1// SPDX-License-Identifier: GPL-2.0-only
2/* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
3 *
4 * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
5 */
6
7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9#include <linux/kernel.h>
10#include <linux/module.h>
11#include <linux/of.h>
12#include <linux/of_address.h>
13#include <linux/platform_device.h>
14#include <linux/cpumask.h>
15#include <linux/slab.h>
16#include <linux/interrupt.h>
17#include <linux/crypto.h>
18#include <crypto/md5.h>
19#include <crypto/sha1.h>
20#include <crypto/sha2.h>
21#include <crypto/aes.h>
22#include <crypto/internal/des.h>
23#include <linux/mutex.h>
24#include <linux/delay.h>
25#include <linux/sched.h>
26
27#include <crypto/internal/hash.h>
28#include <crypto/internal/skcipher.h>
29#include <crypto/scatterwalk.h>
30#include <crypto/algapi.h>
31
32#include <asm/hypervisor.h>
33#include <asm/mdesc.h>
34
35#include "n2_core.h"
36
37#define DRV_MODULE_NAME		"n2_crypto"
38#define DRV_MODULE_VERSION	"0.2"
39#define DRV_MODULE_RELDATE	"July 28, 2011"
40
41static const char version[] =
42	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
43
44MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
45MODULE_DESCRIPTION("Niagara2 Crypto driver");
46MODULE_LICENSE("GPL");
47MODULE_VERSION(DRV_MODULE_VERSION);
48
49#define N2_CRA_PRIORITY		200
50
51static DEFINE_MUTEX(spu_lock);
52
53struct spu_queue {
54	cpumask_t		sharing;
55	unsigned long		qhandle;
56
57	spinlock_t		lock;
58	u8			q_type;
59	void			*q;
60	unsigned long		head;
61	unsigned long		tail;
62	struct list_head	jobs;
63
64	unsigned long		devino;
65
66	char			irq_name[32];
67	unsigned int		irq;
68
69	struct list_head	list;
70};
71
72struct spu_qreg {
73	struct spu_queue	*queue;
74	unsigned long		type;
75};
76
77static struct spu_queue **cpu_to_cwq;
78static struct spu_queue **cpu_to_mau;
79
80static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
81{
82	if (q->q_type == HV_NCS_QTYPE_MAU) {
83		off += MAU_ENTRY_SIZE;
84		if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
85			off = 0;
86	} else {
87		off += CWQ_ENTRY_SIZE;
88		if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
89			off = 0;
90	}
91	return off;
92}
93
94struct n2_request_common {
95	struct list_head	entry;
96	unsigned int		offset;
97};
98#define OFFSET_NOT_RUNNING	(~(unsigned int)0)
99
100/* An async job request records the final tail value it used in
101 * n2_request_common->offset, test to see if that offset is in
102 * the range old_head, new_head, inclusive.
103 */
104static inline bool job_finished(struct spu_queue *q, unsigned int offset,
105				unsigned long old_head, unsigned long new_head)
106{
107	if (old_head <= new_head) {
108		if (offset > old_head && offset <= new_head)
109			return true;
110	} else {
111		if (offset > old_head || offset <= new_head)
112			return true;
113	}
114	return false;
115}
116
117/* When the HEAD marker is unequal to the actual HEAD, we get
118 * a virtual device INO interrupt.  We should process the
119 * completed CWQ entries and adjust the HEAD marker to clear
120 * the IRQ.
121 */
122static irqreturn_t cwq_intr(int irq, void *dev_id)
123{
124	unsigned long off, new_head, hv_ret;
125	struct spu_queue *q = dev_id;
126
127	pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
128	       smp_processor_id(), q->qhandle);
129
130	spin_lock(&q->lock);
131
132	hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
133
134	pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
135	       smp_processor_id(), new_head, hv_ret);
136
137	for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
138		/* XXX ... XXX */
139	}
140
141	hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
142	if (hv_ret == HV_EOK)
143		q->head = new_head;
144
145	spin_unlock(&q->lock);
146
147	return IRQ_HANDLED;
148}
149
150static irqreturn_t mau_intr(int irq, void *dev_id)
151{
152	struct spu_queue *q = dev_id;
153	unsigned long head, hv_ret;
154
155	spin_lock(&q->lock);
156
157	pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
158	       smp_processor_id(), q->qhandle);
159
160	hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
161
162	pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
163	       smp_processor_id(), head, hv_ret);
164
165	sun4v_ncs_sethead_marker(q->qhandle, head);
166
167	spin_unlock(&q->lock);
168
169	return IRQ_HANDLED;
170}
171
172static void *spu_queue_next(struct spu_queue *q, void *cur)
173{
174	return q->q + spu_next_offset(q, cur - q->q);
175}
176
177static int spu_queue_num_free(struct spu_queue *q)
178{
179	unsigned long head = q->head;
180	unsigned long tail = q->tail;
181	unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
182	unsigned long diff;
183
184	if (head > tail)
185		diff = head - tail;
186	else
187		diff = (end - tail) + head;
188
189	return (diff / CWQ_ENTRY_SIZE) - 1;
190}
191
192static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
193{
194	int avail = spu_queue_num_free(q);
195
196	if (avail >= num_entries)
197		return q->q + q->tail;
198
199	return NULL;
200}
201
202static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
203{
204	unsigned long hv_ret, new_tail;
205
206	new_tail = spu_next_offset(q, last - q->q);
207
208	hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
209	if (hv_ret == HV_EOK)
210		q->tail = new_tail;
211	return hv_ret;
212}
213
214static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
215			     int enc_type, int auth_type,
216			     unsigned int hash_len,
217			     bool sfas, bool sob, bool eob, bool encrypt,
218			     int opcode)
219{
220	u64 word = (len - 1) & CONTROL_LEN;
221
222	word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
223	word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
224	word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
225	if (sfas)
226		word |= CONTROL_STORE_FINAL_AUTH_STATE;
227	if (sob)
228		word |= CONTROL_START_OF_BLOCK;
229	if (eob)
230		word |= CONTROL_END_OF_BLOCK;
231	if (encrypt)
232		word |= CONTROL_ENCRYPT;
233	if (hmac_key_len)
234		word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
235	if (hash_len)
236		word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
237
238	return word;
239}
240
241#if 0
242static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
243{
244	if (this_len >= 64 ||
245	    qp->head != qp->tail)
246		return true;
247	return false;
248}
249#endif
250
251struct n2_ahash_alg {
252	struct list_head	entry;
253	const u8		*hash_zero;
254	const u8		*hash_init;
255	u8			hw_op_hashsz;
256	u8			digest_size;
257	u8			auth_type;
258	u8			hmac_type;
259	struct ahash_alg	alg;
260};
261
262static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
263{
264	struct crypto_alg *alg = tfm->__crt_alg;
265	struct ahash_alg *ahash_alg;
266
267	ahash_alg = container_of(alg, struct ahash_alg, halg.base);
268
269	return container_of(ahash_alg, struct n2_ahash_alg, alg);
270}
271
272struct n2_hmac_alg {
273	const char		*child_alg;
274	struct n2_ahash_alg	derived;
275};
276
277static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
278{
279	struct crypto_alg *alg = tfm->__crt_alg;
280	struct ahash_alg *ahash_alg;
281
282	ahash_alg = container_of(alg, struct ahash_alg, halg.base);
283
284	return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
285}
286
287struct n2_hash_ctx {
288	struct crypto_ahash		*fallback_tfm;
289};
290
291#define N2_HASH_KEY_MAX			32 /* HW limit for all HMAC requests */
292
293struct n2_hmac_ctx {
294	struct n2_hash_ctx		base;
295
296	struct crypto_shash		*child_shash;
297
298	int				hash_key_len;
299	unsigned char			hash_key[N2_HASH_KEY_MAX];
300};
301
302struct n2_hash_req_ctx {
303	union {
304		struct md5_state	md5;
305		struct sha1_state	sha1;
306		struct sha256_state	sha256;
307	} u;
308
309	struct ahash_request		fallback_req;
310};
311
312static int n2_hash_async_init(struct ahash_request *req)
313{
314	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
315	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
316	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
317
318	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
319	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
320
321	return crypto_ahash_init(&rctx->fallback_req);
322}
323
324static int n2_hash_async_update(struct ahash_request *req)
325{
326	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
327	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
328	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
329
330	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
331	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
332	rctx->fallback_req.nbytes = req->nbytes;
333	rctx->fallback_req.src = req->src;
334
335	return crypto_ahash_update(&rctx->fallback_req);
336}
337
338static int n2_hash_async_final(struct ahash_request *req)
339{
340	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
341	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
342	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
343
344	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
345	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
346	rctx->fallback_req.result = req->result;
347
348	return crypto_ahash_final(&rctx->fallback_req);
349}
350
351static int n2_hash_async_finup(struct ahash_request *req)
352{
353	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
354	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
355	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
356
357	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
358	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
359	rctx->fallback_req.nbytes = req->nbytes;
360	rctx->fallback_req.src = req->src;
361	rctx->fallback_req.result = req->result;
362
363	return crypto_ahash_finup(&rctx->fallback_req);
364}
365
366static int n2_hash_async_noimport(struct ahash_request *req, const void *in)
367{
368	return -ENOSYS;
369}
370
371static int n2_hash_async_noexport(struct ahash_request *req, void *out)
372{
373	return -ENOSYS;
374}
375
376static int n2_hash_cra_init(struct crypto_tfm *tfm)
377{
378	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
379	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
380	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
381	struct crypto_ahash *fallback_tfm;
382	int err;
383
384	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
385					  CRYPTO_ALG_NEED_FALLBACK);
386	if (IS_ERR(fallback_tfm)) {
387		pr_warn("Fallback driver '%s' could not be loaded!\n",
388			fallback_driver_name);
389		err = PTR_ERR(fallback_tfm);
390		goto out;
391	}
392
393	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
394					 crypto_ahash_reqsize(fallback_tfm)));
395
396	ctx->fallback_tfm = fallback_tfm;
397	return 0;
398
399out:
400	return err;
401}
402
403static void n2_hash_cra_exit(struct crypto_tfm *tfm)
404{
405	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
406	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
407
408	crypto_free_ahash(ctx->fallback_tfm);
409}
410
411static int n2_hmac_cra_init(struct crypto_tfm *tfm)
412{
413	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
414	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
415	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
416	struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
417	struct crypto_ahash *fallback_tfm;
418	struct crypto_shash *child_shash;
419	int err;
420
421	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
422					  CRYPTO_ALG_NEED_FALLBACK);
423	if (IS_ERR(fallback_tfm)) {
424		pr_warn("Fallback driver '%s' could not be loaded!\n",
425			fallback_driver_name);
426		err = PTR_ERR(fallback_tfm);
427		goto out;
428	}
429
430	child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
431	if (IS_ERR(child_shash)) {
432		pr_warn("Child shash '%s' could not be loaded!\n",
433			n2alg->child_alg);
434		err = PTR_ERR(child_shash);
435		goto out_free_fallback;
436	}
437
438	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
439					 crypto_ahash_reqsize(fallback_tfm)));
440
441	ctx->child_shash = child_shash;
442	ctx->base.fallback_tfm = fallback_tfm;
443	return 0;
444
445out_free_fallback:
446	crypto_free_ahash(fallback_tfm);
447
448out:
449	return err;
450}
451
452static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
453{
454	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
455	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
456
457	crypto_free_ahash(ctx->base.fallback_tfm);
458	crypto_free_shash(ctx->child_shash);
459}
460
461static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
462				unsigned int keylen)
463{
464	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
465	struct crypto_shash *child_shash = ctx->child_shash;
466	struct crypto_ahash *fallback_tfm;
467	int err, bs, ds;
468
469	fallback_tfm = ctx->base.fallback_tfm;
470	err = crypto_ahash_setkey(fallback_tfm, key, keylen);
471	if (err)
472		return err;
473
474	bs = crypto_shash_blocksize(child_shash);
475	ds = crypto_shash_digestsize(child_shash);
476	BUG_ON(ds > N2_HASH_KEY_MAX);
477	if (keylen > bs) {
478		err = crypto_shash_tfm_digest(child_shash, key, keylen,
479					      ctx->hash_key);
480		if (err)
481			return err;
482		keylen = ds;
483	} else if (keylen <= N2_HASH_KEY_MAX)
484		memcpy(ctx->hash_key, key, keylen);
485
486	ctx->hash_key_len = keylen;
487
488	return err;
489}
490
491static unsigned long wait_for_tail(struct spu_queue *qp)
492{
493	unsigned long head, hv_ret;
494
495	do {
496		hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
497		if (hv_ret != HV_EOK) {
498			pr_err("Hypervisor error on gethead\n");
499			break;
500		}
501		if (head == qp->tail) {
502			qp->head = head;
503			break;
504		}
505	} while (1);
506	return hv_ret;
507}
508
509static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
510					      struct cwq_initial_entry *ent)
511{
512	unsigned long hv_ret = spu_queue_submit(qp, ent);
513
514	if (hv_ret == HV_EOK)
515		hv_ret = wait_for_tail(qp);
516
517	return hv_ret;
518}
519
520static int n2_do_async_digest(struct ahash_request *req,
521			      unsigned int auth_type, unsigned int digest_size,
522			      unsigned int result_size, void *hash_loc,
523			      unsigned long auth_key, unsigned int auth_key_len)
524{
525	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
526	struct cwq_initial_entry *ent;
527	struct crypto_hash_walk walk;
528	struct spu_queue *qp;
529	unsigned long flags;
530	int err = -ENODEV;
531	int nbytes, cpu;
532
533	/* The total effective length of the operation may not
534	 * exceed 2^16.
535	 */
536	if (unlikely(req->nbytes > (1 << 16))) {
537		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
538		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
539
540		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
541		rctx->fallback_req.base.flags =
542			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
543		rctx->fallback_req.nbytes = req->nbytes;
544		rctx->fallback_req.src = req->src;
545		rctx->fallback_req.result = req->result;
546
547		return crypto_ahash_digest(&rctx->fallback_req);
548	}
549
550	nbytes = crypto_hash_walk_first(req, &walk);
551
552	cpu = get_cpu();
553	qp = cpu_to_cwq[cpu];
554	if (!qp)
555		goto out;
556
557	spin_lock_irqsave(&qp->lock, flags);
558
559	/* XXX can do better, improve this later by doing a by-hand scatterlist
560	 * XXX walk, etc.
561	 */
562	ent = qp->q + qp->tail;
563
564	ent->control = control_word_base(nbytes, auth_key_len, 0,
565					 auth_type, digest_size,
566					 false, true, false, false,
567					 OPCODE_INPLACE_BIT |
568					 OPCODE_AUTH_MAC);
569	ent->src_addr = __pa(walk.data);
570	ent->auth_key_addr = auth_key;
571	ent->auth_iv_addr = __pa(hash_loc);
572	ent->final_auth_state_addr = 0UL;
573	ent->enc_key_addr = 0UL;
574	ent->enc_iv_addr = 0UL;
575	ent->dest_addr = __pa(hash_loc);
576
577	nbytes = crypto_hash_walk_done(&walk, 0);
578	while (nbytes > 0) {
579		ent = spu_queue_next(qp, ent);
580
581		ent->control = (nbytes - 1);
582		ent->src_addr = __pa(walk.data);
583		ent->auth_key_addr = 0UL;
584		ent->auth_iv_addr = 0UL;
585		ent->final_auth_state_addr = 0UL;
586		ent->enc_key_addr = 0UL;
587		ent->enc_iv_addr = 0UL;
588		ent->dest_addr = 0UL;
589
590		nbytes = crypto_hash_walk_done(&walk, 0);
591	}
592	ent->control |= CONTROL_END_OF_BLOCK;
593
594	if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
595		err = -EINVAL;
596	else
597		err = 0;
598
599	spin_unlock_irqrestore(&qp->lock, flags);
600
601	if (!err)
602		memcpy(req->result, hash_loc, result_size);
603out:
604	put_cpu();
605
606	return err;
607}
608
609static int n2_hash_async_digest(struct ahash_request *req)
610{
611	struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
612	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
613	int ds;
614
615	ds = n2alg->digest_size;
616	if (unlikely(req->nbytes == 0)) {
617		memcpy(req->result, n2alg->hash_zero, ds);
618		return 0;
619	}
620	memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
621
622	return n2_do_async_digest(req, n2alg->auth_type,
623				  n2alg->hw_op_hashsz, ds,
624				  &rctx->u, 0UL, 0);
625}
626
627static int n2_hmac_async_digest(struct ahash_request *req)
628{
629	struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
630	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
631	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
632	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
633	int ds;
634
635	ds = n2alg->derived.digest_size;
636	if (unlikely(req->nbytes == 0) ||
637	    unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
638		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
639		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
640
641		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
642		rctx->fallback_req.base.flags =
643			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
644		rctx->fallback_req.nbytes = req->nbytes;
645		rctx->fallback_req.src = req->src;
646		rctx->fallback_req.result = req->result;
647
648		return crypto_ahash_digest(&rctx->fallback_req);
649	}
650	memcpy(&rctx->u, n2alg->derived.hash_init,
651	       n2alg->derived.hw_op_hashsz);
652
653	return n2_do_async_digest(req, n2alg->derived.hmac_type,
654				  n2alg->derived.hw_op_hashsz, ds,
655				  &rctx->u,
656				  __pa(&ctx->hash_key),
657				  ctx->hash_key_len);
658}
659
660struct n2_skcipher_context {
661	int			key_len;
662	int			enc_type;
663	union {
664		u8		aes[AES_MAX_KEY_SIZE];
665		u8		des[DES_KEY_SIZE];
666		u8		des3[3 * DES_KEY_SIZE];
667	} key;
668};
669
670#define N2_CHUNK_ARR_LEN	16
671
672struct n2_crypto_chunk {
673	struct list_head	entry;
674	unsigned long		iv_paddr : 44;
675	unsigned long		arr_len : 20;
676	unsigned long		dest_paddr;
677	unsigned long		dest_final;
678	struct {
679		unsigned long	src_paddr : 44;
680		unsigned long	src_len : 20;
681	} arr[N2_CHUNK_ARR_LEN];
682};
683
684struct n2_request_context {
685	struct skcipher_walk	walk;
686	struct list_head	chunk_list;
687	struct n2_crypto_chunk	chunk;
688	u8			temp_iv[16];
689};
690
691/* The SPU allows some level of flexibility for partial cipher blocks
692 * being specified in a descriptor.
693 *
694 * It merely requires that every descriptor's length field is at least
695 * as large as the cipher block size.  This means that a cipher block
696 * can span at most 2 descriptors.  However, this does not allow a
697 * partial block to span into the final descriptor as that would
698 * violate the rule (since every descriptor's length must be at lest
699 * the block size).  So, for example, assuming an 8 byte block size:
700 *
701 *	0xe --> 0xa --> 0x8
702 *
703 * is a valid length sequence, whereas:
704 *
705 *	0xe --> 0xb --> 0x7
706 *
707 * is not a valid sequence.
708 */
709
710struct n2_skcipher_alg {
711	struct list_head	entry;
712	u8			enc_type;
713	struct skcipher_alg	skcipher;
714};
715
716static inline struct n2_skcipher_alg *n2_skcipher_alg(struct crypto_skcipher *tfm)
717{
718	struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
719
720	return container_of(alg, struct n2_skcipher_alg, skcipher);
721}
722
723struct n2_skcipher_request_context {
724	struct skcipher_walk	walk;
725};
726
727static int n2_aes_setkey(struct crypto_skcipher *skcipher, const u8 *key,
728			 unsigned int keylen)
729{
730	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
731	struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
732	struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
733
734	ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
735
736	switch (keylen) {
737	case AES_KEYSIZE_128:
738		ctx->enc_type |= ENC_TYPE_ALG_AES128;
739		break;
740	case AES_KEYSIZE_192:
741		ctx->enc_type |= ENC_TYPE_ALG_AES192;
742		break;
743	case AES_KEYSIZE_256:
744		ctx->enc_type |= ENC_TYPE_ALG_AES256;
745		break;
746	default:
747		return -EINVAL;
748	}
749
750	ctx->key_len = keylen;
751	memcpy(ctx->key.aes, key, keylen);
752	return 0;
753}
754
755static int n2_des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
756			 unsigned int keylen)
757{
758	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
759	struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
760	struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
761	int err;
762
763	err = verify_skcipher_des_key(skcipher, key);
764	if (err)
765		return err;
766
767	ctx->enc_type = n2alg->enc_type;
768
769	ctx->key_len = keylen;
770	memcpy(ctx->key.des, key, keylen);
771	return 0;
772}
773
774static int n2_3des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
775			  unsigned int keylen)
776{
777	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
778	struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
779	struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
780	int err;
781
782	err = verify_skcipher_des3_key(skcipher, key);
783	if (err)
784		return err;
785
786	ctx->enc_type = n2alg->enc_type;
787
788	ctx->key_len = keylen;
789	memcpy(ctx->key.des3, key, keylen);
790	return 0;
791}
792
793static inline int skcipher_descriptor_len(int nbytes, unsigned int block_size)
794{
795	int this_len = nbytes;
796
797	this_len -= (nbytes & (block_size - 1));
798	return this_len > (1 << 16) ? (1 << 16) : this_len;
799}
800
801static int __n2_crypt_chunk(struct crypto_skcipher *skcipher,
802			    struct n2_crypto_chunk *cp,
803			    struct spu_queue *qp, bool encrypt)
804{
805	struct n2_skcipher_context *ctx = crypto_skcipher_ctx(skcipher);
806	struct cwq_initial_entry *ent;
807	bool in_place;
808	int i;
809
810	ent = spu_queue_alloc(qp, cp->arr_len);
811	if (!ent) {
812		pr_info("queue_alloc() of %d fails\n",
813			cp->arr_len);
814		return -EBUSY;
815	}
816
817	in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
818
819	ent->control = control_word_base(cp->arr[0].src_len,
820					 0, ctx->enc_type, 0, 0,
821					 false, true, false, encrypt,
822					 OPCODE_ENCRYPT |
823					 (in_place ? OPCODE_INPLACE_BIT : 0));
824	ent->src_addr = cp->arr[0].src_paddr;
825	ent->auth_key_addr = 0UL;
826	ent->auth_iv_addr = 0UL;
827	ent->final_auth_state_addr = 0UL;
828	ent->enc_key_addr = __pa(&ctx->key);
829	ent->enc_iv_addr = cp->iv_paddr;
830	ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
831
832	for (i = 1; i < cp->arr_len; i++) {
833		ent = spu_queue_next(qp, ent);
834
835		ent->control = cp->arr[i].src_len - 1;
836		ent->src_addr = cp->arr[i].src_paddr;
837		ent->auth_key_addr = 0UL;
838		ent->auth_iv_addr = 0UL;
839		ent->final_auth_state_addr = 0UL;
840		ent->enc_key_addr = 0UL;
841		ent->enc_iv_addr = 0UL;
842		ent->dest_addr = 0UL;
843	}
844	ent->control |= CONTROL_END_OF_BLOCK;
845
846	return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
847}
848
849static int n2_compute_chunks(struct skcipher_request *req)
850{
851	struct n2_request_context *rctx = skcipher_request_ctx(req);
852	struct skcipher_walk *walk = &rctx->walk;
853	struct n2_crypto_chunk *chunk;
854	unsigned long dest_prev;
855	unsigned int tot_len;
856	bool prev_in_place;
857	int err, nbytes;
858
859	err = skcipher_walk_async(walk, req);
860	if (err)
861		return err;
862
863	INIT_LIST_HEAD(&rctx->chunk_list);
864
865	chunk = &rctx->chunk;
866	INIT_LIST_HEAD(&chunk->entry);
867
868	chunk->iv_paddr = 0UL;
869	chunk->arr_len = 0;
870	chunk->dest_paddr = 0UL;
871
872	prev_in_place = false;
873	dest_prev = ~0UL;
874	tot_len = 0;
875
876	while ((nbytes = walk->nbytes) != 0) {
877		unsigned long dest_paddr, src_paddr;
878		bool in_place;
879		int this_len;
880
881		src_paddr = (page_to_phys(walk->src.phys.page) +
882			     walk->src.phys.offset);
883		dest_paddr = (page_to_phys(walk->dst.phys.page) +
884			      walk->dst.phys.offset);
885		in_place = (src_paddr == dest_paddr);
886		this_len = skcipher_descriptor_len(nbytes, walk->blocksize);
887
888		if (chunk->arr_len != 0) {
889			if (in_place != prev_in_place ||
890			    (!prev_in_place &&
891			     dest_paddr != dest_prev) ||
892			    chunk->arr_len == N2_CHUNK_ARR_LEN ||
893			    tot_len + this_len > (1 << 16)) {
894				chunk->dest_final = dest_prev;
895				list_add_tail(&chunk->entry,
896					      &rctx->chunk_list);
897				chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
898				if (!chunk) {
899					err = -ENOMEM;
900					break;
901				}
902				INIT_LIST_HEAD(&chunk->entry);
903			}
904		}
905		if (chunk->arr_len == 0) {
906			chunk->dest_paddr = dest_paddr;
907			tot_len = 0;
908		}
909		chunk->arr[chunk->arr_len].src_paddr = src_paddr;
910		chunk->arr[chunk->arr_len].src_len = this_len;
911		chunk->arr_len++;
912
913		dest_prev = dest_paddr + this_len;
914		prev_in_place = in_place;
915		tot_len += this_len;
916
917		err = skcipher_walk_done(walk, nbytes - this_len);
918		if (err)
919			break;
920	}
921	if (!err && chunk->arr_len != 0) {
922		chunk->dest_final = dest_prev;
923		list_add_tail(&chunk->entry, &rctx->chunk_list);
924	}
925
926	return err;
927}
928
929static void n2_chunk_complete(struct skcipher_request *req, void *final_iv)
930{
931	struct n2_request_context *rctx = skcipher_request_ctx(req);
932	struct n2_crypto_chunk *c, *tmp;
933
934	if (final_iv)
935		memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
936
937	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
938		list_del(&c->entry);
939		if (unlikely(c != &rctx->chunk))
940			kfree(c);
941	}
942
943}
944
945static int n2_do_ecb(struct skcipher_request *req, bool encrypt)
946{
947	struct n2_request_context *rctx = skcipher_request_ctx(req);
948	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
949	int err = n2_compute_chunks(req);
950	struct n2_crypto_chunk *c, *tmp;
951	unsigned long flags, hv_ret;
952	struct spu_queue *qp;
953
954	if (err)
955		return err;
956
957	qp = cpu_to_cwq[get_cpu()];
958	err = -ENODEV;
959	if (!qp)
960		goto out;
961
962	spin_lock_irqsave(&qp->lock, flags);
963
964	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
965		err = __n2_crypt_chunk(tfm, c, qp, encrypt);
966		if (err)
967			break;
968		list_del(&c->entry);
969		if (unlikely(c != &rctx->chunk))
970			kfree(c);
971	}
972	if (!err) {
973		hv_ret = wait_for_tail(qp);
974		if (hv_ret != HV_EOK)
975			err = -EINVAL;
976	}
977
978	spin_unlock_irqrestore(&qp->lock, flags);
979
980out:
981	put_cpu();
982
983	n2_chunk_complete(req, NULL);
984	return err;
985}
986
987static int n2_encrypt_ecb(struct skcipher_request *req)
988{
989	return n2_do_ecb(req, true);
990}
991
992static int n2_decrypt_ecb(struct skcipher_request *req)
993{
994	return n2_do_ecb(req, false);
995}
996
997static int n2_do_chaining(struct skcipher_request *req, bool encrypt)
998{
999	struct n2_request_context *rctx = skcipher_request_ctx(req);
1000	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
1001	unsigned long flags, hv_ret, iv_paddr;
1002	int err = n2_compute_chunks(req);
1003	struct n2_crypto_chunk *c, *tmp;
1004	struct spu_queue *qp;
1005	void *final_iv_addr;
1006
1007	final_iv_addr = NULL;
1008
1009	if (err)
1010		return err;
1011
1012	qp = cpu_to_cwq[get_cpu()];
1013	err = -ENODEV;
1014	if (!qp)
1015		goto out;
1016
1017	spin_lock_irqsave(&qp->lock, flags);
1018
1019	if (encrypt) {
1020		iv_paddr = __pa(rctx->walk.iv);
1021		list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1022					 entry) {
1023			c->iv_paddr = iv_paddr;
1024			err = __n2_crypt_chunk(tfm, c, qp, true);
1025			if (err)
1026				break;
1027			iv_paddr = c->dest_final - rctx->walk.blocksize;
1028			list_del(&c->entry);
1029			if (unlikely(c != &rctx->chunk))
1030				kfree(c);
1031		}
1032		final_iv_addr = __va(iv_paddr);
1033	} else {
1034		list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1035						 entry) {
1036			if (c == &rctx->chunk) {
1037				iv_paddr = __pa(rctx->walk.iv);
1038			} else {
1039				iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1040					    tmp->arr[tmp->arr_len-1].src_len -
1041					    rctx->walk.blocksize);
1042			}
1043			if (!final_iv_addr) {
1044				unsigned long pa;
1045
1046				pa = (c->arr[c->arr_len-1].src_paddr +
1047				      c->arr[c->arr_len-1].src_len -
1048				      rctx->walk.blocksize);
1049				final_iv_addr = rctx->temp_iv;
1050				memcpy(rctx->temp_iv, __va(pa),
1051				       rctx->walk.blocksize);
1052			}
1053			c->iv_paddr = iv_paddr;
1054			err = __n2_crypt_chunk(tfm, c, qp, false);
1055			if (err)
1056				break;
1057			list_del(&c->entry);
1058			if (unlikely(c != &rctx->chunk))
1059				kfree(c);
1060		}
1061	}
1062	if (!err) {
1063		hv_ret = wait_for_tail(qp);
1064		if (hv_ret != HV_EOK)
1065			err = -EINVAL;
1066	}
1067
1068	spin_unlock_irqrestore(&qp->lock, flags);
1069
1070out:
1071	put_cpu();
1072
1073	n2_chunk_complete(req, err ? NULL : final_iv_addr);
1074	return err;
1075}
1076
1077static int n2_encrypt_chaining(struct skcipher_request *req)
1078{
1079	return n2_do_chaining(req, true);
1080}
1081
1082static int n2_decrypt_chaining(struct skcipher_request *req)
1083{
1084	return n2_do_chaining(req, false);
1085}
1086
1087struct n2_skcipher_tmpl {
1088	const char		*name;
1089	const char		*drv_name;
1090	u8			block_size;
1091	u8			enc_type;
1092	struct skcipher_alg	skcipher;
1093};
1094
1095static const struct n2_skcipher_tmpl skcipher_tmpls[] = {
1096	/* DES: ECB CBC and CFB are supported */
1097	{	.name		= "ecb(des)",
1098		.drv_name	= "ecb-des",
1099		.block_size	= DES_BLOCK_SIZE,
1100		.enc_type	= (ENC_TYPE_ALG_DES |
1101				   ENC_TYPE_CHAINING_ECB),
1102		.skcipher	= {
1103			.min_keysize	= DES_KEY_SIZE,
1104			.max_keysize	= DES_KEY_SIZE,
1105			.setkey		= n2_des_setkey,
1106			.encrypt	= n2_encrypt_ecb,
1107			.decrypt	= n2_decrypt_ecb,
1108		},
1109	},
1110	{	.name		= "cbc(des)",
1111		.drv_name	= "cbc-des",
1112		.block_size	= DES_BLOCK_SIZE,
1113		.enc_type	= (ENC_TYPE_ALG_DES |
1114				   ENC_TYPE_CHAINING_CBC),
1115		.skcipher	= {
1116			.ivsize		= DES_BLOCK_SIZE,
1117			.min_keysize	= DES_KEY_SIZE,
1118			.max_keysize	= DES_KEY_SIZE,
1119			.setkey		= n2_des_setkey,
1120			.encrypt	= n2_encrypt_chaining,
1121			.decrypt	= n2_decrypt_chaining,
1122		},
1123	},
1124	{	.name		= "cfb(des)",
1125		.drv_name	= "cfb-des",
1126		.block_size	= DES_BLOCK_SIZE,
1127		.enc_type	= (ENC_TYPE_ALG_DES |
1128				   ENC_TYPE_CHAINING_CFB),
1129		.skcipher	= {
1130			.min_keysize	= DES_KEY_SIZE,
1131			.max_keysize	= DES_KEY_SIZE,
1132			.setkey		= n2_des_setkey,
1133			.encrypt	= n2_encrypt_chaining,
1134			.decrypt	= n2_decrypt_chaining,
1135		},
1136	},
1137
1138	/* 3DES: ECB CBC and CFB are supported */
1139	{	.name		= "ecb(des3_ede)",
1140		.drv_name	= "ecb-3des",
1141		.block_size	= DES_BLOCK_SIZE,
1142		.enc_type	= (ENC_TYPE_ALG_3DES |
1143				   ENC_TYPE_CHAINING_ECB),
1144		.skcipher	= {
1145			.min_keysize	= 3 * DES_KEY_SIZE,
1146			.max_keysize	= 3 * DES_KEY_SIZE,
1147			.setkey		= n2_3des_setkey,
1148			.encrypt	= n2_encrypt_ecb,
1149			.decrypt	= n2_decrypt_ecb,
1150		},
1151	},
1152	{	.name		= "cbc(des3_ede)",
1153		.drv_name	= "cbc-3des",
1154		.block_size	= DES_BLOCK_SIZE,
1155		.enc_type	= (ENC_TYPE_ALG_3DES |
1156				   ENC_TYPE_CHAINING_CBC),
1157		.skcipher	= {
1158			.ivsize		= DES_BLOCK_SIZE,
1159			.min_keysize	= 3 * DES_KEY_SIZE,
1160			.max_keysize	= 3 * DES_KEY_SIZE,
1161			.setkey		= n2_3des_setkey,
1162			.encrypt	= n2_encrypt_chaining,
1163			.decrypt	= n2_decrypt_chaining,
1164		},
1165	},
1166	{	.name		= "cfb(des3_ede)",
1167		.drv_name	= "cfb-3des",
1168		.block_size	= DES_BLOCK_SIZE,
1169		.enc_type	= (ENC_TYPE_ALG_3DES |
1170				   ENC_TYPE_CHAINING_CFB),
1171		.skcipher	= {
1172			.min_keysize	= 3 * DES_KEY_SIZE,
1173			.max_keysize	= 3 * DES_KEY_SIZE,
1174			.setkey		= n2_3des_setkey,
1175			.encrypt	= n2_encrypt_chaining,
1176			.decrypt	= n2_decrypt_chaining,
1177		},
1178	},
1179	/* AES: ECB CBC and CTR are supported */
1180	{	.name		= "ecb(aes)",
1181		.drv_name	= "ecb-aes",
1182		.block_size	= AES_BLOCK_SIZE,
1183		.enc_type	= (ENC_TYPE_ALG_AES128 |
1184				   ENC_TYPE_CHAINING_ECB),
1185		.skcipher	= {
1186			.min_keysize	= AES_MIN_KEY_SIZE,
1187			.max_keysize	= AES_MAX_KEY_SIZE,
1188			.setkey		= n2_aes_setkey,
1189			.encrypt	= n2_encrypt_ecb,
1190			.decrypt	= n2_decrypt_ecb,
1191		},
1192	},
1193	{	.name		= "cbc(aes)",
1194		.drv_name	= "cbc-aes",
1195		.block_size	= AES_BLOCK_SIZE,
1196		.enc_type	= (ENC_TYPE_ALG_AES128 |
1197				   ENC_TYPE_CHAINING_CBC),
1198		.skcipher	= {
1199			.ivsize		= AES_BLOCK_SIZE,
1200			.min_keysize	= AES_MIN_KEY_SIZE,
1201			.max_keysize	= AES_MAX_KEY_SIZE,
1202			.setkey		= n2_aes_setkey,
1203			.encrypt	= n2_encrypt_chaining,
1204			.decrypt	= n2_decrypt_chaining,
1205		},
1206	},
1207	{	.name		= "ctr(aes)",
1208		.drv_name	= "ctr-aes",
1209		.block_size	= AES_BLOCK_SIZE,
1210		.enc_type	= (ENC_TYPE_ALG_AES128 |
1211				   ENC_TYPE_CHAINING_COUNTER),
1212		.skcipher	= {
1213			.ivsize		= AES_BLOCK_SIZE,
1214			.min_keysize	= AES_MIN_KEY_SIZE,
1215			.max_keysize	= AES_MAX_KEY_SIZE,
1216			.setkey		= n2_aes_setkey,
1217			.encrypt	= n2_encrypt_chaining,
1218			.decrypt	= n2_encrypt_chaining,
1219		},
1220	},
1221
1222};
1223#define NUM_CIPHER_TMPLS ARRAY_SIZE(skcipher_tmpls)
1224
1225static LIST_HEAD(skcipher_algs);
1226
1227struct n2_hash_tmpl {
1228	const char	*name;
1229	const u8	*hash_zero;
1230	const u8	*hash_init;
1231	u8		hw_op_hashsz;
1232	u8		digest_size;
1233	u8		statesize;
1234	u8		block_size;
1235	u8		auth_type;
1236	u8		hmac_type;
1237};
1238
1239static const __le32 n2_md5_init[MD5_HASH_WORDS] = {
1240	cpu_to_le32(MD5_H0),
1241	cpu_to_le32(MD5_H1),
1242	cpu_to_le32(MD5_H2),
1243	cpu_to_le32(MD5_H3),
1244};
1245static const u32 n2_sha1_init[SHA1_DIGEST_SIZE / 4] = {
1246	SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1247};
1248static const u32 n2_sha256_init[SHA256_DIGEST_SIZE / 4] = {
1249	SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1250	SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1251};
1252static const u32 n2_sha224_init[SHA256_DIGEST_SIZE / 4] = {
1253	SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1254	SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1255};
1256
1257static const struct n2_hash_tmpl hash_tmpls[] = {
1258	{ .name		= "md5",
1259	  .hash_zero	= md5_zero_message_hash,
1260	  .hash_init	= (u8 *)n2_md5_init,
1261	  .auth_type	= AUTH_TYPE_MD5,
1262	  .hmac_type	= AUTH_TYPE_HMAC_MD5,
1263	  .hw_op_hashsz	= MD5_DIGEST_SIZE,
1264	  .digest_size	= MD5_DIGEST_SIZE,
1265	  .statesize	= sizeof(struct md5_state),
1266	  .block_size	= MD5_HMAC_BLOCK_SIZE },
1267	{ .name		= "sha1",
1268	  .hash_zero	= sha1_zero_message_hash,
1269	  .hash_init	= (u8 *)n2_sha1_init,
1270	  .auth_type	= AUTH_TYPE_SHA1,
1271	  .hmac_type	= AUTH_TYPE_HMAC_SHA1,
1272	  .hw_op_hashsz	= SHA1_DIGEST_SIZE,
1273	  .digest_size	= SHA1_DIGEST_SIZE,
1274	  .statesize	= sizeof(struct sha1_state),
1275	  .block_size	= SHA1_BLOCK_SIZE },
1276	{ .name		= "sha256",
1277	  .hash_zero	= sha256_zero_message_hash,
1278	  .hash_init	= (u8 *)n2_sha256_init,
1279	  .auth_type	= AUTH_TYPE_SHA256,
1280	  .hmac_type	= AUTH_TYPE_HMAC_SHA256,
1281	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
1282	  .digest_size	= SHA256_DIGEST_SIZE,
1283	  .statesize	= sizeof(struct sha256_state),
1284	  .block_size	= SHA256_BLOCK_SIZE },
1285	{ .name		= "sha224",
1286	  .hash_zero	= sha224_zero_message_hash,
1287	  .hash_init	= (u8 *)n2_sha224_init,
1288	  .auth_type	= AUTH_TYPE_SHA256,
1289	  .hmac_type	= AUTH_TYPE_RESERVED,
1290	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
1291	  .digest_size	= SHA224_DIGEST_SIZE,
1292	  .statesize	= sizeof(struct sha256_state),
1293	  .block_size	= SHA224_BLOCK_SIZE },
1294};
1295#define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1296
1297static LIST_HEAD(ahash_algs);
1298static LIST_HEAD(hmac_algs);
1299
1300static int algs_registered;
1301
1302static void __n2_unregister_algs(void)
1303{
1304	struct n2_skcipher_alg *skcipher, *skcipher_tmp;
1305	struct n2_ahash_alg *alg, *alg_tmp;
1306	struct n2_hmac_alg *hmac, *hmac_tmp;
1307
1308	list_for_each_entry_safe(skcipher, skcipher_tmp, &skcipher_algs, entry) {
1309		crypto_unregister_skcipher(&skcipher->skcipher);
1310		list_del(&skcipher->entry);
1311		kfree(skcipher);
1312	}
1313	list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1314		crypto_unregister_ahash(&hmac->derived.alg);
1315		list_del(&hmac->derived.entry);
1316		kfree(hmac);
1317	}
1318	list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1319		crypto_unregister_ahash(&alg->alg);
1320		list_del(&alg->entry);
1321		kfree(alg);
1322	}
1323}
1324
1325static int n2_skcipher_init_tfm(struct crypto_skcipher *tfm)
1326{
1327	crypto_skcipher_set_reqsize(tfm, sizeof(struct n2_request_context));
1328	return 0;
1329}
1330
1331static int __n2_register_one_skcipher(const struct n2_skcipher_tmpl *tmpl)
1332{
1333	struct n2_skcipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1334	struct skcipher_alg *alg;
1335	int err;
1336
1337	if (!p)
1338		return -ENOMEM;
1339
1340	alg = &p->skcipher;
1341	*alg = tmpl->skcipher;
1342
1343	snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1344	snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1345	alg->base.cra_priority = N2_CRA_PRIORITY;
1346	alg->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC |
1347			      CRYPTO_ALG_ALLOCATES_MEMORY;
1348	alg->base.cra_blocksize = tmpl->block_size;
1349	p->enc_type = tmpl->enc_type;
1350	alg->base.cra_ctxsize = sizeof(struct n2_skcipher_context);
1351	alg->base.cra_module = THIS_MODULE;
1352	alg->init = n2_skcipher_init_tfm;
1353
1354	list_add(&p->entry, &skcipher_algs);
1355	err = crypto_register_skcipher(alg);
1356	if (err) {
1357		pr_err("%s alg registration failed\n", alg->base.cra_name);
1358		list_del(&p->entry);
1359		kfree(p);
1360	} else {
1361		pr_info("%s alg registered\n", alg->base.cra_name);
1362	}
1363	return err;
1364}
1365
1366static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1367{
1368	struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1369	struct ahash_alg *ahash;
1370	struct crypto_alg *base;
1371	int err;
1372
1373	if (!p)
1374		return -ENOMEM;
1375
1376	p->child_alg = n2ahash->alg.halg.base.cra_name;
1377	memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1378	INIT_LIST_HEAD(&p->derived.entry);
1379
1380	ahash = &p->derived.alg;
1381	ahash->digest = n2_hmac_async_digest;
1382	ahash->setkey = n2_hmac_async_setkey;
1383
1384	base = &ahash->halg.base;
1385	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
1386	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
1387
1388	base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1389	base->cra_init = n2_hmac_cra_init;
1390	base->cra_exit = n2_hmac_cra_exit;
1391
1392	list_add(&p->derived.entry, &hmac_algs);
1393	err = crypto_register_ahash(ahash);
1394	if (err) {
1395		pr_err("%s alg registration failed\n", base->cra_name);
1396		list_del(&p->derived.entry);
1397		kfree(p);
1398	} else {
1399		pr_info("%s alg registered\n", base->cra_name);
1400	}
1401	return err;
1402}
1403
1404static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1405{
1406	struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1407	struct hash_alg_common *halg;
1408	struct crypto_alg *base;
1409	struct ahash_alg *ahash;
1410	int err;
1411
1412	if (!p)
1413		return -ENOMEM;
1414
1415	p->hash_zero = tmpl->hash_zero;
1416	p->hash_init = tmpl->hash_init;
1417	p->auth_type = tmpl->auth_type;
1418	p->hmac_type = tmpl->hmac_type;
1419	p->hw_op_hashsz = tmpl->hw_op_hashsz;
1420	p->digest_size = tmpl->digest_size;
1421
1422	ahash = &p->alg;
1423	ahash->init = n2_hash_async_init;
1424	ahash->update = n2_hash_async_update;
1425	ahash->final = n2_hash_async_final;
1426	ahash->finup = n2_hash_async_finup;
1427	ahash->digest = n2_hash_async_digest;
1428	ahash->export = n2_hash_async_noexport;
1429	ahash->import = n2_hash_async_noimport;
1430
1431	halg = &ahash->halg;
1432	halg->digestsize = tmpl->digest_size;
1433	halg->statesize = tmpl->statesize;
1434
1435	base = &halg->base;
1436	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1437	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1438	base->cra_priority = N2_CRA_PRIORITY;
1439	base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1440			  CRYPTO_ALG_NEED_FALLBACK;
1441	base->cra_blocksize = tmpl->block_size;
1442	base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1443	base->cra_module = THIS_MODULE;
1444	base->cra_init = n2_hash_cra_init;
1445	base->cra_exit = n2_hash_cra_exit;
1446
1447	list_add(&p->entry, &ahash_algs);
1448	err = crypto_register_ahash(ahash);
1449	if (err) {
1450		pr_err("%s alg registration failed\n", base->cra_name);
1451		list_del(&p->entry);
1452		kfree(p);
1453	} else {
1454		pr_info("%s alg registered\n", base->cra_name);
1455	}
1456	if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1457		err = __n2_register_one_hmac(p);
1458	return err;
1459}
1460
1461static int n2_register_algs(void)
1462{
1463	int i, err = 0;
1464
1465	mutex_lock(&spu_lock);
1466	if (algs_registered++)
1467		goto out;
1468
1469	for (i = 0; i < NUM_HASH_TMPLS; i++) {
1470		err = __n2_register_one_ahash(&hash_tmpls[i]);
1471		if (err) {
1472			__n2_unregister_algs();
1473			goto out;
1474		}
1475	}
1476	for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1477		err = __n2_register_one_skcipher(&skcipher_tmpls[i]);
1478		if (err) {
1479			__n2_unregister_algs();
1480			goto out;
1481		}
1482	}
1483
1484out:
1485	mutex_unlock(&spu_lock);
1486	return err;
1487}
1488
1489static void n2_unregister_algs(void)
1490{
1491	mutex_lock(&spu_lock);
1492	if (!--algs_registered)
1493		__n2_unregister_algs();
1494	mutex_unlock(&spu_lock);
1495}
1496
1497/* To map CWQ queues to interrupt sources, the hypervisor API provides
1498 * a devino.  This isn't very useful to us because all of the
1499 * interrupts listed in the device_node have been translated to
1500 * Linux virtual IRQ cookie numbers.
1501 *
1502 * So we have to back-translate, going through the 'intr' and 'ino'
1503 * property tables of the n2cp MDESC node, matching it with the OF
1504 * 'interrupts' property entries, in order to figure out which
1505 * devino goes to which already-translated IRQ.
1506 */
1507static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1508			     unsigned long dev_ino)
1509{
1510	const unsigned int *dev_intrs;
1511	unsigned int intr;
1512	int i;
1513
1514	for (i = 0; i < ip->num_intrs; i++) {
1515		if (ip->ino_table[i].ino == dev_ino)
1516			break;
1517	}
1518	if (i == ip->num_intrs)
1519		return -ENODEV;
1520
1521	intr = ip->ino_table[i].intr;
1522
1523	dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1524	if (!dev_intrs)
1525		return -ENODEV;
1526
1527	for (i = 0; i < dev->archdata.num_irqs; i++) {
1528		if (dev_intrs[i] == intr)
1529			return i;
1530	}
1531
1532	return -ENODEV;
1533}
1534
1535static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1536		       const char *irq_name, struct spu_queue *p,
1537		       irq_handler_t handler)
1538{
1539	unsigned long herr;
1540	int index;
1541
1542	herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1543	if (herr)
1544		return -EINVAL;
1545
1546	index = find_devino_index(dev, ip, p->devino);
1547	if (index < 0)
1548		return index;
1549
1550	p->irq = dev->archdata.irqs[index];
1551
1552	sprintf(p->irq_name, "%s-%d", irq_name, index);
1553
1554	return request_irq(p->irq, handler, 0, p->irq_name, p);
1555}
1556
1557static struct kmem_cache *queue_cache[2];
1558
1559static void *new_queue(unsigned long q_type)
1560{
1561	return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1562}
1563
1564static void free_queue(void *p, unsigned long q_type)
1565{
1566	kmem_cache_free(queue_cache[q_type - 1], p);
1567}
1568
1569static int queue_cache_init(void)
1570{
1571	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1572		queue_cache[HV_NCS_QTYPE_MAU - 1] =
1573			kmem_cache_create("mau_queue",
1574					  (MAU_NUM_ENTRIES *
1575					   MAU_ENTRY_SIZE),
1576					  MAU_ENTRY_SIZE, 0, NULL);
1577	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1578		return -ENOMEM;
1579
1580	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1581		queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1582			kmem_cache_create("cwq_queue",
1583					  (CWQ_NUM_ENTRIES *
1584					   CWQ_ENTRY_SIZE),
1585					  CWQ_ENTRY_SIZE, 0, NULL);
1586	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1587		kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1588		queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1589		return -ENOMEM;
1590	}
1591	return 0;
1592}
1593
1594static void queue_cache_destroy(void)
1595{
1596	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1597	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1598	queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1599	queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL;
1600}
1601
1602static long spu_queue_register_workfn(void *arg)
1603{
1604	struct spu_qreg *qr = arg;
1605	struct spu_queue *p = qr->queue;
1606	unsigned long q_type = qr->type;
1607	unsigned long hv_ret;
1608
1609	hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1610				 CWQ_NUM_ENTRIES, &p->qhandle);
1611	if (!hv_ret)
1612		sun4v_ncs_sethead_marker(p->qhandle, 0);
1613
1614	return hv_ret ? -EINVAL : 0;
1615}
1616
1617static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1618{
1619	int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
1620	struct spu_qreg qr = { .queue = p, .type = q_type };
1621
1622	return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
1623}
1624
1625static int spu_queue_setup(struct spu_queue *p)
1626{
1627	int err;
1628
1629	p->q = new_queue(p->q_type);
1630	if (!p->q)
1631		return -ENOMEM;
1632
1633	err = spu_queue_register(p, p->q_type);
1634	if (err) {
1635		free_queue(p->q, p->q_type);
1636		p->q = NULL;
1637	}
1638
1639	return err;
1640}
1641
1642static void spu_queue_destroy(struct spu_queue *p)
1643{
1644	unsigned long hv_ret;
1645
1646	if (!p->q)
1647		return;
1648
1649	hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1650
1651	if (!hv_ret)
1652		free_queue(p->q, p->q_type);
1653}
1654
1655static void spu_list_destroy(struct list_head *list)
1656{
1657	struct spu_queue *p, *n;
1658
1659	list_for_each_entry_safe(p, n, list, list) {
1660		int i;
1661
1662		for (i = 0; i < NR_CPUS; i++) {
1663			if (cpu_to_cwq[i] == p)
1664				cpu_to_cwq[i] = NULL;
1665		}
1666
1667		if (p->irq) {
1668			free_irq(p->irq, p);
1669			p->irq = 0;
1670		}
1671		spu_queue_destroy(p);
1672		list_del(&p->list);
1673		kfree(p);
1674	}
1675}
1676
1677/* Walk the backward arcs of a CWQ 'exec-unit' node,
1678 * gathering cpu membership information.
1679 */
1680static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1681			       struct platform_device *dev,
1682			       u64 node, struct spu_queue *p,
1683			       struct spu_queue **table)
1684{
1685	u64 arc;
1686
1687	mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1688		u64 tgt = mdesc_arc_target(mdesc, arc);
1689		const char *name = mdesc_node_name(mdesc, tgt);
1690		const u64 *id;
1691
1692		if (strcmp(name, "cpu"))
1693			continue;
1694		id = mdesc_get_property(mdesc, tgt, "id", NULL);
1695		if (table[*id] != NULL) {
1696			dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n",
1697				dev->dev.of_node);
1698			return -EINVAL;
1699		}
1700		cpumask_set_cpu(*id, &p->sharing);
1701		table[*id] = p;
1702	}
1703	return 0;
1704}
1705
1706/* Process an 'exec-unit' MDESC node of type 'cwq'.  */
1707static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1708			    struct platform_device *dev, struct mdesc_handle *mdesc,
1709			    u64 node, const char *iname, unsigned long q_type,
1710			    irq_handler_t handler, struct spu_queue **table)
1711{
1712	struct spu_queue *p;
1713	int err;
1714
1715	p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1716	if (!p) {
1717		dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n",
1718			dev->dev.of_node);
1719		return -ENOMEM;
1720	}
1721
1722	cpumask_clear(&p->sharing);
1723	spin_lock_init(&p->lock);
1724	p->q_type = q_type;
1725	INIT_LIST_HEAD(&p->jobs);
1726	list_add(&p->list, list);
1727
1728	err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1729	if (err)
1730		return err;
1731
1732	err = spu_queue_setup(p);
1733	if (err)
1734		return err;
1735
1736	return spu_map_ino(dev, ip, iname, p, handler);
1737}
1738
1739static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1740			  struct spu_mdesc_info *ip, struct list_head *list,
1741			  const char *exec_name, unsigned long q_type,
1742			  irq_handler_t handler, struct spu_queue **table)
1743{
1744	int err = 0;
1745	u64 node;
1746
1747	mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1748		const char *type;
1749
1750		type = mdesc_get_property(mdesc, node, "type", NULL);
1751		if (!type || strcmp(type, exec_name))
1752			continue;
1753
1754		err = handle_exec_unit(ip, list, dev, mdesc, node,
1755				       exec_name, q_type, handler, table);
1756		if (err) {
1757			spu_list_destroy(list);
1758			break;
1759		}
1760	}
1761
1762	return err;
1763}
1764
1765static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1766			 struct spu_mdesc_info *ip)
1767{
1768	const u64 *ino;
1769	int ino_len;
1770	int i;
1771
1772	ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1773	if (!ino) {
1774		printk("NO 'ino'\n");
1775		return -ENODEV;
1776	}
1777
1778	ip->num_intrs = ino_len / sizeof(u64);
1779	ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1780				 ip->num_intrs),
1781				GFP_KERNEL);
1782	if (!ip->ino_table)
1783		return -ENOMEM;
1784
1785	for (i = 0; i < ip->num_intrs; i++) {
1786		struct ino_blob *b = &ip->ino_table[i];
1787		b->intr = i + 1;
1788		b->ino = ino[i];
1789	}
1790
1791	return 0;
1792}
1793
1794static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1795				struct platform_device *dev,
1796				struct spu_mdesc_info *ip,
1797				const char *node_name)
1798{
1799	u64 node, reg;
1800
1801	if (of_property_read_reg(dev->dev.of_node, 0, &reg, NULL) < 0)
1802		return -ENODEV;
1803
1804	mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1805		const char *name;
1806		const u64 *chdl;
1807
1808		name = mdesc_get_property(mdesc, node, "name", NULL);
1809		if (!name || strcmp(name, node_name))
1810			continue;
1811		chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1812		if (!chdl || (*chdl != reg))
1813			continue;
1814		ip->cfg_handle = *chdl;
1815		return get_irq_props(mdesc, node, ip);
1816	}
1817
1818	return -ENODEV;
1819}
1820
1821static unsigned long n2_spu_hvapi_major;
1822static unsigned long n2_spu_hvapi_minor;
1823
1824static int n2_spu_hvapi_register(void)
1825{
1826	int err;
1827
1828	n2_spu_hvapi_major = 2;
1829	n2_spu_hvapi_minor = 0;
1830
1831	err = sun4v_hvapi_register(HV_GRP_NCS,
1832				   n2_spu_hvapi_major,
1833				   &n2_spu_hvapi_minor);
1834
1835	if (!err)
1836		pr_info("Registered NCS HVAPI version %lu.%lu\n",
1837			n2_spu_hvapi_major,
1838			n2_spu_hvapi_minor);
1839
1840	return err;
1841}
1842
1843static void n2_spu_hvapi_unregister(void)
1844{
1845	sun4v_hvapi_unregister(HV_GRP_NCS);
1846}
1847
1848static int global_ref;
1849
1850static int grab_global_resources(void)
1851{
1852	int err = 0;
1853
1854	mutex_lock(&spu_lock);
1855
1856	if (global_ref++)
1857		goto out;
1858
1859	err = n2_spu_hvapi_register();
1860	if (err)
1861		goto out;
1862
1863	err = queue_cache_init();
1864	if (err)
1865		goto out_hvapi_release;
1866
1867	err = -ENOMEM;
1868	cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1869			     GFP_KERNEL);
1870	if (!cpu_to_cwq)
1871		goto out_queue_cache_destroy;
1872
1873	cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1874			     GFP_KERNEL);
1875	if (!cpu_to_mau)
1876		goto out_free_cwq_table;
1877
1878	err = 0;
1879
1880out:
1881	if (err)
1882		global_ref--;
1883	mutex_unlock(&spu_lock);
1884	return err;
1885
1886out_free_cwq_table:
1887	kfree(cpu_to_cwq);
1888	cpu_to_cwq = NULL;
1889
1890out_queue_cache_destroy:
1891	queue_cache_destroy();
1892
1893out_hvapi_release:
1894	n2_spu_hvapi_unregister();
1895	goto out;
1896}
1897
1898static void release_global_resources(void)
1899{
1900	mutex_lock(&spu_lock);
1901	if (!--global_ref) {
1902		kfree(cpu_to_cwq);
1903		cpu_to_cwq = NULL;
1904
1905		kfree(cpu_to_mau);
1906		cpu_to_mau = NULL;
1907
1908		queue_cache_destroy();
1909		n2_spu_hvapi_unregister();
1910	}
1911	mutex_unlock(&spu_lock);
1912}
1913
1914static struct n2_crypto *alloc_n2cp(void)
1915{
1916	struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1917
1918	if (np)
1919		INIT_LIST_HEAD(&np->cwq_list);
1920
1921	return np;
1922}
1923
1924static void free_n2cp(struct n2_crypto *np)
1925{
1926	kfree(np->cwq_info.ino_table);
1927	np->cwq_info.ino_table = NULL;
1928
1929	kfree(np);
1930}
1931
1932static void n2_spu_driver_version(void)
1933{
1934	static int n2_spu_version_printed;
1935
1936	if (n2_spu_version_printed++ == 0)
1937		pr_info("%s", version);
1938}
1939
1940static int n2_crypto_probe(struct platform_device *dev)
1941{
1942	struct mdesc_handle *mdesc;
1943	struct n2_crypto *np;
1944	int err;
1945
1946	n2_spu_driver_version();
1947
1948	pr_info("Found N2CP at %pOF\n", dev->dev.of_node);
1949
1950	np = alloc_n2cp();
1951	if (!np) {
1952		dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n",
1953			dev->dev.of_node);
1954		return -ENOMEM;
1955	}
1956
1957	err = grab_global_resources();
1958	if (err) {
1959		dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
1960			dev->dev.of_node);
1961		goto out_free_n2cp;
1962	}
1963
1964	mdesc = mdesc_grab();
1965
1966	if (!mdesc) {
1967		dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
1968			dev->dev.of_node);
1969		err = -ENODEV;
1970		goto out_free_global;
1971	}
1972	err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
1973	if (err) {
1974		dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
1975			dev->dev.of_node);
1976		mdesc_release(mdesc);
1977		goto out_free_global;
1978	}
1979
1980	err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
1981			     "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
1982			     cpu_to_cwq);
1983	mdesc_release(mdesc);
1984
1985	if (err) {
1986		dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n",
1987			dev->dev.of_node);
1988		goto out_free_global;
1989	}
1990
1991	err = n2_register_algs();
1992	if (err) {
1993		dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n",
1994			dev->dev.of_node);
1995		goto out_free_spu_list;
1996	}
1997
1998	dev_set_drvdata(&dev->dev, np);
1999
2000	return 0;
2001
2002out_free_spu_list:
2003	spu_list_destroy(&np->cwq_list);
2004
2005out_free_global:
2006	release_global_resources();
2007
2008out_free_n2cp:
2009	free_n2cp(np);
2010
2011	return err;
2012}
2013
2014static int n2_crypto_remove(struct platform_device *dev)
2015{
2016	struct n2_crypto *np = dev_get_drvdata(&dev->dev);
2017
2018	n2_unregister_algs();
2019
2020	spu_list_destroy(&np->cwq_list);
2021
2022	release_global_resources();
2023
2024	free_n2cp(np);
2025
2026	return 0;
2027}
2028
2029static struct n2_mau *alloc_ncp(void)
2030{
2031	struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2032
2033	if (mp)
2034		INIT_LIST_HEAD(&mp->mau_list);
2035
2036	return mp;
2037}
2038
2039static void free_ncp(struct n2_mau *mp)
2040{
2041	kfree(mp->mau_info.ino_table);
2042	mp->mau_info.ino_table = NULL;
2043
2044	kfree(mp);
2045}
2046
2047static int n2_mau_probe(struct platform_device *dev)
2048{
2049	struct mdesc_handle *mdesc;
2050	struct n2_mau *mp;
2051	int err;
2052
2053	n2_spu_driver_version();
2054
2055	pr_info("Found NCP at %pOF\n", dev->dev.of_node);
2056
2057	mp = alloc_ncp();
2058	if (!mp) {
2059		dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n",
2060			dev->dev.of_node);
2061		return -ENOMEM;
2062	}
2063
2064	err = grab_global_resources();
2065	if (err) {
2066		dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2067			dev->dev.of_node);
2068		goto out_free_ncp;
2069	}
2070
2071	mdesc = mdesc_grab();
2072
2073	if (!mdesc) {
2074		dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2075			dev->dev.of_node);
2076		err = -ENODEV;
2077		goto out_free_global;
2078	}
2079
2080	err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2081	if (err) {
2082		dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2083			dev->dev.of_node);
2084		mdesc_release(mdesc);
2085		goto out_free_global;
2086	}
2087
2088	err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2089			     "mau", HV_NCS_QTYPE_MAU, mau_intr,
2090			     cpu_to_mau);
2091	mdesc_release(mdesc);
2092
2093	if (err) {
2094		dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n",
2095			dev->dev.of_node);
2096		goto out_free_global;
2097	}
2098
2099	dev_set_drvdata(&dev->dev, mp);
2100
2101	return 0;
2102
2103out_free_global:
2104	release_global_resources();
2105
2106out_free_ncp:
2107	free_ncp(mp);
2108
2109	return err;
2110}
2111
2112static int n2_mau_remove(struct platform_device *dev)
2113{
2114	struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2115
2116	spu_list_destroy(&mp->mau_list);
2117
2118	release_global_resources();
2119
2120	free_ncp(mp);
2121
2122	return 0;
2123}
2124
2125static const struct of_device_id n2_crypto_match[] = {
2126	{
2127		.name = "n2cp",
2128		.compatible = "SUNW,n2-cwq",
2129	},
2130	{
2131		.name = "n2cp",
2132		.compatible = "SUNW,vf-cwq",
2133	},
2134	{
2135		.name = "n2cp",
2136		.compatible = "SUNW,kt-cwq",
2137	},
2138	{},
2139};
2140
2141MODULE_DEVICE_TABLE(of, n2_crypto_match);
2142
2143static struct platform_driver n2_crypto_driver = {
2144	.driver = {
2145		.name		=	"n2cp",
2146		.of_match_table	=	n2_crypto_match,
2147	},
2148	.probe		=	n2_crypto_probe,
2149	.remove		=	n2_crypto_remove,
2150};
2151
2152static const struct of_device_id n2_mau_match[] = {
2153	{
2154		.name = "ncp",
2155		.compatible = "SUNW,n2-mau",
2156	},
2157	{
2158		.name = "ncp",
2159		.compatible = "SUNW,vf-mau",
2160	},
2161	{
2162		.name = "ncp",
2163		.compatible = "SUNW,kt-mau",
2164	},
2165	{},
2166};
2167
2168MODULE_DEVICE_TABLE(of, n2_mau_match);
2169
2170static struct platform_driver n2_mau_driver = {
2171	.driver = {
2172		.name		=	"ncp",
2173		.of_match_table	=	n2_mau_match,
2174	},
2175	.probe		=	n2_mau_probe,
2176	.remove		=	n2_mau_remove,
2177};
2178
2179static struct platform_driver * const drivers[] = {
2180	&n2_crypto_driver,
2181	&n2_mau_driver,
2182};
2183
2184static int __init n2_init(void)
2185{
2186	return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2187}
2188
2189static void __exit n2_exit(void)
2190{
2191	platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2192}
2193
2194module_init(n2_init);
2195module_exit(n2_exit);
2196