1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2019 HiSilicon Limited. */
3
4#include <crypto/aes.h>
5#include <crypto/aead.h>
6#include <crypto/algapi.h>
7#include <crypto/authenc.h>
8#include <crypto/des.h>
9#include <crypto/hash.h>
10#include <crypto/internal/aead.h>
11#include <crypto/internal/des.h>
12#include <crypto/sha1.h>
13#include <crypto/sha2.h>
14#include <crypto/skcipher.h>
15#include <crypto/xts.h>
16#include <linux/crypto.h>
17#include <linux/dma-mapping.h>
18#include <linux/idr.h>
19
20#include "sec.h"
21#include "sec_crypto.h"
22
23#define SEC_PRIORITY		4001
24#define SEC_XTS_MIN_KEY_SIZE	(2 * AES_MIN_KEY_SIZE)
25#define SEC_XTS_MID_KEY_SIZE	(3 * AES_MIN_KEY_SIZE)
26#define SEC_XTS_MAX_KEY_SIZE	(2 * AES_MAX_KEY_SIZE)
27#define SEC_DES3_2KEY_SIZE	(2 * DES_KEY_SIZE)
28#define SEC_DES3_3KEY_SIZE	(3 * DES_KEY_SIZE)
29
30/* SEC sqe(bd) bit operational relative MACRO */
31#define SEC_DE_OFFSET		1
32#define SEC_CIPHER_OFFSET	4
33#define SEC_SCENE_OFFSET	3
34#define SEC_DST_SGL_OFFSET	2
35#define SEC_SRC_SGL_OFFSET	7
36#define SEC_CKEY_OFFSET		9
37#define SEC_CMODE_OFFSET	12
38#define SEC_AKEY_OFFSET         5
39#define SEC_AEAD_ALG_OFFSET     11
40#define SEC_AUTH_OFFSET		6
41
42#define SEC_DE_OFFSET_V3		9
43#define SEC_SCENE_OFFSET_V3	5
44#define SEC_CKEY_OFFSET_V3	13
45#define SEC_CTR_CNT_OFFSET	25
46#define SEC_CTR_CNT_ROLLOVER	2
47#define SEC_SRC_SGL_OFFSET_V3	11
48#define SEC_DST_SGL_OFFSET_V3	14
49#define SEC_CALG_OFFSET_V3	4
50#define SEC_AKEY_OFFSET_V3	9
51#define SEC_MAC_OFFSET_V3	4
52#define SEC_AUTH_ALG_OFFSET_V3	15
53#define SEC_CIPHER_AUTH_V3	0xbf
54#define SEC_AUTH_CIPHER_V3	0x40
55#define SEC_FLAG_OFFSET		7
56#define SEC_FLAG_MASK		0x0780
57#define SEC_TYPE_MASK		0x0F
58#define SEC_DONE_MASK		0x0001
59#define SEC_ICV_MASK		0x000E
60#define SEC_SQE_LEN_RATE_MASK	0x3
61
62#define SEC_TOTAL_IV_SZ(depth)	(SEC_IV_SIZE * (depth))
63#define SEC_SGL_SGE_NR		128
64#define SEC_CIPHER_AUTH		0xfe
65#define SEC_AUTH_CIPHER		0x1
66#define SEC_MAX_MAC_LEN		64
67#define SEC_MAX_AAD_LEN		65535
68#define SEC_MAX_CCM_AAD_LEN	65279
69#define SEC_TOTAL_MAC_SZ(depth) (SEC_MAX_MAC_LEN * (depth))
70
71#define SEC_PBUF_SZ			512
72#define SEC_PBUF_IV_OFFSET		SEC_PBUF_SZ
73#define SEC_PBUF_MAC_OFFSET		(SEC_PBUF_SZ + SEC_IV_SIZE)
74#define SEC_PBUF_PKG		(SEC_PBUF_SZ + SEC_IV_SIZE +	\
75			SEC_MAX_MAC_LEN * 2)
76#define SEC_PBUF_NUM		(PAGE_SIZE / SEC_PBUF_PKG)
77#define SEC_PBUF_PAGE_NUM(depth)	((depth) / SEC_PBUF_NUM)
78#define SEC_PBUF_LEFT_SZ(depth)		(SEC_PBUF_PKG * ((depth) -	\
79				SEC_PBUF_PAGE_NUM(depth) * SEC_PBUF_NUM))
80#define SEC_TOTAL_PBUF_SZ(depth)	(PAGE_SIZE * SEC_PBUF_PAGE_NUM(depth) +	\
81				SEC_PBUF_LEFT_SZ(depth))
82
83#define SEC_SQE_LEN_RATE	4
84#define SEC_SQE_CFLAG		2
85#define SEC_SQE_AEAD_FLAG	3
86#define SEC_SQE_DONE		0x1
87#define SEC_ICV_ERR		0x2
88#define MIN_MAC_LEN		4
89#define MAC_LEN_MASK		0x1U
90#define MAX_INPUT_DATA_LEN	0xFFFE00
91#define BITS_MASK		0xFF
92#define BYTE_BITS		0x8
93#define SEC_XTS_NAME_SZ		0x3
94#define IV_CM_CAL_NUM		2
95#define IV_CL_MASK		0x7
96#define IV_CL_MIN		2
97#define IV_CL_MID		4
98#define IV_CL_MAX		8
99#define IV_FLAGS_OFFSET	0x6
100#define IV_CM_OFFSET		0x3
101#define IV_LAST_BYTE1		1
102#define IV_LAST_BYTE2		2
103#define IV_LAST_BYTE_MASK	0xFF
104#define IV_CTR_INIT		0x1
105#define IV_BYTE_OFFSET		0x8
106
107struct sec_skcipher {
108	u64 alg_msk;
109	struct skcipher_alg alg;
110};
111
112struct sec_aead {
113	u64 alg_msk;
114	struct aead_alg alg;
115};
116
117/* Get an en/de-cipher queue cyclically to balance load over queues of TFM */
118static inline int sec_alloc_queue_id(struct sec_ctx *ctx, struct sec_req *req)
119{
120	if (req->c_req.encrypt)
121		return (u32)atomic_inc_return(&ctx->enc_qcyclic) %
122				 ctx->hlf_q_num;
123
124	return (u32)atomic_inc_return(&ctx->dec_qcyclic) % ctx->hlf_q_num +
125				 ctx->hlf_q_num;
126}
127
128static inline void sec_free_queue_id(struct sec_ctx *ctx, struct sec_req *req)
129{
130	if (req->c_req.encrypt)
131		atomic_dec(&ctx->enc_qcyclic);
132	else
133		atomic_dec(&ctx->dec_qcyclic);
134}
135
136static int sec_alloc_req_id(struct sec_req *req, struct sec_qp_ctx *qp_ctx)
137{
138	int req_id;
139
140	spin_lock_bh(&qp_ctx->req_lock);
141	req_id = idr_alloc_cyclic(&qp_ctx->req_idr, NULL, 0, qp_ctx->qp->sq_depth, GFP_ATOMIC);
142	spin_unlock_bh(&qp_ctx->req_lock);
143	if (unlikely(req_id < 0)) {
144		dev_err(req->ctx->dev, "alloc req id fail!\n");
145		return req_id;
146	}
147
148	req->qp_ctx = qp_ctx;
149	qp_ctx->req_list[req_id] = req;
150
151	return req_id;
152}
153
154static void sec_free_req_id(struct sec_req *req)
155{
156	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
157	int req_id = req->req_id;
158
159	if (unlikely(req_id < 0 || req_id >= qp_ctx->qp->sq_depth)) {
160		dev_err(req->ctx->dev, "free request id invalid!\n");
161		return;
162	}
163
164	qp_ctx->req_list[req_id] = NULL;
165	req->qp_ctx = NULL;
166
167	spin_lock_bh(&qp_ctx->req_lock);
168	idr_remove(&qp_ctx->req_idr, req_id);
169	spin_unlock_bh(&qp_ctx->req_lock);
170}
171
172static u8 pre_parse_finished_bd(struct bd_status *status, void *resp)
173{
174	struct sec_sqe *bd = resp;
175
176	status->done = le16_to_cpu(bd->type2.done_flag) & SEC_DONE_MASK;
177	status->icv = (le16_to_cpu(bd->type2.done_flag) & SEC_ICV_MASK) >> 1;
178	status->flag = (le16_to_cpu(bd->type2.done_flag) &
179					SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
180	status->tag = le16_to_cpu(bd->type2.tag);
181	status->err_type = bd->type2.error_type;
182
183	return bd->type_cipher_auth & SEC_TYPE_MASK;
184}
185
186static u8 pre_parse_finished_bd3(struct bd_status *status, void *resp)
187{
188	struct sec_sqe3 *bd3 = resp;
189
190	status->done = le16_to_cpu(bd3->done_flag) & SEC_DONE_MASK;
191	status->icv = (le16_to_cpu(bd3->done_flag) & SEC_ICV_MASK) >> 1;
192	status->flag = (le16_to_cpu(bd3->done_flag) &
193					SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
194	status->tag = le64_to_cpu(bd3->tag);
195	status->err_type = bd3->error_type;
196
197	return le32_to_cpu(bd3->bd_param) & SEC_TYPE_MASK;
198}
199
200static int sec_cb_status_check(struct sec_req *req,
201			       struct bd_status *status)
202{
203	struct sec_ctx *ctx = req->ctx;
204
205	if (unlikely(req->err_type || status->done != SEC_SQE_DONE)) {
206		dev_err_ratelimited(ctx->dev, "err_type[%d], done[%u]\n",
207				    req->err_type, status->done);
208		return -EIO;
209	}
210
211	if (unlikely(ctx->alg_type == SEC_SKCIPHER)) {
212		if (unlikely(status->flag != SEC_SQE_CFLAG)) {
213			dev_err_ratelimited(ctx->dev, "flag[%u]\n",
214					    status->flag);
215			return -EIO;
216		}
217	} else if (unlikely(ctx->alg_type == SEC_AEAD)) {
218		if (unlikely(status->flag != SEC_SQE_AEAD_FLAG ||
219			     status->icv == SEC_ICV_ERR)) {
220			dev_err_ratelimited(ctx->dev,
221					    "flag[%u], icv[%u]\n",
222					    status->flag, status->icv);
223			return -EBADMSG;
224		}
225	}
226
227	return 0;
228}
229
230static void sec_req_cb(struct hisi_qp *qp, void *resp)
231{
232	struct sec_qp_ctx *qp_ctx = qp->qp_ctx;
233	struct sec_dfx *dfx = &qp_ctx->ctx->sec->debug.dfx;
234	u8 type_supported = qp_ctx->ctx->type_supported;
235	struct bd_status status;
236	struct sec_ctx *ctx;
237	struct sec_req *req;
238	int err;
239	u8 type;
240
241	if (type_supported == SEC_BD_TYPE2) {
242		type = pre_parse_finished_bd(&status, resp);
243		req = qp_ctx->req_list[status.tag];
244	} else {
245		type = pre_parse_finished_bd3(&status, resp);
246		req = (void *)(uintptr_t)status.tag;
247	}
248
249	if (unlikely(type != type_supported)) {
250		atomic64_inc(&dfx->err_bd_cnt);
251		pr_err("err bd type [%u]\n", type);
252		return;
253	}
254
255	if (unlikely(!req)) {
256		atomic64_inc(&dfx->invalid_req_cnt);
257		atomic_inc(&qp->qp_status.used);
258		return;
259	}
260
261	req->err_type = status.err_type;
262	ctx = req->ctx;
263	err = sec_cb_status_check(req, &status);
264	if (err)
265		atomic64_inc(&dfx->done_flag_cnt);
266
267	atomic64_inc(&dfx->recv_cnt);
268
269	ctx->req_op->buf_unmap(ctx, req);
270
271	ctx->req_op->callback(ctx, req, err);
272}
273
274static int sec_bd_send(struct sec_ctx *ctx, struct sec_req *req)
275{
276	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
277	int ret;
278
279	if (ctx->fake_req_limit <=
280	    atomic_read(&qp_ctx->qp->qp_status.used) &&
281	    !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG))
282		return -EBUSY;
283
284	spin_lock_bh(&qp_ctx->req_lock);
285	ret = hisi_qp_send(qp_ctx->qp, &req->sec_sqe);
286	if (ctx->fake_req_limit <=
287	    atomic_read(&qp_ctx->qp->qp_status.used) && !ret) {
288		list_add_tail(&req->backlog_head, &qp_ctx->backlog);
289		atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
290		atomic64_inc(&ctx->sec->debug.dfx.send_busy_cnt);
291		spin_unlock_bh(&qp_ctx->req_lock);
292		return -EBUSY;
293	}
294	spin_unlock_bh(&qp_ctx->req_lock);
295
296	if (unlikely(ret == -EBUSY))
297		return -ENOBUFS;
298
299	if (likely(!ret)) {
300		ret = -EINPROGRESS;
301		atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
302	}
303
304	return ret;
305}
306
307/* Get DMA memory resources */
308static int sec_alloc_civ_resource(struct device *dev, struct sec_alg_res *res)
309{
310	u16 q_depth = res->depth;
311	int i;
312
313	res->c_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ(q_depth),
314					 &res->c_ivin_dma, GFP_KERNEL);
315	if (!res->c_ivin)
316		return -ENOMEM;
317
318	for (i = 1; i < q_depth; i++) {
319		res[i].c_ivin_dma = res->c_ivin_dma + i * SEC_IV_SIZE;
320		res[i].c_ivin = res->c_ivin + i * SEC_IV_SIZE;
321	}
322
323	return 0;
324}
325
326static void sec_free_civ_resource(struct device *dev, struct sec_alg_res *res)
327{
328	if (res->c_ivin)
329		dma_free_coherent(dev, SEC_TOTAL_IV_SZ(res->depth),
330				  res->c_ivin, res->c_ivin_dma);
331}
332
333static int sec_alloc_aiv_resource(struct device *dev, struct sec_alg_res *res)
334{
335	u16 q_depth = res->depth;
336	int i;
337
338	res->a_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ(q_depth),
339					 &res->a_ivin_dma, GFP_KERNEL);
340	if (!res->a_ivin)
341		return -ENOMEM;
342
343	for (i = 1; i < q_depth; i++) {
344		res[i].a_ivin_dma = res->a_ivin_dma + i * SEC_IV_SIZE;
345		res[i].a_ivin = res->a_ivin + i * SEC_IV_SIZE;
346	}
347
348	return 0;
349}
350
351static void sec_free_aiv_resource(struct device *dev, struct sec_alg_res *res)
352{
353	if (res->a_ivin)
354		dma_free_coherent(dev, SEC_TOTAL_IV_SZ(res->depth),
355				  res->a_ivin, res->a_ivin_dma);
356}
357
358static int sec_alloc_mac_resource(struct device *dev, struct sec_alg_res *res)
359{
360	u16 q_depth = res->depth;
361	int i;
362
363	res->out_mac = dma_alloc_coherent(dev, SEC_TOTAL_MAC_SZ(q_depth) << 1,
364					  &res->out_mac_dma, GFP_KERNEL);
365	if (!res->out_mac)
366		return -ENOMEM;
367
368	for (i = 1; i < q_depth; i++) {
369		res[i].out_mac_dma = res->out_mac_dma +
370				     i * (SEC_MAX_MAC_LEN << 1);
371		res[i].out_mac = res->out_mac + i * (SEC_MAX_MAC_LEN << 1);
372	}
373
374	return 0;
375}
376
377static void sec_free_mac_resource(struct device *dev, struct sec_alg_res *res)
378{
379	if (res->out_mac)
380		dma_free_coherent(dev, SEC_TOTAL_MAC_SZ(res->depth) << 1,
381				  res->out_mac, res->out_mac_dma);
382}
383
384static void sec_free_pbuf_resource(struct device *dev, struct sec_alg_res *res)
385{
386	if (res->pbuf)
387		dma_free_coherent(dev, SEC_TOTAL_PBUF_SZ(res->depth),
388				  res->pbuf, res->pbuf_dma);
389}
390
391/*
392 * To improve performance, pbuffer is used for
393 * small packets (< 512Bytes) as IOMMU translation using.
394 */
395static int sec_alloc_pbuf_resource(struct device *dev, struct sec_alg_res *res)
396{
397	u16 q_depth = res->depth;
398	int size = SEC_PBUF_PAGE_NUM(q_depth);
399	int pbuf_page_offset;
400	int i, j, k;
401
402	res->pbuf = dma_alloc_coherent(dev, SEC_TOTAL_PBUF_SZ(q_depth),
403				&res->pbuf_dma, GFP_KERNEL);
404	if (!res->pbuf)
405		return -ENOMEM;
406
407	/*
408	 * SEC_PBUF_PKG contains data pbuf, iv and
409	 * out_mac : <SEC_PBUF|SEC_IV|SEC_MAC>
410	 * Every PAGE contains six SEC_PBUF_PKG
411	 * The sec_qp_ctx contains QM_Q_DEPTH numbers of SEC_PBUF_PKG
412	 * So we need SEC_PBUF_PAGE_NUM numbers of PAGE
413	 * for the SEC_TOTAL_PBUF_SZ
414	 */
415	for (i = 0; i <= size; i++) {
416		pbuf_page_offset = PAGE_SIZE * i;
417		for (j = 0; j < SEC_PBUF_NUM; j++) {
418			k = i * SEC_PBUF_NUM + j;
419			if (k == q_depth)
420				break;
421			res[k].pbuf = res->pbuf +
422				j * SEC_PBUF_PKG + pbuf_page_offset;
423			res[k].pbuf_dma = res->pbuf_dma +
424				j * SEC_PBUF_PKG + pbuf_page_offset;
425		}
426	}
427
428	return 0;
429}
430
431static int sec_alg_resource_alloc(struct sec_ctx *ctx,
432				  struct sec_qp_ctx *qp_ctx)
433{
434	struct sec_alg_res *res = qp_ctx->res;
435	struct device *dev = ctx->dev;
436	int ret;
437
438	ret = sec_alloc_civ_resource(dev, res);
439	if (ret)
440		return ret;
441
442	if (ctx->alg_type == SEC_AEAD) {
443		ret = sec_alloc_aiv_resource(dev, res);
444		if (ret)
445			goto alloc_aiv_fail;
446
447		ret = sec_alloc_mac_resource(dev, res);
448		if (ret)
449			goto alloc_mac_fail;
450	}
451	if (ctx->pbuf_supported) {
452		ret = sec_alloc_pbuf_resource(dev, res);
453		if (ret) {
454			dev_err(dev, "fail to alloc pbuf dma resource!\n");
455			goto alloc_pbuf_fail;
456		}
457	}
458
459	return 0;
460
461alloc_pbuf_fail:
462	if (ctx->alg_type == SEC_AEAD)
463		sec_free_mac_resource(dev, qp_ctx->res);
464alloc_mac_fail:
465	if (ctx->alg_type == SEC_AEAD)
466		sec_free_aiv_resource(dev, res);
467alloc_aiv_fail:
468	sec_free_civ_resource(dev, res);
469	return ret;
470}
471
472static void sec_alg_resource_free(struct sec_ctx *ctx,
473				  struct sec_qp_ctx *qp_ctx)
474{
475	struct device *dev = ctx->dev;
476
477	sec_free_civ_resource(dev, qp_ctx->res);
478
479	if (ctx->pbuf_supported)
480		sec_free_pbuf_resource(dev, qp_ctx->res);
481	if (ctx->alg_type == SEC_AEAD)
482		sec_free_mac_resource(dev, qp_ctx->res);
483}
484
485static int sec_alloc_qp_ctx_resource(struct hisi_qm *qm, struct sec_ctx *ctx,
486				     struct sec_qp_ctx *qp_ctx)
487{
488	u16 q_depth = qp_ctx->qp->sq_depth;
489	struct device *dev = ctx->dev;
490	int ret = -ENOMEM;
491
492	qp_ctx->req_list = kcalloc(q_depth, sizeof(struct sec_req *), GFP_KERNEL);
493	if (!qp_ctx->req_list)
494		return ret;
495
496	qp_ctx->res = kcalloc(q_depth, sizeof(struct sec_alg_res), GFP_KERNEL);
497	if (!qp_ctx->res)
498		goto err_free_req_list;
499	qp_ctx->res->depth = q_depth;
500
501	qp_ctx->c_in_pool = hisi_acc_create_sgl_pool(dev, q_depth, SEC_SGL_SGE_NR);
502	if (IS_ERR(qp_ctx->c_in_pool)) {
503		dev_err(dev, "fail to create sgl pool for input!\n");
504		goto err_free_res;
505	}
506
507	qp_ctx->c_out_pool = hisi_acc_create_sgl_pool(dev, q_depth, SEC_SGL_SGE_NR);
508	if (IS_ERR(qp_ctx->c_out_pool)) {
509		dev_err(dev, "fail to create sgl pool for output!\n");
510		goto err_free_c_in_pool;
511	}
512
513	ret = sec_alg_resource_alloc(ctx, qp_ctx);
514	if (ret)
515		goto err_free_c_out_pool;
516
517	return 0;
518
519err_free_c_out_pool:
520	hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
521err_free_c_in_pool:
522	hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
523err_free_res:
524	kfree(qp_ctx->res);
525err_free_req_list:
526	kfree(qp_ctx->req_list);
527	return ret;
528}
529
530static void sec_free_qp_ctx_resource(struct sec_ctx *ctx, struct sec_qp_ctx *qp_ctx)
531{
532	struct device *dev = ctx->dev;
533
534	sec_alg_resource_free(ctx, qp_ctx);
535	hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
536	hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
537	kfree(qp_ctx->res);
538	kfree(qp_ctx->req_list);
539}
540
541static int sec_create_qp_ctx(struct hisi_qm *qm, struct sec_ctx *ctx,
542			     int qp_ctx_id, int alg_type)
543{
544	struct sec_qp_ctx *qp_ctx;
545	struct hisi_qp *qp;
546	int ret;
547
548	qp_ctx = &ctx->qp_ctx[qp_ctx_id];
549	qp = ctx->qps[qp_ctx_id];
550	qp->req_type = 0;
551	qp->qp_ctx = qp_ctx;
552	qp_ctx->qp = qp;
553	qp_ctx->ctx = ctx;
554
555	qp->req_cb = sec_req_cb;
556
557	spin_lock_init(&qp_ctx->req_lock);
558	idr_init(&qp_ctx->req_idr);
559	INIT_LIST_HEAD(&qp_ctx->backlog);
560
561	ret = sec_alloc_qp_ctx_resource(qm, ctx, qp_ctx);
562	if (ret)
563		goto err_destroy_idr;
564
565	ret = hisi_qm_start_qp(qp, 0);
566	if (ret < 0)
567		goto err_resource_free;
568
569	return 0;
570
571err_resource_free:
572	sec_free_qp_ctx_resource(ctx, qp_ctx);
573err_destroy_idr:
574	idr_destroy(&qp_ctx->req_idr);
575	return ret;
576}
577
578static void sec_release_qp_ctx(struct sec_ctx *ctx,
579			       struct sec_qp_ctx *qp_ctx)
580{
581	hisi_qm_stop_qp(qp_ctx->qp);
582	sec_free_qp_ctx_resource(ctx, qp_ctx);
583	idr_destroy(&qp_ctx->req_idr);
584}
585
586static int sec_ctx_base_init(struct sec_ctx *ctx)
587{
588	struct sec_dev *sec;
589	int i, ret;
590
591	ctx->qps = sec_create_qps();
592	if (!ctx->qps) {
593		pr_err("Can not create sec qps!\n");
594		return -ENODEV;
595	}
596
597	sec = container_of(ctx->qps[0]->qm, struct sec_dev, qm);
598	ctx->sec = sec;
599	ctx->dev = &sec->qm.pdev->dev;
600	ctx->hlf_q_num = sec->ctx_q_num >> 1;
601
602	ctx->pbuf_supported = ctx->sec->iommu_used;
603
604	/* Half of queue depth is taken as fake requests limit in the queue. */
605	ctx->fake_req_limit = ctx->qps[0]->sq_depth >> 1;
606	ctx->qp_ctx = kcalloc(sec->ctx_q_num, sizeof(struct sec_qp_ctx),
607			      GFP_KERNEL);
608	if (!ctx->qp_ctx) {
609		ret = -ENOMEM;
610		goto err_destroy_qps;
611	}
612
613	for (i = 0; i < sec->ctx_q_num; i++) {
614		ret = sec_create_qp_ctx(&sec->qm, ctx, i, 0);
615		if (ret)
616			goto err_sec_release_qp_ctx;
617	}
618
619	return 0;
620
621err_sec_release_qp_ctx:
622	for (i = i - 1; i >= 0; i--)
623		sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
624	kfree(ctx->qp_ctx);
625err_destroy_qps:
626	sec_destroy_qps(ctx->qps, sec->ctx_q_num);
627	return ret;
628}
629
630static void sec_ctx_base_uninit(struct sec_ctx *ctx)
631{
632	int i;
633
634	for (i = 0; i < ctx->sec->ctx_q_num; i++)
635		sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
636
637	sec_destroy_qps(ctx->qps, ctx->sec->ctx_q_num);
638	kfree(ctx->qp_ctx);
639}
640
641static int sec_cipher_init(struct sec_ctx *ctx)
642{
643	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
644
645	c_ctx->c_key = dma_alloc_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
646					  &c_ctx->c_key_dma, GFP_KERNEL);
647	if (!c_ctx->c_key)
648		return -ENOMEM;
649
650	return 0;
651}
652
653static void sec_cipher_uninit(struct sec_ctx *ctx)
654{
655	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
656
657	memzero_explicit(c_ctx->c_key, SEC_MAX_KEY_SIZE);
658	dma_free_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
659			  c_ctx->c_key, c_ctx->c_key_dma);
660}
661
662static int sec_auth_init(struct sec_ctx *ctx)
663{
664	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
665
666	a_ctx->a_key = dma_alloc_coherent(ctx->dev, SEC_MAX_AKEY_SIZE,
667					  &a_ctx->a_key_dma, GFP_KERNEL);
668	if (!a_ctx->a_key)
669		return -ENOMEM;
670
671	return 0;
672}
673
674static void sec_auth_uninit(struct sec_ctx *ctx)
675{
676	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
677
678	memzero_explicit(a_ctx->a_key, SEC_MAX_AKEY_SIZE);
679	dma_free_coherent(ctx->dev, SEC_MAX_AKEY_SIZE,
680			  a_ctx->a_key, a_ctx->a_key_dma);
681}
682
683static int sec_skcipher_fbtfm_init(struct crypto_skcipher *tfm)
684{
685	const char *alg = crypto_tfm_alg_name(&tfm->base);
686	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
687	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
688
689	c_ctx->fallback = false;
690
691	/* Currently, only XTS mode need fallback tfm when using 192bit key */
692	if (likely(strncmp(alg, "xts", SEC_XTS_NAME_SZ)))
693		return 0;
694
695	c_ctx->fbtfm = crypto_alloc_sync_skcipher(alg, 0,
696						  CRYPTO_ALG_NEED_FALLBACK);
697	if (IS_ERR(c_ctx->fbtfm)) {
698		pr_err("failed to alloc xts mode fallback tfm!\n");
699		return PTR_ERR(c_ctx->fbtfm);
700	}
701
702	return 0;
703}
704
705static int sec_skcipher_init(struct crypto_skcipher *tfm)
706{
707	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
708	int ret;
709
710	ctx->alg_type = SEC_SKCIPHER;
711	crypto_skcipher_set_reqsize(tfm, sizeof(struct sec_req));
712	ctx->c_ctx.ivsize = crypto_skcipher_ivsize(tfm);
713	if (ctx->c_ctx.ivsize > SEC_IV_SIZE) {
714		pr_err("get error skcipher iv size!\n");
715		return -EINVAL;
716	}
717
718	ret = sec_ctx_base_init(ctx);
719	if (ret)
720		return ret;
721
722	ret = sec_cipher_init(ctx);
723	if (ret)
724		goto err_cipher_init;
725
726	ret = sec_skcipher_fbtfm_init(tfm);
727	if (ret)
728		goto err_fbtfm_init;
729
730	return 0;
731
732err_fbtfm_init:
733	sec_cipher_uninit(ctx);
734err_cipher_init:
735	sec_ctx_base_uninit(ctx);
736	return ret;
737}
738
739static void sec_skcipher_uninit(struct crypto_skcipher *tfm)
740{
741	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
742
743	if (ctx->c_ctx.fbtfm)
744		crypto_free_sync_skcipher(ctx->c_ctx.fbtfm);
745
746	sec_cipher_uninit(ctx);
747	sec_ctx_base_uninit(ctx);
748}
749
750static int sec_skcipher_3des_setkey(struct crypto_skcipher *tfm, const u8 *key,
751				    const u32 keylen,
752				    const enum sec_cmode c_mode)
753{
754	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
755	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
756	int ret;
757
758	ret = verify_skcipher_des3_key(tfm, key);
759	if (ret)
760		return ret;
761
762	switch (keylen) {
763	case SEC_DES3_2KEY_SIZE:
764		c_ctx->c_key_len = SEC_CKEY_3DES_2KEY;
765		break;
766	case SEC_DES3_3KEY_SIZE:
767		c_ctx->c_key_len = SEC_CKEY_3DES_3KEY;
768		break;
769	default:
770		return -EINVAL;
771	}
772
773	return 0;
774}
775
776static int sec_skcipher_aes_sm4_setkey(struct sec_cipher_ctx *c_ctx,
777				       const u32 keylen,
778				       const enum sec_cmode c_mode)
779{
780	if (c_mode == SEC_CMODE_XTS) {
781		switch (keylen) {
782		case SEC_XTS_MIN_KEY_SIZE:
783			c_ctx->c_key_len = SEC_CKEY_128BIT;
784			break;
785		case SEC_XTS_MID_KEY_SIZE:
786			c_ctx->fallback = true;
787			break;
788		case SEC_XTS_MAX_KEY_SIZE:
789			c_ctx->c_key_len = SEC_CKEY_256BIT;
790			break;
791		default:
792			pr_err("hisi_sec2: xts mode key error!\n");
793			return -EINVAL;
794		}
795	} else {
796		if (c_ctx->c_alg == SEC_CALG_SM4 &&
797		    keylen != AES_KEYSIZE_128) {
798			pr_err("hisi_sec2: sm4 key error!\n");
799			return -EINVAL;
800		} else {
801			switch (keylen) {
802			case AES_KEYSIZE_128:
803				c_ctx->c_key_len = SEC_CKEY_128BIT;
804				break;
805			case AES_KEYSIZE_192:
806				c_ctx->c_key_len = SEC_CKEY_192BIT;
807				break;
808			case AES_KEYSIZE_256:
809				c_ctx->c_key_len = SEC_CKEY_256BIT;
810				break;
811			default:
812				pr_err("hisi_sec2: aes key error!\n");
813				return -EINVAL;
814			}
815		}
816	}
817
818	return 0;
819}
820
821static int sec_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
822			       const u32 keylen, const enum sec_calg c_alg,
823			       const enum sec_cmode c_mode)
824{
825	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
826	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
827	struct device *dev = ctx->dev;
828	int ret;
829
830	if (c_mode == SEC_CMODE_XTS) {
831		ret = xts_verify_key(tfm, key, keylen);
832		if (ret) {
833			dev_err(dev, "xts mode key err!\n");
834			return ret;
835		}
836	}
837
838	c_ctx->c_alg  = c_alg;
839	c_ctx->c_mode = c_mode;
840
841	switch (c_alg) {
842	case SEC_CALG_3DES:
843		ret = sec_skcipher_3des_setkey(tfm, key, keylen, c_mode);
844		break;
845	case SEC_CALG_AES:
846	case SEC_CALG_SM4:
847		ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
848		break;
849	default:
850		return -EINVAL;
851	}
852
853	if (ret) {
854		dev_err(dev, "set sec key err!\n");
855		return ret;
856	}
857
858	memcpy(c_ctx->c_key, key, keylen);
859	if (c_ctx->fallback && c_ctx->fbtfm) {
860		ret = crypto_sync_skcipher_setkey(c_ctx->fbtfm, key, keylen);
861		if (ret) {
862			dev_err(dev, "failed to set fallback skcipher key!\n");
863			return ret;
864		}
865	}
866	return 0;
867}
868
869#define GEN_SEC_SETKEY_FUNC(name, c_alg, c_mode)			\
870static int sec_setkey_##name(struct crypto_skcipher *tfm, const u8 *key,\
871	u32 keylen)							\
872{									\
873	return sec_skcipher_setkey(tfm, key, keylen, c_alg, c_mode);	\
874}
875
876GEN_SEC_SETKEY_FUNC(aes_ecb, SEC_CALG_AES, SEC_CMODE_ECB)
877GEN_SEC_SETKEY_FUNC(aes_cbc, SEC_CALG_AES, SEC_CMODE_CBC)
878GEN_SEC_SETKEY_FUNC(aes_xts, SEC_CALG_AES, SEC_CMODE_XTS)
879GEN_SEC_SETKEY_FUNC(aes_ofb, SEC_CALG_AES, SEC_CMODE_OFB)
880GEN_SEC_SETKEY_FUNC(aes_cfb, SEC_CALG_AES, SEC_CMODE_CFB)
881GEN_SEC_SETKEY_FUNC(aes_ctr, SEC_CALG_AES, SEC_CMODE_CTR)
882GEN_SEC_SETKEY_FUNC(3des_ecb, SEC_CALG_3DES, SEC_CMODE_ECB)
883GEN_SEC_SETKEY_FUNC(3des_cbc, SEC_CALG_3DES, SEC_CMODE_CBC)
884GEN_SEC_SETKEY_FUNC(sm4_xts, SEC_CALG_SM4, SEC_CMODE_XTS)
885GEN_SEC_SETKEY_FUNC(sm4_cbc, SEC_CALG_SM4, SEC_CMODE_CBC)
886GEN_SEC_SETKEY_FUNC(sm4_ofb, SEC_CALG_SM4, SEC_CMODE_OFB)
887GEN_SEC_SETKEY_FUNC(sm4_cfb, SEC_CALG_SM4, SEC_CMODE_CFB)
888GEN_SEC_SETKEY_FUNC(sm4_ctr, SEC_CALG_SM4, SEC_CMODE_CTR)
889
890static int sec_cipher_pbuf_map(struct sec_ctx *ctx, struct sec_req *req,
891			struct scatterlist *src)
892{
893	struct sec_aead_req *a_req = &req->aead_req;
894	struct aead_request *aead_req = a_req->aead_req;
895	struct sec_cipher_req *c_req = &req->c_req;
896	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
897	struct device *dev = ctx->dev;
898	int copy_size, pbuf_length;
899	int req_id = req->req_id;
900	struct crypto_aead *tfm;
901	size_t authsize;
902	u8 *mac_offset;
903
904	if (ctx->alg_type == SEC_AEAD)
905		copy_size = aead_req->cryptlen + aead_req->assoclen;
906	else
907		copy_size = c_req->c_len;
908
909	pbuf_length = sg_copy_to_buffer(src, sg_nents(src),
910			qp_ctx->res[req_id].pbuf, copy_size);
911	if (unlikely(pbuf_length != copy_size)) {
912		dev_err(dev, "copy src data to pbuf error!\n");
913		return -EINVAL;
914	}
915	if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) {
916		tfm = crypto_aead_reqtfm(aead_req);
917		authsize = crypto_aead_authsize(tfm);
918		mac_offset = qp_ctx->res[req_id].pbuf + copy_size - authsize;
919		memcpy(a_req->out_mac, mac_offset, authsize);
920	}
921
922	req->in_dma = qp_ctx->res[req_id].pbuf_dma;
923	c_req->c_out_dma = req->in_dma;
924
925	return 0;
926}
927
928static void sec_cipher_pbuf_unmap(struct sec_ctx *ctx, struct sec_req *req,
929			struct scatterlist *dst)
930{
931	struct aead_request *aead_req = req->aead_req.aead_req;
932	struct sec_cipher_req *c_req = &req->c_req;
933	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
934	int copy_size, pbuf_length;
935	int req_id = req->req_id;
936
937	if (ctx->alg_type == SEC_AEAD)
938		copy_size = c_req->c_len + aead_req->assoclen;
939	else
940		copy_size = c_req->c_len;
941
942	pbuf_length = sg_copy_from_buffer(dst, sg_nents(dst),
943			qp_ctx->res[req_id].pbuf, copy_size);
944	if (unlikely(pbuf_length != copy_size))
945		dev_err(ctx->dev, "copy pbuf data to dst error!\n");
946}
947
948static int sec_aead_mac_init(struct sec_aead_req *req)
949{
950	struct aead_request *aead_req = req->aead_req;
951	struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
952	size_t authsize = crypto_aead_authsize(tfm);
953	u8 *mac_out = req->out_mac;
954	struct scatterlist *sgl = aead_req->src;
955	size_t copy_size;
956	off_t skip_size;
957
958	/* Copy input mac */
959	skip_size = aead_req->assoclen + aead_req->cryptlen - authsize;
960	copy_size = sg_pcopy_to_buffer(sgl, sg_nents(sgl), mac_out,
961				       authsize, skip_size);
962	if (unlikely(copy_size != authsize))
963		return -EINVAL;
964
965	return 0;
966}
967
968static int sec_cipher_map(struct sec_ctx *ctx, struct sec_req *req,
969			  struct scatterlist *src, struct scatterlist *dst)
970{
971	struct sec_cipher_req *c_req = &req->c_req;
972	struct sec_aead_req *a_req = &req->aead_req;
973	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
974	struct sec_alg_res *res = &qp_ctx->res[req->req_id];
975	struct device *dev = ctx->dev;
976	int ret;
977
978	if (req->use_pbuf) {
979		c_req->c_ivin = res->pbuf + SEC_PBUF_IV_OFFSET;
980		c_req->c_ivin_dma = res->pbuf_dma + SEC_PBUF_IV_OFFSET;
981		if (ctx->alg_type == SEC_AEAD) {
982			a_req->a_ivin = res->a_ivin;
983			a_req->a_ivin_dma = res->a_ivin_dma;
984			a_req->out_mac = res->pbuf + SEC_PBUF_MAC_OFFSET;
985			a_req->out_mac_dma = res->pbuf_dma +
986					SEC_PBUF_MAC_OFFSET;
987		}
988		ret = sec_cipher_pbuf_map(ctx, req, src);
989
990		return ret;
991	}
992	c_req->c_ivin = res->c_ivin;
993	c_req->c_ivin_dma = res->c_ivin_dma;
994	if (ctx->alg_type == SEC_AEAD) {
995		a_req->a_ivin = res->a_ivin;
996		a_req->a_ivin_dma = res->a_ivin_dma;
997		a_req->out_mac = res->out_mac;
998		a_req->out_mac_dma = res->out_mac_dma;
999	}
1000
1001	req->in = hisi_acc_sg_buf_map_to_hw_sgl(dev, src,
1002						qp_ctx->c_in_pool,
1003						req->req_id,
1004						&req->in_dma);
1005	if (IS_ERR(req->in)) {
1006		dev_err(dev, "fail to dma map input sgl buffers!\n");
1007		return PTR_ERR(req->in);
1008	}
1009
1010	if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) {
1011		ret = sec_aead_mac_init(a_req);
1012		if (unlikely(ret)) {
1013			dev_err(dev, "fail to init mac data for ICV!\n");
1014			return ret;
1015		}
1016	}
1017
1018	if (dst == src) {
1019		c_req->c_out = req->in;
1020		c_req->c_out_dma = req->in_dma;
1021	} else {
1022		c_req->c_out = hisi_acc_sg_buf_map_to_hw_sgl(dev, dst,
1023							     qp_ctx->c_out_pool,
1024							     req->req_id,
1025							     &c_req->c_out_dma);
1026
1027		if (IS_ERR(c_req->c_out)) {
1028			dev_err(dev, "fail to dma map output sgl buffers!\n");
1029			hisi_acc_sg_buf_unmap(dev, src, req->in);
1030			return PTR_ERR(c_req->c_out);
1031		}
1032	}
1033
1034	return 0;
1035}
1036
1037static void sec_cipher_unmap(struct sec_ctx *ctx, struct sec_req *req,
1038			     struct scatterlist *src, struct scatterlist *dst)
1039{
1040	struct sec_cipher_req *c_req = &req->c_req;
1041	struct device *dev = ctx->dev;
1042
1043	if (req->use_pbuf) {
1044		sec_cipher_pbuf_unmap(ctx, req, dst);
1045	} else {
1046		if (dst != src)
1047			hisi_acc_sg_buf_unmap(dev, src, req->in);
1048
1049		hisi_acc_sg_buf_unmap(dev, dst, c_req->c_out);
1050	}
1051}
1052
1053static int sec_skcipher_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
1054{
1055	struct skcipher_request *sq = req->c_req.sk_req;
1056
1057	return sec_cipher_map(ctx, req, sq->src, sq->dst);
1058}
1059
1060static void sec_skcipher_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
1061{
1062	struct skcipher_request *sq = req->c_req.sk_req;
1063
1064	sec_cipher_unmap(ctx, req, sq->src, sq->dst);
1065}
1066
1067static int sec_aead_aes_set_key(struct sec_cipher_ctx *c_ctx,
1068				struct crypto_authenc_keys *keys)
1069{
1070	switch (keys->enckeylen) {
1071	case AES_KEYSIZE_128:
1072		c_ctx->c_key_len = SEC_CKEY_128BIT;
1073		break;
1074	case AES_KEYSIZE_192:
1075		c_ctx->c_key_len = SEC_CKEY_192BIT;
1076		break;
1077	case AES_KEYSIZE_256:
1078		c_ctx->c_key_len = SEC_CKEY_256BIT;
1079		break;
1080	default:
1081		pr_err("hisi_sec2: aead aes key error!\n");
1082		return -EINVAL;
1083	}
1084	memcpy(c_ctx->c_key, keys->enckey, keys->enckeylen);
1085
1086	return 0;
1087}
1088
1089static int sec_aead_auth_set_key(struct sec_auth_ctx *ctx,
1090				 struct crypto_authenc_keys *keys)
1091{
1092	struct crypto_shash *hash_tfm = ctx->hash_tfm;
1093	int blocksize, digestsize, ret;
1094
1095	if (!keys->authkeylen) {
1096		pr_err("hisi_sec2: aead auth key error!\n");
1097		return -EINVAL;
1098	}
1099
1100	blocksize = crypto_shash_blocksize(hash_tfm);
1101	digestsize = crypto_shash_digestsize(hash_tfm);
1102	if (keys->authkeylen > blocksize) {
1103		ret = crypto_shash_tfm_digest(hash_tfm, keys->authkey,
1104					      keys->authkeylen, ctx->a_key);
1105		if (ret) {
1106			pr_err("hisi_sec2: aead auth digest error!\n");
1107			return -EINVAL;
1108		}
1109		ctx->a_key_len = digestsize;
1110	} else {
1111		memcpy(ctx->a_key, keys->authkey, keys->authkeylen);
1112		ctx->a_key_len = keys->authkeylen;
1113	}
1114
1115	return 0;
1116}
1117
1118static int sec_aead_setauthsize(struct crypto_aead *aead, unsigned int authsize)
1119{
1120	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
1121	struct sec_ctx *ctx = crypto_tfm_ctx(tfm);
1122	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
1123
1124	if (unlikely(a_ctx->fallback_aead_tfm))
1125		return crypto_aead_setauthsize(a_ctx->fallback_aead_tfm, authsize);
1126
1127	return 0;
1128}
1129
1130static int sec_aead_fallback_setkey(struct sec_auth_ctx *a_ctx,
1131				    struct crypto_aead *tfm, const u8 *key,
1132				    unsigned int keylen)
1133{
1134	crypto_aead_clear_flags(a_ctx->fallback_aead_tfm, CRYPTO_TFM_REQ_MASK);
1135	crypto_aead_set_flags(a_ctx->fallback_aead_tfm,
1136			      crypto_aead_get_flags(tfm) & CRYPTO_TFM_REQ_MASK);
1137	return crypto_aead_setkey(a_ctx->fallback_aead_tfm, key, keylen);
1138}
1139
1140static int sec_aead_setkey(struct crypto_aead *tfm, const u8 *key,
1141			   const u32 keylen, const enum sec_hash_alg a_alg,
1142			   const enum sec_calg c_alg,
1143			   const enum sec_mac_len mac_len,
1144			   const enum sec_cmode c_mode)
1145{
1146	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1147	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
1148	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
1149	struct device *dev = ctx->dev;
1150	struct crypto_authenc_keys keys;
1151	int ret;
1152
1153	ctx->a_ctx.a_alg = a_alg;
1154	ctx->c_ctx.c_alg = c_alg;
1155	ctx->a_ctx.mac_len = mac_len;
1156	c_ctx->c_mode = c_mode;
1157
1158	if (c_mode == SEC_CMODE_CCM || c_mode == SEC_CMODE_GCM) {
1159		ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
1160		if (ret) {
1161			dev_err(dev, "set sec aes ccm cipher key err!\n");
1162			return ret;
1163		}
1164		memcpy(c_ctx->c_key, key, keylen);
1165
1166		if (unlikely(a_ctx->fallback_aead_tfm)) {
1167			ret = sec_aead_fallback_setkey(a_ctx, tfm, key, keylen);
1168			if (ret)
1169				return ret;
1170		}
1171
1172		return 0;
1173	}
1174
1175	if (crypto_authenc_extractkeys(&keys, key, keylen))
1176		goto bad_key;
1177
1178	ret = sec_aead_aes_set_key(c_ctx, &keys);
1179	if (ret) {
1180		dev_err(dev, "set sec cipher key err!\n");
1181		goto bad_key;
1182	}
1183
1184	ret = sec_aead_auth_set_key(&ctx->a_ctx, &keys);
1185	if (ret) {
1186		dev_err(dev, "set sec auth key err!\n");
1187		goto bad_key;
1188	}
1189
1190	if ((ctx->a_ctx.mac_len & SEC_SQE_LEN_RATE_MASK)  ||
1191	    (ctx->a_ctx.a_key_len & SEC_SQE_LEN_RATE_MASK)) {
1192		dev_err(dev, "MAC or AUTH key length error!\n");
1193		goto bad_key;
1194	}
1195
1196	return 0;
1197
1198bad_key:
1199	memzero_explicit(&keys, sizeof(struct crypto_authenc_keys));
1200	return -EINVAL;
1201}
1202
1203
1204#define GEN_SEC_AEAD_SETKEY_FUNC(name, aalg, calg, maclen, cmode)	\
1205static int sec_setkey_##name(struct crypto_aead *tfm, const u8 *key,	\
1206	u32 keylen)							\
1207{									\
1208	return sec_aead_setkey(tfm, key, keylen, aalg, calg, maclen, cmode);\
1209}
1210
1211GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha1, SEC_A_HMAC_SHA1,
1212			 SEC_CALG_AES, SEC_HMAC_SHA1_MAC, SEC_CMODE_CBC)
1213GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha256, SEC_A_HMAC_SHA256,
1214			 SEC_CALG_AES, SEC_HMAC_SHA256_MAC, SEC_CMODE_CBC)
1215GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha512, SEC_A_HMAC_SHA512,
1216			 SEC_CALG_AES, SEC_HMAC_SHA512_MAC, SEC_CMODE_CBC)
1217GEN_SEC_AEAD_SETKEY_FUNC(aes_ccm, 0, SEC_CALG_AES,
1218			 SEC_HMAC_CCM_MAC, SEC_CMODE_CCM)
1219GEN_SEC_AEAD_SETKEY_FUNC(aes_gcm, 0, SEC_CALG_AES,
1220			 SEC_HMAC_GCM_MAC, SEC_CMODE_GCM)
1221GEN_SEC_AEAD_SETKEY_FUNC(sm4_ccm, 0, SEC_CALG_SM4,
1222			 SEC_HMAC_CCM_MAC, SEC_CMODE_CCM)
1223GEN_SEC_AEAD_SETKEY_FUNC(sm4_gcm, 0, SEC_CALG_SM4,
1224			 SEC_HMAC_GCM_MAC, SEC_CMODE_GCM)
1225
1226static int sec_aead_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
1227{
1228	struct aead_request *aq = req->aead_req.aead_req;
1229
1230	return sec_cipher_map(ctx, req, aq->src, aq->dst);
1231}
1232
1233static void sec_aead_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
1234{
1235	struct aead_request *aq = req->aead_req.aead_req;
1236
1237	sec_cipher_unmap(ctx, req, aq->src, aq->dst);
1238}
1239
1240static int sec_request_transfer(struct sec_ctx *ctx, struct sec_req *req)
1241{
1242	int ret;
1243
1244	ret = ctx->req_op->buf_map(ctx, req);
1245	if (unlikely(ret))
1246		return ret;
1247
1248	ctx->req_op->do_transfer(ctx, req);
1249
1250	ret = ctx->req_op->bd_fill(ctx, req);
1251	if (unlikely(ret))
1252		goto unmap_req_buf;
1253
1254	return ret;
1255
1256unmap_req_buf:
1257	ctx->req_op->buf_unmap(ctx, req);
1258	return ret;
1259}
1260
1261static void sec_request_untransfer(struct sec_ctx *ctx, struct sec_req *req)
1262{
1263	ctx->req_op->buf_unmap(ctx, req);
1264}
1265
1266static void sec_skcipher_copy_iv(struct sec_ctx *ctx, struct sec_req *req)
1267{
1268	struct skcipher_request *sk_req = req->c_req.sk_req;
1269	struct sec_cipher_req *c_req = &req->c_req;
1270
1271	memcpy(c_req->c_ivin, sk_req->iv, ctx->c_ctx.ivsize);
1272}
1273
1274static int sec_skcipher_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
1275{
1276	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
1277	struct sec_cipher_req *c_req = &req->c_req;
1278	struct sec_sqe *sec_sqe = &req->sec_sqe;
1279	u8 scene, sa_type, da_type;
1280	u8 bd_type, cipher;
1281	u8 de = 0;
1282
1283	memset(sec_sqe, 0, sizeof(struct sec_sqe));
1284
1285	sec_sqe->type2.c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
1286	sec_sqe->type2.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
1287	sec_sqe->type2.data_src_addr = cpu_to_le64(req->in_dma);
1288	sec_sqe->type2.data_dst_addr = cpu_to_le64(c_req->c_out_dma);
1289
1290	sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_mode) <<
1291						SEC_CMODE_OFFSET);
1292	sec_sqe->type2.c_alg = c_ctx->c_alg;
1293	sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
1294						SEC_CKEY_OFFSET);
1295
1296	bd_type = SEC_BD_TYPE2;
1297	if (c_req->encrypt)
1298		cipher = SEC_CIPHER_ENC << SEC_CIPHER_OFFSET;
1299	else
1300		cipher = SEC_CIPHER_DEC << SEC_CIPHER_OFFSET;
1301	sec_sqe->type_cipher_auth = bd_type | cipher;
1302
1303	/* Set destination and source address type */
1304	if (req->use_pbuf) {
1305		sa_type = SEC_PBUF << SEC_SRC_SGL_OFFSET;
1306		da_type = SEC_PBUF << SEC_DST_SGL_OFFSET;
1307	} else {
1308		sa_type = SEC_SGL << SEC_SRC_SGL_OFFSET;
1309		da_type = SEC_SGL << SEC_DST_SGL_OFFSET;
1310	}
1311
1312	sec_sqe->sdm_addr_type |= da_type;
1313	scene = SEC_COMM_SCENE << SEC_SCENE_OFFSET;
1314	if (req->in_dma != c_req->c_out_dma)
1315		de = 0x1 << SEC_DE_OFFSET;
1316
1317	sec_sqe->sds_sa_type = (de | scene | sa_type);
1318
1319	sec_sqe->type2.clen_ivhlen |= cpu_to_le32(c_req->c_len);
1320	sec_sqe->type2.tag = cpu_to_le16((u16)req->req_id);
1321
1322	return 0;
1323}
1324
1325static int sec_skcipher_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req)
1326{
1327	struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3;
1328	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
1329	struct sec_cipher_req *c_req = &req->c_req;
1330	u32 bd_param = 0;
1331	u16 cipher;
1332
1333	memset(sec_sqe3, 0, sizeof(struct sec_sqe3));
1334
1335	sec_sqe3->c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
1336	sec_sqe3->no_scene.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
1337	sec_sqe3->data_src_addr = cpu_to_le64(req->in_dma);
1338	sec_sqe3->data_dst_addr = cpu_to_le64(c_req->c_out_dma);
1339
1340	sec_sqe3->c_mode_alg = ((u8)c_ctx->c_alg << SEC_CALG_OFFSET_V3) |
1341						c_ctx->c_mode;
1342	sec_sqe3->c_icv_key |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
1343						SEC_CKEY_OFFSET_V3);
1344
1345	if (c_req->encrypt)
1346		cipher = SEC_CIPHER_ENC;
1347	else
1348		cipher = SEC_CIPHER_DEC;
1349	sec_sqe3->c_icv_key |= cpu_to_le16(cipher);
1350
1351	/* Set the CTR counter mode is 128bit rollover */
1352	sec_sqe3->auth_mac_key = cpu_to_le32((u32)SEC_CTR_CNT_ROLLOVER <<
1353					SEC_CTR_CNT_OFFSET);
1354
1355	if (req->use_pbuf) {
1356		bd_param |= SEC_PBUF << SEC_SRC_SGL_OFFSET_V3;
1357		bd_param |= SEC_PBUF << SEC_DST_SGL_OFFSET_V3;
1358	} else {
1359		bd_param |= SEC_SGL << SEC_SRC_SGL_OFFSET_V3;
1360		bd_param |= SEC_SGL << SEC_DST_SGL_OFFSET_V3;
1361	}
1362
1363	bd_param |= SEC_COMM_SCENE << SEC_SCENE_OFFSET_V3;
1364	if (req->in_dma != c_req->c_out_dma)
1365		bd_param |= 0x1 << SEC_DE_OFFSET_V3;
1366
1367	bd_param |= SEC_BD_TYPE3;
1368	sec_sqe3->bd_param = cpu_to_le32(bd_param);
1369
1370	sec_sqe3->c_len_ivin |= cpu_to_le32(c_req->c_len);
1371	sec_sqe3->tag = cpu_to_le64(req);
1372
1373	return 0;
1374}
1375
1376/* increment counter (128-bit int) */
1377static void ctr_iv_inc(__u8 *counter, __u8 bits, __u32 nums)
1378{
1379	do {
1380		--bits;
1381		nums += counter[bits];
1382		counter[bits] = nums & BITS_MASK;
1383		nums >>= BYTE_BITS;
1384	} while (bits && nums);
1385}
1386
1387static void sec_update_iv(struct sec_req *req, enum sec_alg_type alg_type)
1388{
1389	struct aead_request *aead_req = req->aead_req.aead_req;
1390	struct skcipher_request *sk_req = req->c_req.sk_req;
1391	u32 iv_size = req->ctx->c_ctx.ivsize;
1392	struct scatterlist *sgl;
1393	unsigned int cryptlen;
1394	size_t sz;
1395	u8 *iv;
1396
1397	if (req->c_req.encrypt)
1398		sgl = alg_type == SEC_SKCIPHER ? sk_req->dst : aead_req->dst;
1399	else
1400		sgl = alg_type == SEC_SKCIPHER ? sk_req->src : aead_req->src;
1401
1402	if (alg_type == SEC_SKCIPHER) {
1403		iv = sk_req->iv;
1404		cryptlen = sk_req->cryptlen;
1405	} else {
1406		iv = aead_req->iv;
1407		cryptlen = aead_req->cryptlen;
1408	}
1409
1410	if (req->ctx->c_ctx.c_mode == SEC_CMODE_CBC) {
1411		sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), iv, iv_size,
1412					cryptlen - iv_size);
1413		if (unlikely(sz != iv_size))
1414			dev_err(req->ctx->dev, "copy output iv error!\n");
1415	} else {
1416		sz = cryptlen / iv_size;
1417		if (cryptlen % iv_size)
1418			sz += 1;
1419		ctr_iv_inc(iv, iv_size, sz);
1420	}
1421}
1422
1423static struct sec_req *sec_back_req_clear(struct sec_ctx *ctx,
1424				struct sec_qp_ctx *qp_ctx)
1425{
1426	struct sec_req *backlog_req = NULL;
1427
1428	spin_lock_bh(&qp_ctx->req_lock);
1429	if (ctx->fake_req_limit >=
1430	    atomic_read(&qp_ctx->qp->qp_status.used) &&
1431	    !list_empty(&qp_ctx->backlog)) {
1432		backlog_req = list_first_entry(&qp_ctx->backlog,
1433				typeof(*backlog_req), backlog_head);
1434		list_del(&backlog_req->backlog_head);
1435	}
1436	spin_unlock_bh(&qp_ctx->req_lock);
1437
1438	return backlog_req;
1439}
1440
1441static void sec_skcipher_callback(struct sec_ctx *ctx, struct sec_req *req,
1442				  int err)
1443{
1444	struct skcipher_request *sk_req = req->c_req.sk_req;
1445	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
1446	struct skcipher_request *backlog_sk_req;
1447	struct sec_req *backlog_req;
1448
1449	sec_free_req_id(req);
1450
1451	/* IV output at encrypto of CBC/CTR mode */
1452	if (!err && (ctx->c_ctx.c_mode == SEC_CMODE_CBC ||
1453	    ctx->c_ctx.c_mode == SEC_CMODE_CTR) && req->c_req.encrypt)
1454		sec_update_iv(req, SEC_SKCIPHER);
1455
1456	while (1) {
1457		backlog_req = sec_back_req_clear(ctx, qp_ctx);
1458		if (!backlog_req)
1459			break;
1460
1461		backlog_sk_req = backlog_req->c_req.sk_req;
1462		skcipher_request_complete(backlog_sk_req, -EINPROGRESS);
1463		atomic64_inc(&ctx->sec->debug.dfx.recv_busy_cnt);
1464	}
1465
1466	skcipher_request_complete(sk_req, err);
1467}
1468
1469static void set_aead_auth_iv(struct sec_ctx *ctx, struct sec_req *req)
1470{
1471	struct aead_request *aead_req = req->aead_req.aead_req;
1472	struct sec_cipher_req *c_req = &req->c_req;
1473	struct sec_aead_req *a_req = &req->aead_req;
1474	size_t authsize = ctx->a_ctx.mac_len;
1475	u32 data_size = aead_req->cryptlen;
1476	u8 flage = 0;
1477	u8 cm, cl;
1478
1479	/* the specification has been checked in aead_iv_demension_check() */
1480	cl = c_req->c_ivin[0] + 1;
1481	c_req->c_ivin[ctx->c_ctx.ivsize - cl] = 0x00;
1482	memset(&c_req->c_ivin[ctx->c_ctx.ivsize - cl], 0, cl);
1483	c_req->c_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] = IV_CTR_INIT;
1484
1485	/* the last 3bit is L' */
1486	flage |= c_req->c_ivin[0] & IV_CL_MASK;
1487
1488	/* the M' is bit3~bit5, the Flags is bit6 */
1489	cm = (authsize - IV_CM_CAL_NUM) / IV_CM_CAL_NUM;
1490	flage |= cm << IV_CM_OFFSET;
1491	if (aead_req->assoclen)
1492		flage |= 0x01 << IV_FLAGS_OFFSET;
1493
1494	memcpy(a_req->a_ivin, c_req->c_ivin, ctx->c_ctx.ivsize);
1495	a_req->a_ivin[0] = flage;
1496
1497	/*
1498	 * the last 32bit is counter's initial number,
1499	 * but the nonce uses the first 16bit
1500	 * the tail 16bit fill with the cipher length
1501	 */
1502	if (!c_req->encrypt)
1503		data_size = aead_req->cryptlen - authsize;
1504
1505	a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] =
1506			data_size & IV_LAST_BYTE_MASK;
1507	data_size >>= IV_BYTE_OFFSET;
1508	a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE2] =
1509			data_size & IV_LAST_BYTE_MASK;
1510}
1511
1512static void sec_aead_set_iv(struct sec_ctx *ctx, struct sec_req *req)
1513{
1514	struct aead_request *aead_req = req->aead_req.aead_req;
1515	struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
1516	size_t authsize = crypto_aead_authsize(tfm);
1517	struct sec_cipher_req *c_req = &req->c_req;
1518	struct sec_aead_req *a_req = &req->aead_req;
1519
1520	memcpy(c_req->c_ivin, aead_req->iv, ctx->c_ctx.ivsize);
1521
1522	if (ctx->c_ctx.c_mode == SEC_CMODE_CCM) {
1523		/*
1524		 * CCM 16Byte Cipher_IV: {1B_Flage,13B_IV,2B_counter},
1525		 * the  counter must set to 0x01
1526		 */
1527		ctx->a_ctx.mac_len = authsize;
1528		/* CCM 16Byte Auth_IV: {1B_AFlage,13B_IV,2B_Ptext_length} */
1529		set_aead_auth_iv(ctx, req);
1530	}
1531
1532	/* GCM 12Byte Cipher_IV == Auth_IV */
1533	if (ctx->c_ctx.c_mode == SEC_CMODE_GCM) {
1534		ctx->a_ctx.mac_len = authsize;
1535		memcpy(a_req->a_ivin, c_req->c_ivin, SEC_AIV_SIZE);
1536	}
1537}
1538
1539static void sec_auth_bd_fill_xcm(struct sec_auth_ctx *ctx, int dir,
1540				 struct sec_req *req, struct sec_sqe *sec_sqe)
1541{
1542	struct sec_aead_req *a_req = &req->aead_req;
1543	struct aead_request *aq = a_req->aead_req;
1544
1545	/* C_ICV_Len is MAC size, 0x4 ~ 0x10 */
1546	sec_sqe->type2.icvw_kmode |= cpu_to_le16((u16)ctx->mac_len);
1547
1548	/* mode set to CCM/GCM, don't set {A_Alg, AKey_Len, MAC_Len} */
1549	sec_sqe->type2.a_key_addr = sec_sqe->type2.c_key_addr;
1550	sec_sqe->type2.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma);
1551	sec_sqe->type_cipher_auth |= SEC_NO_AUTH << SEC_AUTH_OFFSET;
1552
1553	if (dir)
1554		sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
1555	else
1556		sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;
1557
1558	sec_sqe->type2.alen_ivllen = cpu_to_le32(aq->assoclen);
1559	sec_sqe->type2.auth_src_offset = cpu_to_le16(0x0);
1560	sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1561
1562	sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma);
1563}
1564
1565static void sec_auth_bd_fill_xcm_v3(struct sec_auth_ctx *ctx, int dir,
1566				    struct sec_req *req, struct sec_sqe3 *sqe3)
1567{
1568	struct sec_aead_req *a_req = &req->aead_req;
1569	struct aead_request *aq = a_req->aead_req;
1570
1571	/* C_ICV_Len is MAC size, 0x4 ~ 0x10 */
1572	sqe3->c_icv_key |= cpu_to_le16((u16)ctx->mac_len << SEC_MAC_OFFSET_V3);
1573
1574	/* mode set to CCM/GCM, don't set {A_Alg, AKey_Len, MAC_Len} */
1575	sqe3->a_key_addr = sqe3->c_key_addr;
1576	sqe3->auth_ivin.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma);
1577	sqe3->auth_mac_key |= SEC_NO_AUTH;
1578
1579	if (dir)
1580		sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3;
1581	else
1582		sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3;
1583
1584	sqe3->a_len_key = cpu_to_le32(aq->assoclen);
1585	sqe3->auth_src_offset = cpu_to_le16(0x0);
1586	sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1587	sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma);
1588}
1589
1590static void sec_auth_bd_fill_ex(struct sec_auth_ctx *ctx, int dir,
1591			       struct sec_req *req, struct sec_sqe *sec_sqe)
1592{
1593	struct sec_aead_req *a_req = &req->aead_req;
1594	struct sec_cipher_req *c_req = &req->c_req;
1595	struct aead_request *aq = a_req->aead_req;
1596
1597	sec_sqe->type2.a_key_addr = cpu_to_le64(ctx->a_key_dma);
1598
1599	sec_sqe->type2.mac_key_alg =
1600			cpu_to_le32(ctx->mac_len / SEC_SQE_LEN_RATE);
1601
1602	sec_sqe->type2.mac_key_alg |=
1603			cpu_to_le32((u32)((ctx->a_key_len) /
1604			SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET);
1605
1606	sec_sqe->type2.mac_key_alg |=
1607			cpu_to_le32((u32)(ctx->a_alg) << SEC_AEAD_ALG_OFFSET);
1608
1609	if (dir) {
1610		sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE1 << SEC_AUTH_OFFSET;
1611		sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
1612	} else {
1613		sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE2 << SEC_AUTH_OFFSET;
1614		sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;
1615	}
1616	sec_sqe->type2.alen_ivllen = cpu_to_le32(c_req->c_len + aq->assoclen);
1617
1618	sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1619
1620	sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma);
1621}
1622
1623static int sec_aead_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
1624{
1625	struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
1626	struct sec_sqe *sec_sqe = &req->sec_sqe;
1627	int ret;
1628
1629	ret = sec_skcipher_bd_fill(ctx, req);
1630	if (unlikely(ret)) {
1631		dev_err(ctx->dev, "skcipher bd fill is error!\n");
1632		return ret;
1633	}
1634
1635	if (ctx->c_ctx.c_mode == SEC_CMODE_CCM ||
1636	    ctx->c_ctx.c_mode == SEC_CMODE_GCM)
1637		sec_auth_bd_fill_xcm(auth_ctx, req->c_req.encrypt, req, sec_sqe);
1638	else
1639		sec_auth_bd_fill_ex(auth_ctx, req->c_req.encrypt, req, sec_sqe);
1640
1641	return 0;
1642}
1643
1644static void sec_auth_bd_fill_ex_v3(struct sec_auth_ctx *ctx, int dir,
1645				   struct sec_req *req, struct sec_sqe3 *sqe3)
1646{
1647	struct sec_aead_req *a_req = &req->aead_req;
1648	struct sec_cipher_req *c_req = &req->c_req;
1649	struct aead_request *aq = a_req->aead_req;
1650
1651	sqe3->a_key_addr = cpu_to_le64(ctx->a_key_dma);
1652
1653	sqe3->auth_mac_key |=
1654			cpu_to_le32((u32)(ctx->mac_len /
1655			SEC_SQE_LEN_RATE) << SEC_MAC_OFFSET_V3);
1656
1657	sqe3->auth_mac_key |=
1658			cpu_to_le32((u32)(ctx->a_key_len /
1659			SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET_V3);
1660
1661	sqe3->auth_mac_key |=
1662			cpu_to_le32((u32)(ctx->a_alg) << SEC_AUTH_ALG_OFFSET_V3);
1663
1664	if (dir) {
1665		sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE1);
1666		sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3;
1667	} else {
1668		sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE2);
1669		sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3;
1670	}
1671	sqe3->a_len_key = cpu_to_le32(c_req->c_len + aq->assoclen);
1672
1673	sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1674
1675	sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma);
1676}
1677
1678static int sec_aead_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req)
1679{
1680	struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
1681	struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3;
1682	int ret;
1683
1684	ret = sec_skcipher_bd_fill_v3(ctx, req);
1685	if (unlikely(ret)) {
1686		dev_err(ctx->dev, "skcipher bd3 fill is error!\n");
1687		return ret;
1688	}
1689
1690	if (ctx->c_ctx.c_mode == SEC_CMODE_CCM ||
1691	    ctx->c_ctx.c_mode == SEC_CMODE_GCM)
1692		sec_auth_bd_fill_xcm_v3(auth_ctx, req->c_req.encrypt,
1693					req, sec_sqe3);
1694	else
1695		sec_auth_bd_fill_ex_v3(auth_ctx, req->c_req.encrypt,
1696				       req, sec_sqe3);
1697
1698	return 0;
1699}
1700
1701static void sec_aead_callback(struct sec_ctx *c, struct sec_req *req, int err)
1702{
1703	struct aead_request *a_req = req->aead_req.aead_req;
1704	struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
1705	struct sec_aead_req *aead_req = &req->aead_req;
1706	struct sec_cipher_req *c_req = &req->c_req;
1707	size_t authsize = crypto_aead_authsize(tfm);
1708	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
1709	struct aead_request *backlog_aead_req;
1710	struct sec_req *backlog_req;
1711	size_t sz;
1712
1713	if (!err && c->c_ctx.c_mode == SEC_CMODE_CBC && c_req->encrypt)
1714		sec_update_iv(req, SEC_AEAD);
1715
1716	/* Copy output mac */
1717	if (!err && c_req->encrypt) {
1718		struct scatterlist *sgl = a_req->dst;
1719
1720		sz = sg_pcopy_from_buffer(sgl, sg_nents(sgl),
1721					  aead_req->out_mac,
1722					  authsize, a_req->cryptlen +
1723					  a_req->assoclen);
1724		if (unlikely(sz != authsize)) {
1725			dev_err(c->dev, "copy out mac err!\n");
1726			err = -EINVAL;
1727		}
1728	}
1729
1730	sec_free_req_id(req);
1731
1732	while (1) {
1733		backlog_req = sec_back_req_clear(c, qp_ctx);
1734		if (!backlog_req)
1735			break;
1736
1737		backlog_aead_req = backlog_req->aead_req.aead_req;
1738		aead_request_complete(backlog_aead_req, -EINPROGRESS);
1739		atomic64_inc(&c->sec->debug.dfx.recv_busy_cnt);
1740	}
1741
1742	aead_request_complete(a_req, err);
1743}
1744
1745static void sec_request_uninit(struct sec_ctx *ctx, struct sec_req *req)
1746{
1747	sec_free_req_id(req);
1748	sec_free_queue_id(ctx, req);
1749}
1750
1751static int sec_request_init(struct sec_ctx *ctx, struct sec_req *req)
1752{
1753	struct sec_qp_ctx *qp_ctx;
1754	int queue_id;
1755
1756	/* To load balance */
1757	queue_id = sec_alloc_queue_id(ctx, req);
1758	qp_ctx = &ctx->qp_ctx[queue_id];
1759
1760	req->req_id = sec_alloc_req_id(req, qp_ctx);
1761	if (unlikely(req->req_id < 0)) {
1762		sec_free_queue_id(ctx, req);
1763		return req->req_id;
1764	}
1765
1766	return 0;
1767}
1768
1769static int sec_process(struct sec_ctx *ctx, struct sec_req *req)
1770{
1771	struct sec_cipher_req *c_req = &req->c_req;
1772	int ret;
1773
1774	ret = sec_request_init(ctx, req);
1775	if (unlikely(ret))
1776		return ret;
1777
1778	ret = sec_request_transfer(ctx, req);
1779	if (unlikely(ret))
1780		goto err_uninit_req;
1781
1782	/* Output IV as decrypto */
1783	if (!req->c_req.encrypt && (ctx->c_ctx.c_mode == SEC_CMODE_CBC ||
1784	    ctx->c_ctx.c_mode == SEC_CMODE_CTR))
1785		sec_update_iv(req, ctx->alg_type);
1786
1787	ret = ctx->req_op->bd_send(ctx, req);
1788	if (unlikely((ret != -EBUSY && ret != -EINPROGRESS) ||
1789		(ret == -EBUSY && !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG)))) {
1790		dev_err_ratelimited(ctx->dev, "send sec request failed!\n");
1791		goto err_send_req;
1792	}
1793
1794	return ret;
1795
1796err_send_req:
1797	/* As failing, restore the IV from user */
1798	if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt) {
1799		if (ctx->alg_type == SEC_SKCIPHER)
1800			memcpy(req->c_req.sk_req->iv, c_req->c_ivin,
1801			       ctx->c_ctx.ivsize);
1802		else
1803			memcpy(req->aead_req.aead_req->iv, c_req->c_ivin,
1804			       ctx->c_ctx.ivsize);
1805	}
1806
1807	sec_request_untransfer(ctx, req);
1808err_uninit_req:
1809	sec_request_uninit(ctx, req);
1810	return ret;
1811}
1812
1813static const struct sec_req_op sec_skcipher_req_ops = {
1814	.buf_map	= sec_skcipher_sgl_map,
1815	.buf_unmap	= sec_skcipher_sgl_unmap,
1816	.do_transfer	= sec_skcipher_copy_iv,
1817	.bd_fill	= sec_skcipher_bd_fill,
1818	.bd_send	= sec_bd_send,
1819	.callback	= sec_skcipher_callback,
1820	.process	= sec_process,
1821};
1822
1823static const struct sec_req_op sec_aead_req_ops = {
1824	.buf_map	= sec_aead_sgl_map,
1825	.buf_unmap	= sec_aead_sgl_unmap,
1826	.do_transfer	= sec_aead_set_iv,
1827	.bd_fill	= sec_aead_bd_fill,
1828	.bd_send	= sec_bd_send,
1829	.callback	= sec_aead_callback,
1830	.process	= sec_process,
1831};
1832
1833static const struct sec_req_op sec_skcipher_req_ops_v3 = {
1834	.buf_map	= sec_skcipher_sgl_map,
1835	.buf_unmap	= sec_skcipher_sgl_unmap,
1836	.do_transfer	= sec_skcipher_copy_iv,
1837	.bd_fill	= sec_skcipher_bd_fill_v3,
1838	.bd_send	= sec_bd_send,
1839	.callback	= sec_skcipher_callback,
1840	.process	= sec_process,
1841};
1842
1843static const struct sec_req_op sec_aead_req_ops_v3 = {
1844	.buf_map	= sec_aead_sgl_map,
1845	.buf_unmap	= sec_aead_sgl_unmap,
1846	.do_transfer	= sec_aead_set_iv,
1847	.bd_fill	= sec_aead_bd_fill_v3,
1848	.bd_send	= sec_bd_send,
1849	.callback	= sec_aead_callback,
1850	.process	= sec_process,
1851};
1852
1853static int sec_skcipher_ctx_init(struct crypto_skcipher *tfm)
1854{
1855	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
1856	int ret;
1857
1858	ret = sec_skcipher_init(tfm);
1859	if (ret)
1860		return ret;
1861
1862	if (ctx->sec->qm.ver < QM_HW_V3) {
1863		ctx->type_supported = SEC_BD_TYPE2;
1864		ctx->req_op = &sec_skcipher_req_ops;
1865	} else {
1866		ctx->type_supported = SEC_BD_TYPE3;
1867		ctx->req_op = &sec_skcipher_req_ops_v3;
1868	}
1869
1870	return ret;
1871}
1872
1873static void sec_skcipher_ctx_exit(struct crypto_skcipher *tfm)
1874{
1875	sec_skcipher_uninit(tfm);
1876}
1877
1878static int sec_aead_init(struct crypto_aead *tfm)
1879{
1880	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1881	int ret;
1882
1883	crypto_aead_set_reqsize(tfm, sizeof(struct sec_req));
1884	ctx->alg_type = SEC_AEAD;
1885	ctx->c_ctx.ivsize = crypto_aead_ivsize(tfm);
1886	if (ctx->c_ctx.ivsize < SEC_AIV_SIZE ||
1887	    ctx->c_ctx.ivsize > SEC_IV_SIZE) {
1888		pr_err("get error aead iv size!\n");
1889		return -EINVAL;
1890	}
1891
1892	ret = sec_ctx_base_init(ctx);
1893	if (ret)
1894		return ret;
1895	if (ctx->sec->qm.ver < QM_HW_V3) {
1896		ctx->type_supported = SEC_BD_TYPE2;
1897		ctx->req_op = &sec_aead_req_ops;
1898	} else {
1899		ctx->type_supported = SEC_BD_TYPE3;
1900		ctx->req_op = &sec_aead_req_ops_v3;
1901	}
1902
1903	ret = sec_auth_init(ctx);
1904	if (ret)
1905		goto err_auth_init;
1906
1907	ret = sec_cipher_init(ctx);
1908	if (ret)
1909		goto err_cipher_init;
1910
1911	return ret;
1912
1913err_cipher_init:
1914	sec_auth_uninit(ctx);
1915err_auth_init:
1916	sec_ctx_base_uninit(ctx);
1917	return ret;
1918}
1919
1920static void sec_aead_exit(struct crypto_aead *tfm)
1921{
1922	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1923
1924	sec_cipher_uninit(ctx);
1925	sec_auth_uninit(ctx);
1926	sec_ctx_base_uninit(ctx);
1927}
1928
1929static int sec_aead_ctx_init(struct crypto_aead *tfm, const char *hash_name)
1930{
1931	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1932	struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
1933	int ret;
1934
1935	ret = sec_aead_init(tfm);
1936	if (ret) {
1937		pr_err("hisi_sec2: aead init error!\n");
1938		return ret;
1939	}
1940
1941	auth_ctx->hash_tfm = crypto_alloc_shash(hash_name, 0, 0);
1942	if (IS_ERR(auth_ctx->hash_tfm)) {
1943		dev_err(ctx->dev, "aead alloc shash error!\n");
1944		sec_aead_exit(tfm);
1945		return PTR_ERR(auth_ctx->hash_tfm);
1946	}
1947
1948	return 0;
1949}
1950
1951static void sec_aead_ctx_exit(struct crypto_aead *tfm)
1952{
1953	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1954
1955	crypto_free_shash(ctx->a_ctx.hash_tfm);
1956	sec_aead_exit(tfm);
1957}
1958
1959static int sec_aead_xcm_ctx_init(struct crypto_aead *tfm)
1960{
1961	struct aead_alg *alg = crypto_aead_alg(tfm);
1962	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1963	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
1964	const char *aead_name = alg->base.cra_name;
1965	int ret;
1966
1967	ret = sec_aead_init(tfm);
1968	if (ret) {
1969		dev_err(ctx->dev, "hisi_sec2: aead xcm init error!\n");
1970		return ret;
1971	}
1972
1973	a_ctx->fallback_aead_tfm = crypto_alloc_aead(aead_name, 0,
1974						     CRYPTO_ALG_NEED_FALLBACK |
1975						     CRYPTO_ALG_ASYNC);
1976	if (IS_ERR(a_ctx->fallback_aead_tfm)) {
1977		dev_err(ctx->dev, "aead driver alloc fallback tfm error!\n");
1978		sec_aead_exit(tfm);
1979		return PTR_ERR(a_ctx->fallback_aead_tfm);
1980	}
1981	a_ctx->fallback = false;
1982
1983	return 0;
1984}
1985
1986static void sec_aead_xcm_ctx_exit(struct crypto_aead *tfm)
1987{
1988	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1989
1990	crypto_free_aead(ctx->a_ctx.fallback_aead_tfm);
1991	sec_aead_exit(tfm);
1992}
1993
1994static int sec_aead_sha1_ctx_init(struct crypto_aead *tfm)
1995{
1996	return sec_aead_ctx_init(tfm, "sha1");
1997}
1998
1999static int sec_aead_sha256_ctx_init(struct crypto_aead *tfm)
2000{
2001	return sec_aead_ctx_init(tfm, "sha256");
2002}
2003
2004static int sec_aead_sha512_ctx_init(struct crypto_aead *tfm)
2005{
2006	return sec_aead_ctx_init(tfm, "sha512");
2007}
2008
2009static int sec_skcipher_cryptlen_check(struct sec_ctx *ctx,
2010	struct sec_req *sreq)
2011{
2012	u32 cryptlen = sreq->c_req.sk_req->cryptlen;
2013	struct device *dev = ctx->dev;
2014	u8 c_mode = ctx->c_ctx.c_mode;
2015	int ret = 0;
2016
2017	switch (c_mode) {
2018	case SEC_CMODE_XTS:
2019		if (unlikely(cryptlen < AES_BLOCK_SIZE)) {
2020			dev_err(dev, "skcipher XTS mode input length error!\n");
2021			ret = -EINVAL;
2022		}
2023		break;
2024	case SEC_CMODE_ECB:
2025	case SEC_CMODE_CBC:
2026		if (unlikely(cryptlen & (AES_BLOCK_SIZE - 1))) {
2027			dev_err(dev, "skcipher AES input length error!\n");
2028			ret = -EINVAL;
2029		}
2030		break;
2031	case SEC_CMODE_CFB:
2032	case SEC_CMODE_OFB:
2033	case SEC_CMODE_CTR:
2034		if (unlikely(ctx->sec->qm.ver < QM_HW_V3)) {
2035			dev_err(dev, "skcipher HW version error!\n");
2036			ret = -EINVAL;
2037		}
2038		break;
2039	default:
2040		ret = -EINVAL;
2041	}
2042
2043	return ret;
2044}
2045
2046static int sec_skcipher_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
2047{
2048	struct skcipher_request *sk_req = sreq->c_req.sk_req;
2049	struct device *dev = ctx->dev;
2050	u8 c_alg = ctx->c_ctx.c_alg;
2051
2052	if (unlikely(!sk_req->src || !sk_req->dst ||
2053		     sk_req->cryptlen > MAX_INPUT_DATA_LEN)) {
2054		dev_err(dev, "skcipher input param error!\n");
2055		return -EINVAL;
2056	}
2057	sreq->c_req.c_len = sk_req->cryptlen;
2058
2059	if (ctx->pbuf_supported && sk_req->cryptlen <= SEC_PBUF_SZ)
2060		sreq->use_pbuf = true;
2061	else
2062		sreq->use_pbuf = false;
2063
2064	if (c_alg == SEC_CALG_3DES) {
2065		if (unlikely(sk_req->cryptlen & (DES3_EDE_BLOCK_SIZE - 1))) {
2066			dev_err(dev, "skcipher 3des input length error!\n");
2067			return -EINVAL;
2068		}
2069		return 0;
2070	} else if (c_alg == SEC_CALG_AES || c_alg == SEC_CALG_SM4) {
2071		return sec_skcipher_cryptlen_check(ctx, sreq);
2072	}
2073
2074	dev_err(dev, "skcipher algorithm error!\n");
2075
2076	return -EINVAL;
2077}
2078
2079static int sec_skcipher_soft_crypto(struct sec_ctx *ctx,
2080				    struct skcipher_request *sreq, bool encrypt)
2081{
2082	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
2083	SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, c_ctx->fbtfm);
2084	struct device *dev = ctx->dev;
2085	int ret;
2086
2087	if (!c_ctx->fbtfm) {
2088		dev_err_ratelimited(dev, "the soft tfm isn't supported in the current system.\n");
2089		return -EINVAL;
2090	}
2091
2092	skcipher_request_set_sync_tfm(subreq, c_ctx->fbtfm);
2093
2094	/* software need sync mode to do crypto */
2095	skcipher_request_set_callback(subreq, sreq->base.flags,
2096				      NULL, NULL);
2097	skcipher_request_set_crypt(subreq, sreq->src, sreq->dst,
2098				   sreq->cryptlen, sreq->iv);
2099	if (encrypt)
2100		ret = crypto_skcipher_encrypt(subreq);
2101	else
2102		ret = crypto_skcipher_decrypt(subreq);
2103
2104	skcipher_request_zero(subreq);
2105
2106	return ret;
2107}
2108
2109static int sec_skcipher_crypto(struct skcipher_request *sk_req, bool encrypt)
2110{
2111	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(sk_req);
2112	struct sec_req *req = skcipher_request_ctx(sk_req);
2113	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
2114	int ret;
2115
2116	if (!sk_req->cryptlen) {
2117		if (ctx->c_ctx.c_mode == SEC_CMODE_XTS)
2118			return -EINVAL;
2119		return 0;
2120	}
2121
2122	req->flag = sk_req->base.flags;
2123	req->c_req.sk_req = sk_req;
2124	req->c_req.encrypt = encrypt;
2125	req->ctx = ctx;
2126
2127	ret = sec_skcipher_param_check(ctx, req);
2128	if (unlikely(ret))
2129		return -EINVAL;
2130
2131	if (unlikely(ctx->c_ctx.fallback))
2132		return sec_skcipher_soft_crypto(ctx, sk_req, encrypt);
2133
2134	return ctx->req_op->process(ctx, req);
2135}
2136
2137static int sec_skcipher_encrypt(struct skcipher_request *sk_req)
2138{
2139	return sec_skcipher_crypto(sk_req, true);
2140}
2141
2142static int sec_skcipher_decrypt(struct skcipher_request *sk_req)
2143{
2144	return sec_skcipher_crypto(sk_req, false);
2145}
2146
2147#define SEC_SKCIPHER_GEN_ALG(sec_cra_name, sec_set_key, sec_min_key_size, \
2148	sec_max_key_size, ctx_init, ctx_exit, blk_size, iv_size)\
2149{\
2150	.base = {\
2151		.cra_name = sec_cra_name,\
2152		.cra_driver_name = "hisi_sec_"sec_cra_name,\
2153		.cra_priority = SEC_PRIORITY,\
2154		.cra_flags = CRYPTO_ALG_ASYNC |\
2155		 CRYPTO_ALG_NEED_FALLBACK,\
2156		.cra_blocksize = blk_size,\
2157		.cra_ctxsize = sizeof(struct sec_ctx),\
2158		.cra_module = THIS_MODULE,\
2159	},\
2160	.init = ctx_init,\
2161	.exit = ctx_exit,\
2162	.setkey = sec_set_key,\
2163	.decrypt = sec_skcipher_decrypt,\
2164	.encrypt = sec_skcipher_encrypt,\
2165	.min_keysize = sec_min_key_size,\
2166	.max_keysize = sec_max_key_size,\
2167	.ivsize = iv_size,\
2168}
2169
2170#define SEC_SKCIPHER_ALG(name, key_func, min_key_size, \
2171	max_key_size, blk_size, iv_size) \
2172	SEC_SKCIPHER_GEN_ALG(name, key_func, min_key_size, max_key_size, \
2173	sec_skcipher_ctx_init, sec_skcipher_ctx_exit, blk_size, iv_size)
2174
2175static struct sec_skcipher sec_skciphers[] = {
2176	{
2177		.alg_msk = BIT(0),
2178		.alg = SEC_SKCIPHER_ALG("ecb(aes)", sec_setkey_aes_ecb, AES_MIN_KEY_SIZE,
2179					AES_MAX_KEY_SIZE, AES_BLOCK_SIZE, 0),
2180	},
2181	{
2182		.alg_msk = BIT(1),
2183		.alg = SEC_SKCIPHER_ALG("cbc(aes)", sec_setkey_aes_cbc, AES_MIN_KEY_SIZE,
2184					AES_MAX_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
2185	},
2186	{
2187		.alg_msk = BIT(2),
2188		.alg = SEC_SKCIPHER_ALG("ctr(aes)", sec_setkey_aes_ctr,	AES_MIN_KEY_SIZE,
2189					AES_MAX_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
2190	},
2191	{
2192		.alg_msk = BIT(3),
2193		.alg = SEC_SKCIPHER_ALG("xts(aes)", sec_setkey_aes_xts,	SEC_XTS_MIN_KEY_SIZE,
2194					SEC_XTS_MAX_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
2195	},
2196	{
2197		.alg_msk = BIT(4),
2198		.alg = SEC_SKCIPHER_ALG("ofb(aes)", sec_setkey_aes_ofb,	AES_MIN_KEY_SIZE,
2199					AES_MAX_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
2200	},
2201	{
2202		.alg_msk = BIT(5),
2203		.alg = SEC_SKCIPHER_ALG("cfb(aes)", sec_setkey_aes_cfb,	AES_MIN_KEY_SIZE,
2204					AES_MAX_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
2205	},
2206	{
2207		.alg_msk = BIT(12),
2208		.alg = SEC_SKCIPHER_ALG("cbc(sm4)", sec_setkey_sm4_cbc,	AES_MIN_KEY_SIZE,
2209					AES_MIN_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
2210	},
2211	{
2212		.alg_msk = BIT(13),
2213		.alg = SEC_SKCIPHER_ALG("ctr(sm4)", sec_setkey_sm4_ctr, AES_MIN_KEY_SIZE,
2214					AES_MIN_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
2215	},
2216	{
2217		.alg_msk = BIT(14),
2218		.alg = SEC_SKCIPHER_ALG("xts(sm4)", sec_setkey_sm4_xts,	SEC_XTS_MIN_KEY_SIZE,
2219					SEC_XTS_MIN_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
2220	},
2221	{
2222		.alg_msk = BIT(15),
2223		.alg = SEC_SKCIPHER_ALG("ofb(sm4)", sec_setkey_sm4_ofb,	AES_MIN_KEY_SIZE,
2224					AES_MIN_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
2225	},
2226	{
2227		.alg_msk = BIT(16),
2228		.alg = SEC_SKCIPHER_ALG("cfb(sm4)", sec_setkey_sm4_cfb,	AES_MIN_KEY_SIZE,
2229					AES_MIN_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
2230	},
2231	{
2232		.alg_msk = BIT(23),
2233		.alg = SEC_SKCIPHER_ALG("ecb(des3_ede)", sec_setkey_3des_ecb, SEC_DES3_3KEY_SIZE,
2234					SEC_DES3_3KEY_SIZE, DES3_EDE_BLOCK_SIZE, 0),
2235	},
2236	{
2237		.alg_msk = BIT(24),
2238		.alg = SEC_SKCIPHER_ALG("cbc(des3_ede)", sec_setkey_3des_cbc, SEC_DES3_3KEY_SIZE,
2239					SEC_DES3_3KEY_SIZE, DES3_EDE_BLOCK_SIZE,
2240					DES3_EDE_BLOCK_SIZE),
2241	},
2242};
2243
2244static int aead_iv_demension_check(struct aead_request *aead_req)
2245{
2246	u8 cl;
2247
2248	cl = aead_req->iv[0] + 1;
2249	if (cl < IV_CL_MIN || cl > IV_CL_MAX)
2250		return -EINVAL;
2251
2252	if (cl < IV_CL_MID && aead_req->cryptlen >> (BYTE_BITS * cl))
2253		return -EOVERFLOW;
2254
2255	return 0;
2256}
2257
2258static int sec_aead_spec_check(struct sec_ctx *ctx, struct sec_req *sreq)
2259{
2260	struct aead_request *req = sreq->aead_req.aead_req;
2261	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2262	size_t authsize = crypto_aead_authsize(tfm);
2263	u8 c_mode = ctx->c_ctx.c_mode;
2264	struct device *dev = ctx->dev;
2265	int ret;
2266
2267	if (unlikely(req->cryptlen + req->assoclen > MAX_INPUT_DATA_LEN ||
2268	    req->assoclen > SEC_MAX_AAD_LEN)) {
2269		dev_err(dev, "aead input spec error!\n");
2270		return -EINVAL;
2271	}
2272
2273	if (unlikely((c_mode == SEC_CMODE_GCM && authsize < DES_BLOCK_SIZE) ||
2274	   (c_mode == SEC_CMODE_CCM && (authsize < MIN_MAC_LEN ||
2275		authsize & MAC_LEN_MASK)))) {
2276		dev_err(dev, "aead input mac length error!\n");
2277		return -EINVAL;
2278	}
2279
2280	if (c_mode == SEC_CMODE_CCM) {
2281		if (unlikely(req->assoclen > SEC_MAX_CCM_AAD_LEN)) {
2282			dev_err_ratelimited(dev, "CCM input aad parameter is too long!\n");
2283			return -EINVAL;
2284		}
2285		ret = aead_iv_demension_check(req);
2286		if (ret) {
2287			dev_err(dev, "aead input iv param error!\n");
2288			return ret;
2289		}
2290	}
2291
2292	if (sreq->c_req.encrypt)
2293		sreq->c_req.c_len = req->cryptlen;
2294	else
2295		sreq->c_req.c_len = req->cryptlen - authsize;
2296	if (c_mode == SEC_CMODE_CBC) {
2297		if (unlikely(sreq->c_req.c_len & (AES_BLOCK_SIZE - 1))) {
2298			dev_err(dev, "aead crypto length error!\n");
2299			return -EINVAL;
2300		}
2301	}
2302
2303	return 0;
2304}
2305
2306static int sec_aead_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
2307{
2308	struct aead_request *req = sreq->aead_req.aead_req;
2309	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2310	size_t authsize = crypto_aead_authsize(tfm);
2311	struct device *dev = ctx->dev;
2312	u8 c_alg = ctx->c_ctx.c_alg;
2313
2314	if (unlikely(!req->src || !req->dst)) {
2315		dev_err(dev, "aead input param error!\n");
2316		return -EINVAL;
2317	}
2318
2319	if (ctx->sec->qm.ver == QM_HW_V2) {
2320		if (unlikely(!req->cryptlen || (!sreq->c_req.encrypt &&
2321		    req->cryptlen <= authsize))) {
2322			ctx->a_ctx.fallback = true;
2323			return -EINVAL;
2324		}
2325	}
2326
2327	/* Support AES or SM4 */
2328	if (unlikely(c_alg != SEC_CALG_AES && c_alg != SEC_CALG_SM4)) {
2329		dev_err(dev, "aead crypto alg error!\n");
2330		return -EINVAL;
2331	}
2332
2333	if (unlikely(sec_aead_spec_check(ctx, sreq)))
2334		return -EINVAL;
2335
2336	if (ctx->pbuf_supported && (req->cryptlen + req->assoclen) <=
2337		SEC_PBUF_SZ)
2338		sreq->use_pbuf = true;
2339	else
2340		sreq->use_pbuf = false;
2341
2342	return 0;
2343}
2344
2345static int sec_aead_soft_crypto(struct sec_ctx *ctx,
2346				struct aead_request *aead_req,
2347				bool encrypt)
2348{
2349	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
2350	struct device *dev = ctx->dev;
2351	struct aead_request *subreq;
2352	int ret;
2353
2354	/* Kunpeng920 aead mode not support input 0 size */
2355	if (!a_ctx->fallback_aead_tfm) {
2356		dev_err(dev, "aead fallback tfm is NULL!\n");
2357		return -EINVAL;
2358	}
2359
2360	subreq = aead_request_alloc(a_ctx->fallback_aead_tfm, GFP_KERNEL);
2361	if (!subreq)
2362		return -ENOMEM;
2363
2364	aead_request_set_tfm(subreq, a_ctx->fallback_aead_tfm);
2365	aead_request_set_callback(subreq, aead_req->base.flags,
2366				  aead_req->base.complete, aead_req->base.data);
2367	aead_request_set_crypt(subreq, aead_req->src, aead_req->dst,
2368			       aead_req->cryptlen, aead_req->iv);
2369	aead_request_set_ad(subreq, aead_req->assoclen);
2370
2371	if (encrypt)
2372		ret = crypto_aead_encrypt(subreq);
2373	else
2374		ret = crypto_aead_decrypt(subreq);
2375	aead_request_free(subreq);
2376
2377	return ret;
2378}
2379
2380static int sec_aead_crypto(struct aead_request *a_req, bool encrypt)
2381{
2382	struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
2383	struct sec_req *req = aead_request_ctx(a_req);
2384	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
2385	int ret;
2386
2387	req->flag = a_req->base.flags;
2388	req->aead_req.aead_req = a_req;
2389	req->c_req.encrypt = encrypt;
2390	req->ctx = ctx;
2391
2392	ret = sec_aead_param_check(ctx, req);
2393	if (unlikely(ret)) {
2394		if (ctx->a_ctx.fallback)
2395			return sec_aead_soft_crypto(ctx, a_req, encrypt);
2396		return -EINVAL;
2397	}
2398
2399	return ctx->req_op->process(ctx, req);
2400}
2401
2402static int sec_aead_encrypt(struct aead_request *a_req)
2403{
2404	return sec_aead_crypto(a_req, true);
2405}
2406
2407static int sec_aead_decrypt(struct aead_request *a_req)
2408{
2409	return sec_aead_crypto(a_req, false);
2410}
2411
2412#define SEC_AEAD_ALG(sec_cra_name, sec_set_key, ctx_init,\
2413			 ctx_exit, blk_size, iv_size, max_authsize)\
2414{\
2415	.base = {\
2416		.cra_name = sec_cra_name,\
2417		.cra_driver_name = "hisi_sec_"sec_cra_name,\
2418		.cra_priority = SEC_PRIORITY,\
2419		.cra_flags = CRYPTO_ALG_ASYNC |\
2420		 CRYPTO_ALG_NEED_FALLBACK,\
2421		.cra_blocksize = blk_size,\
2422		.cra_ctxsize = sizeof(struct sec_ctx),\
2423		.cra_module = THIS_MODULE,\
2424	},\
2425	.init = ctx_init,\
2426	.exit = ctx_exit,\
2427	.setkey = sec_set_key,\
2428	.setauthsize = sec_aead_setauthsize,\
2429	.decrypt = sec_aead_decrypt,\
2430	.encrypt = sec_aead_encrypt,\
2431	.ivsize = iv_size,\
2432	.maxauthsize = max_authsize,\
2433}
2434
2435static struct sec_aead sec_aeads[] = {
2436	{
2437		.alg_msk = BIT(6),
2438		.alg = SEC_AEAD_ALG("ccm(aes)", sec_setkey_aes_ccm, sec_aead_xcm_ctx_init,
2439				    sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE,
2440				    AES_BLOCK_SIZE),
2441	},
2442	{
2443		.alg_msk = BIT(7),
2444		.alg = SEC_AEAD_ALG("gcm(aes)", sec_setkey_aes_gcm, sec_aead_xcm_ctx_init,
2445				    sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, SEC_AIV_SIZE,
2446				    AES_BLOCK_SIZE),
2447	},
2448	{
2449		.alg_msk = BIT(17),
2450		.alg = SEC_AEAD_ALG("ccm(sm4)", sec_setkey_sm4_ccm, sec_aead_xcm_ctx_init,
2451				    sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE,
2452				    AES_BLOCK_SIZE),
2453	},
2454	{
2455		.alg_msk = BIT(18),
2456		.alg = SEC_AEAD_ALG("gcm(sm4)", sec_setkey_sm4_gcm, sec_aead_xcm_ctx_init,
2457				    sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, SEC_AIV_SIZE,
2458				    AES_BLOCK_SIZE),
2459	},
2460	{
2461		.alg_msk = BIT(43),
2462		.alg = SEC_AEAD_ALG("authenc(hmac(sha1),cbc(aes))", sec_setkey_aes_cbc_sha1,
2463				    sec_aead_sha1_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE,
2464				    AES_BLOCK_SIZE, SHA1_DIGEST_SIZE),
2465	},
2466	{
2467		.alg_msk = BIT(44),
2468		.alg = SEC_AEAD_ALG("authenc(hmac(sha256),cbc(aes))", sec_setkey_aes_cbc_sha256,
2469				    sec_aead_sha256_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE,
2470				    AES_BLOCK_SIZE, SHA256_DIGEST_SIZE),
2471	},
2472	{
2473		.alg_msk = BIT(45),
2474		.alg = SEC_AEAD_ALG("authenc(hmac(sha512),cbc(aes))", sec_setkey_aes_cbc_sha512,
2475				    sec_aead_sha512_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE,
2476				    AES_BLOCK_SIZE, SHA512_DIGEST_SIZE),
2477	},
2478};
2479
2480static void sec_unregister_skcipher(u64 alg_mask, int end)
2481{
2482	int i;
2483
2484	for (i = 0; i < end; i++)
2485		if (sec_skciphers[i].alg_msk & alg_mask)
2486			crypto_unregister_skcipher(&sec_skciphers[i].alg);
2487}
2488
2489static int sec_register_skcipher(u64 alg_mask)
2490{
2491	int i, ret, count;
2492
2493	count = ARRAY_SIZE(sec_skciphers);
2494
2495	for (i = 0; i < count; i++) {
2496		if (!(sec_skciphers[i].alg_msk & alg_mask))
2497			continue;
2498
2499		ret = crypto_register_skcipher(&sec_skciphers[i].alg);
2500		if (ret)
2501			goto err;
2502	}
2503
2504	return 0;
2505
2506err:
2507	sec_unregister_skcipher(alg_mask, i);
2508
2509	return ret;
2510}
2511
2512static void sec_unregister_aead(u64 alg_mask, int end)
2513{
2514	int i;
2515
2516	for (i = 0; i < end; i++)
2517		if (sec_aeads[i].alg_msk & alg_mask)
2518			crypto_unregister_aead(&sec_aeads[i].alg);
2519}
2520
2521static int sec_register_aead(u64 alg_mask)
2522{
2523	int i, ret, count;
2524
2525	count = ARRAY_SIZE(sec_aeads);
2526
2527	for (i = 0; i < count; i++) {
2528		if (!(sec_aeads[i].alg_msk & alg_mask))
2529			continue;
2530
2531		ret = crypto_register_aead(&sec_aeads[i].alg);
2532		if (ret)
2533			goto err;
2534	}
2535
2536	return 0;
2537
2538err:
2539	sec_unregister_aead(alg_mask, i);
2540
2541	return ret;
2542}
2543
2544int sec_register_to_crypto(struct hisi_qm *qm)
2545{
2546	u64 alg_mask;
2547	int ret = 0;
2548
2549	alg_mask = sec_get_alg_bitmap(qm, SEC_DRV_ALG_BITMAP_HIGH_IDX,
2550				      SEC_DRV_ALG_BITMAP_LOW_IDX);
2551
2552
2553	ret = sec_register_skcipher(alg_mask);
2554	if (ret)
2555		return ret;
2556
2557	ret = sec_register_aead(alg_mask);
2558	if (ret)
2559		sec_unregister_skcipher(alg_mask, ARRAY_SIZE(sec_skciphers));
2560
2561	return ret;
2562}
2563
2564void sec_unregister_from_crypto(struct hisi_qm *qm)
2565{
2566	u64 alg_mask;
2567
2568	alg_mask = sec_get_alg_bitmap(qm, SEC_DRV_ALG_BITMAP_HIGH_IDX,
2569				      SEC_DRV_ALG_BITMAP_LOW_IDX);
2570
2571	sec_unregister_aead(alg_mask, ARRAY_SIZE(sec_aeads));
2572	sec_unregister_skcipher(alg_mask, ARRAY_SIZE(sec_skciphers));
2573}
2574