSS_REG_AES_STATUS		0x04
135#define SSS_AES_BUSY			BIT(2)
136#define SSS_AES_INPUT_READY		BIT(1)
137#define SSS_AES_OUTPUT_READY		BIT(0)
138
139#define SSS_REG_AES_IN_DATA(s)		(0x10 + (s << 2))
140#define SSS_REG_AES_OUT_DATA(s)		(0x20 + (s << 2))
141#define SSS_REG_AES_IV_DATA(s)		(0x30 + (s << 2))
142#define SSS_REG_AES_CNT_DATA(s)		(0x40 + (s << 2))
143#define SSS_REG_AES_KEY_DATA(s)		(0x80 + (s << 2))
144
145#define SSS_REG(dev, reg)		((dev)->ioaddr + (SSS_REG_##reg))
146#define SSS_READ(dev, reg)		__raw_readl(SSS_REG(dev, reg))
147#define SSS_WRITE(dev, reg, val)	__raw_writel((val), SSS_REG(dev, reg))
148
149#define SSS_AES_REG(dev, reg)		((dev)->aes_ioaddr + SSS_REG_##reg)
150#define SSS_AES_WRITE(dev, reg, val)    __raw_writel((val), \
151						SSS_AES_REG(dev, reg))
152
153/* HW engine modes */
154#define FLAGS_AES_DECRYPT		BIT(0)
155#define FLAGS_AES_MODE_MASK		_SBF(1, 0x03)
156#define FLAGS_AES_CBC			_SBF(1, 0x01)
157#define FLAGS_AES_CTR			_SBF(1, 0x02)
158
159#define AES_KEY_LEN			16
160#define CRYPTO_QUEUE_LEN		1
161
162/* HASH registers */
163#define SSS_REG_HASH_CTRL		0x00
164
165#define SSS_HASH_USER_IV_EN		BIT(5)
166#define SSS_HASH_INIT_BIT		BIT(4)
167#define SSS_HASH_ENGINE_SHA1		_SBF(1, 0x00)
168#define SSS_HASH_ENGINE_MD5		_SBF(1, 0x01)
169#define SSS_HASH_ENGINE_SHA256		_SBF(1, 0x02)
170
171#define SSS_HASH_ENGINE_MASK		_SBF(1, 0x03)
172
173#define SSS_REG_HASH_CTRL_PAUSE		0x04
174
175#define SSS_HASH_PAUSE			BIT(0)
176
177#define SSS_REG_HASH_CTRL_FIFO		0x08
178
179#define SSS_HASH_FIFO_MODE_DMA		BIT(0)
180#define SSS_HASH_FIFO_MODE_CPU          0
181
182#define SSS_REG_HASH_CTRL_SWAP		0x0C
183
184#define SSS_HASH_BYTESWAP_DI		BIT(3)
185#define SSS_HASH_BYTESWAP_DO		BIT(2)
186#define SSS_HASH_BYTESWAP_IV		BIT(1)
187#define SSS_HASH_BYTESWAP_KEY		BIT(0)
188
189#define SSS_REG_HASH_STATUS		0x10
190
191#define SSS_HASH_STATUS_MSG_DONE	BIT(6)
192#define SSS_HASH_STATUS_PARTIAL_DONE	BIT(4)
193#define SSS_HASH_STATUS_BUFFER_READY	BIT(0)
194
195#define SSS_REG_HASH_MSG_SIZE_LOW	0x20
196#define SSS_REG_HASH_MSG_SIZE_HIGH	0x24
197
198#define SSS_REG_HASH_PRE_MSG_SIZE_LOW	0x28
199#define SSS_REG_HASH_PRE_MSG_SIZE_HIGH	0x2C
200
201#define SSS_REG_HASH_IV(s)		(0xB0 + ((s) << 2))
202#define SSS_REG_HASH_OUT(s)		(0x100 + ((s) << 2))
203
204#define HASH_BLOCK_SIZE			64
205#define HASH_REG_SIZEOF			4
206#define HASH_MD5_MAX_REG		(MD5_DIGEST_SIZE / HASH_REG_SIZEOF)
207#define HASH_SHA1_MAX_REG		(SHA1_DIGEST_SIZE / HASH_REG_SIZEOF)
208#define HASH_SHA256_MAX_REG		(SHA256_DIGEST_SIZE / HASH_REG_SIZEOF)
209
210/*
211 * HASH bit numbers, used by device, setting in dev->hash_flags with
212 * functions set_bit(), clear_bit() or tested with test_bit() or BIT(),
213 * to keep HASH state BUSY or FREE, or to signal state from irq_handler
214 * to hash_tasklet. SGS keep track of allocated memory for scatterlist
215 */
216#define HASH_FLAGS_BUSY		0
217#define HASH_FLAGS_FINAL	1
218#define HASH_FLAGS_DMA_ACTIVE	2
219#define HASH_FLAGS_OUTPUT_READY	3
220#define HASH_FLAGS_DMA_READY	4
221#define HASH_FLAGS_SGS_COPIED	5
222#define HASH_FLAGS_SGS_ALLOCED	6
223
224/* HASH HW constants */
225#define BUFLEN			HASH_BLOCK_SIZE
226
227#define SSS_HASH_DMA_LEN_ALIGN	8
228#define SSS_HASH_DMA_ALIGN_MASK	(SSS_HASH_DMA_LEN_ALIGN - 1)
229
230#define SSS_HASH_QUEUE_LENGTH	10
231
232/**
233 * struct samsung_aes_variant - platform specific SSS driver data
234 * @aes_offset: AES register offset from SSS module's base.
235 * @hash_offset: HASH register offset from SSS module's base.
236 * @clk_names: names of clocks needed to run SSS IP
237 *
238 * Specifies platform specific configuration of SSS module.
239 * Note: A structure for driver specific platform data is used for future
240 * expansion of its usage.
241 */
242struct samsung_aes_variant {
243	unsigned int			aes_offset;
244	unsigned int			hash_offset;
245	const char			*clk_names[2];
246};
247
248struct s5p_aes_reqctx {
249	unsigned long			mode;
250};
251
252struct s5p_aes_ctx {
253	struct s5p_aes_dev		*dev;
254
255	u8				aes_key[AES_MAX_KEY_SIZE];
256	u8				nonce[CTR_RFC3686_NONCE_SIZE];
257	int				keylen;
258};
259
260/**
261 * struct s5p_aes_dev - Crypto device state container
262 * @dev:	Associated device
263 * @clk:	Clock for accessing hardware
264 * @pclk:	APB bus clock necessary to access the hardware
265 * @ioaddr:	Mapped IO memory region
266 * @aes_ioaddr:	Per-varian offset for AES block IO memory
267 * @irq_fc:	Feed control interrupt line
268 * @req:	Crypto request currently handled by the device
269 * @ctx:	Configuration for currently handled crypto request
270 * @sg_src:	Scatter list with source data for currently handled block
271 *		in device.  This is DMA-mapped into device.
272 * @sg_dst:	Scatter list with destination data for currently handled block
273 *		in device. This is DMA-mapped into device.
274 * @sg_src_cpy:	In case of unaligned access, copied scatter list
275 *		with source data.
276 * @sg_dst_cpy:	In case of unaligned access, copied scatter list
277 *		with destination data.
278 * @tasklet:	New request scheduling jib
279 * @queue:	Crypto queue
280 * @busy:	Indicates whether the device is currently handling some request
281 *		thus it uses some of the fields from this state, like:
282 *		req, ctx, sg_src/dst (and copies).  This essentially
283 *		protects against concurrent access to these fields.
284 * @lock:	Lock for protecting both access to device hardware registers
285 *		and fields related to current request (including the busy field).
286 * @res:	Resources for hash.
287 * @io_hash_base: Per-variant offset for HASH block IO memory.
288 * @hash_lock:	Lock for protecting hash_req, hash_queue and hash_flags
289 *		variable.
290 * @hash_flags:	Flags for current HASH op.
291 * @hash_queue:	Async hash queue.
292 * @hash_tasklet: New HASH request scheduling job.
293 * @xmit_buf:	Buffer for current HASH request transfer into SSS block.
294 * @hash_req:	Current request sending to SSS HASH block.
295 * @hash_sg_iter: Scatterlist transferred through DMA into SSS HASH block.
296 * @hash_sg_cnt: Counter for hash_sg_iter.
297 *
298 * @use_hash:	true if HASH algs enabled
299 */
300struct s5p_aes_dev {
301	struct device			*dev;
302	struct clk			*clk;
303	struct clk			*pclk;
304	void __iomem			*ioaddr;
305	void __iomem			*aes_ioaddr;
306	int				irq_fc;
307
308	struct skcipher_request		*req;
309	struct s5p_aes_ctx		*ctx;
310	struct scatterlist		*sg_src;
311	struct scatterlist		*sg_dst;
312
313	struct scatterlist		*sg_src_cpy;
314	struct scatterlist		*sg_dst_cpy;
315
316	struct tasklet_struct		tasklet;
317	struct crypto_queue		queue;
318	bool				busy;
319	spinlock_t			lock;
320
321	struct resource			*res;
322	void __iomem			*io_hash_base;
323
324	spinlock_t			hash_lock; /* protect hash_ vars */
325	unsigned long			hash_flags;
326	struct crypto_queue		hash_queue;
327	struct tasklet_struct		hash_tasklet;
328
329	u8				xmit_buf[BUFLEN];
330	struct ahash_request		*hash_req;
331	struct scatterlist		*hash_sg_iter;
332	unsigned int			hash_sg_cnt;
333
334	bool				use_hash;
335};
336
337/**
338 * struct s5p_hash_reqctx - HASH request context
339 * @dd:		Associated device
340 * @op_update:	Current request operation (OP_UPDATE or OP_FINAL)
341 * @digcnt:	Number of bytes processed by HW (without buffer[] ones)
342 * @digest:	Digest message or IV for partial result
343 * @nregs:	Number of HW registers for digest or IV read/write
344 * @engine:	Bits for selecting type of HASH in SSS block
345 * @sg:		sg for DMA transfer
346 * @sg_len:	Length of sg for DMA transfer
347 * @sgl:	sg for joining buffer and req->src scatterlist
348 * @skip:	Skip offset in req->src for current op
349 * @total:	Total number of bytes for current request
350 * @finup:	Keep state for finup or final.
351 * @error:	Keep track of error.
352 * @bufcnt:	Number of bytes holded in buffer[]
353 * @buffer:	For byte(s) from end of req->src in UPDATE op
354 */
355struct s5p_hash_reqctx {
356	struct s5p_aes_dev	*dd;
357	bool			op_update;
358
359	u64			digcnt;
360	u8			digest[SHA256_DIGEST_SIZE];
361
362	unsigned int		nregs; /* digest_size / sizeof(reg) */
363	u32			engine;
364
365	struct scatterlist	*sg;
366	unsigned int		sg_len;
367	struct scatterlist	sgl[2];
368	unsigned int		skip;
369	unsigned int		total;
370	bool			finup;
371	bool			error;
372
373	u32			bufcnt;
374	u8			buffer[];
375};
376
377/**
378 * struct s5p_hash_ctx - HASH transformation context
379 * @dd:		Associated device
380 * @flags:	Bits for algorithm HASH.
381 * @fallback:	Software transformation for zero message or size < BUFLEN.
382 */
383struct s5p_hash_ctx {
384	struct s5p_aes_dev	*dd;
385	unsigned long		flags;
386	struct crypto_shash	*fallback;
387};
388
389static const struct samsung_aes_variant s5p_aes_data = {
390	.aes_offset	= 0x4000,
391	.hash_offset	= 0x6000,
392	.clk_names	= { "secss", },
393};
394
395static const struct samsung_aes_variant exynos_aes_data = {
396	.aes_offset	= 0x200,
397	.hash_offset	= 0x400,
398	.clk_names	= { "secss", },
399};
400
401static const struct samsung_aes_variant exynos5433_slim_aes_data = {
402	.aes_offset	= 0x400,
403	.hash_offset	= 0x800,
404	.clk_names	= { "aclk", "pclk", },
405};
406
407static const struct of_device_id s5p_sss_dt_match[] = {
408	{
409		.compatible = "samsung,s5pv210-secss",
410		.data = &s5p_aes_data,
411	},
412	{
413		.compatible = "samsung,exynos4210-secss",
414		.data = &exynos_aes_data,
415	},
416	{
417		.compatible = "samsung,exynos5433-slim-sss",
418		.data = &exynos5433_slim_aes_data,
419	},
420	{ },
421};
422MODULE_DEVICE_TABLE(of, s5p_sss_dt_match);
423
424static inline const struct samsung_aes_variant *find_s5p_sss_version
425				   (const struct platform_device *pdev)
426{
427	if (IS_ENABLED(CONFIG_OF) && (pdev->dev.of_node))
428		return of_device_get_match_data(&pdev->dev);
429
430	return (const struct samsung_aes_variant *)
431			platform_get_device_id(pdev)->driver_data;
432}
433
434static struct s5p_aes_dev *s5p_dev;
435
436static void s5p_set_dma_indata(struct s5p_aes_dev *dev,
437			       const struct scatterlist *sg)
438{
439	SSS_WRITE(dev, FCBRDMAS, sg_dma_address(sg));
440	SSS_WRITE(dev, FCBRDMAL, sg_dma_len(sg));
441}
442
443static void s5p_set_dma_outdata(struct s5p_aes_dev *dev,
444				const struct scatterlist *sg)
445{
446	SSS_WRITE(dev, FCBTDMAS, sg_dma_address(sg));
447	SSS_WRITE(dev, FCBTDMAL, sg_dma_len(sg));
448}
449
450static void s5p_free_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist **sg)
451{
452	int len;
453
454	if (!*sg)
455		return;
456
457	len = ALIGN(dev->req->cryptlen, AES_BLOCK_SIZE);
458	free_pages((unsigned long)sg_virt(*sg), get_order(len));
459
460	kfree(*sg);
461	*sg = NULL;
462}
463
464static void s5p_sg_copy_buf(void *buf, struct scatterlist *sg,
465			    unsigned int nbytes, int out)
466{
467	struct scatter_walk walk;
468
469	if (!nbytes)
470		return;
471
472	scatterwalk_start(&walk, sg);
473	scatterwalk_copychunks(buf, &walk, nbytes, out);
474	scatterwalk_done(&walk, out, 0);
475}
476
477static void s5p_sg_done(struct s5p_aes_dev *dev)
478{
479	struct skcipher_request *req = dev->req;
480	struct s5p_aes_reqctx *reqctx = skcipher_request_ctx(req);
481
482	if (dev->sg_dst_cpy) {
483		dev_dbg(dev->dev,
484			"Copying %d bytes of output data back to original place\n",
485			dev->req->cryptlen);
486		s5p_sg_copy_buf(sg_virt(dev->sg_dst_cpy), dev->req->dst,
487				dev->req->cryptlen, 1);
488	}
489	s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
490	s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
491	if (reqctx->mode & FLAGS_AES_CBC)
492		memcpy_fromio(req->iv, dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), AES_BLOCK_SIZE);
493
494	else if (reqctx->mode & FLAGS_AES_CTR)
495		memcpy_fromio(req->iv, dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), AES_BLOCK_SIZE);
496}
497
498/* Calls the completion. Cannot be called with dev->lock hold. */
499static void s5p_aes_complete(struct skcipher_request *req, int err)
500{
501	skcipher_request_complete(req, err);
502}
503
504static void s5p_unset_outdata(struct s5p_aes_dev *dev)
505{
506	dma_unmap_sg(dev->dev, dev->sg_dst, 1, DMA_FROM_DEVICE);
507}
508
509static void s5p_unset_indata(struct s5p_aes_dev *dev)
510{
511	dma_unmap_sg(dev->dev, dev->sg_src, 1, DMA_TO_DEVICE);
512}
513
514static int s5p_make_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist *src,
515			   struct scatterlist **dst)
516{
517	void *pages;
518	int len;
519
520	*dst = kmalloc(sizeof(**dst), GFP_ATOMIC);
521	if (!*dst)
522		return -ENOMEM;
523
524	len = ALIGN(dev->req->cryptlen, AES_BLOCK_SIZE);
525	pages = (void *)__get_free_pages(GFP_ATOMIC, get_order(len));
526	if (!pages) {
527		kfree(*dst);
528		*dst = NULL;
529		return -ENOMEM;
530	}
531
532	s5p_sg_copy_buf(pages, src, dev->req->cryptlen, 0);
533
534	sg_init_table(*dst, 1);
535	sg_set_buf(*dst, pages, len);
536
537	return 0;
538}
539
540static int s5p_set_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg)
541{
542	if (!sg->length)
543		return -EINVAL;
544
545	if (!dma_map_sg(dev->dev, sg, 1, DMA_FROM_DEVICE))
546		return -ENOMEM;
547
548	dev->sg_dst = sg;
549
550	return 0;
551}
552
553static int s5p_set_indata(struct s5p_aes_dev *dev, struct scatterlist *sg)
554{
555	if (!sg->length)
556		return -EINVAL;
557
558	if (!dma_map_sg(dev->dev, sg, 1, DMA_TO_DEVICE))
559		return -ENOMEM;
560
561	dev->sg_src = sg;
562
563	return 0;
564}
565
566/*
567 * Returns -ERRNO on error (mapping of new data failed).
568 * On success returns:
569 *  - 0 if there is no more data,
570 *  - 1 if new transmitting (output) data is ready and its address+length
571 *     have to be written to device (by calling s5p_set_dma_outdata()).
572 */
573static int s5p_aes_tx(struct s5p_aes_dev *dev)
574{
575	int ret = 0;
576
577	s5p_unset_outdata(dev);
578
579	if (!sg_is_last(dev->sg_dst)) {
580		ret = s5p_set_outdata(dev, sg_next(dev->sg_dst));
581		if (!ret)
582			ret = 1;
583	}
584
585	return ret;
586}
587
588/*
589 * Returns -ERRNO on error (mapping of new data failed).
590 * On success returns:
591 *  - 0 if there is no more data,
592 *  - 1 if new receiving (input) data is ready and its address+length
593 *     have to be written to device (by calling s5p_set_dma_indata()).
594 */
595static int s5p_aes_rx(struct s5p_aes_dev *dev/*, bool *set_dma*/)
596{
597	int ret = 0;
598
599	s5p_unset_indata(dev);
600
601	if (!sg_is_last(dev->sg_src)) {
602		ret = s5p_set_indata(dev, sg_next(dev->sg_src));
603		if (!ret)
604			ret = 1;
605	}
606
607	return ret;
608}
609
610static inline u32 s5p_hash_read(struct s5p_aes_dev *dd, u32 offset)
611{
612	return __raw_readl(dd->io_hash_base + offset);
613}
614
615static inline void s5p_hash_write(struct s5p_aes_dev *dd,
616				  u32 offset, u32 value)
617{
618	__raw_writel(value, dd->io_hash_base + offset);
619}
620
621/**
622 * s5p_set_dma_hashdata() - start DMA with sg
623 * @dev:	device
624 * @sg:		scatterlist ready to DMA transmit
625 */
626static void s5p_set_dma_hashdata(struct s5p_aes_dev *dev,
627				 const struct scatterlist *sg)
628{
629	dev->hash_sg_cnt--;
630	SSS_WRITE(dev, FCHRDMAS, sg_dma_address(sg));
631	SSS_WRITE(dev, FCHRDMAL, sg_dma_len(sg)); /* DMA starts */
632}
633
634/**
635 * s5p_hash_rx() - get next hash_sg_iter
636 * @dev:	device
637 *
638 * Return:
639 * 2	if there is no more data and it is UPDATE op
640 * 1	if new receiving (input) data is ready and can be written to device
641 * 0	if there is no more data and it is FINAL op
642 */
643static int s5p_hash_rx(struct s5p_aes_dev *dev)
644{
645	if (dev->hash_sg_cnt > 0) {
646		dev->hash_sg_iter = sg_next(dev->hash_sg_iter);
647		return 1;
648	}
649
650	set_bit(HASH_FLAGS_DMA_READY, &dev->hash_flags);
651	if (test_bit(HASH_FLAGS_FINAL, &dev->hash_flags))
652		return 0;
653
654	return 2;
655}
656
657static irqreturn_t s5p_aes_interrupt(int irq, void *dev_id)
658{
659	struct platform_device *pdev = dev_id;
660	struct s5p_aes_dev *dev = platform_get_drvdata(pdev);
661	struct skcipher_request *req;
662	int err_dma_tx = 0;
663	int err_dma_rx = 0;
664	int err_dma_hx = 0;
665	bool tx_end = false;
666	bool hx_end = false;
667	unsigned long flags;
668	u32 status, st_bits;
669	int err;
670
671	spin_lock_irqsave(&dev->lock, flags);
672
673	/*
674	 * Handle rx or tx interrupt. If there is still data (scatterlist did not
675	 * reach end), then map next scatterlist entry.
676	 * In case of such mapping error, s5p_aes_complete() should be called.
677	 *
678	 * If there is no more data in tx scatter list, call s5p_aes_complete()
679	 * and schedule new tasklet.
680	 *
681	 * Handle hx interrupt. If there is still data map next entry.
682	 */
683	status = SSS_READ(dev, FCINTSTAT);
684	if (status & SSS_FCINTSTAT_BRDMAINT)
685		err_dma_rx = s5p_aes_rx(dev);
686
687	if (status & SSS_FCINTSTAT_BTDMAINT) {
688		if (sg_is_last(dev->sg_dst))
689			tx_end = true;
690		err_dma_tx = s5p_aes_tx(dev);
691	}
692
693	if (status & SSS_FCINTSTAT_HRDMAINT)
694		err_dma_hx = s5p_hash_rx(dev);
695
696	st_bits = status & (SSS_FCINTSTAT_BRDMAINT | SSS_FCINTSTAT_BTDMAINT |
697				SSS_FCINTSTAT_HRDMAINT);
698	/* clear DMA bits */
699	SSS_WRITE(dev, FCINTPEND, st_bits);
700
701	/* clear HASH irq bits */
702	if (status & (SSS_FCINTSTAT_HDONEINT | SSS_FCINTSTAT_HPARTINT)) {
703		/* cannot have both HPART and HDONE */
704		if (status & SSS_FCINTSTAT_HPARTINT)
705			st_bits = SSS_HASH_STATUS_PARTIAL_DONE;
706
707		if (status & SSS_FCINTSTAT_HDONEINT)
708			st_bits = SSS_HASH_STATUS_MSG_DONE;
709
710		set_bit(HASH_FLAGS_OUTPUT_READY, &dev->hash_flags);
711		s5p_hash_write(dev, SSS_REG_HASH_STATUS, st_bits);
712		hx_end = true;
713		/* when DONE or PART, do not handle HASH DMA */
714		err_dma_hx = 0;
715	}
716
717	if (err_dma_rx < 0) {
718		err = err_dma_rx;
719		goto error;
720	}
721	if (err_dma_tx < 0) {
722		err = err_dma_tx;
723		goto error;
724	}
725
726	if (tx_end) {
727		s5p_sg_done(dev);
728		if (err_dma_hx == 1)
729			s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
730
731		spin_unlock_irqrestore(&dev->lock, flags);
732
733		s5p_aes_complete(dev->req, 0);
734		/* Device is still busy */
735		tasklet_schedule(&dev->tasklet);
736	} else {
737		/*
738		 * Writing length of DMA block (either receiving or
739		 * transmitting) will start the operation immediately, so this
740		 * should be done at the end (even after clearing pending
741		 * interrupts to not miss the interrupt).
742		 */
743		if (err_dma_tx == 1)
744			s5p_set_dma_outdata(dev, dev->sg_dst);
745		if (err_dma_rx == 1)
746			s5p_set_dma_indata(dev, dev->sg_src);
747		if (err_dma_hx == 1)
748			s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
749
750		spin_unlock_irqrestore(&dev->lock, flags);
751	}
752
753	goto hash_irq_end;
754
755error:
756	s5p_sg_done(dev);
757	dev->busy = false;
758	req = dev->req;
759	if (err_dma_hx == 1)
760		s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
761
762	spin_unlock_irqrestore(&dev->lock, flags);
763	s5p_aes_complete(req, err);
764
765hash_irq_end:
766	/*
767	 * Note about else if:
768	 *   when hash_sg_iter reaches end and its UPDATE op,
769	 *   issue SSS_HASH_PAUSE and wait for HPART irq
770	 */
771	if (hx_end)
772		tasklet_schedule(&dev->hash_tasklet);
773	else if (err_dma_hx == 2)
774		s5p_hash_write(dev, SSS_REG_HASH_CTRL_PAUSE,
775			       SSS_HASH_PAUSE);
776
777	return IRQ_HANDLED;
778}
779
780/**
781 * s5p_hash_read_msg() - read message or IV from HW
782 * @req:	AHASH request
783 */
784static void s5p_hash_read_msg(struct ahash_request *req)
785{
786	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
787	struct s5p_aes_dev *dd = ctx->dd;
788	u32 *hash = (u32 *)ctx->digest;
789	unsigned int i;
790
791	for (i = 0; i < ctx->nregs; i++)
792		hash[i] = s5p_hash_read(dd, SSS_REG_HASH_OUT(i));
793}
794
795/**
796 * s5p_hash_write_ctx_iv() - write IV for next partial/finup op.
797 * @dd:		device
798 * @ctx:	request context
799 */
800static void s5p_hash_write_ctx_iv(struct s5p_aes_dev *dd,
801				  const struct s5p_hash_reqctx *ctx)
802{
803	const u32 *hash = (const u32 *)ctx->digest;
804	unsigned int i;
805
806	for (i = 0; i < ctx->nregs; i++)
807		s5p_hash_write(dd, SSS_REG_HASH_IV(i), hash[i]);
808}
809
810/**
811 * s5p_hash_write_iv() - write IV for next partial/finup op.
812 * @req:	AHASH request
813 */
814static void s5p_hash_write_iv(struct ahash_request *req)
815{
816	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
817
818	s5p_hash_write_ctx_iv(ctx->dd, ctx);
819}
820
821/**
822 * s5p_hash_copy_result() - copy digest into req->result
823 * @req:	AHASH request
824 */
825static void s5p_hash_copy_result(struct ahash_request *req)
826{
827	const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
828
829	if (!req->result)
830		return;
831
832	memcpy(req->result, ctx->digest, ctx->nregs * HASH_REG_SIZEOF);
833}
834
835/**
836 * s5p_hash_dma_flush() - flush HASH DMA
837 * @dev:	secss device
838 */
839static void s5p_hash_dma_flush(struct s5p_aes_dev *dev)
840{
841	SSS_WRITE(dev, FCHRDMAC, SSS_FCHRDMAC_FLUSH);
842}
843
844/**
845 * s5p_hash_dma_enable() - enable DMA mode for HASH
846 * @dev:	secss device
847 *
848 * enable DMA mode for HASH
849 */
850static void s5p_hash_dma_enable(struct s5p_aes_dev *dev)
851{
852	s5p_hash_write(dev, SSS_REG_HASH_CTRL_FIFO, SSS_HASH_FIFO_MODE_DMA);
853}
854
855/**
856 * s5p_hash_irq_disable() - disable irq HASH signals
857 * @dev:	secss device
858 * @flags:	bitfield with irq's to be disabled
859 */
860static void s5p_hash_irq_disable(struct s5p_aes_dev *dev, u32 flags)
861{
862	SSS_WRITE(dev, FCINTENCLR, flags);
863}
864
865/**
866 * s5p_hash_irq_enable() - enable irq signals
867 * @dev:	secss device
868 * @flags:	bitfield with irq's to be enabled
869 */
870static void s5p_hash_irq_enable(struct s5p_aes_dev *dev, int flags)
871{
872	SSS_WRITE(dev, FCINTENSET, flags);
873}
874
875/**
876 * s5p_hash_set_flow() - set flow inside SecSS AES/DES with/without HASH
877 * @dev:	secss device
878 * @hashflow:	HASH stream flow with/without crypto AES/DES
879 */
880static void s5p_hash_set_flow(struct s5p_aes_dev *dev, u32 hashflow)
881{
882	unsigned long flags;
883	u32 flow;
884
885	spin_lock_irqsave(&dev->lock, flags);
886
887	flow = SSS_READ(dev, FCFIFOCTRL);
888	flow &= ~SSS_HASHIN_MASK;
889	flow |= hashflow;
890	SSS_WRITE(dev, FCFIFOCTRL, flow);
891
892	spin_unlock_irqrestore(&dev->lock, flags);
893}
894
895/**
896 * s5p_ahash_dma_init() - enable DMA and set HASH flow inside SecSS
897 * @dev:	secss device
898 * @hashflow:	HASH stream flow with/without AES/DES
899 *
900 * flush HASH DMA and enable DMA, set HASH stream flow inside SecSS HW,
901 * enable HASH irq's HRDMA, HDONE, HPART
902 */
903static void s5p_ahash_dma_init(struct s5p_aes_dev *dev, u32 hashflow)
904{
905	s5p_hash_irq_disable(dev, SSS_FCINTENCLR_HRDMAINTENCLR |
906			     SSS_FCINTENCLR_HDONEINTENCLR |
907			     SSS_FCINTENCLR_HPARTINTENCLR);
908	s5p_hash_dma_flush(dev);
909
910	s5p_hash_dma_enable(dev);
911	s5p_hash_set_flow(dev, hashflow & SSS_HASHIN_MASK);
912	s5p_hash_irq_enable(dev, SSS_FCINTENSET_HRDMAINTENSET |
913			    SSS_FCINTENSET_HDONEINTENSET |
914			    SSS_FCINTENSET_HPARTINTENSET);
915}
916
917/**
918 * s5p_hash_write_ctrl() - prepare HASH block in SecSS for processing
919 * @dd:		secss device
920 * @length:	length for request
921 * @final:	true if final op
922 *
923 * Prepare SSS HASH block for processing bytes in DMA mode. If it is called
924 * after previous updates, fill up IV words. For final, calculate and set
925 * lengths for HASH so SecSS can finalize hash. For partial, set SSS HASH
926 * length as 2^63 so it will be never reached and set to zero prelow and
927 * prehigh.
928 *
929 * This function does not start DMA transfer.
930 */
931static void s5p_hash_write_ctrl(struct s5p_aes_dev *dd, size_t length,
932				bool final)
933{
934	struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
935	u32 prelow, prehigh, low, high;
936	u32 configflags, swapflags;
937	u64 tmplen;
938
939	configflags = ctx->engine | SSS_HASH_INIT_BIT;
940
941	if (likely(ctx->digcnt)) {
942		s5p_hash_write_ctx_iv(dd, ctx);
943		configflags |= SSS_HASH_USER_IV_EN;
944	}
945
946	if (final) {
947		/* number of bytes for last part */
948		low = length;
949		high = 0;
950		/* total number of bits prev hashed */
951		tmplen = ctx->digcnt * 8;
952		prelow = (u32)tmplen;
953		prehigh = (u32)(tmplen >> 32);
954	} else {
955		prelow = 0;
956		prehigh = 0;
957		low = 0;
958		high = BIT(31);
959	}
960
961	swapflags = SSS_HASH_BYTESWAP_DI | SSS_HASH_BYTESWAP_DO |
962		    SSS_HASH_BYTESWAP_IV | SSS_HASH_BYTESWAP_KEY;
963
964	s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_LOW, low);
965	s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_HIGH, high);
966	s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_LOW, prelow);
967	s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_HIGH, prehigh);
968
969	s5p_hash_write(dd, SSS_REG_HASH_CTRL_SWAP, swapflags);
970	s5p_hash_write(dd, SSS_REG_HASH_CTRL, configflags);
971}
972
973/**
974 * s5p_hash_xmit_dma() - start DMA hash processing
975 * @dd:		secss device
976 * @length:	length for request
977 * @final:	true if final op
978 *
979 * Update digcnt here, as it is needed for finup/final op.
980 */
981static int s5p_hash_xmit_dma(struct s5p_aes_dev *dd, size_t length,
982			     bool final)
983{
984	struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
985	unsigned int cnt;
986
987	cnt = dma_map_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
988	if (!cnt) {
989		dev_err(dd->dev, "dma_map_sg error\n");
990		ctx->error = true;
991		return -EINVAL;
992	}
993
994	set_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
995	dd->hash_sg_iter = ctx->sg;
996	dd->hash_sg_cnt = cnt;
997	s5p_hash_write_ctrl(dd, length, final);
998	ctx->digcnt += length;
999	ctx->total -= length;
1000
1001	/* catch last interrupt */
1002	if (final)
1003		set_bit(HASH_FLAGS_FINAL, &dd->hash_flags);
1004
1005	s5p_set_dma_hashdata(dd, dd->hash_sg_iter); /* DMA starts */
1006
1007	return -EINPROGRESS;
1008}
1009
1010/**
1011 * s5p_hash_copy_sgs() - copy request's bytes into new buffer
1012 * @ctx:	request context
1013 * @sg:		source scatterlist request
1014 * @new_len:	number of bytes to process from sg
1015 *
1016 * Allocate new buffer, copy data for HASH into it. If there was xmit_buf
1017 * filled, copy it first, then copy data from sg into it. Prepare one sgl[0]
1018 * with allocated buffer.
1019 *
1020 * Set bit in dd->hash_flag so we can free it after irq ends processing.
1021 */
1022static int s5p_hash_copy_sgs(struct s5p_hash_reqctx *ctx,
1023			     struct scatterlist *sg, unsigned int new_len)
1024{
1025	unsigned int pages, len;
1026	void *buf;
1027
1028	len = new_len + ctx->bufcnt;
1029	pages = get_order(len);
1030
1031	buf = (void *)__get_free_pages(GFP_ATOMIC, pages);
1032	if (!buf) {
1033		dev_err(ctx->dd->dev, "alloc pages for unaligned case.\n");
1034		ctx->error = true;
1035		return -ENOMEM;
1036	}
1037
1038	if (ctx->bufcnt)
1039		memcpy(buf, ctx->dd->xmit_buf, ctx->bufcnt);
1040
1041	scatterwalk_map_and_copy(buf + ctx->bufcnt, sg, ctx->skip,
1042				 new_len, 0);
1043	sg_init_table(ctx->sgl, 1);
1044	sg_set_buf(ctx->sgl, buf, len);
1045	ctx->sg = ctx->sgl;
1046	ctx->sg_len = 1;
1047	ctx->bufcnt = 0;
1048	ctx->skip = 0;
1049	set_bit(HASH_FLAGS_SGS_COPIED, &ctx->dd->hash_flags);
1050
1051	return 0;
1052}
1053
1054/**
1055 * s5p_hash_copy_sg_lists() - copy sg list and make fixes in copy
1056 * @ctx:	request context
1057 * @sg:		source scatterlist request
1058 * @new_len:	number of bytes to process from sg
1059 *
1060 * Allocate new scatterlist table, copy data for HASH into it. If there was
1061 * xmit_buf filled, prepare it first, then copy page, length and offset from
1062 * source sg into it, adjusting begin and/or end for skip offset and
1063 * hash_later value.
1064 *
1065 * Resulting sg table will be assigned to ctx->sg. Set flag so we can free
1066 * it after irq ends processing.
1067 */
1068static int s5p_hash_copy_sg_lists(struct s5p_hash_reqctx *ctx,
1069				  struct scatterlist *sg, unsigned int new_len)
1070{
1071	unsigned int skip = ctx->skip, n = sg_nents(sg);
1072	struct scatterlist *tmp;
1073	unsigned int len;
1074
1075	if (ctx->bufcnt)
1076		n++;
1077
1078	ctx->sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL);
1079	if (!ctx->sg) {
1080		ctx->error = true;
1081		return -ENOMEM;
1082	}
1083
1084	sg_init_table(ctx->sg, n);
1085
1086	tmp = ctx->sg;
1087
1088	ctx->sg_len = 0;
1089
1090	if (ctx->bufcnt) {
1091		sg_set_buf(tmp, ctx->dd->xmit_buf, ctx->bufcnt);
1092		tmp = sg_next(tmp);
1093		ctx->sg_len++;
1094	}
1095
1096	while (sg && skip >= sg->length) {
1097		skip -= sg->length;
1098		sg = sg_next(sg);
1099	}
1100
1101	while (sg && new_len) {
1102		len = sg->length - skip;
1103		if (new_len < len)
1104			len = new_len;
1105
1106		new_len -= len;
1107		sg_set_page(tmp, sg_page(sg), len, sg->offset + skip);
1108		skip = 0;
1109		if (new_len <= 0)
1110			sg_mark_end(tmp);
1111
1112		tmp = sg_next(tmp);
1113		ctx->sg_len++;
1114		sg = sg_next(sg);
1115	}
1116
1117	set_bit(HASH_FLAGS_SGS_ALLOCED, &ctx->dd->hash_flags);
1118
1119	return 0;
1120}
1121
1122/**
1123 * s5p_hash_prepare_sgs() - prepare sg for processing
1124 * @ctx:	request context
1125 * @sg:		source scatterlist request
1126 * @new_len:	number of bytes to process from sg
1127 * @final:	final flag
1128 *
1129 * Check two conditions: (1) if buffers in sg have len aligned data, and (2)
1130 * sg table have good aligned elements (list_ok). If one of this checks fails,
1131 * then either (1) allocates new buffer for data with s5p_hash_copy_sgs, copy
1132 * data into this buffer and prepare request in sgl, or (2) allocates new sg
1133 * table and prepare sg elements.
1134 *
1135 * For digest or finup all conditions can be good, and we may not need any
1136 * fixes.
1137 */
1138static int s5p_hash_prepare_sgs(struct s5p_hash_reqctx *ctx,
1139				struct scatterlist *sg,
1140				unsigned int new_len, bool final)
1141{
1142	unsigned int skip = ctx->skip, nbytes = new_len, n = 0;
1143	bool aligned = true, list_ok = true;
1144	struct scatterlist *sg_tmp = sg;
1145
1146	if (!sg || !sg->length || !new_len)
1147		return 0;
1148
1149	if (skip || !final)
1150		list_ok = false;
1151
1152	while (nbytes > 0 && sg_tmp) {
1153		n++;
1154		if (skip >= sg_tmp->length) {
1155			skip -= sg_tmp->length;
1156			if (!sg_tmp->length) {
1157				aligned = false;
1158				break;
1159			}
1160		} else {
1161			if (!IS_ALIGNED(sg_tmp->length - skip, BUFLEN)) {
1162				aligned = false;
1163				break;
1164			}
1165
1166			if (nbytes < sg_tmp->length - skip) {
1167				list_ok = false;
1168				break;
1169			}
1170
1171			nbytes -= sg_tmp->length - skip;
1172			skip = 0;
1173		}
1174
1175		sg_tmp = sg_next(sg_tmp);
1176	}
1177
1178	if (!aligned)
1179		return s5p_hash_copy_sgs(ctx, sg, new_len);
1180	else if (!list_ok)
1181		return s5p_hash_copy_sg_lists(ctx, sg, new_len);
1182
1183	/*
1184	 * Have aligned data from previous operation and/or current
1185	 * Note: will enter here only if (digest or finup) and aligned
1186	 */
1187	if (ctx->bufcnt) {
1188		ctx->sg_len = n;
1189		sg_init_table(ctx->sgl, 2);
1190		sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, ctx->bufcnt);
1191		sg_chain(ctx->sgl, 2, sg);
1192		ctx->sg = ctx->sgl;
1193		ctx->sg_len++;
1194	} else {
1195		ctx->sg = sg;
1196		ctx->sg_len = n;
1197	}
1198
1199	return 0;
1200}
1201
1202/**
1203 * s5p_hash_prepare_request() - prepare request for processing
1204 * @req:	AHASH request
1205 * @update:	true if UPDATE op
1206 *
1207 * Note 1: we can have update flag _and_ final flag at the same time.
1208 * Note 2: we enter here when digcnt > BUFLEN (=HASH_BLOCK_SIZE) or
1209 *	   either req->nbytes or ctx->bufcnt + req->nbytes is > BUFLEN or
1210 *	   we have final op
1211 */
1212static int s5p_hash_prepare_request(struct ahash_request *req, bool update)
1213{
1214	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1215	bool final = ctx->finup;
1216	int xmit_len, hash_later, nbytes;
1217	int ret;
1218
1219	if (update)
1220		nbytes = req->nbytes;
1221	else
1222		nbytes = 0;
1223
1224	ctx->total = nbytes + ctx->bufcnt;
1225	if (!ctx->total)
1226		return 0;
1227
1228	if (nbytes && (!IS_ALIGNED(ctx->bufcnt, BUFLEN))) {
1229		/* bytes left from previous request, so fill up to BUFLEN */
1230		int len = BUFLEN - ctx->bufcnt % BUFLEN;
1231
1232		if (len > nbytes)
1233			len = nbytes;
1234
1235		scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1236					 0, len, 0);
1237		ctx->bufcnt += len;
1238		nbytes -= len;
1239		ctx->skip = len;
1240	} else {
1241		ctx->skip = 0;
1242	}
1243
1244	if (ctx->bufcnt)
1245		memcpy(ctx->dd->xmit_buf, ctx->buffer, ctx->bufcnt);
1246
1247	xmit_len = ctx->total;
1248	if (final) {
1249		hash_later = 0;
1250	} else {
1251		if (IS_ALIGNED(xmit_len, BUFLEN))
1252			xmit_len -= BUFLEN;
1253		else
1254			xmit_len -= xmit_len & (BUFLEN - 1);
1255
1256		hash_later = ctx->total - xmit_len;
1257		/* copy hash_later bytes from end of req->src */
1258		/* previous bytes are in xmit_buf, so no overwrite */
1259		scatterwalk_map_and_copy(ctx->buffer, req->src,
1260					 req->nbytes - hash_later,
1261					 hash_later, 0);
1262	}
1263
1264	if (xmit_len > BUFLEN) {
1265		ret = s5p_hash_prepare_sgs(ctx, req->src, nbytes - hash_later,
1266					   final);
1267		if (ret)
1268			return ret;
1269	} else {
1270		/* have buffered data only */
1271		if (unlikely(!ctx->bufcnt)) {
1272			/* first update didn't fill up buffer */
1273			scatterwalk_map_and_copy(ctx->dd->xmit_buf, req->src,
1274						 0, xmit_len, 0);
1275		}
1276
1277		sg_init_table(ctx->sgl, 1);
1278		sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, xmit_len);
1279
1280		ctx->sg = ctx->sgl;
1281		ctx->sg_len = 1;
1282	}
1283
1284	ctx->bufcnt = hash_later;
1285	if (!final)
1286		ctx->total = xmit_len;
1287
1288	return 0;
1289}
1290
1291/**
1292 * s5p_hash_update_dma_stop() - unmap DMA
1293 * @dd:		secss device
1294 *
1295 * Unmap scatterlist ctx->sg.
1296 */
1297static void s5p_hash_update_dma_stop(struct s5p_aes_dev *dd)
1298{
1299	const struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
1300
1301	dma_unmap_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
1302	clear_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
1303}
1304
1305/**
1306 * s5p_hash_finish() - copy calculated digest to crypto layer
1307 * @req:	AHASH request
1308 */
1309static void s5p_hash_finish(struct ahash_request *req)
1310{
1311	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1312	struct s5p_aes_dev *dd = ctx->dd;
1313
1314	if (ctx->digcnt)
1315		s5p_hash_copy_result(req);
1316
1317	dev_dbg(dd->dev, "hash_finish digcnt: %lld\n", ctx->digcnt);
1318}
1319
1320/**
1321 * s5p_hash_finish_req() - finish request
1322 * @req:	AHASH request
1323 * @err:	error
1324 */
1325static void s5p_hash_finish_req(struct ahash_request *req, int err)
1326{
1327	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1328	struct s5p_aes_dev *dd = ctx->dd;
1329	unsigned long flags;
1330
1331	if (test_bit(HASH_FLAGS_SGS_COPIED, &dd->hash_flags))
1332		free_pages((unsigned long)sg_virt(ctx->sg),
1333			   get_order(ctx->sg->length));
1334
1335	if (test_bit(HASH_FLAGS_SGS_ALLOCED, &dd->hash_flags))
1336		kfree(ctx->sg);
1337
1338	ctx->sg = NULL;
1339	dd->hash_flags &= ~(BIT(HASH_FLAGS_SGS_ALLOCED) |
1340			    BIT(HASH_FLAGS_SGS_COPIED));
1341
1342	if (!err && !ctx->error) {
1343		s5p_hash_read_msg(req);
1344		if (test_bit(HASH_FLAGS_FINAL, &dd->hash_flags))
1345			s5p_hash_finish(req);
1346	} else {
1347		ctx->error = true;
1348	}
1349
1350	spin_lock_irqsave(&dd->hash_lock, flags);
1351	dd->hash_flags &= ~(BIT(HASH_FLAGS_BUSY) | BIT(HASH_FLAGS_FINAL) |
1352			    BIT(HASH_FLAGS_DMA_READY) |
1353			    BIT(HASH_FLAGS_OUTPUT_READY));
1354	spin_unlock_irqrestore(&dd->hash_lock, flags);
1355
1356	if (req->base.complete)
1357		ahash_request_complete(req, err);
1358}
1359
1360/**
1361 * s5p_hash_handle_queue() - handle hash queue
1362 * @dd:		device s5p_aes_dev
1363 * @req:	AHASH request
1364 *
1365 * If req!=NULL enqueue it on dd->queue, if FLAGS_BUSY is not set on the
1366 * device then processes the first request from the dd->queue
1367 *
1368 * Returns: see s5p_hash_final below.
1369 */
1370static int s5p_hash_handle_queue(struct s5p_aes_dev *dd,
1371				 struct ahash_request *req)
1372{
1373	struct crypto_async_request *async_req, *backlog;
1374	struct s5p_hash_reqctx *ctx;
1375	unsigned long flags;
1376	int err = 0, ret = 0;
1377
1378retry:
1379	spin_lock_irqsave(&dd->hash_lock, flags);
1380	if (req)
1381		ret = ahash_enqueue_request(&dd->hash_queue, req);
1382
1383	if (test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1384		spin_unlock_irqrestore(&dd->hash_lock, flags);
1385		return ret;
1386	}
1387
1388	backlog = crypto_get_backlog(&dd->hash_queue);
1389	async_req = crypto_dequeue_request(&dd->hash_queue);
1390	if (async_req)
1391		set_bit(HASH_FLAGS_BUSY, &dd->hash_flags);
1392
1393	spin_unlock_irqrestore(&dd->hash_lock, flags);
1394
1395	if (!async_req)
1396		return ret;
1397
1398	if (backlog)
1399		crypto_request_complete(backlog, -EINPROGRESS);
1400
1401	req = ahash_request_cast(async_req);
1402	dd->hash_req = req;
1403	ctx = ahash_request_ctx(req);
1404
1405	err = s5p_hash_prepare_request(req, ctx->op_update);
1406	if (err || !ctx->total)
1407		goto out;
1408
1409	dev_dbg(dd->dev, "handling new req, op_update: %u, nbytes: %d\n",
1410		ctx->op_update, req->nbytes);
1411
1412	s5p_ahash_dma_init(dd, SSS_HASHIN_INDEPENDENT);
1413	if (ctx->digcnt)
1414		s5p_hash_write_iv(req); /* restore hash IV */
1415
1416	if (ctx->op_update) { /* HASH_OP_UPDATE */
1417		err = s5p_hash_xmit_dma(dd, ctx->total, ctx->finup);
1418		if (err != -EINPROGRESS && ctx->finup && !ctx->error)
1419			/* no final() after finup() */
1420			err = s5p_hash_xmit_dma(dd, ctx->total, true);
1421	} else { /* HASH_OP_FINAL */
1422		err = s5p_hash_xmit_dma(dd, ctx->total, true);
1423	}
1424out:
1425	if (err != -EINPROGRESS) {
1426		/* hash_tasklet_cb will not finish it, so do it here */
1427		s5p_hash_finish_req(req, err);
1428		req = NULL;
1429
1430		/*
1431		 * Execute next request immediately if there is anything
1432		 * in queue.
1433		 */
1434		goto retry;
1435	}
1436
1437	return ret;
1438}
1439
1440/**
1441 * s5p_hash_tasklet_cb() - hash tasklet
1442 * @data:	ptr to s5p_aes_dev
1443 */
1444static void s5p_hash_tasklet_cb(unsigned long data)
1445{
1446	struct s5p_aes_dev *dd = (struct s5p_aes_dev *)data;
1447
1448	if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1449		s5p_hash_handle_queue(dd, NULL);
1450		return;
1451	}
1452
1453	if (test_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags)) {
1454		if (test_and_clear_bit(HASH_FLAGS_DMA_ACTIVE,
1455				       &dd->hash_flags)) {
1456			s5p_hash_update_dma_stop(dd);
1457		}
1458
1459		if (test_and_clear_bit(HASH_FLAGS_OUTPUT_READY,
1460				       &dd->hash_flags)) {
1461			/* hash or semi-hash ready */
1462			clear_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags);
1463			goto finish;
1464		}
1465	}
1466
1467	return;
1468
1469finish:
1470	/* finish curent request */
1471	s5p_hash_finish_req(dd->hash_req, 0);
1472
1473	/* If we are not busy, process next req */
1474	if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags))
1475		s5p_hash_handle_queue(dd, NULL);
1476}
1477
1478/**
1479 * s5p_hash_enqueue() - enqueue request
1480 * @req:	AHASH request
1481 * @op:		operation UPDATE (true) or FINAL (false)
1482 *
1483 * Returns: see s5p_hash_final below.
1484 */
1485static int s5p_hash_enqueue(struct ahash_request *req, bool op)
1486{
1487	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1488	struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1489
1490	ctx->op_update = op;
1491
1492	return s5p_hash_handle_queue(tctx->dd, req);
1493}
1494
1495/**
1496 * s5p_hash_update() - process the hash input data
1497 * @req:	AHASH request
1498 *
1499 * If request will fit in buffer, copy it and return immediately
1500 * else enqueue it with OP_UPDATE.
1501 *
1502 * Returns: see s5p_hash_final below.
1503 */
1504static int s5p_hash_update(struct ahash_request *req)
1505{
1506	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1507
1508	if (!req->nbytes)
1509		return 0;
1510
1511	if (ctx->bufcnt + req->nbytes <= BUFLEN) {
1512		scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1513					 0, req->nbytes, 0);
1514		ctx->bufcnt += req->nbytes;
1515		return 0;
1516	}
1517
1518	return s5p_hash_enqueue(req, true); /* HASH_OP_UPDATE */
1519}
1520
1521/**
1522 * s5p_hash_final() - close up hash and calculate digest
1523 * @req:	AHASH request
1524 *
1525 * Note: in final req->src do not have any data, and req->nbytes can be
1526 * non-zero.
1527 *
1528 * If there were no input data processed yet and the buffered hash data is
1529 * less than BUFLEN (64) then calculate the final hash immediately by using
1530 * SW algorithm fallback.
1531 *
1532 * Otherwise enqueues the current AHASH request with OP_FINAL operation op
1533 * and finalize hash message in HW. Note that if digcnt!=0 then there were
1534 * previous update op, so there are always some buffered bytes in ctx->buffer,
1535 * which means that ctx->bufcnt!=0
1536 *
1537 * Returns:
1538 * 0 if the request has been processed immediately,
1539 * -EINPROGRESS if the operation has been queued for later execution or is set
1540 *		to processing by HW,
1541 * -EBUSY if queue is full and request should be resubmitted later,
1542 * other negative values denotes an error.
1543 */
1544static int s5p_hash_final(struct ahash_request *req)
1545{
1546	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1547
1548	ctx->finup = true;
1549	if (ctx->error)
1550		return -EINVAL; /* uncompleted hash is not needed */
1551
1552	if (!ctx->digcnt && ctx->bufcnt < BUFLEN) {
1553		struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1554
1555		return crypto_shash_tfm_digest(tctx->fallback, ctx->buffer,
1556					       ctx->bufcnt, req->result);
1557	}
1558
1559	return s5p_hash_enqueue(req, false); /* HASH_OP_FINAL */
1560}
1561
1562/**
1563 * s5p_hash_finup() - process last req->src and calculate digest
1564 * @req:	AHASH request containing the last update data
1565 *
1566 * Return values: see s5p_hash_final above.
1567 */
1568static int s5p_hash_finup(struct ahash_request *req)
1569{
1570	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1571	int err1, err2;
1572
1573	ctx->finup = true;
1574
1575	err1 = s5p_hash_update(req);
1576	if (err1 == -EINPROGRESS || err1 == -EBUSY)
1577		return err1;
1578
1579	/*
1580	 * final() has to be always called to cleanup resources even if
1581	 * update() failed, except EINPROGRESS or calculate digest for small
1582	 * size
1583	 */
1584	err2 = s5p_hash_final(req);
1585
1586	return err1 ?: err2;
1587}
1588
1589/**
1590 * s5p_hash_init() - initialize AHASH request contex
1591 * @req:	AHASH request
1592 *
1593 * Init async hash request context.
1594 */
1595static int s5p_hash_init(struct ahash_request *req)
1596{
1597	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1598	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1599	struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1600
1601	ctx->dd = tctx->dd;
1602	ctx->error = false;
1603	ctx->finup = false;
1604	ctx->bufcnt = 0;
1605	ctx->digcnt = 0;
1606	ctx->total = 0;
1607	ctx->skip = 0;
1608
1609	dev_dbg(tctx->dd->dev, "init: digest size: %d\n",
1610		crypto_ahash_digestsize(tfm));
1611
1612	switch (crypto_ahash_digestsize(tfm)) {
1613	case MD5_DIGEST_SIZE:
1614		ctx->engine = SSS_HASH_ENGINE_MD5;
1615		ctx->nregs = HASH_MD5_MAX_REG;
1616		break;
1617	case SHA1_DIGEST_SIZE:
1618		ctx->engine = SSS_HASH_ENGINE_SHA1;
1619		ctx->nregs = HASH_SHA1_MAX_REG;
1620		break;
1621	case SHA256_DIGEST_SIZE:
1622		ctx->engine = SSS_HASH_ENGINE_SHA256;
1623		ctx->nregs = HASH_SHA256_MAX_REG;
1624		break;
1625	default:
1626		ctx->error = true;
1627		return -EINVAL;
1628	}
1629
1630	return 0;
1631}
1632
1633/**
1634 * s5p_hash_digest - calculate digest from req->src
1635 * @req:	AHASH request
1636 *
1637 * Return values: see s5p_hash_final above.
1638 */
1639static int s5p_hash_digest(struct ahash_request *req)
1640{
1641	return s5p_hash_init(req) ?: s5p_hash_finup(req);
1642}
1643
1644/**
1645 * s5p_hash_cra_init_alg - init crypto alg transformation
1646 * @tfm:	crypto transformation
1647 */
1648static int s5p_hash_cra_init_alg(struct crypto_tfm *tfm)
1649{
1650	struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1651	const char *alg_name = crypto_tfm_alg_name(tfm);
1652
1653	tctx->dd = s5p_dev;
1654	/* Allocate a fallback and abort if it failed. */
1655	tctx->fallback = crypto_alloc_shash(alg_name, 0,
1656					    CRYPTO_ALG_NEED_FALLBACK);
1657	if (IS_ERR(tctx->fallback)) {
1658		pr_err("fallback alloc fails for '%s'\n", alg_name);
1659		return PTR_ERR(tctx->fallback);
1660	}
1661
1662	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1663				 sizeof(struct s5p_hash_reqctx) + BUFLEN);
1664
1665	return 0;
1666}
1667
1668/**
1669 * s5p_hash_cra_init - init crypto tfm
1670 * @tfm:	crypto transformation
1671 */
1672static int s5p_hash_cra_init(struct crypto_tfm *tfm)
1673{
1674	return s5p_hash_cra_init_alg(tfm);
1675}
1676
1677/**
1678 * s5p_hash_cra_exit - exit crypto tfm
1679 * @tfm:	crypto transformation
1680 *
1681 * free allocated fallback
1682 */
1683static void s5p_hash_cra_exit(struct crypto_tfm *tfm)
1684{
1685	struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1686
1687	crypto_free_shash(tctx->fallback);
1688	tctx->fallback = NULL;
1689}
1690
1691/**
1692 * s5p_hash_export - export hash state
1693 * @req:	AHASH request
1694 * @out:	buffer for exported state
1695 */
1696static int s5p_hash_export(struct ahash_request *req, void *out)
1697{
1698	const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1699
1700	memcpy(out, ctx, sizeof(*ctx) + ctx->bufcnt);
1701
1702	return 0;
1703}
1704
1705/**
1706 * s5p_hash_import - import hash state
1707 * @req:	AHASH request
1708 * @in:		buffer with state to be imported from
1709 */
1710static int s5p_hash_import(struct ahash_request *req, const void *in)
1711{
1712	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1713	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1714	struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1715	const struct s5p_hash_reqctx *ctx_in = in;
1716
1717	memcpy(ctx, in, sizeof(*ctx) + BUFLEN);
1718	if (ctx_in->bufcnt > BUFLEN) {
1719		ctx->error = true;
1720		return -EINVAL;
1721	}
1722
1723	ctx->dd = tctx->dd;
1724	ctx->error = false;
1725
1726	return 0;
1727}
1728
1729static struct ahash_alg algs_sha1_md5_sha256[] = {
1730{
1731	.init		= s5p_hash_init,
1732	.update		= s5p_hash_update,
1733	.final		= s5p_hash_final,
1734	.finup		= s5p_hash_finup,
1735	.digest		= s5p_hash_digest,
1736	.export		= s5p_hash_export,
1737	.import		= s5p_hash_import,
1738	.halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1739	.halg.digestsize	= SHA1_DIGEST_SIZE,
1740	.halg.base	= {
1741		.cra_name		= "sha1",
1742		.cra_driver_name	= "exynos-sha1",
1743		.cra_priority		= 100,
1744		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1745					  CRYPTO_ALG_ASYNC |
1746					  CRYPTO_ALG_NEED_FALLBACK,
1747		.cra_blocksize		= HASH_BLOCK_SIZE,
1748		.cra_ctxsize		= sizeof(struct s5p_hash_ctx),
1749		.cra_alignmask		= SSS_HASH_DMA_ALIGN_MASK,
1750		.cra_module		= THIS_MODULE,
1751		.cra_init		= s5p_hash_cra_init,
1752		.cra_exit		= s5p_hash_cra_exit,
1753	}
1754},
1755{
1756	.init		= s5p_hash_init,
1757	.update		= s5p_hash_update,
1758	.final		= s5p_hash_final,
1759	.finup		= s5p_hash_finup,
1760	.digest		= s5p_hash_digest,
1761	.export		= s5p_hash_export,
1762	.import		= s5p_hash_import,
1763	.halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1764	.halg.digestsize	= MD5_DIGEST_SIZE,
1765	.halg.base	= {
1766		.cra_name		= "md5",
1767		.cra_driver_name	= "exynos-md5",
1768		.cra_priority		= 100,
1769		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1770					  CRYPTO_ALG_ASYNC |
1771					  CRYPTO_ALG_NEED_FALLBACK,
1772		.cra_blocksize		= HASH_BLOCK_SIZE,
1773		.cra_ctxsize		= sizeof(struct s5p_hash_ctx),
1774		.cra_alignmask		= SSS_HASH_DMA_ALIGN_MASK,
1775		.cra_module		= THIS_MODULE,
1776		.cra_init		= s5p_hash_cra_init,
1777		.cra_exit		= s5p_hash_cra_exit,
1778	}
1779},
1780{
1781	.init		= s5p_hash_init,
1782	.update		= s5p_hash_update,
1783	.final		= s5p_hash_final,
1784	.finup		= s5p_hash_finup,
1785	.digest		= s5p_hash_digest,
1786	.export		= s5p_hash_export,
1787	.import		= s5p_hash_import,
1788	.halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1789	.halg.digestsize	= SHA256_DIGEST_SIZE,
1790	.halg.base	= {
1791		.cra_name		= "sha256",
1792		.cra_driver_name	= "exynos-sha256",
1793		.cra_priority		= 100,
1794		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1795					  CRYPTO_ALG_ASYNC |
1796					  CRYPTO_ALG_NEED_FALLBACK,
1797		.cra_blocksize		= HASH_BLOCK_SIZE,
1798		.cra_ctxsize		= sizeof(struct s5p_hash_ctx),
1799		.cra_alignmask		= SSS_HASH_DMA_ALIGN_MASK,
1800		.cra_module		= THIS_MODULE,
1801		.cra_init		= s5p_hash_cra_init,
1802		.cra_exit		= s5p_hash_cra_exit,
1803	}
1804}
1805
1806};
1807
1808static void s5p_set_aes(struct s5p_aes_dev *dev,
1809			const u8 *key, const u8 *iv, const u8 *ctr,
1810			unsigned int keylen)
1811{
1812	void __iomem *keystart;
1813
1814	if (iv)
1815		memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), iv,
1816			    AES_BLOCK_SIZE);
1817
1818	if (ctr)
1819		memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), ctr,
1820			    AES_BLOCK_SIZE);
1821
1822	if (keylen == AES_KEYSIZE_256)
1823		keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(0);
1824	else if (keylen == AES_KEYSIZE_192)
1825		keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(2);
1826	else
1827		keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(4);
1828
1829	memcpy_toio(keystart, key, keylen);
1830}
1831
1832static bool s5p_is_sg_aligned(struct scatterlist *sg)
1833{
1834	while (sg) {
1835		if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE))
1836			return false;
1837		sg = sg_next(sg);
1838	}
1839
1840	return true;
1841}
1842
1843static int s5p_set_indata_start(struct s5p_aes_dev *dev,
1844				struct skcipher_request *req)
1845{
1846	struct scatterlist *sg;
1847	int err;
1848
1849	dev->sg_src_cpy = NULL;
1850	sg = req->src;
1851	if (!s5p_is_sg_aligned(sg)) {
1852		dev_dbg(dev->dev,
1853			"At least one unaligned source scatter list, making a copy\n");
1854		err = s5p_make_sg_cpy(dev, sg, &dev->sg_src_cpy);
1855		if (err)
1856			return err;
1857
1858		sg = dev->sg_src_cpy;
1859	}
1860
1861	err = s5p_set_indata(dev, sg);
1862	if (err) {
1863		s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
1864		return err;
1865	}
1866
1867	return 0;
1868}
1869
1870static int s5p_set_outdata_start(struct s5p_aes_dev *dev,
1871				 struct skcipher_request *req)
1872{
1873	struct scatterlist *sg;
1874	int err;
1875
1876	dev->sg_dst_cpy = NULL;
1877	sg = req->dst;
1878	if (!s5p_is_sg_aligned(sg)) {
1879		dev_dbg(dev->dev,
1880			"At least one unaligned dest scatter list, making a copy\n");
1881		err = s5p_make_sg_cpy(dev, sg, &dev->sg_dst_cpy);
1882		if (err)
1883			return err;
1884
1885		sg = dev->sg_dst_cpy;
1886	}
1887
1888	err = s5p_set_outdata(dev, sg);
1889	if (err) {
1890		s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
1891		return err;
1892	}
1893
1894	return 0;
1895}
1896
1897static void s5p_aes_crypt_start(struct s5p_aes_dev *dev, unsigned long mode)
1898{
1899	struct skcipher_request *req = dev->req;
1900	u32 aes_control;
1901	unsigned long flags;
1902	int err;
1903	u8 *iv, *ctr;
1904
1905	/* This sets bit [13:12] to 00, which selects 128-bit counter */
1906	aes_control = SSS_AES_KEY_CHANGE_MODE;
1907	if (mode & FLAGS_AES_DECRYPT)
1908		aes_control |= SSS_AES_MODE_DECRYPT;
1909
1910	if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CBC) {
1911		aes_control |= SSS_AES_CHAIN_MODE_CBC;
1912		iv = req->iv;
1913		ctr = NULL;
1914	} else if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CTR) {
1915		aes_control |= SSS_AES_CHAIN_MODE_CTR;
1916		iv = NULL;
1917		ctr = req->iv;
1918	} else {
1919		iv = NULL; /* AES_ECB */
1920		ctr = NULL;
1921	}
1922
1923	if (dev->ctx->keylen == AES_KEYSIZE_192)
1924		aes_control |= SSS_AES_KEY_SIZE_192;
1925	else if (dev->ctx->keylen == AES_KEYSIZE_256)
1926		aes_control |= SSS_AES_KEY_SIZE_256;
1927
1928	aes_control |= SSS_AES_FIFO_MODE;
1929
1930	/* as a variant it is possible to use byte swapping on DMA side */
1931	aes_control |= SSS_AES_BYTESWAP_DI
1932		    |  SSS_AES_BYTESWAP_DO
1933		    |  SSS_AES_BYTESWAP_IV
1934		    |  SSS_AES_BYTESWAP_KEY
1935		    |  SSS_AES_BYTESWAP_CNT;
1936
1937	spin_lock_irqsave(&dev->lock, flags);
1938
1939	SSS_WRITE(dev, FCINTENCLR,
1940		  SSS_FCINTENCLR_BTDMAINTENCLR | SSS_FCINTENCLR_BRDMAINTENCLR);
1941	SSS_WRITE(dev, FCFIFOCTRL, 0x00);
1942
1943	err = s5p_set_indata_start(dev, req);
1944	if (err)
1945		goto indata_error;
1946
1947	err = s5p_set_outdata_start(dev, req);
1948	if (err)
1949		goto outdata_error;
1950
1951	SSS_AES_WRITE(dev, AES_CONTROL, aes_control);
1952	s5p_set_aes(dev, dev->ctx->aes_key, iv, ctr, dev->ctx->keylen);
1953
1954	s5p_set_dma_indata(dev,  dev->sg_src);
1955	s5p_set_dma_outdata(dev, dev->sg_dst);
1956
1957	SSS_WRITE(dev, FCINTENSET,
1958		  SSS_FCINTENSET_BTDMAINTENSET | SSS_FCINTENSET_BRDMAINTENSET);
1959
1960	spin_unlock_irqrestore(&dev->lock, flags);
1961
1962	return;
1963
1964outdata_error:
1965	s5p_unset_indata(dev);
1966
1967indata_error:
1968	s5p_sg_done(dev);
1969	dev->busy = false;
1970	spin_unlock_irqrestore(&dev->lock, flags);
1971	s5p_aes_complete(req, err);
1972}
1973
1974static void s5p_tasklet_cb(unsigned long data)
1975{
1976	struct s5p_aes_dev *dev = (struct s5p_aes_dev *)data;
1977	struct crypto_async_request *async_req, *backlog;
1978	struct s5p_aes_reqctx *reqctx;
1979	unsigned long flags;
1980
1981	spin_lock_irqsave(&dev->lock, flags);
1982	backlog   = crypto_get_backlog(&dev->queue);
1983	async_req = crypto_dequeue_request(&dev->queue);
1984
1985	if (!async_req) {
1986		dev->busy = false;
1987		spin_unlock_irqrestore(&dev->lock, flags);
1988		return;
1989	}
1990	spin_unlock_irqrestore(&dev->lock, flags);
1991
1992	if (backlog)
1993		crypto_request_complete(backlog, -EINPROGRESS);
1994
1995	dev->req = skcipher_request_cast(async_req);
1996	dev->ctx = crypto_tfm_ctx(dev->req->base.tfm);
1997	reqctx   = skcipher_request_ctx(dev->req);
1998
1999	s5p_aes_crypt_start(dev, reqctx->mode);
2000}
2001
2002static int s5p_aes_handle_req(struct s5p_aes_dev *dev,
2003			      struct skcipher_request *req)
2004{
2005	unsigned long flags;
2006	int err;
2007
2008	spin_lock_irqsave(&dev->lock, flags);
2009	err = crypto_enqueue_request(&dev->queue, &req->base);
2010	if (dev->busy) {
2011		spin_unlock_irqrestore(&dev->lock, flags);
2012		return err;
2013	}
2014	dev->busy = true;
2015
2016	spin_unlock_irqrestore(&dev->lock, flags);
2017
2018	tasklet_schedule(&dev->tasklet);
2019
2020	return err;
2021}
2022
2023static int s5p_aes_crypt(struct skcipher_request *req, unsigned long mode)
2024{
2025	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
2026	struct s5p_aes_reqctx *reqctx = skcipher_request_ctx(req);
2027	struct s5p_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
2028	struct s5p_aes_dev *dev = ctx->dev;
2029
2030	if (!req->cryptlen)
2031		return 0;
2032
2033	if (!IS_ALIGNED(req->cryptlen, AES_BLOCK_SIZE) &&
2034			((mode & FLAGS_AES_MODE_MASK) != FLAGS_AES_CTR)) {
2035		dev_dbg(dev->dev, "request size is not exact amount of AES blocks\n");
2036		return -EINVAL;
2037	}
2038
2039	reqctx->mode = mode;
2040
2041	return s5p_aes_handle_req(dev, req);
2042}
2043
2044static int s5p_aes_setkey(struct crypto_skcipher *cipher,
2045			  const u8 *key, unsigned int keylen)
2046{
2047	struct crypto_tfm *tfm = crypto_skcipher_tfm(cipher);
2048	struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
2049
2050	if (keylen != AES_KEYSIZE_128 &&
2051	    keylen != AES_KEYSIZE_192 &&
2052	    keylen != AES_KEYSIZE_256)
2053		return -EINVAL;
2054
2055	memcpy(ctx->aes_key, key, keylen);
2056	ctx->keylen = keylen;
2057
2058	return 0;
2059}
2060
2061static int s5p_aes_ecb_encrypt(struct skcipher_request *req)
2062{
2063	return s5p_aes_crypt(req, 0);
2064}
2065
2066static int s5p_aes_ecb_decrypt(struct skcipher_request *req)
2067{
2068	return s5p_aes_crypt(req, FLAGS_AES_DECRYPT);
2069}
2070
2071static int s5p_aes_cbc_encrypt(struct skcipher_request *req)
2072{
2073	return s5p_aes_crypt(req, FLAGS_AES_CBC);
2074}
2075
2076static int s5p_aes_cbc_decrypt(struct skcipher_request *req)
2077{
2078	return s5p_aes_crypt(req, FLAGS_AES_DECRYPT | FLAGS_AES_CBC);
2079}
2080
2081static int s5p_aes_ctr_crypt(struct skcipher_request *req)
2082{
2083	return s5p_aes_crypt(req, FLAGS_AES_CTR);
2084}
2085
2086static int s5p_aes_init_tfm(struct crypto_skcipher *tfm)
2087{
2088	struct s5p_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
2089
2090	ctx->dev = s5p_dev;
2091	crypto_skcipher_set_reqsize(tfm, sizeof(struct s5p_aes_reqctx));
2092
2093	return 0;
2094}
2095
2096static struct skcipher_alg algs[] = {
2097	{
2098		.base.cra_name		= "ecb(aes)",
2099		.base.cra_driver_name	= "ecb-aes-s5p",
2100		.base.cra_priority	= 100,
2101		.base.cra_flags		= CRYPTO_ALG_ASYNC |
2102					  CRYPTO_ALG_KERN_DRIVER_ONLY,
2103		.base.cra_blocksize	= AES_BLOCK_SIZE,
2104		.base.cra_ctxsize	= sizeof(struct s5p_aes_ctx),
2105		.base.cra_alignmask	= 0x0f,
2106		.base.cra_module	= THIS_MODULE,
2107
2108		.min_keysize		= AES_MIN_KEY_SIZE,
2109		.max_keysize		= AES_MAX_KEY_SIZE,
2110		.setkey			= s5p_aes_setkey,
2111		.encrypt		= s5p_aes_ecb_encrypt,
2112		.decrypt		= s5p_aes_ecb_decrypt,
2113		.init			= s5p_aes_init_tfm,
2114	},
2115	{
2116		.base.cra_name		= "cbc(aes)",
2117		.base.cra_driver_name	= "cbc-aes-s5p",
2118		.base.cra_priority	= 100,
2119		.base.cra_flags		= CRYPTO_ALG_ASYNC |
2120					  CRYPTO_ALG_KERN_DRIVER_ONLY,
2121		.base.cra_blocksize	= AES_BLOCK_SIZE,
2122		.base.cra_ctxsize	= sizeof(struct s5p_aes_ctx),
2123		.base.cra_alignmask	= 0x0f,
2124		.base.cra_module	= THIS_MODULE,
2125
2126		.min_keysize		= AES_MIN_KEY_SIZE,
2127		.max_keysize		= AES_MAX_KEY_SIZE,
2128		.ivsize			= AES_BLOCK_SIZE,
2129		.setkey			= s5p_aes_setkey,
2130		.encrypt		= s5p_aes_cbc_encrypt,
2131		.decrypt		= s5p_aes_cbc_decrypt,
2132		.init			= s5p_aes_init_tfm,
2133	},
2134	{
2135		.base.cra_name		= "ctr(aes)",
2136		.base.cra_driver_name	= "ctr-aes-s5p",
2137		.base.cra_priority	= 100,
2138		.base.cra_flags		= CRYPTO_ALG_ASYNC |
2139					  CRYPTO_ALG_KERN_DRIVER_ONLY,
2140		.base.cra_blocksize	= 1,
2141		.base.cra_ctxsize	= sizeof(struct s5p_aes_ctx),
2142		.base.cra_alignmask	= 0x0f,
2143		.base.cra_module	= THIS_MODULE,
2144
2145		.min_keysize		= AES_MIN_KEY_SIZE,
2146		.max_keysize		= AES_MAX_KEY_SIZE,
2147		.ivsize			= AES_BLOCK_SIZE,
2148		.setkey			= s5p_aes_setkey,
2149		.encrypt		= s5p_aes_ctr_crypt,
2150		.decrypt		= s5p_aes_ctr_crypt,
2151		.init			= s5p_aes_init_tfm,
2152	},
2153};
2154
2155static int s5p_aes_probe(struct platform_device *pdev)
2156{
2157	struct device *dev = &pdev->dev;
2158	int i, j, err;
2159	const struct samsung_aes_variant *variant;
2160	struct s5p_aes_dev *pdata;
2161	struct resource *res;
2162	unsigned int hash_i;
2163
2164	if (s5p_dev)
2165		return -EEXIST;
2166
2167	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2168	if (!pdata)
2169		return -ENOMEM;
2170
2171	variant = find_s5p_sss_version(pdev);
2172	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2173	if (!res)
2174		return -EINVAL;
2175
2176	/*
2177	 * Note: HASH and PRNG uses the same registers in secss, avoid
2178	 * overwrite each other. This will drop HASH when CONFIG_EXYNOS_RNG
2179	 * is enabled in config. We need larger size for HASH registers in
2180	 * secss, current describe only AES/DES
2181	 */
2182	if (IS_ENABLED(CONFIG_CRYPTO_DEV_EXYNOS_HASH)) {
2183		if (variant == &exynos_aes_data) {
2184			res->end += 0x300;
2185			pdata->use_hash = true;
2186		}
2187	}
2188
2189	pdata->res = res;
2190	pdata->ioaddr = devm_ioremap_resource(dev, res);
2191	if (IS_ERR(pdata->ioaddr)) {
2192		if (!pdata->use_hash)
2193			return PTR_ERR(pdata->ioaddr);
2194		/* try AES without HASH */
2195		res->end -= 0x300;
2196		pdata->use_hash = false;
2197		pdata->ioaddr = devm_ioremap_resource(dev, res);
2198		if (IS_ERR(pdata->ioaddr))
2199			return PTR_ERR(pdata->ioaddr);
2200	}
2201
2202	pdata->clk = devm_clk_get(dev, variant->clk_names[0]);
2203	if (IS_ERR(pdata->clk))
2204		return dev_err_probe(dev, PTR_ERR(pdata->clk),
2205				     "failed to find secss clock %s\n",
2206				     variant->clk_names[0]);
2207
2208	err = clk_prepare_enable(pdata->clk);
2209	if (err < 0) {
2210		dev_err(dev, "Enabling clock %s failed, err %d\n",
2211			variant->clk_names[0], err);
2212		return err;
2213	}
2214
2215	if (variant->clk_names[1]) {
2216		pdata->pclk = devm_clk_get(dev, variant->clk_names[1]);
2217		if (IS_ERR(pdata->pclk)) {
2218			err = dev_err_probe(dev, PTR_ERR(pdata->pclk),
2219					    "failed to find clock %s\n",
2220					    variant->clk_names[1]);
2221			goto err_clk;
2222		}
2223
2224		err = clk_prepare_enable(pdata->pclk);
2225		if (err < 0) {
2226			dev_err(dev, "Enabling clock %s failed, err %d\n",
2227				variant->clk_names[0], err);
2228			goto err_clk;
2229		}
2230	} else {
2231		pdata->pclk = NULL;
2232	}
2233
2234	spin_lock_init(&pdata->lock);
2235	spin_lock_init(&pdata->hash_lock);
2236
2237	pdata->aes_ioaddr = pdata->ioaddr + variant->aes_offset;
2238	pdata->io_hash_base = pdata->ioaddr + variant->hash_offset;
2239
2240	pdata->irq_fc = platform_get_irq(pdev, 0);
2241	if (pdata->irq_fc < 0) {
2242		err = pdata->irq_fc;
2243		dev_warn(dev, "feed control interrupt is not available.\n");
2244		goto err_irq;
2245	}
2246	err = devm_request_threaded_irq(dev, pdata->irq_fc, NULL,
2247					s5p_aes_interrupt, IRQF_ONESHOT,
2248					pdev->name, pdev);
2249	if (err < 0) {
2250		dev_warn(dev, "feed control interrupt is not available.\n");
2251		goto err_irq;
2252	}
2253
2254	pdata->busy = false;
2255	pdata->dev = dev;
2256	platform_set_drvdata(pdev, pdata);
2257	s5p_dev = pdata;
2258
2259	tasklet_init(&pdata->tasklet, s5p_tasklet_cb, (unsigned long)pdata);
2260	crypto_init_queue(&pdata->queue, CRYPTO_QUEUE_LEN);
2261
2262	for (i = 0; i < ARRAY_SIZE(algs); i++) {
2263		err = crypto_register_skcipher(&algs[i]);
2264		if (err)
2265			goto err_algs;
2266	}
2267
2268	if (pdata->use_hash) {
2269		tasklet_init(&pdata->hash_tasklet, s5p_hash_tasklet_cb,
2270			     (unsigned long)pdata);
2271		crypto_init_queue(&pdata->hash_queue, SSS_HASH_QUEUE_LENGTH);
2272
2273		for (hash_i = 0; hash_i < ARRAY_SIZE(algs_sha1_md5_sha256);
2274		     hash_i++) {
2275			struct ahash_alg *alg;
2276
2277			alg = &algs_sha1_md5_sha256[hash_i];
2278			err = crypto_register_ahash(alg);
2279			if (err) {
2280				dev_err(dev, "can't register '%s': %d\n",
2281					alg->halg.base.cra_driver_name, err);
2282				goto err_hash;
2283			}
2284		}
2285	}
2286
2287	dev_info(dev, "s5p-sss driver registered\n");
2288
2289	return 0;
2290
2291err_hash:
2292	for (j = hash_i - 1; j >= 0; j--)
2293		crypto_unregister_ahash(&algs_sha1_md5_sha256[j]);
2294
2295	tasklet_kill(&pdata->hash_tasklet);
2296	res->end -= 0x300;
2297
2298err_algs:
2299	if (i < ARRAY_SIZE(algs))
2300		dev_err(dev, "can't register '%s': %d\n", algs[i].base.cra_name,
2301			err);
2302
2303	for (j = 0; j < i; j++)
2304		crypto_unregister_skcipher(&algs[j]);
2305
2306	tasklet_kill(&pdata->tasklet);
2307
2308err_irq:
2309	clk_disable_unprepare(pdata->pclk);
2310
2311err_clk:
2312	clk_disable_unprepare(pdata->clk);
2313	s5p_dev = NULL;
2314
2315	return err;
2316}
2317
2318static int s5p_aes_remove(struct platform_device *pdev)
2319{
2320	struct s5p_aes_dev *pdata = platform_get_drvdata(pdev);
2321	int i;
2322
2323	for (i = 0; i < ARRAY_SIZE(algs); i++)
2324		crypto_unregister_skcipher(&algs[i]);
2325
2326	tasklet_kill(&pdata->tasklet);
2327	if (pdata->use_hash) {
2328		for (i = ARRAY_SIZE(algs_sha1_md5_sha256) - 1; i >= 0; i--)
2329			crypto_unregister_ahash(&algs_sha1_md5_sha256[i]);
2330
2331		pdata->res->end -= 0x300;
2332		tasklet_kill(&pdata->hash_tasklet);
2333		pdata->use_hash = false;
2334	}
2335
2336	clk_disable_unprepare(pdata->pclk);
2337
2338	clk_disable_unprepare(pdata->clk);
2339	s5p_dev = NULL;
2340
2341	return 0;
2342}
2343
2344static struct platform_driver s5p_aes_crypto = {
2345	.probe	= s5p_aes_probe,
2346	.remove	= s5p_aes_remove,
2347	.driver	= {
2348		.name	= "s5p-secss",
2349		.of_match_table = s5p_sss_dt_match,
2350	},
2351};
2352
2353module_platform_driver(s5p_aes_crypto);
2354
2355MODULE_DESCRIPTION("S5PV210 AES hw acceleration support.");
2356MODULE_LICENSE("GPL v2");
2357MODULE_AUTHOR("Vladimir Zapolskiy <vzapolskiy@gmail.com>");
2358MODULE_AUTHOR("Kamil Konieczny <k.konieczny@partner.samsung.com>");
2359