1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru>
4 * All rights reserved.
5 */
6
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/moduleparam.h>
10#include <linux/mod_devicetable.h>
11#include <linux/interrupt.h>
12#include <linux/pci.h>
13#include <linux/slab.h>
14#include <linux/delay.h>
15#include <linux/mm.h>
16#include <linux/dma-mapping.h>
17#include <linux/scatterlist.h>
18#include <linux/highmem.h>
19#include <linux/crypto.h>
20#include <linux/hw_random.h>
21#include <linux/ktime.h>
22
23#include <crypto/algapi.h>
24#include <crypto/internal/des.h>
25#include <crypto/internal/skcipher.h>
26
27static char hifn_pll_ref[sizeof("extNNN")] = "ext";
28module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444);
29MODULE_PARM_DESC(hifn_pll_ref,
30		 "PLL reference clock (pci[freq] or ext[freq], default ext)");
31
32static atomic_t hifn_dev_number;
33
34#define ACRYPTO_OP_DECRYPT	0
35#define ACRYPTO_OP_ENCRYPT	1
36#define ACRYPTO_OP_HMAC		2
37#define ACRYPTO_OP_RNG		3
38
39#define ACRYPTO_MODE_ECB		0
40#define ACRYPTO_MODE_CBC		1
41#define ACRYPTO_MODE_CFB		2
42#define ACRYPTO_MODE_OFB		3
43
44#define ACRYPTO_TYPE_AES_128	0
45#define ACRYPTO_TYPE_AES_192	1
46#define ACRYPTO_TYPE_AES_256	2
47#define ACRYPTO_TYPE_3DES	3
48#define ACRYPTO_TYPE_DES	4
49
50#define PCI_VENDOR_ID_HIFN		0x13A3
51#define PCI_DEVICE_ID_HIFN_7955		0x0020
52#define	PCI_DEVICE_ID_HIFN_7956		0x001d
53
54/* I/O region sizes */
55
56#define HIFN_BAR0_SIZE			0x1000
57#define HIFN_BAR1_SIZE			0x2000
58#define HIFN_BAR2_SIZE			0x8000
59
60/* DMA registres */
61
62#define HIFN_DMA_CRA			0x0C	/* DMA Command Ring Address */
63#define HIFN_DMA_SDRA			0x1C	/* DMA Source Data Ring Address */
64#define HIFN_DMA_RRA			0x2C	/* DMA Result Ring Address */
65#define HIFN_DMA_DDRA			0x3C	/* DMA Destination Data Ring Address */
66#define HIFN_DMA_STCTL			0x40	/* DMA Status and Control */
67#define HIFN_DMA_INTREN			0x44	/* DMA Interrupt Enable */
68#define HIFN_DMA_CFG1			0x48	/* DMA Configuration #1 */
69#define HIFN_DMA_CFG2			0x6C	/* DMA Configuration #2 */
70#define HIFN_CHIP_ID			0x98	/* Chip ID */
71
72/*
73 * Processing Unit Registers (offset from BASEREG0)
74 */
75#define	HIFN_0_PUDATA		0x00	/* Processing Unit Data */
76#define	HIFN_0_PUCTRL		0x04	/* Processing Unit Control */
77#define	HIFN_0_PUISR		0x08	/* Processing Unit Interrupt Status */
78#define	HIFN_0_PUCNFG		0x0c	/* Processing Unit Configuration */
79#define	HIFN_0_PUIER		0x10	/* Processing Unit Interrupt Enable */
80#define	HIFN_0_PUSTAT		0x14	/* Processing Unit Status/Chip ID */
81#define	HIFN_0_FIFOSTAT		0x18	/* FIFO Status */
82#define	HIFN_0_FIFOCNFG		0x1c	/* FIFO Configuration */
83#define	HIFN_0_SPACESIZE	0x20	/* Register space size */
84
85/* Processing Unit Control Register (HIFN_0_PUCTRL) */
86#define	HIFN_PUCTRL_CLRSRCFIFO	0x0010	/* clear source fifo */
87#define	HIFN_PUCTRL_STOP	0x0008	/* stop pu */
88#define	HIFN_PUCTRL_LOCKRAM	0x0004	/* lock ram */
89#define	HIFN_PUCTRL_DMAENA	0x0002	/* enable dma */
90#define	HIFN_PUCTRL_RESET	0x0001	/* Reset processing unit */
91
92/* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */
93#define	HIFN_PUISR_CMDINVAL	0x8000	/* Invalid command interrupt */
94#define	HIFN_PUISR_DATAERR	0x4000	/* Data error interrupt */
95#define	HIFN_PUISR_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
96#define	HIFN_PUISR_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
97#define	HIFN_PUISR_DSTOVER	0x0200	/* Destination overrun interrupt */
98#define	HIFN_PUISR_SRCCMD	0x0080	/* Source command interrupt */
99#define	HIFN_PUISR_SRCCTX	0x0040	/* Source context interrupt */
100#define	HIFN_PUISR_SRCDATA	0x0020	/* Source data interrupt */
101#define	HIFN_PUISR_DSTDATA	0x0010	/* Destination data interrupt */
102#define	HIFN_PUISR_DSTRESULT	0x0004	/* Destination result interrupt */
103
104/* Processing Unit Configuration Register (HIFN_0_PUCNFG) */
105#define	HIFN_PUCNFG_DRAMMASK	0xe000	/* DRAM size mask */
106#define	HIFN_PUCNFG_DSZ_256K	0x0000	/* 256k dram */
107#define	HIFN_PUCNFG_DSZ_512K	0x2000	/* 512k dram */
108#define	HIFN_PUCNFG_DSZ_1M	0x4000	/* 1m dram */
109#define	HIFN_PUCNFG_DSZ_2M	0x6000	/* 2m dram */
110#define	HIFN_PUCNFG_DSZ_4M	0x8000	/* 4m dram */
111#define	HIFN_PUCNFG_DSZ_8M	0xa000	/* 8m dram */
112#define	HIFN_PUNCFG_DSZ_16M	0xc000	/* 16m dram */
113#define	HIFN_PUCNFG_DSZ_32M	0xe000	/* 32m dram */
114#define	HIFN_PUCNFG_DRAMREFRESH	0x1800	/* DRAM refresh rate mask */
115#define	HIFN_PUCNFG_DRFR_512	0x0000	/* 512 divisor of ECLK */
116#define	HIFN_PUCNFG_DRFR_256	0x0800	/* 256 divisor of ECLK */
117#define	HIFN_PUCNFG_DRFR_128	0x1000	/* 128 divisor of ECLK */
118#define	HIFN_PUCNFG_TCALLPHASES	0x0200	/* your guess is as good as mine... */
119#define	HIFN_PUCNFG_TCDRVTOTEM	0x0100	/* your guess is as good as mine... */
120#define	HIFN_PUCNFG_BIGENDIAN	0x0080	/* DMA big endian mode */
121#define	HIFN_PUCNFG_BUS32	0x0040	/* Bus width 32bits */
122#define	HIFN_PUCNFG_BUS16	0x0000	/* Bus width 16 bits */
123#define	HIFN_PUCNFG_CHIPID	0x0020	/* Allow chipid from PUSTAT */
124#define	HIFN_PUCNFG_DRAM	0x0010	/* Context RAM is DRAM */
125#define	HIFN_PUCNFG_SRAM	0x0000	/* Context RAM is SRAM */
126#define	HIFN_PUCNFG_COMPSING	0x0004	/* Enable single compression context */
127#define	HIFN_PUCNFG_ENCCNFG	0x0002	/* Encryption configuration */
128
129/* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */
130#define	HIFN_PUIER_CMDINVAL	0x8000	/* Invalid command interrupt */
131#define	HIFN_PUIER_DATAERR	0x4000	/* Data error interrupt */
132#define	HIFN_PUIER_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
133#define	HIFN_PUIER_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
134#define	HIFN_PUIER_DSTOVER	0x0200	/* Destination overrun interrupt */
135#define	HIFN_PUIER_SRCCMD	0x0080	/* Source command interrupt */
136#define	HIFN_PUIER_SRCCTX	0x0040	/* Source context interrupt */
137#define	HIFN_PUIER_SRCDATA	0x0020	/* Source data interrupt */
138#define	HIFN_PUIER_DSTDATA	0x0010	/* Destination data interrupt */
139#define	HIFN_PUIER_DSTRESULT	0x0004	/* Destination result interrupt */
140
141/* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */
142#define	HIFN_PUSTAT_CMDINVAL	0x8000	/* Invalid command interrupt */
143#define	HIFN_PUSTAT_DATAERR	0x4000	/* Data error interrupt */
144#define	HIFN_PUSTAT_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
145#define	HIFN_PUSTAT_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
146#define	HIFN_PUSTAT_DSTOVER	0x0200	/* Destination overrun interrupt */
147#define	HIFN_PUSTAT_SRCCMD	0x0080	/* Source command interrupt */
148#define	HIFN_PUSTAT_SRCCTX	0x0040	/* Source context interrupt */
149#define	HIFN_PUSTAT_SRCDATA	0x0020	/* Source data interrupt */
150#define	HIFN_PUSTAT_DSTDATA	0x0010	/* Destination data interrupt */
151#define	HIFN_PUSTAT_DSTRESULT	0x0004	/* Destination result interrupt */
152#define	HIFN_PUSTAT_CHIPREV	0x00ff	/* Chip revision mask */
153#define	HIFN_PUSTAT_CHIPENA	0xff00	/* Chip enabled mask */
154#define	HIFN_PUSTAT_ENA_2	0x1100	/* Level 2 enabled */
155#define	HIFN_PUSTAT_ENA_1	0x1000	/* Level 1 enabled */
156#define	HIFN_PUSTAT_ENA_0	0x3000	/* Level 0 enabled */
157#define	HIFN_PUSTAT_REV_2	0x0020	/* 7751 PT6/2 */
158#define	HIFN_PUSTAT_REV_3	0x0030	/* 7751 PT6/3 */
159
160/* FIFO Status Register (HIFN_0_FIFOSTAT) */
161#define	HIFN_FIFOSTAT_SRC	0x7f00	/* Source FIFO available */
162#define	HIFN_FIFOSTAT_DST	0x007f	/* Destination FIFO available */
163
164/* FIFO Configuration Register (HIFN_0_FIFOCNFG) */
165#define	HIFN_FIFOCNFG_THRESHOLD	0x0400	/* must be written as 1 */
166
167/*
168 * DMA Interface Registers (offset from BASEREG1)
169 */
170#define	HIFN_1_DMA_CRAR		0x0c	/* DMA Command Ring Address */
171#define	HIFN_1_DMA_SRAR		0x1c	/* DMA Source Ring Address */
172#define	HIFN_1_DMA_RRAR		0x2c	/* DMA Result Ring Address */
173#define	HIFN_1_DMA_DRAR		0x3c	/* DMA Destination Ring Address */
174#define	HIFN_1_DMA_CSR		0x40	/* DMA Status and Control */
175#define	HIFN_1_DMA_IER		0x44	/* DMA Interrupt Enable */
176#define	HIFN_1_DMA_CNFG		0x48	/* DMA Configuration */
177#define	HIFN_1_PLL		0x4c	/* 795x: PLL config */
178#define	HIFN_1_7811_RNGENA	0x60	/* 7811: rng enable */
179#define	HIFN_1_7811_RNGCFG	0x64	/* 7811: rng config */
180#define	HIFN_1_7811_RNGDAT	0x68	/* 7811: rng data */
181#define	HIFN_1_7811_RNGSTS	0x6c	/* 7811: rng status */
182#define	HIFN_1_7811_MIPSRST	0x94	/* 7811: MIPS reset */
183#define	HIFN_1_REVID		0x98	/* Revision ID */
184#define	HIFN_1_UNLOCK_SECRET1	0xf4
185#define	HIFN_1_UNLOCK_SECRET2	0xfc
186#define	HIFN_1_PUB_RESET	0x204	/* Public/RNG Reset */
187#define	HIFN_1_PUB_BASE		0x300	/* Public Base Address */
188#define	HIFN_1_PUB_OPLEN	0x304	/* Public Operand Length */
189#define	HIFN_1_PUB_OP		0x308	/* Public Operand */
190#define	HIFN_1_PUB_STATUS	0x30c	/* Public Status */
191#define	HIFN_1_PUB_IEN		0x310	/* Public Interrupt enable */
192#define	HIFN_1_RNG_CONFIG	0x314	/* RNG config */
193#define	HIFN_1_RNG_DATA		0x318	/* RNG data */
194#define	HIFN_1_PUB_MEM		0x400	/* start of Public key memory */
195#define	HIFN_1_PUB_MEMEND	0xbff	/* end of Public key memory */
196
197/* DMA Status and Control Register (HIFN_1_DMA_CSR) */
198#define	HIFN_DMACSR_D_CTRLMASK	0xc0000000	/* Destinition Ring Control */
199#define	HIFN_DMACSR_D_CTRL_NOP	0x00000000	/* Dest. Control: no-op */
200#define	HIFN_DMACSR_D_CTRL_DIS	0x40000000	/* Dest. Control: disable */
201#define	HIFN_DMACSR_D_CTRL_ENA	0x80000000	/* Dest. Control: enable */
202#define	HIFN_DMACSR_D_ABORT	0x20000000	/* Destinition Ring PCIAbort */
203#define	HIFN_DMACSR_D_DONE	0x10000000	/* Destinition Ring Done */
204#define	HIFN_DMACSR_D_LAST	0x08000000	/* Destinition Ring Last */
205#define	HIFN_DMACSR_D_WAIT	0x04000000	/* Destinition Ring Waiting */
206#define	HIFN_DMACSR_D_OVER	0x02000000	/* Destinition Ring Overflow */
207#define	HIFN_DMACSR_R_CTRL	0x00c00000	/* Result Ring Control */
208#define	HIFN_DMACSR_R_CTRL_NOP	0x00000000	/* Result Control: no-op */
209#define	HIFN_DMACSR_R_CTRL_DIS	0x00400000	/* Result Control: disable */
210#define	HIFN_DMACSR_R_CTRL_ENA	0x00800000	/* Result Control: enable */
211#define	HIFN_DMACSR_R_ABORT	0x00200000	/* Result Ring PCI Abort */
212#define	HIFN_DMACSR_R_DONE	0x00100000	/* Result Ring Done */
213#define	HIFN_DMACSR_R_LAST	0x00080000	/* Result Ring Last */
214#define	HIFN_DMACSR_R_WAIT	0x00040000	/* Result Ring Waiting */
215#define	HIFN_DMACSR_R_OVER	0x00020000	/* Result Ring Overflow */
216#define	HIFN_DMACSR_S_CTRL	0x0000c000	/* Source Ring Control */
217#define	HIFN_DMACSR_S_CTRL_NOP	0x00000000	/* Source Control: no-op */
218#define	HIFN_DMACSR_S_CTRL_DIS	0x00004000	/* Source Control: disable */
219#define	HIFN_DMACSR_S_CTRL_ENA	0x00008000	/* Source Control: enable */
220#define	HIFN_DMACSR_S_ABORT	0x00002000	/* Source Ring PCI Abort */
221#define	HIFN_DMACSR_S_DONE	0x00001000	/* Source Ring Done */
222#define	HIFN_DMACSR_S_LAST	0x00000800	/* Source Ring Last */
223#define	HIFN_DMACSR_S_WAIT	0x00000400	/* Source Ring Waiting */
224#define	HIFN_DMACSR_ILLW	0x00000200	/* Illegal write (7811 only) */
225#define	HIFN_DMACSR_ILLR	0x00000100	/* Illegal read (7811 only) */
226#define	HIFN_DMACSR_C_CTRL	0x000000c0	/* Command Ring Control */
227#define	HIFN_DMACSR_C_CTRL_NOP	0x00000000	/* Command Control: no-op */
228#define	HIFN_DMACSR_C_CTRL_DIS	0x00000040	/* Command Control: disable */
229#define	HIFN_DMACSR_C_CTRL_ENA	0x00000080	/* Command Control: enable */
230#define	HIFN_DMACSR_C_ABORT	0x00000020	/* Command Ring PCI Abort */
231#define	HIFN_DMACSR_C_DONE	0x00000010	/* Command Ring Done */
232#define	HIFN_DMACSR_C_LAST	0x00000008	/* Command Ring Last */
233#define	HIFN_DMACSR_C_WAIT	0x00000004	/* Command Ring Waiting */
234#define	HIFN_DMACSR_PUBDONE	0x00000002	/* Public op done (7951 only) */
235#define	HIFN_DMACSR_ENGINE	0x00000001	/* Command Ring Engine IRQ */
236
237/* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */
238#define	HIFN_DMAIER_D_ABORT	0x20000000	/* Destination Ring PCIAbort */
239#define	HIFN_DMAIER_D_DONE	0x10000000	/* Destination Ring Done */
240#define	HIFN_DMAIER_D_LAST	0x08000000	/* Destination Ring Last */
241#define	HIFN_DMAIER_D_WAIT	0x04000000	/* Destination Ring Waiting */
242#define	HIFN_DMAIER_D_OVER	0x02000000	/* Destination Ring Overflow */
243#define	HIFN_DMAIER_R_ABORT	0x00200000	/* Result Ring PCI Abort */
244#define	HIFN_DMAIER_R_DONE	0x00100000	/* Result Ring Done */
245#define	HIFN_DMAIER_R_LAST	0x00080000	/* Result Ring Last */
246#define	HIFN_DMAIER_R_WAIT	0x00040000	/* Result Ring Waiting */
247#define	HIFN_DMAIER_R_OVER	0x00020000	/* Result Ring Overflow */
248#define	HIFN_DMAIER_S_ABORT	0x00002000	/* Source Ring PCI Abort */
249#define	HIFN_DMAIER_S_DONE	0x00001000	/* Source Ring Done */
250#define	HIFN_DMAIER_S_LAST	0x00000800	/* Source Ring Last */
251#define	HIFN_DMAIER_S_WAIT	0x00000400	/* Source Ring Waiting */
252#define	HIFN_DMAIER_ILLW	0x00000200	/* Illegal write (7811 only) */
253#define	HIFN_DMAIER_ILLR	0x00000100	/* Illegal read (7811 only) */
254#define	HIFN_DMAIER_C_ABORT	0x00000020	/* Command Ring PCI Abort */
255#define	HIFN_DMAIER_C_DONE	0x00000010	/* Command Ring Done */
256#define	HIFN_DMAIER_C_LAST	0x00000008	/* Command Ring Last */
257#define	HIFN_DMAIER_C_WAIT	0x00000004	/* Command Ring Waiting */
258#define	HIFN_DMAIER_PUBDONE	0x00000002	/* public op done (7951 only) */
259#define	HIFN_DMAIER_ENGINE	0x00000001	/* Engine IRQ */
260
261/* DMA Configuration Register (HIFN_1_DMA_CNFG) */
262#define	HIFN_DMACNFG_BIGENDIAN	0x10000000	/* big endian mode */
263#define	HIFN_DMACNFG_POLLFREQ	0x00ff0000	/* Poll frequency mask */
264#define	HIFN_DMACNFG_UNLOCK	0x00000800
265#define	HIFN_DMACNFG_POLLINVAL	0x00000700	/* Invalid Poll Scalar */
266#define	HIFN_DMACNFG_LAST	0x00000010	/* Host control LAST bit */
267#define	HIFN_DMACNFG_MODE	0x00000004	/* DMA mode */
268#define	HIFN_DMACNFG_DMARESET	0x00000002	/* DMA Reset # */
269#define	HIFN_DMACNFG_MSTRESET	0x00000001	/* Master Reset # */
270
271/* PLL configuration register */
272#define HIFN_PLL_REF_CLK_HBI	0x00000000	/* HBI reference clock */
273#define HIFN_PLL_REF_CLK_PLL	0x00000001	/* PLL reference clock */
274#define HIFN_PLL_BP		0x00000002	/* Reference clock bypass */
275#define HIFN_PLL_PK_CLK_HBI	0x00000000	/* PK engine HBI clock */
276#define HIFN_PLL_PK_CLK_PLL	0x00000008	/* PK engine PLL clock */
277#define HIFN_PLL_PE_CLK_HBI	0x00000000	/* PE engine HBI clock */
278#define HIFN_PLL_PE_CLK_PLL	0x00000010	/* PE engine PLL clock */
279#define HIFN_PLL_RESERVED_1	0x00000400	/* Reserved bit, must be 1 */
280#define HIFN_PLL_ND_SHIFT	11		/* Clock multiplier shift */
281#define HIFN_PLL_ND_MULT_2	0x00000000	/* PLL clock multiplier 2 */
282#define HIFN_PLL_ND_MULT_4	0x00000800	/* PLL clock multiplier 4 */
283#define HIFN_PLL_ND_MULT_6	0x00001000	/* PLL clock multiplier 6 */
284#define HIFN_PLL_ND_MULT_8	0x00001800	/* PLL clock multiplier 8 */
285#define HIFN_PLL_ND_MULT_10	0x00002000	/* PLL clock multiplier 10 */
286#define HIFN_PLL_ND_MULT_12	0x00002800	/* PLL clock multiplier 12 */
287#define HIFN_PLL_IS_1_8		0x00000000	/* charge pump (mult. 1-8) */
288#define HIFN_PLL_IS_9_12	0x00010000	/* charge pump (mult. 9-12) */
289
290#define HIFN_PLL_FCK_MAX	266		/* Maximum PLL frequency */
291
292/* Public key reset register (HIFN_1_PUB_RESET) */
293#define	HIFN_PUBRST_RESET	0x00000001	/* reset public/rng unit */
294
295/* Public base address register (HIFN_1_PUB_BASE) */
296#define	HIFN_PUBBASE_ADDR	0x00003fff	/* base address */
297
298/* Public operand length register (HIFN_1_PUB_OPLEN) */
299#define	HIFN_PUBOPLEN_MOD_M	0x0000007f	/* modulus length mask */
300#define	HIFN_PUBOPLEN_MOD_S	0		/* modulus length shift */
301#define	HIFN_PUBOPLEN_EXP_M	0x0003ff80	/* exponent length mask */
302#define	HIFN_PUBOPLEN_EXP_S	7		/* exponent length shift */
303#define	HIFN_PUBOPLEN_RED_M	0x003c0000	/* reducend length mask */
304#define	HIFN_PUBOPLEN_RED_S	18		/* reducend length shift */
305
306/* Public operation register (HIFN_1_PUB_OP) */
307#define	HIFN_PUBOP_AOFFSET_M	0x0000007f	/* A offset mask */
308#define	HIFN_PUBOP_AOFFSET_S	0		/* A offset shift */
309#define	HIFN_PUBOP_BOFFSET_M	0x00000f80	/* B offset mask */
310#define	HIFN_PUBOP_BOFFSET_S	7		/* B offset shift */
311#define	HIFN_PUBOP_MOFFSET_M	0x0003f000	/* M offset mask */
312#define	HIFN_PUBOP_MOFFSET_S	12		/* M offset shift */
313#define	HIFN_PUBOP_OP_MASK	0x003c0000	/* Opcode: */
314#define	HIFN_PUBOP_OP_NOP	0x00000000	/*  NOP */
315#define	HIFN_PUBOP_OP_ADD	0x00040000	/*  ADD */
316#define	HIFN_PUBOP_OP_ADDC	0x00080000	/*  ADD w/carry */
317#define	HIFN_PUBOP_OP_SUB	0x000c0000	/*  SUB */
318#define	HIFN_PUBOP_OP_SUBC	0x00100000	/*  SUB w/carry */
319#define	HIFN_PUBOP_OP_MODADD	0x00140000	/*  Modular ADD */
320#define	HIFN_PUBOP_OP_MODSUB	0x00180000	/*  Modular SUB */
321#define	HIFN_PUBOP_OP_INCA	0x001c0000	/*  INC A */
322#define	HIFN_PUBOP_OP_DECA	0x00200000	/*  DEC A */
323#define	HIFN_PUBOP_OP_MULT	0x00240000	/*  MULT */
324#define	HIFN_PUBOP_OP_MODMULT	0x00280000	/*  Modular MULT */
325#define	HIFN_PUBOP_OP_MODRED	0x002c0000	/*  Modular RED */
326#define	HIFN_PUBOP_OP_MODEXP	0x00300000	/*  Modular EXP */
327
328/* Public status register (HIFN_1_PUB_STATUS) */
329#define	HIFN_PUBSTS_DONE	0x00000001	/* operation done */
330#define	HIFN_PUBSTS_CARRY	0x00000002	/* carry */
331
332/* Public interrupt enable register (HIFN_1_PUB_IEN) */
333#define	HIFN_PUBIEN_DONE	0x00000001	/* operation done interrupt */
334
335/* Random number generator config register (HIFN_1_RNG_CONFIG) */
336#define	HIFN_RNGCFG_ENA		0x00000001	/* enable rng */
337
338#define HIFN_NAMESIZE			32
339#define HIFN_MAX_RESULT_ORDER		5
340
341#define	HIFN_D_CMD_RSIZE		(24 * 1)
342#define	HIFN_D_SRC_RSIZE		(80 * 1)
343#define	HIFN_D_DST_RSIZE		(80 * 1)
344#define	HIFN_D_RES_RSIZE		(24 * 1)
345
346#define HIFN_D_DST_DALIGN		4
347
348#define HIFN_QUEUE_LENGTH		(HIFN_D_CMD_RSIZE - 1)
349
350#define AES_MIN_KEY_SIZE		16
351#define AES_MAX_KEY_SIZE		32
352
353#define HIFN_DES_KEY_LENGTH		8
354#define HIFN_3DES_KEY_LENGTH		24
355#define HIFN_MAX_CRYPT_KEY_LENGTH	AES_MAX_KEY_SIZE
356#define HIFN_IV_LENGTH			8
357#define HIFN_AES_IV_LENGTH		16
358#define	HIFN_MAX_IV_LENGTH		HIFN_AES_IV_LENGTH
359
360#define HIFN_MAC_KEY_LENGTH		64
361#define HIFN_MD5_LENGTH			16
362#define HIFN_SHA1_LENGTH		20
363#define HIFN_MAC_TRUNC_LENGTH		12
364
365#define	HIFN_MAX_COMMAND		(8 + 8 + 8 + 64 + 260)
366#define	HIFN_MAX_RESULT			(8 + 4 + 4 + 20 + 4)
367#define HIFN_USED_RESULT		12
368
369struct hifn_desc {
370	volatile __le32		l;
371	volatile __le32		p;
372};
373
374struct hifn_dma {
375	struct hifn_desc	cmdr[HIFN_D_CMD_RSIZE + 1];
376	struct hifn_desc	srcr[HIFN_D_SRC_RSIZE + 1];
377	struct hifn_desc	dstr[HIFN_D_DST_RSIZE + 1];
378	struct hifn_desc	resr[HIFN_D_RES_RSIZE + 1];
379
380	u8			command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND];
381	u8			result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT];
382
383	/*
384	 *  Our current positions for insertion and removal from the descriptor
385	 *  rings.
386	 */
387	volatile int		cmdi, srci, dsti, resi;
388	volatile int		cmdu, srcu, dstu, resu;
389	int			cmdk, srck, dstk, resk;
390};
391
392#define HIFN_FLAG_CMD_BUSY	(1 << 0)
393#define HIFN_FLAG_SRC_BUSY	(1 << 1)
394#define HIFN_FLAG_DST_BUSY	(1 << 2)
395#define HIFN_FLAG_RES_BUSY	(1 << 3)
396#define HIFN_FLAG_OLD_KEY	(1 << 4)
397
398#define HIFN_DEFAULT_ACTIVE_NUM	5
399
400struct hifn_device {
401	char			name[HIFN_NAMESIZE];
402
403	int			irq;
404
405	struct pci_dev		*pdev;
406	void __iomem		*bar[3];
407
408	void			*desc_virt;
409	dma_addr_t		desc_dma;
410
411	u32			dmareg;
412
413	void			*sa[HIFN_D_RES_RSIZE];
414
415	spinlock_t		lock;
416
417	u32			flags;
418	int			active, started;
419	struct delayed_work	work;
420	unsigned long		reset;
421	unsigned long		success;
422	unsigned long		prev_success;
423
424	u8			snum;
425
426	struct tasklet_struct	tasklet;
427
428	struct crypto_queue	queue;
429	struct list_head	alg_list;
430
431	unsigned int		pk_clk_freq;
432
433#ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
434	unsigned int		rng_wait_time;
435	ktime_t			rngtime;
436	struct hwrng		rng;
437#endif
438};
439
440#define	HIFN_D_LENGTH			0x0000ffff
441#define	HIFN_D_NOINVALID		0x01000000
442#define	HIFN_D_MASKDONEIRQ		0x02000000
443#define	HIFN_D_DESTOVER			0x04000000
444#define	HIFN_D_OVER			0x08000000
445#define	HIFN_D_LAST			0x20000000
446#define	HIFN_D_JUMP			0x40000000
447#define	HIFN_D_VALID			0x80000000
448
449struct hifn_base_command {
450	volatile __le16		masks;
451	volatile __le16		session_num;
452	volatile __le16		total_source_count;
453	volatile __le16		total_dest_count;
454};
455
456#define	HIFN_BASE_CMD_COMP		0x0100	/* enable compression engine */
457#define	HIFN_BASE_CMD_PAD		0x0200	/* enable padding engine */
458#define	HIFN_BASE_CMD_MAC		0x0400	/* enable MAC engine */
459#define	HIFN_BASE_CMD_CRYPT		0x0800	/* enable crypt engine */
460#define	HIFN_BASE_CMD_DECODE		0x2000
461#define	HIFN_BASE_CMD_SRCLEN_M		0xc000
462#define	HIFN_BASE_CMD_SRCLEN_S		14
463#define	HIFN_BASE_CMD_DSTLEN_M		0x3000
464#define	HIFN_BASE_CMD_DSTLEN_S		12
465#define	HIFN_BASE_CMD_LENMASK_HI	0x30000
466#define	HIFN_BASE_CMD_LENMASK_LO	0x0ffff
467
468/*
469 * Structure to help build up the command data structure.
470 */
471struct hifn_crypt_command {
472	volatile __le16		masks;
473	volatile __le16		header_skip;
474	volatile __le16		source_count;
475	volatile __le16		reserved;
476};
477
478#define	HIFN_CRYPT_CMD_ALG_MASK		0x0003		/* algorithm: */
479#define	HIFN_CRYPT_CMD_ALG_DES		0x0000		/*   DES */
480#define	HIFN_CRYPT_CMD_ALG_3DES		0x0001		/*   3DES */
481#define	HIFN_CRYPT_CMD_ALG_RC4		0x0002		/*   RC4 */
482#define	HIFN_CRYPT_CMD_ALG_AES		0x0003		/*   AES */
483#define	HIFN_CRYPT_CMD_MODE_MASK	0x0018		/* Encrypt mode: */
484#define	HIFN_CRYPT_CMD_MODE_ECB		0x0000		/*   ECB */
485#define	HIFN_CRYPT_CMD_MODE_CBC		0x0008		/*   CBC */
486#define	HIFN_CRYPT_CMD_MODE_CFB		0x0010		/*   CFB */
487#define	HIFN_CRYPT_CMD_MODE_OFB		0x0018		/*   OFB */
488#define	HIFN_CRYPT_CMD_CLR_CTX		0x0040		/* clear context */
489#define	HIFN_CRYPT_CMD_KSZ_MASK		0x0600		/* AES key size: */
490#define	HIFN_CRYPT_CMD_KSZ_128		0x0000		/*  128 bit */
491#define	HIFN_CRYPT_CMD_KSZ_192		0x0200		/*  192 bit */
492#define	HIFN_CRYPT_CMD_KSZ_256		0x0400		/*  256 bit */
493#define	HIFN_CRYPT_CMD_NEW_KEY		0x0800		/* expect new key */
494#define	HIFN_CRYPT_CMD_NEW_IV		0x1000		/* expect new iv */
495#define	HIFN_CRYPT_CMD_SRCLEN_M		0xc000
496#define	HIFN_CRYPT_CMD_SRCLEN_S		14
497
498/*
499 * Structure to help build up the command data structure.
500 */
501struct hifn_mac_command {
502	volatile __le16	masks;
503	volatile __le16	header_skip;
504	volatile __le16	source_count;
505	volatile __le16	reserved;
506};
507
508#define	HIFN_MAC_CMD_ALG_MASK		0x0001
509#define	HIFN_MAC_CMD_ALG_SHA1		0x0000
510#define	HIFN_MAC_CMD_ALG_MD5		0x0001
511#define	HIFN_MAC_CMD_MODE_MASK		0x000c
512#define	HIFN_MAC_CMD_MODE_HMAC		0x0000
513#define	HIFN_MAC_CMD_MODE_SSL_MAC	0x0004
514#define	HIFN_MAC_CMD_MODE_HASH		0x0008
515#define	HIFN_MAC_CMD_MODE_FULL		0x0004
516#define	HIFN_MAC_CMD_TRUNC		0x0010
517#define	HIFN_MAC_CMD_RESULT		0x0020
518#define	HIFN_MAC_CMD_APPEND		0x0040
519#define	HIFN_MAC_CMD_SRCLEN_M		0xc000
520#define	HIFN_MAC_CMD_SRCLEN_S		14
521
522/*
523 * MAC POS IPsec initiates authentication after encryption on encodes
524 * and before decryption on decodes.
525 */
526#define	HIFN_MAC_CMD_POS_IPSEC		0x0200
527#define	HIFN_MAC_CMD_NEW_KEY		0x0800
528
529struct hifn_comp_command {
530	volatile __le16		masks;
531	volatile __le16		header_skip;
532	volatile __le16		source_count;
533	volatile __le16		reserved;
534};
535
536#define	HIFN_COMP_CMD_SRCLEN_M		0xc000
537#define	HIFN_COMP_CMD_SRCLEN_S		14
538#define	HIFN_COMP_CMD_ONE		0x0100	/* must be one */
539#define	HIFN_COMP_CMD_CLEARHIST		0x0010	/* clear history */
540#define	HIFN_COMP_CMD_UPDATEHIST	0x0008	/* update history */
541#define	HIFN_COMP_CMD_LZS_STRIP0	0x0004	/* LZS: strip zero */
542#define	HIFN_COMP_CMD_MPPC_RESTART	0x0004	/* MPPC: restart */
543#define	HIFN_COMP_CMD_ALG_MASK		0x0001	/* compression mode: */
544#define	HIFN_COMP_CMD_ALG_MPPC		0x0001	/*   MPPC */
545#define	HIFN_COMP_CMD_ALG_LZS		0x0000	/*   LZS */
546
547struct hifn_base_result {
548	volatile __le16		flags;
549	volatile __le16		session;
550	volatile __le16		src_cnt;		/* 15:0 of source count */
551	volatile __le16		dst_cnt;		/* 15:0 of dest count */
552};
553
554#define	HIFN_BASE_RES_DSTOVERRUN	0x0200	/* destination overrun */
555#define	HIFN_BASE_RES_SRCLEN_M		0xc000	/* 17:16 of source count */
556#define	HIFN_BASE_RES_SRCLEN_S		14
557#define	HIFN_BASE_RES_DSTLEN_M		0x3000	/* 17:16 of dest count */
558#define	HIFN_BASE_RES_DSTLEN_S		12
559
560struct hifn_comp_result {
561	volatile __le16		flags;
562	volatile __le16		crc;
563};
564
565#define	HIFN_COMP_RES_LCB_M		0xff00	/* longitudinal check byte */
566#define	HIFN_COMP_RES_LCB_S		8
567#define	HIFN_COMP_RES_RESTART		0x0004	/* MPPC: restart */
568#define	HIFN_COMP_RES_ENDMARKER		0x0002	/* LZS: end marker seen */
569#define	HIFN_COMP_RES_SRC_NOTZERO	0x0001	/* source expired */
570
571struct hifn_mac_result {
572	volatile __le16		flags;
573	volatile __le16		reserved;
574	/* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */
575};
576
577#define	HIFN_MAC_RES_MISCOMPARE		0x0002	/* compare failed */
578#define	HIFN_MAC_RES_SRC_NOTZERO	0x0001	/* source expired */
579
580struct hifn_crypt_result {
581	volatile __le16		flags;
582	volatile __le16		reserved;
583};
584
585#define	HIFN_CRYPT_RES_SRC_NOTZERO	0x0001	/* source expired */
586
587#ifndef HIFN_POLL_FREQUENCY
588#define	HIFN_POLL_FREQUENCY	0x1
589#endif
590
591#ifndef HIFN_POLL_SCALAR
592#define	HIFN_POLL_SCALAR	0x0
593#endif
594
595#define	HIFN_MAX_SEGLEN		0xffff		/* maximum dma segment len */
596#define	HIFN_MAX_DMALEN		0x3ffff		/* maximum dma length */
597
598struct hifn_crypto_alg {
599	struct list_head	entry;
600	struct skcipher_alg	alg;
601	struct hifn_device	*dev;
602};
603
604#define ASYNC_SCATTERLIST_CACHE	16
605
606#define ASYNC_FLAGS_MISALIGNED	(1 << 0)
607
608struct hifn_cipher_walk {
609	struct scatterlist	cache[ASYNC_SCATTERLIST_CACHE];
610	u32			flags;
611	int			num;
612};
613
614struct hifn_context {
615	u8			key[HIFN_MAX_CRYPT_KEY_LENGTH];
616	struct hifn_device	*dev;
617	unsigned int		keysize;
618};
619
620struct hifn_request_context {
621	u8			*iv;
622	unsigned int		ivsize;
623	u8			op, type, mode, unused;
624	struct hifn_cipher_walk	walk;
625};
626
627#define crypto_alg_to_hifn(a)	container_of(a, struct hifn_crypto_alg, alg)
628
629static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg)
630{
631	return readl(dev->bar[0] + reg);
632}
633
634static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg)
635{
636	return readl(dev->bar[1] + reg);
637}
638
639static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val)
640{
641	writel((__force u32)cpu_to_le32(val), dev->bar[0] + reg);
642}
643
644static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val)
645{
646	writel((__force u32)cpu_to_le32(val), dev->bar[1] + reg);
647}
648
649static void hifn_wait_puc(struct hifn_device *dev)
650{
651	int i;
652	u32 ret;
653
654	for (i = 10000; i > 0; --i) {
655		ret = hifn_read_0(dev, HIFN_0_PUCTRL);
656		if (!(ret & HIFN_PUCTRL_RESET))
657			break;
658
659		udelay(1);
660	}
661
662	if (!i)
663		dev_err(&dev->pdev->dev, "Failed to reset PUC unit.\n");
664}
665
666static void hifn_reset_puc(struct hifn_device *dev)
667{
668	hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
669	hifn_wait_puc(dev);
670}
671
672static void hifn_stop_device(struct hifn_device *dev)
673{
674	hifn_write_1(dev, HIFN_1_DMA_CSR,
675		HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
676		HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS);
677	hifn_write_0(dev, HIFN_0_PUIER, 0);
678	hifn_write_1(dev, HIFN_1_DMA_IER, 0);
679}
680
681static void hifn_reset_dma(struct hifn_device *dev, int full)
682{
683	hifn_stop_device(dev);
684
685	/*
686	 * Setting poll frequency and others to 0.
687	 */
688	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
689			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
690	mdelay(1);
691
692	/*
693	 * Reset DMA.
694	 */
695	if (full) {
696		hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
697		mdelay(1);
698	} else {
699		hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE |
700				HIFN_DMACNFG_MSTRESET);
701		hifn_reset_puc(dev);
702	}
703
704	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
705			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
706
707	hifn_reset_puc(dev);
708}
709
710static u32 hifn_next_signature(u32 a, u_int cnt)
711{
712	int i;
713	u32 v;
714
715	for (i = 0; i < cnt; i++) {
716		/* get the parity */
717		v = a & 0x80080125;
718		v ^= v >> 16;
719		v ^= v >> 8;
720		v ^= v >> 4;
721		v ^= v >> 2;
722		v ^= v >> 1;
723
724		a = (v & 1) ^ (a << 1);
725	}
726
727	return a;
728}
729
730static struct pci2id {
731	u_short		pci_vendor;
732	u_short		pci_prod;
733	char		card_id[13];
734} pci2id[] = {
735	{
736		PCI_VENDOR_ID_HIFN,
737		PCI_DEVICE_ID_HIFN_7955,
738		{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
739		  0x00, 0x00, 0x00, 0x00, 0x00 }
740	},
741	{
742		PCI_VENDOR_ID_HIFN,
743		PCI_DEVICE_ID_HIFN_7956,
744		{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
745		  0x00, 0x00, 0x00, 0x00, 0x00 }
746	}
747};
748
749#ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
750static int hifn_rng_data_present(struct hwrng *rng, int wait)
751{
752	struct hifn_device *dev = (struct hifn_device *)rng->priv;
753	s64 nsec;
754
755	nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime));
756	nsec -= dev->rng_wait_time;
757	if (nsec <= 0)
758		return 1;
759	if (!wait)
760		return 0;
761	ndelay(nsec);
762	return 1;
763}
764
765static int hifn_rng_data_read(struct hwrng *rng, u32 *data)
766{
767	struct hifn_device *dev = (struct hifn_device *)rng->priv;
768
769	*data = hifn_read_1(dev, HIFN_1_RNG_DATA);
770	dev->rngtime = ktime_get();
771	return 4;
772}
773
774static int hifn_register_rng(struct hifn_device *dev)
775{
776	/*
777	 * We must wait at least 256 Pk_clk cycles between two reads of the rng.
778	 */
779	dev->rng_wait_time	= DIV_ROUND_UP_ULL(NSEC_PER_SEC,
780						   dev->pk_clk_freq) * 256;
781
782	dev->rng.name		= dev->name;
783	dev->rng.data_present	= hifn_rng_data_present;
784	dev->rng.data_read	= hifn_rng_data_read;
785	dev->rng.priv		= (unsigned long)dev;
786
787	return hwrng_register(&dev->rng);
788}
789
790static void hifn_unregister_rng(struct hifn_device *dev)
791{
792	hwrng_unregister(&dev->rng);
793}
794#else
795#define hifn_register_rng(dev)		0
796#define hifn_unregister_rng(dev)
797#endif
798
799static int hifn_init_pubrng(struct hifn_device *dev)
800{
801	int i;
802
803	hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) |
804			HIFN_PUBRST_RESET);
805
806	for (i = 100; i > 0; --i) {
807		mdelay(1);
808
809		if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0)
810			break;
811	}
812
813	if (!i) {
814		dev_err(&dev->pdev->dev, "Failed to initialise public key engine.\n");
815	} else {
816		hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
817		dev->dmareg |= HIFN_DMAIER_PUBDONE;
818		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
819
820		dev_dbg(&dev->pdev->dev, "Public key engine has been successfully initialised.\n");
821	}
822
823	/* Enable RNG engine. */
824
825	hifn_write_1(dev, HIFN_1_RNG_CONFIG,
826			hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA);
827	dev_dbg(&dev->pdev->dev, "RNG engine has been successfully initialised.\n");
828
829#ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
830	/* First value must be discarded */
831	hifn_read_1(dev, HIFN_1_RNG_DATA);
832	dev->rngtime = ktime_get();
833#endif
834	return 0;
835}
836
837static int hifn_enable_crypto(struct hifn_device *dev)
838{
839	u32 dmacfg, addr;
840	char *offtbl = NULL;
841	int i;
842
843	for (i = 0; i < ARRAY_SIZE(pci2id); i++) {
844		if (pci2id[i].pci_vendor == dev->pdev->vendor &&
845				pci2id[i].pci_prod == dev->pdev->device) {
846			offtbl = pci2id[i].card_id;
847			break;
848		}
849	}
850
851	if (!offtbl) {
852		dev_err(&dev->pdev->dev, "Unknown card!\n");
853		return -ENODEV;
854	}
855
856	dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG);
857
858	hifn_write_1(dev, HIFN_1_DMA_CNFG,
859			HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET |
860			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
861	mdelay(1);
862	addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1);
863	mdelay(1);
864	hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0);
865	mdelay(1);
866
867	for (i = 0; i < 12; ++i) {
868		addr = hifn_next_signature(addr, offtbl[i] + 0x101);
869		hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr);
870
871		mdelay(1);
872	}
873	hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg);
874
875	dev_dbg(&dev->pdev->dev, "%s %s.\n", dev->name, pci_name(dev->pdev));
876
877	return 0;
878}
879
880static void hifn_init_dma(struct hifn_device *dev)
881{
882	struct hifn_dma *dma = dev->desc_virt;
883	u32 dptr = dev->desc_dma;
884	int i;
885
886	for (i = 0; i < HIFN_D_CMD_RSIZE; ++i)
887		dma->cmdr[i].p = __cpu_to_le32(dptr +
888				offsetof(struct hifn_dma, command_bufs[i][0]));
889	for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
890		dma->resr[i].p = __cpu_to_le32(dptr +
891				offsetof(struct hifn_dma, result_bufs[i][0]));
892
893	/* Setup LAST descriptors. */
894	dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr +
895			offsetof(struct hifn_dma, cmdr[0]));
896	dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr +
897			offsetof(struct hifn_dma, srcr[0]));
898	dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr +
899			offsetof(struct hifn_dma, dstr[0]));
900	dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr +
901			offsetof(struct hifn_dma, resr[0]));
902
903	dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
904	dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
905	dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
906}
907
908/*
909 * Initialize the PLL. We need to know the frequency of the reference clock
910 * to calculate the optimal multiplier. For PCI we assume 66MHz, since that
911 * allows us to operate without the risk of overclocking the chip. If it
912 * actually uses 33MHz, the chip will operate at half the speed, this can be
913 * overridden by specifying the frequency as module parameter (pci33).
914 *
915 * Unfortunately the PCI clock is not very suitable since the HIFN needs a
916 * stable clock and the PCI clock frequency may vary, so the default is the
917 * external clock. There is no way to find out its frequency, we default to
918 * 66MHz since according to Mike Ham of HiFn, almost every board in existence
919 * has an external crystal populated at 66MHz.
920 */
921static void hifn_init_pll(struct hifn_device *dev)
922{
923	unsigned int freq, m;
924	u32 pllcfg;
925
926	pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1;
927
928	if (strncmp(hifn_pll_ref, "ext", 3) == 0)
929		pllcfg |= HIFN_PLL_REF_CLK_PLL;
930	else
931		pllcfg |= HIFN_PLL_REF_CLK_HBI;
932
933	if (hifn_pll_ref[3] != '\0')
934		freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
935	else {
936		freq = 66;
937		dev_info(&dev->pdev->dev, "assuming %uMHz clock speed, override with hifn_pll_ref=%.3s<frequency>\n",
938			 freq, hifn_pll_ref);
939	}
940
941	m = HIFN_PLL_FCK_MAX / freq;
942
943	pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT;
944	if (m <= 8)
945		pllcfg |= HIFN_PLL_IS_1_8;
946	else
947		pllcfg |= HIFN_PLL_IS_9_12;
948
949	/* Select clock source and enable clock bypass */
950	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
951		     HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP);
952
953	/* Let the chip lock to the input clock */
954	mdelay(10);
955
956	/* Disable clock bypass */
957	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
958		     HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI);
959
960	/* Switch the engines to the PLL */
961	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
962		     HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL);
963
964	/*
965	 * The Fpk_clk runs at half the total speed. Its frequency is needed to
966	 * calculate the minimum time between two reads of the rng. Since 33MHz
967	 * is actually 33.333... we overestimate the frequency here, resulting
968	 * in slightly larger intervals.
969	 */
970	dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2;
971}
972
973static void hifn_init_registers(struct hifn_device *dev)
974{
975	u32 dptr = dev->desc_dma;
976
977	/* Initialization magic... */
978	hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
979	hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
980	hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
981
982	/* write all 4 ring address registers */
983	hifn_write_1(dev, HIFN_1_DMA_CRAR, dptr +
984				offsetof(struct hifn_dma, cmdr[0]));
985	hifn_write_1(dev, HIFN_1_DMA_SRAR, dptr +
986				offsetof(struct hifn_dma, srcr[0]));
987	hifn_write_1(dev, HIFN_1_DMA_DRAR, dptr +
988				offsetof(struct hifn_dma, dstr[0]));
989	hifn_write_1(dev, HIFN_1_DMA_RRAR, dptr +
990				offsetof(struct hifn_dma, resr[0]));
991
992	mdelay(2);
993#if 0
994	hifn_write_1(dev, HIFN_1_DMA_CSR,
995	    HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
996	    HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS |
997	    HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
998	    HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
999	    HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1000	    HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1001	    HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1002	    HIFN_DMACSR_S_WAIT |
1003	    HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1004	    HIFN_DMACSR_C_WAIT |
1005	    HIFN_DMACSR_ENGINE |
1006	    HIFN_DMACSR_PUBDONE);
1007#else
1008	hifn_write_1(dev, HIFN_1_DMA_CSR,
1009	    HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
1010	    HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA |
1011	    HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1012	    HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1013	    HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1014	    HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1015	    HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1016	    HIFN_DMACSR_S_WAIT |
1017	    HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1018	    HIFN_DMACSR_C_WAIT |
1019	    HIFN_DMACSR_ENGINE |
1020	    HIFN_DMACSR_PUBDONE);
1021#endif
1022	hifn_read_1(dev, HIFN_1_DMA_CSR);
1023
1024	dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
1025	    HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
1026	    HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
1027	    HIFN_DMAIER_ENGINE;
1028	dev->dmareg &= ~HIFN_DMAIER_C_WAIT;
1029
1030	hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1031	hifn_read_1(dev, HIFN_1_DMA_IER);
1032#if 0
1033	hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG |
1034		    HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
1035		    HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
1036		    HIFN_PUCNFG_DRAM);
1037#else
1038	hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342);
1039#endif
1040	hifn_init_pll(dev);
1041
1042	hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1043	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
1044	    HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
1045	    ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
1046	    ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
1047}
1048
1049static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf,
1050		unsigned dlen, unsigned slen, u16 mask, u8 snum)
1051{
1052	struct hifn_base_command *base_cmd;
1053	u8 *buf_pos = buf;
1054
1055	base_cmd = (struct hifn_base_command *)buf_pos;
1056	base_cmd->masks = __cpu_to_le16(mask);
1057	base_cmd->total_source_count =
1058		__cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO);
1059	base_cmd->total_dest_count =
1060		__cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO);
1061
1062	dlen >>= 16;
1063	slen >>= 16;
1064	base_cmd->session_num = __cpu_to_le16(snum |
1065	    ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
1066	    ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));
1067
1068	return sizeof(struct hifn_base_command);
1069}
1070
1071static int hifn_setup_crypto_command(struct hifn_device *dev,
1072		u8 *buf, unsigned dlen, unsigned slen,
1073		u8 *key, int keylen, u8 *iv, int ivsize, u16 mode)
1074{
1075	struct hifn_dma *dma = dev->desc_virt;
1076	struct hifn_crypt_command *cry_cmd;
1077	u8 *buf_pos = buf;
1078	u16 cmd_len;
1079
1080	cry_cmd = (struct hifn_crypt_command *)buf_pos;
1081
1082	cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff);
1083	dlen >>= 16;
1084	cry_cmd->masks = __cpu_to_le16(mode |
1085			((dlen << HIFN_CRYPT_CMD_SRCLEN_S) &
1086			 HIFN_CRYPT_CMD_SRCLEN_M));
1087	cry_cmd->header_skip = 0;
1088	cry_cmd->reserved = 0;
1089
1090	buf_pos += sizeof(struct hifn_crypt_command);
1091
1092	dma->cmdu++;
1093	if (dma->cmdu > 1) {
1094		dev->dmareg |= HIFN_DMAIER_C_WAIT;
1095		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1096	}
1097
1098	if (keylen) {
1099		memcpy(buf_pos, key, keylen);
1100		buf_pos += keylen;
1101	}
1102	if (ivsize) {
1103		memcpy(buf_pos, iv, ivsize);
1104		buf_pos += ivsize;
1105	}
1106
1107	cmd_len = buf_pos - buf;
1108
1109	return cmd_len;
1110}
1111
1112static int hifn_setup_cmd_desc(struct hifn_device *dev,
1113		struct hifn_context *ctx, struct hifn_request_context *rctx,
1114		void *priv, unsigned int nbytes)
1115{
1116	struct hifn_dma *dma = dev->desc_virt;
1117	int cmd_len, sa_idx;
1118	u8 *buf, *buf_pos;
1119	u16 mask;
1120
1121	sa_idx = dma->cmdi;
1122	buf_pos = buf = dma->command_bufs[dma->cmdi];
1123
1124	mask = 0;
1125	switch (rctx->op) {
1126	case ACRYPTO_OP_DECRYPT:
1127		mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE;
1128		break;
1129	case ACRYPTO_OP_ENCRYPT:
1130		mask = HIFN_BASE_CMD_CRYPT;
1131		break;
1132	case ACRYPTO_OP_HMAC:
1133		mask = HIFN_BASE_CMD_MAC;
1134		break;
1135	default:
1136		goto err_out;
1137	}
1138
1139	buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes,
1140			nbytes, mask, dev->snum);
1141
1142	if (rctx->op == ACRYPTO_OP_ENCRYPT || rctx->op == ACRYPTO_OP_DECRYPT) {
1143		u16 md = 0;
1144
1145		if (ctx->keysize)
1146			md |= HIFN_CRYPT_CMD_NEW_KEY;
1147		if (rctx->iv && rctx->mode != ACRYPTO_MODE_ECB)
1148			md |= HIFN_CRYPT_CMD_NEW_IV;
1149
1150		switch (rctx->mode) {
1151		case ACRYPTO_MODE_ECB:
1152			md |= HIFN_CRYPT_CMD_MODE_ECB;
1153			break;
1154		case ACRYPTO_MODE_CBC:
1155			md |= HIFN_CRYPT_CMD_MODE_CBC;
1156			break;
1157		case ACRYPTO_MODE_CFB:
1158			md |= HIFN_CRYPT_CMD_MODE_CFB;
1159			break;
1160		case ACRYPTO_MODE_OFB:
1161			md |= HIFN_CRYPT_CMD_MODE_OFB;
1162			break;
1163		default:
1164			goto err_out;
1165		}
1166
1167		switch (rctx->type) {
1168		case ACRYPTO_TYPE_AES_128:
1169			if (ctx->keysize != 16)
1170				goto err_out;
1171			md |= HIFN_CRYPT_CMD_KSZ_128 |
1172				HIFN_CRYPT_CMD_ALG_AES;
1173			break;
1174		case ACRYPTO_TYPE_AES_192:
1175			if (ctx->keysize != 24)
1176				goto err_out;
1177			md |= HIFN_CRYPT_CMD_KSZ_192 |
1178				HIFN_CRYPT_CMD_ALG_AES;
1179			break;
1180		case ACRYPTO_TYPE_AES_256:
1181			if (ctx->keysize != 32)
1182				goto err_out;
1183			md |= HIFN_CRYPT_CMD_KSZ_256 |
1184				HIFN_CRYPT_CMD_ALG_AES;
1185			break;
1186		case ACRYPTO_TYPE_3DES:
1187			if (ctx->keysize != 24)
1188				goto err_out;
1189			md |= HIFN_CRYPT_CMD_ALG_3DES;
1190			break;
1191		case ACRYPTO_TYPE_DES:
1192			if (ctx->keysize != 8)
1193				goto err_out;
1194			md |= HIFN_CRYPT_CMD_ALG_DES;
1195			break;
1196		default:
1197			goto err_out;
1198		}
1199
1200		buf_pos += hifn_setup_crypto_command(dev, buf_pos,
1201				nbytes, nbytes, ctx->key, ctx->keysize,
1202				rctx->iv, rctx->ivsize, md);
1203	}
1204
1205	dev->sa[sa_idx] = priv;
1206	dev->started++;
1207
1208	cmd_len = buf_pos - buf;
1209	dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID |
1210			HIFN_D_LAST | HIFN_D_MASKDONEIRQ);
1211
1212	if (++dma->cmdi == HIFN_D_CMD_RSIZE) {
1213		dma->cmdr[dma->cmdi].l = __cpu_to_le32(
1214			HIFN_D_VALID | HIFN_D_LAST |
1215			HIFN_D_MASKDONEIRQ | HIFN_D_JUMP);
1216		dma->cmdi = 0;
1217	} else {
1218		dma->cmdr[dma->cmdi - 1].l |= __cpu_to_le32(HIFN_D_VALID);
1219	}
1220
1221	if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) {
1222		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
1223		dev->flags |= HIFN_FLAG_CMD_BUSY;
1224	}
1225	return 0;
1226
1227err_out:
1228	return -EINVAL;
1229}
1230
1231static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page,
1232		unsigned int offset, unsigned int size, int last)
1233{
1234	struct hifn_dma *dma = dev->desc_virt;
1235	int idx;
1236	dma_addr_t addr;
1237
1238	addr = dma_map_page(&dev->pdev->dev, page, offset, size,
1239			    DMA_TO_DEVICE);
1240
1241	idx = dma->srci;
1242
1243	dma->srcr[idx].p = __cpu_to_le32(addr);
1244	dma->srcr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1245			HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1246
1247	if (++idx == HIFN_D_SRC_RSIZE) {
1248		dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1249				HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1250				(last ? HIFN_D_LAST : 0));
1251		idx = 0;
1252	}
1253
1254	dma->srci = idx;
1255	dma->srcu++;
1256
1257	if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) {
1258		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
1259		dev->flags |= HIFN_FLAG_SRC_BUSY;
1260	}
1261
1262	return size;
1263}
1264
1265static void hifn_setup_res_desc(struct hifn_device *dev)
1266{
1267	struct hifn_dma *dma = dev->desc_virt;
1268
1269	dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT |
1270			HIFN_D_VALID | HIFN_D_LAST);
1271	/*
1272	 * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID |
1273	 *					HIFN_D_LAST);
1274	 */
1275
1276	if (++dma->resi == HIFN_D_RES_RSIZE) {
1277		dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID |
1278				HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1279		dma->resi = 0;
1280	}
1281
1282	dma->resu++;
1283
1284	if (!(dev->flags & HIFN_FLAG_RES_BUSY)) {
1285		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
1286		dev->flags |= HIFN_FLAG_RES_BUSY;
1287	}
1288}
1289
1290static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page,
1291		unsigned offset, unsigned size, int last)
1292{
1293	struct hifn_dma *dma = dev->desc_virt;
1294	int idx;
1295	dma_addr_t addr;
1296
1297	addr = dma_map_page(&dev->pdev->dev, page, offset, size,
1298			    DMA_FROM_DEVICE);
1299
1300	idx = dma->dsti;
1301	dma->dstr[idx].p = __cpu_to_le32(addr);
1302	dma->dstr[idx].l = __cpu_to_le32(size |	HIFN_D_VALID |
1303			HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1304
1305	if (++idx == HIFN_D_DST_RSIZE) {
1306		dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1307				HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1308				(last ? HIFN_D_LAST : 0));
1309		idx = 0;
1310	}
1311	dma->dsti = idx;
1312	dma->dstu++;
1313
1314	if (!(dev->flags & HIFN_FLAG_DST_BUSY)) {
1315		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
1316		dev->flags |= HIFN_FLAG_DST_BUSY;
1317	}
1318}
1319
1320static int hifn_setup_dma(struct hifn_device *dev,
1321		struct hifn_context *ctx, struct hifn_request_context *rctx,
1322		struct scatterlist *src, struct scatterlist *dst,
1323		unsigned int nbytes, void *priv)
1324{
1325	struct scatterlist *t;
1326	struct page *spage, *dpage;
1327	unsigned int soff, doff;
1328	unsigned int n, len;
1329
1330	n = nbytes;
1331	while (n) {
1332		spage = sg_page(src);
1333		soff = src->offset;
1334		len = min(src->length, n);
1335
1336		hifn_setup_src_desc(dev, spage, soff, len, n - len == 0);
1337
1338		src++;
1339		n -= len;
1340	}
1341
1342	t = &rctx->walk.cache[0];
1343	n = nbytes;
1344	while (n) {
1345		if (t->length && rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1346			BUG_ON(!sg_page(t));
1347			dpage = sg_page(t);
1348			doff = 0;
1349			len = t->length;
1350		} else {
1351			BUG_ON(!sg_page(dst));
1352			dpage = sg_page(dst);
1353			doff = dst->offset;
1354			len = dst->length;
1355		}
1356		len = min(len, n);
1357
1358		hifn_setup_dst_desc(dev, dpage, doff, len, n - len == 0);
1359
1360		dst++;
1361		t++;
1362		n -= len;
1363	}
1364
1365	hifn_setup_cmd_desc(dev, ctx, rctx, priv, nbytes);
1366	hifn_setup_res_desc(dev);
1367	return 0;
1368}
1369
1370static int hifn_cipher_walk_init(struct hifn_cipher_walk *w,
1371		int num, gfp_t gfp_flags)
1372{
1373	int i;
1374
1375	num = min(ASYNC_SCATTERLIST_CACHE, num);
1376	sg_init_table(w->cache, num);
1377
1378	w->num = 0;
1379	for (i = 0; i < num; ++i) {
1380		struct page *page = alloc_page(gfp_flags);
1381		struct scatterlist *s;
1382
1383		if (!page)
1384			break;
1385
1386		s = &w->cache[i];
1387
1388		sg_set_page(s, page, PAGE_SIZE, 0);
1389		w->num++;
1390	}
1391
1392	return i;
1393}
1394
1395static void hifn_cipher_walk_exit(struct hifn_cipher_walk *w)
1396{
1397	int i;
1398
1399	for (i = 0; i < w->num; ++i) {
1400		struct scatterlist *s = &w->cache[i];
1401
1402		__free_page(sg_page(s));
1403
1404		s->length = 0;
1405	}
1406
1407	w->num = 0;
1408}
1409
1410static int skcipher_add(unsigned int *drestp, struct scatterlist *dst,
1411		unsigned int size, unsigned int *nbytesp)
1412{
1413	unsigned int copy, drest = *drestp, nbytes = *nbytesp;
1414	int idx = 0;
1415
1416	if (drest < size || size > nbytes)
1417		return -EINVAL;
1418
1419	while (size) {
1420		copy = min3(drest, size, dst->length);
1421
1422		size -= copy;
1423		drest -= copy;
1424		nbytes -= copy;
1425
1426		pr_debug("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n",
1427			 __func__, copy, size, drest, nbytes);
1428
1429		dst++;
1430		idx++;
1431	}
1432
1433	*nbytesp = nbytes;
1434	*drestp = drest;
1435
1436	return idx;
1437}
1438
1439static int hifn_cipher_walk(struct skcipher_request *req,
1440		struct hifn_cipher_walk *w)
1441{
1442	struct scatterlist *dst, *t;
1443	unsigned int nbytes = req->cryptlen, offset, copy, diff;
1444	int idx, tidx, err;
1445
1446	tidx = idx = 0;
1447	offset = 0;
1448	while (nbytes) {
1449		if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED))
1450			return -EINVAL;
1451
1452		dst = &req->dst[idx];
1453
1454		pr_debug("\n%s: dlen: %u, doff: %u, offset: %u, nbytes: %u.\n",
1455			 __func__, dst->length, dst->offset, offset, nbytes);
1456
1457		if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1458		    !IS_ALIGNED(dst->length, HIFN_D_DST_DALIGN) ||
1459		    offset) {
1460			unsigned slen = min(dst->length - offset, nbytes);
1461			unsigned dlen = PAGE_SIZE;
1462
1463			t = &w->cache[idx];
1464
1465			err = skcipher_add(&dlen, dst, slen, &nbytes);
1466			if (err < 0)
1467				return err;
1468
1469			idx += err;
1470
1471			copy = slen & ~(HIFN_D_DST_DALIGN - 1);
1472			diff = slen & (HIFN_D_DST_DALIGN - 1);
1473
1474			if (dlen < nbytes) {
1475				/*
1476				 * Destination page does not have enough space
1477				 * to put there additional blocksized chunk,
1478				 * so we mark that page as containing only
1479				 * blocksize aligned chunks:
1480				 *	t->length = (slen & ~(HIFN_D_DST_DALIGN - 1));
1481				 * and increase number of bytes to be processed
1482				 * in next chunk:
1483				 *	nbytes += diff;
1484				 */
1485				nbytes += diff;
1486
1487				/*
1488				 * Temporary of course...
1489				 * Kick author if you will catch this one.
1490				 */
1491				pr_err("%s: dlen: %u, nbytes: %u, slen: %u, offset: %u.\n",
1492				       __func__, dlen, nbytes, slen, offset);
1493				pr_err("%s: please contact author to fix this "
1494				       "issue, generally you should not catch "
1495				       "this path under any condition but who "
1496				       "knows how did you use crypto code.\n"
1497				       "Thank you.\n",	__func__);
1498				BUG();
1499			} else {
1500				copy += diff + nbytes;
1501
1502				dst = &req->dst[idx];
1503
1504				err = skcipher_add(&dlen, dst, nbytes, &nbytes);
1505				if (err < 0)
1506					return err;
1507
1508				idx += err;
1509			}
1510
1511			t->length = copy;
1512			t->offset = offset;
1513		} else {
1514			nbytes -= min(dst->length, nbytes);
1515			idx++;
1516		}
1517
1518		tidx++;
1519	}
1520
1521	return tidx;
1522}
1523
1524static int hifn_setup_session(struct skcipher_request *req)
1525{
1526	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1527	struct hifn_request_context *rctx = skcipher_request_ctx(req);
1528	struct hifn_device *dev = ctx->dev;
1529	unsigned long dlen, flags;
1530	unsigned int nbytes = req->cryptlen, idx = 0;
1531	int err = -EINVAL, sg_num;
1532	struct scatterlist *dst;
1533
1534	if (rctx->iv && !rctx->ivsize && rctx->mode != ACRYPTO_MODE_ECB)
1535		goto err_out_exit;
1536
1537	rctx->walk.flags = 0;
1538
1539	while (nbytes) {
1540		dst = &req->dst[idx];
1541		dlen = min(dst->length, nbytes);
1542
1543		if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1544		    !IS_ALIGNED(dlen, HIFN_D_DST_DALIGN))
1545			rctx->walk.flags |= ASYNC_FLAGS_MISALIGNED;
1546
1547		nbytes -= dlen;
1548		idx++;
1549	}
1550
1551	if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1552		err = hifn_cipher_walk_init(&rctx->walk, idx, GFP_ATOMIC);
1553		if (err < 0)
1554			return err;
1555	}
1556
1557	sg_num = hifn_cipher_walk(req, &rctx->walk);
1558	if (sg_num < 0) {
1559		err = sg_num;
1560		goto err_out_exit;
1561	}
1562
1563	spin_lock_irqsave(&dev->lock, flags);
1564	if (dev->started + sg_num > HIFN_QUEUE_LENGTH) {
1565		err = -EAGAIN;
1566		goto err_out;
1567	}
1568
1569	err = hifn_setup_dma(dev, ctx, rctx, req->src, req->dst, req->cryptlen, req);
1570	if (err)
1571		goto err_out;
1572
1573	dev->snum++;
1574
1575	dev->active = HIFN_DEFAULT_ACTIVE_NUM;
1576	spin_unlock_irqrestore(&dev->lock, flags);
1577
1578	return 0;
1579
1580err_out:
1581	spin_unlock_irqrestore(&dev->lock, flags);
1582err_out_exit:
1583	if (err) {
1584		dev_info(&dev->pdev->dev, "iv: %p [%d], key: %p [%d], mode: %u, op: %u, "
1585			 "type: %u, err: %d.\n",
1586			 rctx->iv, rctx->ivsize,
1587			 ctx->key, ctx->keysize,
1588			 rctx->mode, rctx->op, rctx->type, err);
1589	}
1590
1591	return err;
1592}
1593
1594static int hifn_start_device(struct hifn_device *dev)
1595{
1596	int err;
1597
1598	dev->started = dev->active = 0;
1599	hifn_reset_dma(dev, 1);
1600
1601	err = hifn_enable_crypto(dev);
1602	if (err)
1603		return err;
1604
1605	hifn_reset_puc(dev);
1606
1607	hifn_init_dma(dev);
1608
1609	hifn_init_registers(dev);
1610
1611	hifn_init_pubrng(dev);
1612
1613	return 0;
1614}
1615
1616static int skcipher_get(void *saddr, unsigned int *srestp, unsigned int offset,
1617		struct scatterlist *dst, unsigned int size, unsigned int *nbytesp)
1618{
1619	unsigned int srest = *srestp, nbytes = *nbytesp, copy;
1620	void *daddr;
1621	int idx = 0;
1622
1623	if (srest < size || size > nbytes)
1624		return -EINVAL;
1625
1626	while (size) {
1627		copy = min3(srest, dst->length, size);
1628
1629		daddr = kmap_atomic(sg_page(dst));
1630		memcpy(daddr + dst->offset + offset, saddr, copy);
1631		kunmap_atomic(daddr);
1632
1633		nbytes -= copy;
1634		size -= copy;
1635		srest -= copy;
1636		saddr += copy;
1637		offset = 0;
1638
1639		pr_debug("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n",
1640			 __func__, copy, size, srest, nbytes);
1641
1642		dst++;
1643		idx++;
1644	}
1645
1646	*nbytesp = nbytes;
1647	*srestp = srest;
1648
1649	return idx;
1650}
1651
1652static inline void hifn_complete_sa(struct hifn_device *dev, int i)
1653{
1654	unsigned long flags;
1655
1656	spin_lock_irqsave(&dev->lock, flags);
1657	dev->sa[i] = NULL;
1658	dev->started--;
1659	if (dev->started < 0)
1660		dev_info(&dev->pdev->dev, "%s: started: %d.\n", __func__,
1661			 dev->started);
1662	spin_unlock_irqrestore(&dev->lock, flags);
1663	BUG_ON(dev->started < 0);
1664}
1665
1666static void hifn_process_ready(struct skcipher_request *req, int error)
1667{
1668	struct hifn_request_context *rctx = skcipher_request_ctx(req);
1669
1670	if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1671		unsigned int nbytes = req->cryptlen;
1672		int idx = 0, err;
1673		struct scatterlist *dst, *t;
1674		void *saddr;
1675
1676		while (nbytes) {
1677			t = &rctx->walk.cache[idx];
1678			dst = &req->dst[idx];
1679
1680			pr_debug("\n%s: sg_page(t): %p, t->length: %u, "
1681				"sg_page(dst): %p, dst->length: %u, "
1682				"nbytes: %u.\n",
1683				__func__, sg_page(t), t->length,
1684				sg_page(dst), dst->length, nbytes);
1685
1686			if (!t->length) {
1687				nbytes -= min(dst->length, nbytes);
1688				idx++;
1689				continue;
1690			}
1691
1692			saddr = kmap_atomic(sg_page(t));
1693
1694			err = skcipher_get(saddr, &t->length, t->offset,
1695					dst, nbytes, &nbytes);
1696			if (err < 0) {
1697				kunmap_atomic(saddr);
1698				break;
1699			}
1700
1701			idx += err;
1702			kunmap_atomic(saddr);
1703		}
1704
1705		hifn_cipher_walk_exit(&rctx->walk);
1706	}
1707
1708	skcipher_request_complete(req, error);
1709}
1710
1711static void hifn_clear_rings(struct hifn_device *dev, int error)
1712{
1713	struct hifn_dma *dma = dev->desc_virt;
1714	int i, u;
1715
1716	dev_dbg(&dev->pdev->dev, "ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1717			"k: %d.%d.%d.%d.\n",
1718			dma->cmdi, dma->srci, dma->dsti, dma->resi,
1719			dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1720			dma->cmdk, dma->srck, dma->dstk, dma->resk);
1721
1722	i = dma->resk; u = dma->resu;
1723	while (u != 0) {
1724		if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID))
1725			break;
1726
1727		if (dev->sa[i]) {
1728			dev->success++;
1729			dev->reset = 0;
1730			hifn_process_ready(dev->sa[i], error);
1731			hifn_complete_sa(dev, i);
1732		}
1733
1734		if (++i == HIFN_D_RES_RSIZE)
1735			i = 0;
1736		u--;
1737	}
1738	dma->resk = i; dma->resu = u;
1739
1740	i = dma->srck; u = dma->srcu;
1741	while (u != 0) {
1742		if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID))
1743			break;
1744		if (++i == HIFN_D_SRC_RSIZE)
1745			i = 0;
1746		u--;
1747	}
1748	dma->srck = i; dma->srcu = u;
1749
1750	i = dma->cmdk; u = dma->cmdu;
1751	while (u != 0) {
1752		if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID))
1753			break;
1754		if (++i == HIFN_D_CMD_RSIZE)
1755			i = 0;
1756		u--;
1757	}
1758	dma->cmdk = i; dma->cmdu = u;
1759
1760	i = dma->dstk; u = dma->dstu;
1761	while (u != 0) {
1762		if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID))
1763			break;
1764		if (++i == HIFN_D_DST_RSIZE)
1765			i = 0;
1766		u--;
1767	}
1768	dma->dstk = i; dma->dstu = u;
1769
1770	dev_dbg(&dev->pdev->dev, "ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1771			"k: %d.%d.%d.%d.\n",
1772			dma->cmdi, dma->srci, dma->dsti, dma->resi,
1773			dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1774			dma->cmdk, dma->srck, dma->dstk, dma->resk);
1775}
1776
1777static void hifn_work(struct work_struct *work)
1778{
1779	struct delayed_work *dw = to_delayed_work(work);
1780	struct hifn_device *dev = container_of(dw, struct hifn_device, work);
1781	unsigned long flags;
1782	int reset = 0;
1783	u32 r = 0;
1784
1785	spin_lock_irqsave(&dev->lock, flags);
1786	if (dev->active == 0) {
1787		struct hifn_dma *dma = dev->desc_virt;
1788
1789		if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) {
1790			dev->flags &= ~HIFN_FLAG_CMD_BUSY;
1791			r |= HIFN_DMACSR_C_CTRL_DIS;
1792		}
1793		if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) {
1794			dev->flags &= ~HIFN_FLAG_SRC_BUSY;
1795			r |= HIFN_DMACSR_S_CTRL_DIS;
1796		}
1797		if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) {
1798			dev->flags &= ~HIFN_FLAG_DST_BUSY;
1799			r |= HIFN_DMACSR_D_CTRL_DIS;
1800		}
1801		if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) {
1802			dev->flags &= ~HIFN_FLAG_RES_BUSY;
1803			r |= HIFN_DMACSR_R_CTRL_DIS;
1804		}
1805		if (r)
1806			hifn_write_1(dev, HIFN_1_DMA_CSR, r);
1807	} else
1808		dev->active--;
1809
1810	if ((dev->prev_success == dev->success) && dev->started)
1811		reset = 1;
1812	dev->prev_success = dev->success;
1813	spin_unlock_irqrestore(&dev->lock, flags);
1814
1815	if (reset) {
1816		if (++dev->reset >= 5) {
1817			int i;
1818			struct hifn_dma *dma = dev->desc_virt;
1819
1820			dev_info(&dev->pdev->dev,
1821				 "r: %08x, active: %d, started: %d, "
1822				 "success: %lu: qlen: %u/%u, reset: %d.\n",
1823				 r, dev->active, dev->started,
1824				 dev->success, dev->queue.qlen, dev->queue.max_qlen,
1825				 reset);
1826
1827			dev_info(&dev->pdev->dev, "%s: res: ", __func__);
1828			for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1829				pr_info("%x.%p ", dma->resr[i].l, dev->sa[i]);
1830				if (dev->sa[i]) {
1831					hifn_process_ready(dev->sa[i], -ENODEV);
1832					hifn_complete_sa(dev, i);
1833				}
1834			}
1835			pr_info("\n");
1836
1837			hifn_reset_dma(dev, 1);
1838			hifn_stop_device(dev);
1839			hifn_start_device(dev);
1840			dev->reset = 0;
1841		}
1842
1843		tasklet_schedule(&dev->tasklet);
1844	}
1845
1846	schedule_delayed_work(&dev->work, HZ);
1847}
1848
1849static irqreturn_t hifn_interrupt(int irq, void *data)
1850{
1851	struct hifn_device *dev = data;
1852	struct hifn_dma *dma = dev->desc_virt;
1853	u32 dmacsr, restart;
1854
1855	dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR);
1856
1857	dev_dbg(&dev->pdev->dev, "1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], "
1858			"i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n",
1859		dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi,
1860		dma->cmdi, dma->srci, dma->dsti, dma->resi,
1861		dma->cmdu, dma->srcu, dma->dstu, dma->resu);
1862
1863	if ((dmacsr & dev->dmareg) == 0)
1864		return IRQ_NONE;
1865
1866	hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg);
1867
1868	if (dmacsr & HIFN_DMACSR_ENGINE)
1869		hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR));
1870	if (dmacsr & HIFN_DMACSR_PUBDONE)
1871		hifn_write_1(dev, HIFN_1_PUB_STATUS,
1872			hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
1873
1874	restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER);
1875	if (restart) {
1876		u32 puisr = hifn_read_0(dev, HIFN_0_PUISR);
1877
1878		dev_warn(&dev->pdev->dev, "overflow: r: %d, d: %d, puisr: %08x, d: %u.\n",
1879			 !!(dmacsr & HIFN_DMACSR_R_OVER),
1880			 !!(dmacsr & HIFN_DMACSR_D_OVER),
1881			puisr, !!(puisr & HIFN_PUISR_DSTOVER));
1882		if (!!(puisr & HIFN_PUISR_DSTOVER))
1883			hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1884		hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER |
1885					HIFN_DMACSR_D_OVER));
1886	}
1887
1888	restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
1889			HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
1890	if (restart) {
1891		dev_warn(&dev->pdev->dev, "abort: c: %d, s: %d, d: %d, r: %d.\n",
1892			 !!(dmacsr & HIFN_DMACSR_C_ABORT),
1893			 !!(dmacsr & HIFN_DMACSR_S_ABORT),
1894			 !!(dmacsr & HIFN_DMACSR_D_ABORT),
1895			 !!(dmacsr & HIFN_DMACSR_R_ABORT));
1896		hifn_reset_dma(dev, 1);
1897		hifn_init_dma(dev);
1898		hifn_init_registers(dev);
1899	}
1900
1901	if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
1902		dev_dbg(&dev->pdev->dev, "wait on command.\n");
1903		dev->dmareg &= ~(HIFN_DMAIER_C_WAIT);
1904		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1905	}
1906
1907	tasklet_schedule(&dev->tasklet);
1908
1909	return IRQ_HANDLED;
1910}
1911
1912static void hifn_flush(struct hifn_device *dev)
1913{
1914	unsigned long flags;
1915	struct crypto_async_request *async_req;
1916	struct skcipher_request *req;
1917	struct hifn_dma *dma = dev->desc_virt;
1918	int i;
1919
1920	for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1921		struct hifn_desc *d = &dma->resr[i];
1922
1923		if (dev->sa[i]) {
1924			hifn_process_ready(dev->sa[i],
1925				(d->l & __cpu_to_le32(HIFN_D_VALID)) ? -ENODEV : 0);
1926			hifn_complete_sa(dev, i);
1927		}
1928	}
1929
1930	spin_lock_irqsave(&dev->lock, flags);
1931	while ((async_req = crypto_dequeue_request(&dev->queue))) {
1932		req = skcipher_request_cast(async_req);
1933		spin_unlock_irqrestore(&dev->lock, flags);
1934
1935		hifn_process_ready(req, -ENODEV);
1936
1937		spin_lock_irqsave(&dev->lock, flags);
1938	}
1939	spin_unlock_irqrestore(&dev->lock, flags);
1940}
1941
1942static int hifn_setkey(struct crypto_skcipher *cipher, const u8 *key,
1943		unsigned int len)
1944{
1945	struct hifn_context *ctx = crypto_skcipher_ctx(cipher);
1946	struct hifn_device *dev = ctx->dev;
1947	int err;
1948
1949	err = verify_skcipher_des_key(cipher, key);
1950	if (err)
1951		return err;
1952
1953	dev->flags &= ~HIFN_FLAG_OLD_KEY;
1954
1955	memcpy(ctx->key, key, len);
1956	ctx->keysize = len;
1957
1958	return 0;
1959}
1960
1961static int hifn_des3_setkey(struct crypto_skcipher *cipher, const u8 *key,
1962			    unsigned int len)
1963{
1964	struct hifn_context *ctx = crypto_skcipher_ctx(cipher);
1965	struct hifn_device *dev = ctx->dev;
1966	int err;
1967
1968	err = verify_skcipher_des3_key(cipher, key);
1969	if (err)
1970		return err;
1971
1972	dev->flags &= ~HIFN_FLAG_OLD_KEY;
1973
1974	memcpy(ctx->key, key, len);
1975	ctx->keysize = len;
1976
1977	return 0;
1978}
1979
1980static int hifn_handle_req(struct skcipher_request *req)
1981{
1982	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1983	struct hifn_device *dev = ctx->dev;
1984	int err = -EAGAIN;
1985
1986	if (dev->started + DIV_ROUND_UP(req->cryptlen, PAGE_SIZE) <= HIFN_QUEUE_LENGTH)
1987		err = hifn_setup_session(req);
1988
1989	if (err == -EAGAIN) {
1990		unsigned long flags;
1991
1992		spin_lock_irqsave(&dev->lock, flags);
1993		err = crypto_enqueue_request(&dev->queue, &req->base);
1994		spin_unlock_irqrestore(&dev->lock, flags);
1995	}
1996
1997	return err;
1998}
1999
2000static int hifn_setup_crypto_req(struct skcipher_request *req, u8 op,
2001		u8 type, u8 mode)
2002{
2003	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2004	struct hifn_request_context *rctx = skcipher_request_ctx(req);
2005	unsigned ivsize;
2006
2007	ivsize = crypto_skcipher_ivsize(crypto_skcipher_reqtfm(req));
2008
2009	if (req->iv && mode != ACRYPTO_MODE_ECB) {
2010		if (type == ACRYPTO_TYPE_AES_128)
2011			ivsize = HIFN_AES_IV_LENGTH;
2012		else if (type == ACRYPTO_TYPE_DES)
2013			ivsize = HIFN_DES_KEY_LENGTH;
2014		else if (type == ACRYPTO_TYPE_3DES)
2015			ivsize = HIFN_3DES_KEY_LENGTH;
2016	}
2017
2018	if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) {
2019		if (ctx->keysize == 24)
2020			type = ACRYPTO_TYPE_AES_192;
2021		else if (ctx->keysize == 32)
2022			type = ACRYPTO_TYPE_AES_256;
2023	}
2024
2025	rctx->op = op;
2026	rctx->mode = mode;
2027	rctx->type = type;
2028	rctx->iv = req->iv;
2029	rctx->ivsize = ivsize;
2030
2031	/*
2032	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2033	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2034	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2035	 */
2036
2037	return hifn_handle_req(req);
2038}
2039
2040static int hifn_process_queue(struct hifn_device *dev)
2041{
2042	struct crypto_async_request *async_req, *backlog;
2043	struct skcipher_request *req;
2044	unsigned long flags;
2045	int err = 0;
2046
2047	while (dev->started < HIFN_QUEUE_LENGTH) {
2048		spin_lock_irqsave(&dev->lock, flags);
2049		backlog = crypto_get_backlog(&dev->queue);
2050		async_req = crypto_dequeue_request(&dev->queue);
2051		spin_unlock_irqrestore(&dev->lock, flags);
2052
2053		if (!async_req)
2054			break;
2055
2056		if (backlog)
2057			crypto_request_complete(backlog, -EINPROGRESS);
2058
2059		req = skcipher_request_cast(async_req);
2060
2061		err = hifn_handle_req(req);
2062		if (err)
2063			break;
2064	}
2065
2066	return err;
2067}
2068
2069static int hifn_setup_crypto(struct skcipher_request *req, u8 op,
2070		u8 type, u8 mode)
2071{
2072	int err;
2073	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2074	struct hifn_device *dev = ctx->dev;
2075
2076	err = hifn_setup_crypto_req(req, op, type, mode);
2077	if (err)
2078		return err;
2079
2080	if (dev->started < HIFN_QUEUE_LENGTH &&	dev->queue.qlen)
2081		hifn_process_queue(dev);
2082
2083	return -EINPROGRESS;
2084}
2085
2086/*
2087 * AES ecryption functions.
2088 */
2089static inline int hifn_encrypt_aes_ecb(struct skcipher_request *req)
2090{
2091	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2092			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2093}
2094static inline int hifn_encrypt_aes_cbc(struct skcipher_request *req)
2095{
2096	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2097			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2098}
2099static inline int hifn_encrypt_aes_cfb(struct skcipher_request *req)
2100{
2101	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2102			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2103}
2104static inline int hifn_encrypt_aes_ofb(struct skcipher_request *req)
2105{
2106	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2107			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2108}
2109
2110/*
2111 * AES decryption functions.
2112 */
2113static inline int hifn_decrypt_aes_ecb(struct skcipher_request *req)
2114{
2115	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2116			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2117}
2118static inline int hifn_decrypt_aes_cbc(struct skcipher_request *req)
2119{
2120	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2121			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2122}
2123static inline int hifn_decrypt_aes_cfb(struct skcipher_request *req)
2124{
2125	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2126			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2127}
2128static inline int hifn_decrypt_aes_ofb(struct skcipher_request *req)
2129{
2130	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2131			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2132}
2133
2134/*
2135 * DES ecryption functions.
2136 */
2137static inline int hifn_encrypt_des_ecb(struct skcipher_request *req)
2138{
2139	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2140			ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2141}
2142static inline int hifn_encrypt_des_cbc(struct skcipher_request *req)
2143{
2144	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2145			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2146}
2147static inline int hifn_encrypt_des_cfb(struct skcipher_request *req)
2148{
2149	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2150			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2151}
2152static inline int hifn_encrypt_des_ofb(struct skcipher_request *req)
2153{
2154	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2155			ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2156}
2157
2158/*
2159 * DES decryption functions.
2160 */
2161static inline int hifn_decrypt_des_ecb(struct skcipher_request *req)
2162{
2163	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2164			ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2165}
2166static inline int hifn_decrypt_des_cbc(struct skcipher_request *req)
2167{
2168	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2169			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2170}
2171static inline int hifn_decrypt_des_cfb(struct skcipher_request *req)
2172{
2173	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2174			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2175}
2176static inline int hifn_decrypt_des_ofb(struct skcipher_request *req)
2177{
2178	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2179			ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2180}
2181
2182/*
2183 * 3DES ecryption functions.
2184 */
2185static inline int hifn_encrypt_3des_ecb(struct skcipher_request *req)
2186{
2187	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2188			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2189}
2190static inline int hifn_encrypt_3des_cbc(struct skcipher_request *req)
2191{
2192	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2193			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2194}
2195static inline int hifn_encrypt_3des_cfb(struct skcipher_request *req)
2196{
2197	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2198			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2199}
2200static inline int hifn_encrypt_3des_ofb(struct skcipher_request *req)
2201{
2202	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2203			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2204}
2205
2206/* 3DES decryption functions. */
2207static inline int hifn_decrypt_3des_ecb(struct skcipher_request *req)
2208{
2209	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2210			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2211}
2212static inline int hifn_decrypt_3des_cbc(struct skcipher_request *req)
2213{
2214	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2215			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2216}
2217static inline int hifn_decrypt_3des_cfb(struct skcipher_request *req)
2218{
2219	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2220			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2221}
2222static inline int hifn_decrypt_3des_ofb(struct skcipher_request *req)
2223{
2224	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2225			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2226}
2227
2228struct hifn_alg_template {
2229	char name[CRYPTO_MAX_ALG_NAME];
2230	char drv_name[CRYPTO_MAX_ALG_NAME];
2231	unsigned int bsize;
2232	struct skcipher_alg skcipher;
2233};
2234
2235static const struct hifn_alg_template hifn_alg_templates[] = {
2236	/*
2237	 * 3DES ECB, CBC, CFB and OFB modes.
2238	 */
2239	{
2240		.name = "cfb(des3_ede)", .drv_name = "cfb-3des", .bsize = 8,
2241		.skcipher = {
2242			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2243			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2244			.setkey		=	hifn_des3_setkey,
2245			.encrypt	=	hifn_encrypt_3des_cfb,
2246			.decrypt	=	hifn_decrypt_3des_cfb,
2247		},
2248	},
2249	{
2250		.name = "ofb(des3_ede)", .drv_name = "ofb-3des", .bsize = 8,
2251		.skcipher = {
2252			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2253			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2254			.setkey		=	hifn_des3_setkey,
2255			.encrypt	=	hifn_encrypt_3des_ofb,
2256			.decrypt	=	hifn_decrypt_3des_ofb,
2257		},
2258	},
2259	{
2260		.name = "cbc(des3_ede)", .drv_name = "cbc-3des", .bsize = 8,
2261		.skcipher = {
2262			.ivsize		=	HIFN_IV_LENGTH,
2263			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2264			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2265			.setkey		=	hifn_des3_setkey,
2266			.encrypt	=	hifn_encrypt_3des_cbc,
2267			.decrypt	=	hifn_decrypt_3des_cbc,
2268		},
2269	},
2270	{
2271		.name = "ecb(des3_ede)", .drv_name = "ecb-3des", .bsize = 8,
2272		.skcipher = {
2273			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2274			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2275			.setkey		=	hifn_des3_setkey,
2276			.encrypt	=	hifn_encrypt_3des_ecb,
2277			.decrypt	=	hifn_decrypt_3des_ecb,
2278		},
2279	},
2280
2281	/*
2282	 * DES ECB, CBC, CFB and OFB modes.
2283	 */
2284	{
2285		.name = "cfb(des)", .drv_name = "cfb-des", .bsize = 8,
2286		.skcipher = {
2287			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2288			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2289			.setkey		=	hifn_setkey,
2290			.encrypt	=	hifn_encrypt_des_cfb,
2291			.decrypt	=	hifn_decrypt_des_cfb,
2292		},
2293	},
2294	{
2295		.name = "ofb(des)", .drv_name = "ofb-des", .bsize = 8,
2296		.skcipher = {
2297			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2298			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2299			.setkey		=	hifn_setkey,
2300			.encrypt	=	hifn_encrypt_des_ofb,
2301			.decrypt	=	hifn_decrypt_des_ofb,
2302		},
2303	},
2304	{
2305		.name = "cbc(des)", .drv_name = "cbc-des", .bsize = 8,
2306		.skcipher = {
2307			.ivsize		=	HIFN_IV_LENGTH,
2308			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2309			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2310			.setkey		=	hifn_setkey,
2311			.encrypt	=	hifn_encrypt_des_cbc,
2312			.decrypt	=	hifn_decrypt_des_cbc,
2313		},
2314	},
2315	{
2316		.name = "ecb(des)", .drv_name = "ecb-des", .bsize = 8,
2317		.skcipher = {
2318			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2319			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2320			.setkey		=	hifn_setkey,
2321			.encrypt	=	hifn_encrypt_des_ecb,
2322			.decrypt	=	hifn_decrypt_des_ecb,
2323		},
2324	},
2325
2326	/*
2327	 * AES ECB, CBC, CFB and OFB modes.
2328	 */
2329	{
2330		.name = "ecb(aes)", .drv_name = "ecb-aes", .bsize = 16,
2331		.skcipher = {
2332			.min_keysize	=	AES_MIN_KEY_SIZE,
2333			.max_keysize	=	AES_MAX_KEY_SIZE,
2334			.setkey		=	hifn_setkey,
2335			.encrypt	=	hifn_encrypt_aes_ecb,
2336			.decrypt	=	hifn_decrypt_aes_ecb,
2337		},
2338	},
2339	{
2340		.name = "cbc(aes)", .drv_name = "cbc-aes", .bsize = 16,
2341		.skcipher = {
2342			.ivsize		=	HIFN_AES_IV_LENGTH,
2343			.min_keysize	=	AES_MIN_KEY_SIZE,
2344			.max_keysize	=	AES_MAX_KEY_SIZE,
2345			.setkey		=	hifn_setkey,
2346			.encrypt	=	hifn_encrypt_aes_cbc,
2347			.decrypt	=	hifn_decrypt_aes_cbc,
2348		},
2349	},
2350	{
2351		.name = "cfb(aes)", .drv_name = "cfb-aes", .bsize = 16,
2352		.skcipher = {
2353			.min_keysize	=	AES_MIN_KEY_SIZE,
2354			.max_keysize	=	AES_MAX_KEY_SIZE,
2355			.setkey		=	hifn_setkey,
2356			.encrypt	=	hifn_encrypt_aes_cfb,
2357			.decrypt	=	hifn_decrypt_aes_cfb,
2358		},
2359	},
2360	{
2361		.name = "ofb(aes)", .drv_name = "ofb-aes", .bsize = 16,
2362		.skcipher = {
2363			.min_keysize	=	AES_MIN_KEY_SIZE,
2364			.max_keysize	=	AES_MAX_KEY_SIZE,
2365			.setkey		=	hifn_setkey,
2366			.encrypt	=	hifn_encrypt_aes_ofb,
2367			.decrypt	=	hifn_decrypt_aes_ofb,
2368		},
2369	},
2370};
2371
2372static int hifn_init_tfm(struct crypto_skcipher *tfm)
2373{
2374	struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
2375	struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg);
2376	struct hifn_context *ctx = crypto_skcipher_ctx(tfm);
2377
2378	ctx->dev = ha->dev;
2379	crypto_skcipher_set_reqsize(tfm, sizeof(struct hifn_request_context));
2380
2381	return 0;
2382}
2383
2384static int hifn_alg_alloc(struct hifn_device *dev, const struct hifn_alg_template *t)
2385{
2386	struct hifn_crypto_alg *alg;
2387	int err;
2388
2389	alg = kzalloc(sizeof(*alg), GFP_KERNEL);
2390	if (!alg)
2391		return -ENOMEM;
2392
2393	alg->alg = t->skcipher;
2394	alg->alg.init = hifn_init_tfm;
2395
2396	snprintf(alg->alg.base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", t->name);
2397	snprintf(alg->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-%s",
2398		 t->drv_name, dev->name);
2399
2400	alg->alg.base.cra_priority = 300;
2401	alg->alg.base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
2402	alg->alg.base.cra_blocksize = t->bsize;
2403	alg->alg.base.cra_ctxsize = sizeof(struct hifn_context);
2404	alg->alg.base.cra_alignmask = 0;
2405	alg->alg.base.cra_module = THIS_MODULE;
2406
2407	alg->dev = dev;
2408
2409	list_add_tail(&alg->entry, &dev->alg_list);
2410
2411	err = crypto_register_skcipher(&alg->alg);
2412	if (err) {
2413		list_del(&alg->entry);
2414		kfree(alg);
2415	}
2416
2417	return err;
2418}
2419
2420static void hifn_unregister_alg(struct hifn_device *dev)
2421{
2422	struct hifn_crypto_alg *a, *n;
2423
2424	list_for_each_entry_safe(a, n, &dev->alg_list, entry) {
2425		list_del(&a->entry);
2426		crypto_unregister_skcipher(&a->alg);
2427		kfree(a);
2428	}
2429}
2430
2431static int hifn_register_alg(struct hifn_device *dev)
2432{
2433	int i, err;
2434
2435	for (i = 0; i < ARRAY_SIZE(hifn_alg_templates); ++i) {
2436		err = hifn_alg_alloc(dev, &hifn_alg_templates[i]);
2437		if (err)
2438			goto err_out_exit;
2439	}
2440
2441	return 0;
2442
2443err_out_exit:
2444	hifn_unregister_alg(dev);
2445	return err;
2446}
2447
2448static void hifn_tasklet_callback(unsigned long data)
2449{
2450	struct hifn_device *dev = (struct hifn_device *)data;
2451
2452	/*
2453	 * This is ok to call this without lock being held,
2454	 * althogh it modifies some parameters used in parallel,
2455	 * (like dev->success), but they are used in process
2456	 * context or update is atomic (like setting dev->sa[i] to NULL).
2457	 */
2458	hifn_clear_rings(dev, 0);
2459
2460	if (dev->started < HIFN_QUEUE_LENGTH &&	dev->queue.qlen)
2461		hifn_process_queue(dev);
2462}
2463
2464static int hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2465{
2466	int err, i;
2467	struct hifn_device *dev;
2468	char name[8];
2469
2470	err = pci_enable_device(pdev);
2471	if (err)
2472		return err;
2473	pci_set_master(pdev);
2474
2475	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2476	if (err)
2477		goto err_out_disable_pci_device;
2478
2479	snprintf(name, sizeof(name), "hifn%d",
2480			atomic_inc_return(&hifn_dev_number) - 1);
2481
2482	err = pci_request_regions(pdev, name);
2483	if (err)
2484		goto err_out_disable_pci_device;
2485
2486	if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE ||
2487	    pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE ||
2488	    pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) {
2489		dev_err(&pdev->dev, "Broken hardware - I/O regions are too small.\n");
2490		err = -ENODEV;
2491		goto err_out_free_regions;
2492	}
2493
2494	dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg),
2495			GFP_KERNEL);
2496	if (!dev) {
2497		err = -ENOMEM;
2498		goto err_out_free_regions;
2499	}
2500
2501	INIT_LIST_HEAD(&dev->alg_list);
2502
2503	snprintf(dev->name, sizeof(dev->name), "%s", name);
2504	spin_lock_init(&dev->lock);
2505
2506	for (i = 0; i < 3; ++i) {
2507		unsigned long addr, size;
2508
2509		addr = pci_resource_start(pdev, i);
2510		size = pci_resource_len(pdev, i);
2511
2512		dev->bar[i] = ioremap(addr, size);
2513		if (!dev->bar[i]) {
2514			err = -ENOMEM;
2515			goto err_out_unmap_bars;
2516		}
2517	}
2518
2519	dev->desc_virt = dma_alloc_coherent(&pdev->dev,
2520					    sizeof(struct hifn_dma),
2521					    &dev->desc_dma, GFP_KERNEL);
2522	if (!dev->desc_virt) {
2523		dev_err(&pdev->dev, "Failed to allocate descriptor rings.\n");
2524		err = -ENOMEM;
2525		goto err_out_unmap_bars;
2526	}
2527
2528	dev->pdev = pdev;
2529	dev->irq = pdev->irq;
2530
2531	for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
2532		dev->sa[i] = NULL;
2533
2534	pci_set_drvdata(pdev, dev);
2535
2536	tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev);
2537
2538	crypto_init_queue(&dev->queue, 1);
2539
2540	err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev);
2541	if (err) {
2542		dev_err(&pdev->dev, "Failed to request IRQ%d: err: %d.\n",
2543			dev->irq, err);
2544		dev->irq = 0;
2545		goto err_out_free_desc;
2546	}
2547
2548	err = hifn_start_device(dev);
2549	if (err)
2550		goto err_out_free_irq;
2551
2552	err = hifn_register_rng(dev);
2553	if (err)
2554		goto err_out_stop_device;
2555
2556	err = hifn_register_alg(dev);
2557	if (err)
2558		goto err_out_unregister_rng;
2559
2560	INIT_DELAYED_WORK(&dev->work, hifn_work);
2561	schedule_delayed_work(&dev->work, HZ);
2562
2563	dev_dbg(&pdev->dev, "HIFN crypto accelerator card at %s has been "
2564		"successfully registered as %s.\n",
2565		pci_name(pdev), dev->name);
2566
2567	return 0;
2568
2569err_out_unregister_rng:
2570	hifn_unregister_rng(dev);
2571err_out_stop_device:
2572	hifn_reset_dma(dev, 1);
2573	hifn_stop_device(dev);
2574err_out_free_irq:
2575	free_irq(dev->irq, dev);
2576	tasklet_kill(&dev->tasklet);
2577err_out_free_desc:
2578	dma_free_coherent(&pdev->dev, sizeof(struct hifn_dma), dev->desc_virt,
2579			  dev->desc_dma);
2580
2581err_out_unmap_bars:
2582	for (i = 0; i < 3; ++i)
2583		if (dev->bar[i])
2584			iounmap(dev->bar[i]);
2585	kfree(dev);
2586
2587err_out_free_regions:
2588	pci_release_regions(pdev);
2589
2590err_out_disable_pci_device:
2591	pci_disable_device(pdev);
2592
2593	return err;
2594}
2595
2596static void hifn_remove(struct pci_dev *pdev)
2597{
2598	int i;
2599	struct hifn_device *dev;
2600
2601	dev = pci_get_drvdata(pdev);
2602
2603	if (dev) {
2604		cancel_delayed_work_sync(&dev->work);
2605
2606		hifn_unregister_rng(dev);
2607		hifn_unregister_alg(dev);
2608		hifn_reset_dma(dev, 1);
2609		hifn_stop_device(dev);
2610
2611		free_irq(dev->irq, dev);
2612		tasklet_kill(&dev->tasklet);
2613
2614		hifn_flush(dev);
2615
2616		dma_free_coherent(&pdev->dev, sizeof(struct hifn_dma),
2617				  dev->desc_virt, dev->desc_dma);
2618		for (i = 0; i < 3; ++i)
2619			if (dev->bar[i])
2620				iounmap(dev->bar[i]);
2621
2622		kfree(dev);
2623	}
2624
2625	pci_release_regions(pdev);
2626	pci_disable_device(pdev);
2627}
2628
2629static struct pci_device_id hifn_pci_tbl[] = {
2630	{ PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) },
2631	{ PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) },
2632	{ 0 }
2633};
2634MODULE_DEVICE_TABLE(pci, hifn_pci_tbl);
2635
2636static struct pci_driver hifn_pci_driver = {
2637	.name     = "hifn795x",
2638	.id_table = hifn_pci_tbl,
2639	.probe    = hifn_probe,
2640	.remove   = hifn_remove,
2641};
2642
2643static int __init hifn_init(void)
2644{
2645	unsigned int freq;
2646	int err;
2647
2648	if (strncmp(hifn_pll_ref, "ext", 3) &&
2649	    strncmp(hifn_pll_ref, "pci", 3)) {
2650		pr_err("hifn795x: invalid hifn_pll_ref clock, must be pci or ext");
2651		return -EINVAL;
2652	}
2653
2654	/*
2655	 * For the 7955/7956 the reference clock frequency must be in the
2656	 * range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz,
2657	 * but this chip is currently not supported.
2658	 */
2659	if (hifn_pll_ref[3] != '\0') {
2660		freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
2661		if (freq < 20 || freq > 100) {
2662			pr_err("hifn795x: invalid hifn_pll_ref frequency, must"
2663			       "be in the range of 20-100");
2664			return -EINVAL;
2665		}
2666	}
2667
2668	err = pci_register_driver(&hifn_pci_driver);
2669	if (err < 0) {
2670		pr_err("Failed to register PCI driver for %s device.\n",
2671		       hifn_pci_driver.name);
2672		return -ENODEV;
2673	}
2674
2675	pr_info("Driver for HIFN 795x crypto accelerator chip "
2676		"has been successfully registered.\n");
2677
2678	return 0;
2679}
2680
2681static void __exit hifn_fini(void)
2682{
2683	pci_unregister_driver(&hifn_pci_driver);
2684
2685	pr_info("Driver for HIFN 795x crypto accelerator chip "
2686		"has been successfully unregistered.\n");
2687}
2688
2689module_init(hifn_init);
2690module_exit(hifn_fini);
2691
2692MODULE_LICENSE("GPL");
2693MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
2694MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip.");
2695