1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Cryptographic API.
4 *
5 * Support for ATMEL SHA1/SHA256 HW acceleration.
6 *
7 * Copyright (c) 2012 Eukréa Electromatique - ATMEL
8 * Author: Nicolas Royer <nicolas@eukrea.com>
9 *
10 * Some ideas are from omap-sham.c drivers.
11 */
12
13
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/err.h>
18#include <linux/clk.h>
19#include <linux/io.h>
20#include <linux/hw_random.h>
21#include <linux/platform_device.h>
22
23#include <linux/device.h>
24#include <linux/dmaengine.h>
25#include <linux/init.h>
26#include <linux/errno.h>
27#include <linux/interrupt.h>
28#include <linux/irq.h>
29#include <linux/scatterlist.h>
30#include <linux/dma-mapping.h>
31#include <linux/mod_devicetable.h>
32#include <linux/delay.h>
33#include <linux/crypto.h>
34#include <crypto/scatterwalk.h>
35#include <crypto/algapi.h>
36#include <crypto/sha1.h>
37#include <crypto/sha2.h>
38#include <crypto/hash.h>
39#include <crypto/internal/hash.h>
40#include "atmel-sha-regs.h"
41#include "atmel-authenc.h"
42
43#define ATMEL_SHA_PRIORITY	300
44
45/* SHA flags */
46#define SHA_FLAGS_BUSY			BIT(0)
47#define	SHA_FLAGS_FINAL			BIT(1)
48#define SHA_FLAGS_DMA_ACTIVE	BIT(2)
49#define SHA_FLAGS_OUTPUT_READY	BIT(3)
50#define SHA_FLAGS_INIT			BIT(4)
51#define SHA_FLAGS_CPU			BIT(5)
52#define SHA_FLAGS_DMA_READY		BIT(6)
53#define SHA_FLAGS_DUMP_REG	BIT(7)
54
55/* bits[11:8] are reserved. */
56
57#define SHA_FLAGS_FINUP		BIT(16)
58#define SHA_FLAGS_SG		BIT(17)
59#define SHA_FLAGS_ERROR		BIT(23)
60#define SHA_FLAGS_PAD		BIT(24)
61#define SHA_FLAGS_RESTORE	BIT(25)
62#define SHA_FLAGS_IDATAR0	BIT(26)
63#define SHA_FLAGS_WAIT_DATARDY	BIT(27)
64
65#define SHA_OP_INIT	0
66#define SHA_OP_UPDATE	1
67#define SHA_OP_FINAL	2
68#define SHA_OP_DIGEST	3
69
70#define SHA_BUFFER_LEN		(PAGE_SIZE / 16)
71
72#define ATMEL_SHA_DMA_THRESHOLD		56
73
74struct atmel_sha_caps {
75	bool	has_dma;
76	bool	has_dualbuff;
77	bool	has_sha224;
78	bool	has_sha_384_512;
79	bool	has_uihv;
80	bool	has_hmac;
81};
82
83struct atmel_sha_dev;
84
85/*
86 * .statesize = sizeof(struct atmel_sha_reqctx) must be <= PAGE_SIZE / 8 as
87 * tested by the ahash_prepare_alg() function.
88 */
89struct atmel_sha_reqctx {
90	struct atmel_sha_dev	*dd;
91	unsigned long	flags;
92	unsigned long	op;
93
94	u8	digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
95	u64	digcnt[2];
96	size_t	bufcnt;
97	size_t	buflen;
98	dma_addr_t	dma_addr;
99
100	/* walk state */
101	struct scatterlist	*sg;
102	unsigned int	offset;	/* offset in current sg */
103	unsigned int	total;	/* total request */
104
105	size_t block_size;
106	size_t hash_size;
107
108	u8 buffer[SHA_BUFFER_LEN + SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
109};
110
111typedef int (*atmel_sha_fn_t)(struct atmel_sha_dev *);
112
113struct atmel_sha_ctx {
114	struct atmel_sha_dev	*dd;
115	atmel_sha_fn_t		start;
116
117	unsigned long		flags;
118};
119
120#define ATMEL_SHA_QUEUE_LENGTH	50
121
122struct atmel_sha_dma {
123	struct dma_chan			*chan;
124	struct dma_slave_config dma_conf;
125	struct scatterlist	*sg;
126	int			nents;
127	unsigned int		last_sg_length;
128};
129
130struct atmel_sha_dev {
131	struct list_head	list;
132	unsigned long		phys_base;
133	struct device		*dev;
134	struct clk			*iclk;
135	int					irq;
136	void __iomem		*io_base;
137
138	spinlock_t		lock;
139	struct tasklet_struct	done_task;
140	struct tasklet_struct	queue_task;
141
142	unsigned long		flags;
143	struct crypto_queue	queue;
144	struct ahash_request	*req;
145	bool			is_async;
146	bool			force_complete;
147	atmel_sha_fn_t		resume;
148	atmel_sha_fn_t		cpu_transfer_complete;
149
150	struct atmel_sha_dma	dma_lch_in;
151
152	struct atmel_sha_caps	caps;
153
154	struct scatterlist	tmp;
155
156	u32	hw_version;
157};
158
159struct atmel_sha_drv {
160	struct list_head	dev_list;
161	spinlock_t		lock;
162};
163
164static struct atmel_sha_drv atmel_sha = {
165	.dev_list = LIST_HEAD_INIT(atmel_sha.dev_list),
166	.lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock),
167};
168
169#ifdef VERBOSE_DEBUG
170static const char *atmel_sha_reg_name(u32 offset, char *tmp, size_t sz, bool wr)
171{
172	switch (offset) {
173	case SHA_CR:
174		return "CR";
175
176	case SHA_MR:
177		return "MR";
178
179	case SHA_IER:
180		return "IER";
181
182	case SHA_IDR:
183		return "IDR";
184
185	case SHA_IMR:
186		return "IMR";
187
188	case SHA_ISR:
189		return "ISR";
190
191	case SHA_MSR:
192		return "MSR";
193
194	case SHA_BCR:
195		return "BCR";
196
197	case SHA_REG_DIN(0):
198	case SHA_REG_DIN(1):
199	case SHA_REG_DIN(2):
200	case SHA_REG_DIN(3):
201	case SHA_REG_DIN(4):
202	case SHA_REG_DIN(5):
203	case SHA_REG_DIN(6):
204	case SHA_REG_DIN(7):
205	case SHA_REG_DIN(8):
206	case SHA_REG_DIN(9):
207	case SHA_REG_DIN(10):
208	case SHA_REG_DIN(11):
209	case SHA_REG_DIN(12):
210	case SHA_REG_DIN(13):
211	case SHA_REG_DIN(14):
212	case SHA_REG_DIN(15):
213		snprintf(tmp, sz, "IDATAR[%u]", (offset - SHA_REG_DIN(0)) >> 2);
214		break;
215
216	case SHA_REG_DIGEST(0):
217	case SHA_REG_DIGEST(1):
218	case SHA_REG_DIGEST(2):
219	case SHA_REG_DIGEST(3):
220	case SHA_REG_DIGEST(4):
221	case SHA_REG_DIGEST(5):
222	case SHA_REG_DIGEST(6):
223	case SHA_REG_DIGEST(7):
224	case SHA_REG_DIGEST(8):
225	case SHA_REG_DIGEST(9):
226	case SHA_REG_DIGEST(10):
227	case SHA_REG_DIGEST(11):
228	case SHA_REG_DIGEST(12):
229	case SHA_REG_DIGEST(13):
230	case SHA_REG_DIGEST(14):
231	case SHA_REG_DIGEST(15):
232		if (wr)
233			snprintf(tmp, sz, "IDATAR[%u]",
234				 16u + ((offset - SHA_REG_DIGEST(0)) >> 2));
235		else
236			snprintf(tmp, sz, "ODATAR[%u]",
237				 (offset - SHA_REG_DIGEST(0)) >> 2);
238		break;
239
240	case SHA_HW_VERSION:
241		return "HWVER";
242
243	default:
244		snprintf(tmp, sz, "0x%02x", offset);
245		break;
246	}
247
248	return tmp;
249}
250
251#endif /* VERBOSE_DEBUG */
252
253static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset)
254{
255	u32 value = readl_relaxed(dd->io_base + offset);
256
257#ifdef VERBOSE_DEBUG
258	if (dd->flags & SHA_FLAGS_DUMP_REG) {
259		char tmp[16];
260
261		dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
262			 atmel_sha_reg_name(offset, tmp, sizeof(tmp), false));
263	}
264#endif /* VERBOSE_DEBUG */
265
266	return value;
267}
268
269static inline void atmel_sha_write(struct atmel_sha_dev *dd,
270					u32 offset, u32 value)
271{
272#ifdef VERBOSE_DEBUG
273	if (dd->flags & SHA_FLAGS_DUMP_REG) {
274		char tmp[16];
275
276		dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
277			 atmel_sha_reg_name(offset, tmp, sizeof(tmp), true));
278	}
279#endif /* VERBOSE_DEBUG */
280
281	writel_relaxed(value, dd->io_base + offset);
282}
283
284static inline int atmel_sha_complete(struct atmel_sha_dev *dd, int err)
285{
286	struct ahash_request *req = dd->req;
287
288	dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL | SHA_FLAGS_CPU |
289		       SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY |
290		       SHA_FLAGS_DUMP_REG);
291
292	clk_disable(dd->iclk);
293
294	if ((dd->is_async || dd->force_complete) && req->base.complete)
295		ahash_request_complete(req, err);
296
297	/* handle new request */
298	tasklet_schedule(&dd->queue_task);
299
300	return err;
301}
302
303static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx)
304{
305	size_t count;
306
307	while ((ctx->bufcnt < ctx->buflen) && ctx->total) {
308		count = min(ctx->sg->length - ctx->offset, ctx->total);
309		count = min(count, ctx->buflen - ctx->bufcnt);
310
311		if (count <= 0) {
312			/*
313			* Check if count <= 0 because the buffer is full or
314			* because the sg length is 0. In the latest case,
315			* check if there is another sg in the list, a 0 length
316			* sg doesn't necessarily mean the end of the sg list.
317			*/
318			if ((ctx->sg->length == 0) && !sg_is_last(ctx->sg)) {
319				ctx->sg = sg_next(ctx->sg);
320				continue;
321			} else {
322				break;
323			}
324		}
325
326		scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
327			ctx->offset, count, 0);
328
329		ctx->bufcnt += count;
330		ctx->offset += count;
331		ctx->total -= count;
332
333		if (ctx->offset == ctx->sg->length) {
334			ctx->sg = sg_next(ctx->sg);
335			if (ctx->sg)
336				ctx->offset = 0;
337			else
338				ctx->total = 0;
339		}
340	}
341
342	return 0;
343}
344
345/*
346 * The purpose of this padding is to ensure that the padded message is a
347 * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
348 * The bit "1" is appended at the end of the message followed by
349 * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
350 * 128 bits block (SHA384/SHA512) equals to the message length in bits
351 * is appended.
352 *
353 * For SHA1/SHA224/SHA256, padlen is calculated as followed:
354 *  - if message length < 56 bytes then padlen = 56 - message length
355 *  - else padlen = 64 + 56 - message length
356 *
357 * For SHA384/SHA512, padlen is calculated as followed:
358 *  - if message length < 112 bytes then padlen = 112 - message length
359 *  - else padlen = 128 + 112 - message length
360 */
361static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length)
362{
363	unsigned int index, padlen;
364	__be64 bits[2];
365	u64 size[2];
366
367	size[0] = ctx->digcnt[0];
368	size[1] = ctx->digcnt[1];
369
370	size[0] += ctx->bufcnt;
371	if (size[0] < ctx->bufcnt)
372		size[1]++;
373
374	size[0] += length;
375	if (size[0]  < length)
376		size[1]++;
377
378	bits[1] = cpu_to_be64(size[0] << 3);
379	bits[0] = cpu_to_be64(size[1] << 3 | size[0] >> 61);
380
381	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
382	case SHA_FLAGS_SHA384:
383	case SHA_FLAGS_SHA512:
384		index = ctx->bufcnt & 0x7f;
385		padlen = (index < 112) ? (112 - index) : ((128+112) - index);
386		*(ctx->buffer + ctx->bufcnt) = 0x80;
387		memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
388		memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
389		ctx->bufcnt += padlen + 16;
390		ctx->flags |= SHA_FLAGS_PAD;
391		break;
392
393	default:
394		index = ctx->bufcnt & 0x3f;
395		padlen = (index < 56) ? (56 - index) : ((64+56) - index);
396		*(ctx->buffer + ctx->bufcnt) = 0x80;
397		memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
398		memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
399		ctx->bufcnt += padlen + 8;
400		ctx->flags |= SHA_FLAGS_PAD;
401		break;
402	}
403}
404
405static struct atmel_sha_dev *atmel_sha_find_dev(struct atmel_sha_ctx *tctx)
406{
407	struct atmel_sha_dev *dd = NULL;
408	struct atmel_sha_dev *tmp;
409
410	spin_lock_bh(&atmel_sha.lock);
411	if (!tctx->dd) {
412		list_for_each_entry(tmp, &atmel_sha.dev_list, list) {
413			dd = tmp;
414			break;
415		}
416		tctx->dd = dd;
417	} else {
418		dd = tctx->dd;
419	}
420
421	spin_unlock_bh(&atmel_sha.lock);
422
423	return dd;
424}
425
426static int atmel_sha_init(struct ahash_request *req)
427{
428	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
429	struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
430	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
431	struct atmel_sha_dev *dd = atmel_sha_find_dev(tctx);
432
433	ctx->dd = dd;
434
435	ctx->flags = 0;
436
437	dev_dbg(dd->dev, "init: digest size: %u\n",
438		crypto_ahash_digestsize(tfm));
439
440	switch (crypto_ahash_digestsize(tfm)) {
441	case SHA1_DIGEST_SIZE:
442		ctx->flags |= SHA_FLAGS_SHA1;
443		ctx->block_size = SHA1_BLOCK_SIZE;
444		break;
445	case SHA224_DIGEST_SIZE:
446		ctx->flags |= SHA_FLAGS_SHA224;
447		ctx->block_size = SHA224_BLOCK_SIZE;
448		break;
449	case SHA256_DIGEST_SIZE:
450		ctx->flags |= SHA_FLAGS_SHA256;
451		ctx->block_size = SHA256_BLOCK_SIZE;
452		break;
453	case SHA384_DIGEST_SIZE:
454		ctx->flags |= SHA_FLAGS_SHA384;
455		ctx->block_size = SHA384_BLOCK_SIZE;
456		break;
457	case SHA512_DIGEST_SIZE:
458		ctx->flags |= SHA_FLAGS_SHA512;
459		ctx->block_size = SHA512_BLOCK_SIZE;
460		break;
461	default:
462		return -EINVAL;
463	}
464
465	ctx->bufcnt = 0;
466	ctx->digcnt[0] = 0;
467	ctx->digcnt[1] = 0;
468	ctx->buflen = SHA_BUFFER_LEN;
469
470	return 0;
471}
472
473static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma)
474{
475	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
476	u32 valmr = SHA_MR_MODE_AUTO;
477	unsigned int i, hashsize = 0;
478
479	if (likely(dma)) {
480		if (!dd->caps.has_dma)
481			atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE);
482		valmr = SHA_MR_MODE_PDC;
483		if (dd->caps.has_dualbuff)
484			valmr |= SHA_MR_DUALBUFF;
485	} else {
486		atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
487	}
488
489	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
490	case SHA_FLAGS_SHA1:
491		valmr |= SHA_MR_ALGO_SHA1;
492		hashsize = SHA1_DIGEST_SIZE;
493		break;
494
495	case SHA_FLAGS_SHA224:
496		valmr |= SHA_MR_ALGO_SHA224;
497		hashsize = SHA256_DIGEST_SIZE;
498		break;
499
500	case SHA_FLAGS_SHA256:
501		valmr |= SHA_MR_ALGO_SHA256;
502		hashsize = SHA256_DIGEST_SIZE;
503		break;
504
505	case SHA_FLAGS_SHA384:
506		valmr |= SHA_MR_ALGO_SHA384;
507		hashsize = SHA512_DIGEST_SIZE;
508		break;
509
510	case SHA_FLAGS_SHA512:
511		valmr |= SHA_MR_ALGO_SHA512;
512		hashsize = SHA512_DIGEST_SIZE;
513		break;
514
515	default:
516		break;
517	}
518
519	/* Setting CR_FIRST only for the first iteration */
520	if (!(ctx->digcnt[0] || ctx->digcnt[1])) {
521		atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
522	} else if (dd->caps.has_uihv && (ctx->flags & SHA_FLAGS_RESTORE)) {
523		const u32 *hash = (const u32 *)ctx->digest;
524
525		/*
526		 * Restore the hardware context: update the User Initialize
527		 * Hash Value (UIHV) with the value saved when the latest
528		 * 'update' operation completed on this very same crypto
529		 * request.
530		 */
531		ctx->flags &= ~SHA_FLAGS_RESTORE;
532		atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
533		for (i = 0; i < hashsize / sizeof(u32); ++i)
534			atmel_sha_write(dd, SHA_REG_DIN(i), hash[i]);
535		atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
536		valmr |= SHA_MR_UIHV;
537	}
538	/*
539	 * WARNING: If the UIHV feature is not available, the hardware CANNOT
540	 * process concurrent requests: the internal registers used to store
541	 * the hash/digest are still set to the partial digest output values
542	 * computed during the latest round.
543	 */
544
545	atmel_sha_write(dd, SHA_MR, valmr);
546}
547
548static inline int atmel_sha_wait_for_data_ready(struct atmel_sha_dev *dd,
549						atmel_sha_fn_t resume)
550{
551	u32 isr = atmel_sha_read(dd, SHA_ISR);
552
553	if (unlikely(isr & SHA_INT_DATARDY))
554		return resume(dd);
555
556	dd->resume = resume;
557	atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
558	return -EINPROGRESS;
559}
560
561static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf,
562			      size_t length, int final)
563{
564	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
565	int count, len32;
566	const u32 *buffer = (const u32 *)buf;
567
568	dev_dbg(dd->dev, "xmit_cpu: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
569		ctx->digcnt[1], ctx->digcnt[0], length, final);
570
571	atmel_sha_write_ctrl(dd, 0);
572
573	/* should be non-zero before next lines to disable clocks later */
574	ctx->digcnt[0] += length;
575	if (ctx->digcnt[0] < length)
576		ctx->digcnt[1]++;
577
578	if (final)
579		dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
580
581	len32 = DIV_ROUND_UP(length, sizeof(u32));
582
583	dd->flags |= SHA_FLAGS_CPU;
584
585	for (count = 0; count < len32; count++)
586		atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]);
587
588	return -EINPROGRESS;
589}
590
591static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
592		size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
593{
594	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
595	int len32;
596
597	dev_dbg(dd->dev, "xmit_pdc: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
598		ctx->digcnt[1], ctx->digcnt[0], length1, final);
599
600	len32 = DIV_ROUND_UP(length1, sizeof(u32));
601	atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS);
602	atmel_sha_write(dd, SHA_TPR, dma_addr1);
603	atmel_sha_write(dd, SHA_TCR, len32);
604
605	len32 = DIV_ROUND_UP(length2, sizeof(u32));
606	atmel_sha_write(dd, SHA_TNPR, dma_addr2);
607	atmel_sha_write(dd, SHA_TNCR, len32);
608
609	atmel_sha_write_ctrl(dd, 1);
610
611	/* should be non-zero before next lines to disable clocks later */
612	ctx->digcnt[0] += length1;
613	if (ctx->digcnt[0] < length1)
614		ctx->digcnt[1]++;
615
616	if (final)
617		dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
618
619	dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
620
621	/* Start DMA transfer */
622	atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN);
623
624	return -EINPROGRESS;
625}
626
627static void atmel_sha_dma_callback(void *data)
628{
629	struct atmel_sha_dev *dd = data;
630
631	dd->is_async = true;
632
633	/* dma_lch_in - completed - wait DATRDY */
634	atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
635}
636
637static int atmel_sha_xmit_dma(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
638		size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
639{
640	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
641	struct dma_async_tx_descriptor	*in_desc;
642	struct scatterlist sg[2];
643
644	dev_dbg(dd->dev, "xmit_dma: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
645		ctx->digcnt[1], ctx->digcnt[0], length1, final);
646
647	dd->dma_lch_in.dma_conf.src_maxburst = 16;
648	dd->dma_lch_in.dma_conf.dst_maxburst = 16;
649
650	dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf);
651
652	if (length2) {
653		sg_init_table(sg, 2);
654		sg_dma_address(&sg[0]) = dma_addr1;
655		sg_dma_len(&sg[0]) = length1;
656		sg_dma_address(&sg[1]) = dma_addr2;
657		sg_dma_len(&sg[1]) = length2;
658		in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 2,
659			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
660	} else {
661		sg_init_table(sg, 1);
662		sg_dma_address(&sg[0]) = dma_addr1;
663		sg_dma_len(&sg[0]) = length1;
664		in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 1,
665			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
666	}
667	if (!in_desc)
668		return atmel_sha_complete(dd, -EINVAL);
669
670	in_desc->callback = atmel_sha_dma_callback;
671	in_desc->callback_param = dd;
672
673	atmel_sha_write_ctrl(dd, 1);
674
675	/* should be non-zero before next lines to disable clocks later */
676	ctx->digcnt[0] += length1;
677	if (ctx->digcnt[0] < length1)
678		ctx->digcnt[1]++;
679
680	if (final)
681		dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
682
683	dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
684
685	/* Start DMA transfer */
686	dmaengine_submit(in_desc);
687	dma_async_issue_pending(dd->dma_lch_in.chan);
688
689	return -EINPROGRESS;
690}
691
692static int atmel_sha_xmit_start(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
693		size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
694{
695	if (dd->caps.has_dma)
696		return atmel_sha_xmit_dma(dd, dma_addr1, length1,
697				dma_addr2, length2, final);
698	else
699		return atmel_sha_xmit_pdc(dd, dma_addr1, length1,
700				dma_addr2, length2, final);
701}
702
703static int atmel_sha_update_cpu(struct atmel_sha_dev *dd)
704{
705	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
706	int bufcnt;
707
708	atmel_sha_append_sg(ctx);
709	atmel_sha_fill_padding(ctx, 0);
710	bufcnt = ctx->bufcnt;
711	ctx->bufcnt = 0;
712
713	return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1);
714}
715
716static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd,
717					struct atmel_sha_reqctx *ctx,
718					size_t length, int final)
719{
720	ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
721				ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
722	if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
723		dev_err(dd->dev, "dma %zu bytes error\n", ctx->buflen +
724				ctx->block_size);
725		return atmel_sha_complete(dd, -EINVAL);
726	}
727
728	ctx->flags &= ~SHA_FLAGS_SG;
729
730	/* next call does not fail... so no unmap in the case of error */
731	return atmel_sha_xmit_start(dd, ctx->dma_addr, length, 0, 0, final);
732}
733
734static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd)
735{
736	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
737	unsigned int final;
738	size_t count;
739
740	atmel_sha_append_sg(ctx);
741
742	final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
743
744	dev_dbg(dd->dev, "slow: bufcnt: %zu, digcnt: 0x%llx 0x%llx, final: %d\n",
745		 ctx->bufcnt, ctx->digcnt[1], ctx->digcnt[0], final);
746
747	if (final)
748		atmel_sha_fill_padding(ctx, 0);
749
750	if (final || (ctx->bufcnt == ctx->buflen)) {
751		count = ctx->bufcnt;
752		ctx->bufcnt = 0;
753		return atmel_sha_xmit_dma_map(dd, ctx, count, final);
754	}
755
756	return 0;
757}
758
759static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd)
760{
761	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
762	unsigned int length, final, tail;
763	struct scatterlist *sg;
764	unsigned int count;
765
766	if (!ctx->total)
767		return 0;
768
769	if (ctx->bufcnt || ctx->offset)
770		return atmel_sha_update_dma_slow(dd);
771
772	dev_dbg(dd->dev, "fast: digcnt: 0x%llx 0x%llx, bufcnt: %zd, total: %u\n",
773		ctx->digcnt[1], ctx->digcnt[0], ctx->bufcnt, ctx->total);
774
775	sg = ctx->sg;
776
777	if (!IS_ALIGNED(sg->offset, sizeof(u32)))
778		return atmel_sha_update_dma_slow(dd);
779
780	if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->block_size))
781		/* size is not ctx->block_size aligned */
782		return atmel_sha_update_dma_slow(dd);
783
784	length = min(ctx->total, sg->length);
785
786	if (sg_is_last(sg)) {
787		if (!(ctx->flags & SHA_FLAGS_FINUP)) {
788			/* not last sg must be ctx->block_size aligned */
789			tail = length & (ctx->block_size - 1);
790			length -= tail;
791		}
792	}
793
794	ctx->total -= length;
795	ctx->offset = length; /* offset where to start slow */
796
797	final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
798
799	/* Add padding */
800	if (final) {
801		tail = length & (ctx->block_size - 1);
802		length -= tail;
803		ctx->total += tail;
804		ctx->offset = length; /* offset where to start slow */
805
806		sg = ctx->sg;
807		atmel_sha_append_sg(ctx);
808
809		atmel_sha_fill_padding(ctx, length);
810
811		ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
812			ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
813		if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
814			dev_err(dd->dev, "dma %zu bytes error\n",
815				ctx->buflen + ctx->block_size);
816			return atmel_sha_complete(dd, -EINVAL);
817		}
818
819		if (length == 0) {
820			ctx->flags &= ~SHA_FLAGS_SG;
821			count = ctx->bufcnt;
822			ctx->bufcnt = 0;
823			return atmel_sha_xmit_start(dd, ctx->dma_addr, count, 0,
824					0, final);
825		} else {
826			ctx->sg = sg;
827			if (!dma_map_sg(dd->dev, ctx->sg, 1,
828				DMA_TO_DEVICE)) {
829					dev_err(dd->dev, "dma_map_sg  error\n");
830					return atmel_sha_complete(dd, -EINVAL);
831			}
832
833			ctx->flags |= SHA_FLAGS_SG;
834
835			count = ctx->bufcnt;
836			ctx->bufcnt = 0;
837			return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg),
838					length, ctx->dma_addr, count, final);
839		}
840	}
841
842	if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
843		dev_err(dd->dev, "dma_map_sg  error\n");
844		return atmel_sha_complete(dd, -EINVAL);
845	}
846
847	ctx->flags |= SHA_FLAGS_SG;
848
849	/* next call does not fail... so no unmap in the case of error */
850	return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg), length, 0,
851								0, final);
852}
853
854static void atmel_sha_update_dma_stop(struct atmel_sha_dev *dd)
855{
856	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
857
858	if (ctx->flags & SHA_FLAGS_SG) {
859		dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE);
860		if (ctx->sg->length == ctx->offset) {
861			ctx->sg = sg_next(ctx->sg);
862			if (ctx->sg)
863				ctx->offset = 0;
864		}
865		if (ctx->flags & SHA_FLAGS_PAD) {
866			dma_unmap_single(dd->dev, ctx->dma_addr,
867				ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
868		}
869	} else {
870		dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen +
871						ctx->block_size, DMA_TO_DEVICE);
872	}
873}
874
875static int atmel_sha_update_req(struct atmel_sha_dev *dd)
876{
877	struct ahash_request *req = dd->req;
878	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
879	int err;
880
881	dev_dbg(dd->dev, "update_req: total: %u, digcnt: 0x%llx 0x%llx\n",
882		ctx->total, ctx->digcnt[1], ctx->digcnt[0]);
883
884	if (ctx->flags & SHA_FLAGS_CPU)
885		err = atmel_sha_update_cpu(dd);
886	else
887		err = atmel_sha_update_dma_start(dd);
888
889	/* wait for dma completion before can take more data */
890	dev_dbg(dd->dev, "update: err: %d, digcnt: 0x%llx 0%llx\n",
891			err, ctx->digcnt[1], ctx->digcnt[0]);
892
893	return err;
894}
895
896static int atmel_sha_final_req(struct atmel_sha_dev *dd)
897{
898	struct ahash_request *req = dd->req;
899	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
900	int err = 0;
901	int count;
902
903	if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) {
904		atmel_sha_fill_padding(ctx, 0);
905		count = ctx->bufcnt;
906		ctx->bufcnt = 0;
907		err = atmel_sha_xmit_dma_map(dd, ctx, count, 1);
908	}
909	/* faster to handle last block with cpu */
910	else {
911		atmel_sha_fill_padding(ctx, 0);
912		count = ctx->bufcnt;
913		ctx->bufcnt = 0;
914		err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1);
915	}
916
917	dev_dbg(dd->dev, "final_req: err: %d\n", err);
918
919	return err;
920}
921
922static void atmel_sha_copy_hash(struct ahash_request *req)
923{
924	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
925	u32 *hash = (u32 *)ctx->digest;
926	unsigned int i, hashsize;
927
928	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
929	case SHA_FLAGS_SHA1:
930		hashsize = SHA1_DIGEST_SIZE;
931		break;
932
933	case SHA_FLAGS_SHA224:
934	case SHA_FLAGS_SHA256:
935		hashsize = SHA256_DIGEST_SIZE;
936		break;
937
938	case SHA_FLAGS_SHA384:
939	case SHA_FLAGS_SHA512:
940		hashsize = SHA512_DIGEST_SIZE;
941		break;
942
943	default:
944		/* Should not happen... */
945		return;
946	}
947
948	for (i = 0; i < hashsize / sizeof(u32); ++i)
949		hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
950	ctx->flags |= SHA_FLAGS_RESTORE;
951}
952
953static void atmel_sha_copy_ready_hash(struct ahash_request *req)
954{
955	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
956
957	if (!req->result)
958		return;
959
960	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
961	default:
962	case SHA_FLAGS_SHA1:
963		memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE);
964		break;
965
966	case SHA_FLAGS_SHA224:
967		memcpy(req->result, ctx->digest, SHA224_DIGEST_SIZE);
968		break;
969
970	case SHA_FLAGS_SHA256:
971		memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE);
972		break;
973
974	case SHA_FLAGS_SHA384:
975		memcpy(req->result, ctx->digest, SHA384_DIGEST_SIZE);
976		break;
977
978	case SHA_FLAGS_SHA512:
979		memcpy(req->result, ctx->digest, SHA512_DIGEST_SIZE);
980		break;
981	}
982}
983
984static int atmel_sha_finish(struct ahash_request *req)
985{
986	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
987	struct atmel_sha_dev *dd = ctx->dd;
988
989	if (ctx->digcnt[0] || ctx->digcnt[1])
990		atmel_sha_copy_ready_hash(req);
991
992	dev_dbg(dd->dev, "digcnt: 0x%llx 0x%llx, bufcnt: %zd\n", ctx->digcnt[1],
993		ctx->digcnt[0], ctx->bufcnt);
994
995	return 0;
996}
997
998static void atmel_sha_finish_req(struct ahash_request *req, int err)
999{
1000	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1001	struct atmel_sha_dev *dd = ctx->dd;
1002
1003	if (!err) {
1004		atmel_sha_copy_hash(req);
1005		if (SHA_FLAGS_FINAL & dd->flags)
1006			err = atmel_sha_finish(req);
1007	} else {
1008		ctx->flags |= SHA_FLAGS_ERROR;
1009	}
1010
1011	/* atomic operation is not needed here */
1012	(void)atmel_sha_complete(dd, err);
1013}
1014
1015static int atmel_sha_hw_init(struct atmel_sha_dev *dd)
1016{
1017	int err;
1018
1019	err = clk_enable(dd->iclk);
1020	if (err)
1021		return err;
1022
1023	if (!(SHA_FLAGS_INIT & dd->flags)) {
1024		atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST);
1025		dd->flags |= SHA_FLAGS_INIT;
1026	}
1027
1028	return 0;
1029}
1030
1031static inline unsigned int atmel_sha_get_version(struct atmel_sha_dev *dd)
1032{
1033	return atmel_sha_read(dd, SHA_HW_VERSION) & 0x00000fff;
1034}
1035
1036static int atmel_sha_hw_version_init(struct atmel_sha_dev *dd)
1037{
1038	int err;
1039
1040	err = atmel_sha_hw_init(dd);
1041	if (err)
1042		return err;
1043
1044	dd->hw_version = atmel_sha_get_version(dd);
1045
1046	dev_info(dd->dev,
1047			"version: 0x%x\n", dd->hw_version);
1048
1049	clk_disable(dd->iclk);
1050
1051	return 0;
1052}
1053
1054static int atmel_sha_handle_queue(struct atmel_sha_dev *dd,
1055				  struct ahash_request *req)
1056{
1057	struct crypto_async_request *async_req, *backlog;
1058	struct atmel_sha_ctx *ctx;
1059	unsigned long flags;
1060	bool start_async;
1061	int err = 0, ret = 0;
1062
1063	spin_lock_irqsave(&dd->lock, flags);
1064	if (req)
1065		ret = ahash_enqueue_request(&dd->queue, req);
1066
1067	if (SHA_FLAGS_BUSY & dd->flags) {
1068		spin_unlock_irqrestore(&dd->lock, flags);
1069		return ret;
1070	}
1071
1072	backlog = crypto_get_backlog(&dd->queue);
1073	async_req = crypto_dequeue_request(&dd->queue);
1074	if (async_req)
1075		dd->flags |= SHA_FLAGS_BUSY;
1076
1077	spin_unlock_irqrestore(&dd->lock, flags);
1078
1079	if (!async_req)
1080		return ret;
1081
1082	if (backlog)
1083		crypto_request_complete(backlog, -EINPROGRESS);
1084
1085	ctx = crypto_tfm_ctx(async_req->tfm);
1086
1087	dd->req = ahash_request_cast(async_req);
1088	start_async = (dd->req != req);
1089	dd->is_async = start_async;
1090	dd->force_complete = false;
1091
1092	/* WARNING: ctx->start() MAY change dd->is_async. */
1093	err = ctx->start(dd);
1094	return (start_async) ? ret : err;
1095}
1096
1097static int atmel_sha_done(struct atmel_sha_dev *dd);
1098
1099static int atmel_sha_start(struct atmel_sha_dev *dd)
1100{
1101	struct ahash_request *req = dd->req;
1102	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1103	int err;
1104
1105	dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %u\n",
1106						ctx->op, req->nbytes);
1107
1108	err = atmel_sha_hw_init(dd);
1109	if (err)
1110		return atmel_sha_complete(dd, err);
1111
1112	/*
1113	 * atmel_sha_update_req() and atmel_sha_final_req() can return either:
1114	 *  -EINPROGRESS: the hardware is busy and the SHA driver will resume
1115	 *                its job later in the done_task.
1116	 *                This is the main path.
1117	 *
1118	 * 0: the SHA driver can continue its job then release the hardware
1119	 *    later, if needed, with atmel_sha_finish_req().
1120	 *    This is the alternate path.
1121	 *
1122	 * < 0: an error has occurred so atmel_sha_complete(dd, err) has already
1123	 *      been called, hence the hardware has been released.
1124	 *      The SHA driver must stop its job without calling
1125	 *      atmel_sha_finish_req(), otherwise atmel_sha_complete() would be
1126	 *      called a second time.
1127	 *
1128	 * Please note that currently, atmel_sha_final_req() never returns 0.
1129	 */
1130
1131	dd->resume = atmel_sha_done;
1132	if (ctx->op == SHA_OP_UPDATE) {
1133		err = atmel_sha_update_req(dd);
1134		if (!err && (ctx->flags & SHA_FLAGS_FINUP))
1135			/* no final() after finup() */
1136			err = atmel_sha_final_req(dd);
1137	} else if (ctx->op == SHA_OP_FINAL) {
1138		err = atmel_sha_final_req(dd);
1139	}
1140
1141	if (!err)
1142		/* done_task will not finish it, so do it here */
1143		atmel_sha_finish_req(req, err);
1144
1145	dev_dbg(dd->dev, "exit, err: %d\n", err);
1146
1147	return err;
1148}
1149
1150static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op)
1151{
1152	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1153	struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1154	struct atmel_sha_dev *dd = tctx->dd;
1155
1156	ctx->op = op;
1157
1158	return atmel_sha_handle_queue(dd, req);
1159}
1160
1161static int atmel_sha_update(struct ahash_request *req)
1162{
1163	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1164
1165	if (!req->nbytes)
1166		return 0;
1167
1168	ctx->total = req->nbytes;
1169	ctx->sg = req->src;
1170	ctx->offset = 0;
1171
1172	if (ctx->flags & SHA_FLAGS_FINUP) {
1173		if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD)
1174			/* faster to use CPU for short transfers */
1175			ctx->flags |= SHA_FLAGS_CPU;
1176	} else if (ctx->bufcnt + ctx->total < ctx->buflen) {
1177		atmel_sha_append_sg(ctx);
1178		return 0;
1179	}
1180	return atmel_sha_enqueue(req, SHA_OP_UPDATE);
1181}
1182
1183static int atmel_sha_final(struct ahash_request *req)
1184{
1185	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1186
1187	ctx->flags |= SHA_FLAGS_FINUP;
1188
1189	if (ctx->flags & SHA_FLAGS_ERROR)
1190		return 0; /* uncompleted hash is not needed */
1191
1192	if (ctx->flags & SHA_FLAGS_PAD)
1193		/* copy ready hash (+ finalize hmac) */
1194		return atmel_sha_finish(req);
1195
1196	return atmel_sha_enqueue(req, SHA_OP_FINAL);
1197}
1198
1199static int atmel_sha_finup(struct ahash_request *req)
1200{
1201	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1202	int err1, err2;
1203
1204	ctx->flags |= SHA_FLAGS_FINUP;
1205
1206	err1 = atmel_sha_update(req);
1207	if (err1 == -EINPROGRESS ||
1208	    (err1 == -EBUSY && (ahash_request_flags(req) &
1209				CRYPTO_TFM_REQ_MAY_BACKLOG)))
1210		return err1;
1211
1212	/*
1213	 * final() has to be always called to cleanup resources
1214	 * even if udpate() failed, except EINPROGRESS
1215	 */
1216	err2 = atmel_sha_final(req);
1217
1218	return err1 ?: err2;
1219}
1220
1221static int atmel_sha_digest(struct ahash_request *req)
1222{
1223	return atmel_sha_init(req) ?: atmel_sha_finup(req);
1224}
1225
1226
1227static int atmel_sha_export(struct ahash_request *req, void *out)
1228{
1229	const struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1230
1231	memcpy(out, ctx, sizeof(*ctx));
1232	return 0;
1233}
1234
1235static int atmel_sha_import(struct ahash_request *req, const void *in)
1236{
1237	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1238
1239	memcpy(ctx, in, sizeof(*ctx));
1240	return 0;
1241}
1242
1243static int atmel_sha_cra_init(struct crypto_tfm *tfm)
1244{
1245	struct atmel_sha_ctx *ctx = crypto_tfm_ctx(tfm);
1246
1247	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1248				 sizeof(struct atmel_sha_reqctx));
1249	ctx->start = atmel_sha_start;
1250
1251	return 0;
1252}
1253
1254static void atmel_sha_alg_init(struct ahash_alg *alg)
1255{
1256	alg->halg.base.cra_priority = ATMEL_SHA_PRIORITY;
1257	alg->halg.base.cra_flags = CRYPTO_ALG_ASYNC;
1258	alg->halg.base.cra_ctxsize = sizeof(struct atmel_sha_ctx);
1259	alg->halg.base.cra_module = THIS_MODULE;
1260	alg->halg.base.cra_init = atmel_sha_cra_init;
1261
1262	alg->halg.statesize = sizeof(struct atmel_sha_reqctx);
1263
1264	alg->init = atmel_sha_init;
1265	alg->update = atmel_sha_update;
1266	alg->final = atmel_sha_final;
1267	alg->finup = atmel_sha_finup;
1268	alg->digest = atmel_sha_digest;
1269	alg->export = atmel_sha_export;
1270	alg->import = atmel_sha_import;
1271}
1272
1273static struct ahash_alg sha_1_256_algs[] = {
1274{
1275	.halg.base.cra_name		= "sha1",
1276	.halg.base.cra_driver_name	= "atmel-sha1",
1277	.halg.base.cra_blocksize	= SHA1_BLOCK_SIZE,
1278
1279	.halg.digestsize = SHA1_DIGEST_SIZE,
1280},
1281{
1282	.halg.base.cra_name		= "sha256",
1283	.halg.base.cra_driver_name	= "atmel-sha256",
1284	.halg.base.cra_blocksize	= SHA256_BLOCK_SIZE,
1285
1286	.halg.digestsize = SHA256_DIGEST_SIZE,
1287},
1288};
1289
1290static struct ahash_alg sha_224_alg = {
1291	.halg.base.cra_name		= "sha224",
1292	.halg.base.cra_driver_name	= "atmel-sha224",
1293	.halg.base.cra_blocksize	= SHA224_BLOCK_SIZE,
1294
1295	.halg.digestsize = SHA224_DIGEST_SIZE,
1296};
1297
1298static struct ahash_alg sha_384_512_algs[] = {
1299{
1300	.halg.base.cra_name		= "sha384",
1301	.halg.base.cra_driver_name	= "atmel-sha384",
1302	.halg.base.cra_blocksize	= SHA384_BLOCK_SIZE,
1303	.halg.base.cra_alignmask	= 0x3,
1304
1305	.halg.digestsize = SHA384_DIGEST_SIZE,
1306},
1307{
1308	.halg.base.cra_name		= "sha512",
1309	.halg.base.cra_driver_name	= "atmel-sha512",
1310	.halg.base.cra_blocksize	= SHA512_BLOCK_SIZE,
1311	.halg.base.cra_alignmask	= 0x3,
1312
1313	.halg.digestsize = SHA512_DIGEST_SIZE,
1314},
1315};
1316
1317static void atmel_sha_queue_task(unsigned long data)
1318{
1319	struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1320
1321	atmel_sha_handle_queue(dd, NULL);
1322}
1323
1324static int atmel_sha_done(struct atmel_sha_dev *dd)
1325{
1326	int err = 0;
1327
1328	if (SHA_FLAGS_CPU & dd->flags) {
1329		if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1330			dd->flags &= ~SHA_FLAGS_OUTPUT_READY;
1331			goto finish;
1332		}
1333	} else if (SHA_FLAGS_DMA_READY & dd->flags) {
1334		if (SHA_FLAGS_DMA_ACTIVE & dd->flags) {
1335			dd->flags &= ~SHA_FLAGS_DMA_ACTIVE;
1336			atmel_sha_update_dma_stop(dd);
1337		}
1338		if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1339			/* hash or semi-hash ready */
1340			dd->flags &= ~(SHA_FLAGS_DMA_READY |
1341						SHA_FLAGS_OUTPUT_READY);
1342			err = atmel_sha_update_dma_start(dd);
1343			if (err != -EINPROGRESS)
1344				goto finish;
1345		}
1346	}
1347	return err;
1348
1349finish:
1350	/* finish curent request */
1351	atmel_sha_finish_req(dd->req, err);
1352
1353	return err;
1354}
1355
1356static void atmel_sha_done_task(unsigned long data)
1357{
1358	struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1359
1360	dd->is_async = true;
1361	(void)dd->resume(dd);
1362}
1363
1364static irqreturn_t atmel_sha_irq(int irq, void *dev_id)
1365{
1366	struct atmel_sha_dev *sha_dd = dev_id;
1367	u32 reg;
1368
1369	reg = atmel_sha_read(sha_dd, SHA_ISR);
1370	if (reg & atmel_sha_read(sha_dd, SHA_IMR)) {
1371		atmel_sha_write(sha_dd, SHA_IDR, reg);
1372		if (SHA_FLAGS_BUSY & sha_dd->flags) {
1373			sha_dd->flags |= SHA_FLAGS_OUTPUT_READY;
1374			if (!(SHA_FLAGS_CPU & sha_dd->flags))
1375				sha_dd->flags |= SHA_FLAGS_DMA_READY;
1376			tasklet_schedule(&sha_dd->done_task);
1377		} else {
1378			dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n");
1379		}
1380		return IRQ_HANDLED;
1381	}
1382
1383	return IRQ_NONE;
1384}
1385
1386
1387/* DMA transfer functions */
1388
1389static bool atmel_sha_dma_check_aligned(struct atmel_sha_dev *dd,
1390					struct scatterlist *sg,
1391					size_t len)
1392{
1393	struct atmel_sha_dma *dma = &dd->dma_lch_in;
1394	struct ahash_request *req = dd->req;
1395	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1396	size_t bs = ctx->block_size;
1397	int nents;
1398
1399	for (nents = 0; sg; sg = sg_next(sg), ++nents) {
1400		if (!IS_ALIGNED(sg->offset, sizeof(u32)))
1401			return false;
1402
1403		/*
1404		 * This is the last sg, the only one that is allowed to
1405		 * have an unaligned length.
1406		 */
1407		if (len <= sg->length) {
1408			dma->nents = nents + 1;
1409			dma->last_sg_length = sg->length;
1410			sg->length = ALIGN(len, sizeof(u32));
1411			return true;
1412		}
1413
1414		/* All other sg lengths MUST be aligned to the block size. */
1415		if (!IS_ALIGNED(sg->length, bs))
1416			return false;
1417
1418		len -= sg->length;
1419	}
1420
1421	return false;
1422}
1423
1424static void atmel_sha_dma_callback2(void *data)
1425{
1426	struct atmel_sha_dev *dd = data;
1427	struct atmel_sha_dma *dma = &dd->dma_lch_in;
1428	struct scatterlist *sg;
1429	int nents;
1430
1431	dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1432
1433	sg = dma->sg;
1434	for (nents = 0; nents < dma->nents - 1; ++nents)
1435		sg = sg_next(sg);
1436	sg->length = dma->last_sg_length;
1437
1438	dd->is_async = true;
1439	(void)atmel_sha_wait_for_data_ready(dd, dd->resume);
1440}
1441
1442static int atmel_sha_dma_start(struct atmel_sha_dev *dd,
1443			       struct scatterlist *src,
1444			       size_t len,
1445			       atmel_sha_fn_t resume)
1446{
1447	struct atmel_sha_dma *dma = &dd->dma_lch_in;
1448	struct dma_slave_config *config = &dma->dma_conf;
1449	struct dma_chan *chan = dma->chan;
1450	struct dma_async_tx_descriptor *desc;
1451	dma_cookie_t cookie;
1452	unsigned int sg_len;
1453	int err;
1454
1455	dd->resume = resume;
1456
1457	/*
1458	 * dma->nents has already been initialized by
1459	 * atmel_sha_dma_check_aligned().
1460	 */
1461	dma->sg = src;
1462	sg_len = dma_map_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1463	if (!sg_len) {
1464		err = -ENOMEM;
1465		goto exit;
1466	}
1467
1468	config->src_maxburst = 16;
1469	config->dst_maxburst = 16;
1470	err = dmaengine_slave_config(chan, config);
1471	if (err)
1472		goto unmap_sg;
1473
1474	desc = dmaengine_prep_slave_sg(chan, dma->sg, sg_len, DMA_MEM_TO_DEV,
1475				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1476	if (!desc) {
1477		err = -ENOMEM;
1478		goto unmap_sg;
1479	}
1480
1481	desc->callback = atmel_sha_dma_callback2;
1482	desc->callback_param = dd;
1483	cookie = dmaengine_submit(desc);
1484	err = dma_submit_error(cookie);
1485	if (err)
1486		goto unmap_sg;
1487
1488	dma_async_issue_pending(chan);
1489
1490	return -EINPROGRESS;
1491
1492unmap_sg:
1493	dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1494exit:
1495	return atmel_sha_complete(dd, err);
1496}
1497
1498
1499/* CPU transfer functions */
1500
1501static int atmel_sha_cpu_transfer(struct atmel_sha_dev *dd)
1502{
1503	struct ahash_request *req = dd->req;
1504	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1505	const u32 *words = (const u32 *)ctx->buffer;
1506	size_t i, num_words;
1507	u32 isr, din, din_inc;
1508
1509	din_inc = (ctx->flags & SHA_FLAGS_IDATAR0) ? 0 : 1;
1510	for (;;) {
1511		/* Write data into the Input Data Registers. */
1512		num_words = DIV_ROUND_UP(ctx->bufcnt, sizeof(u32));
1513		for (i = 0, din = 0; i < num_words; ++i, din += din_inc)
1514			atmel_sha_write(dd, SHA_REG_DIN(din), words[i]);
1515
1516		ctx->offset += ctx->bufcnt;
1517		ctx->total -= ctx->bufcnt;
1518
1519		if (!ctx->total)
1520			break;
1521
1522		/*
1523		 * Prepare next block:
1524		 * Fill ctx->buffer now with the next data to be written into
1525		 * IDATARx: it gives time for the SHA hardware to process
1526		 * the current data so the SHA_INT_DATARDY flag might be set
1527		 * in SHA_ISR when polling this register at the beginning of
1528		 * the next loop.
1529		 */
1530		ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
1531		scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
1532					 ctx->offset, ctx->bufcnt, 0);
1533
1534		/* Wait for hardware to be ready again. */
1535		isr = atmel_sha_read(dd, SHA_ISR);
1536		if (!(isr & SHA_INT_DATARDY)) {
1537			/* Not ready yet. */
1538			dd->resume = atmel_sha_cpu_transfer;
1539			atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
1540			return -EINPROGRESS;
1541		}
1542	}
1543
1544	if (unlikely(!(ctx->flags & SHA_FLAGS_WAIT_DATARDY)))
1545		return dd->cpu_transfer_complete(dd);
1546
1547	return atmel_sha_wait_for_data_ready(dd, dd->cpu_transfer_complete);
1548}
1549
1550static int atmel_sha_cpu_start(struct atmel_sha_dev *dd,
1551			       struct scatterlist *sg,
1552			       unsigned int len,
1553			       bool idatar0_only,
1554			       bool wait_data_ready,
1555			       atmel_sha_fn_t resume)
1556{
1557	struct ahash_request *req = dd->req;
1558	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1559
1560	if (!len)
1561		return resume(dd);
1562
1563	ctx->flags &= ~(SHA_FLAGS_IDATAR0 | SHA_FLAGS_WAIT_DATARDY);
1564
1565	if (idatar0_only)
1566		ctx->flags |= SHA_FLAGS_IDATAR0;
1567
1568	if (wait_data_ready)
1569		ctx->flags |= SHA_FLAGS_WAIT_DATARDY;
1570
1571	ctx->sg = sg;
1572	ctx->total = len;
1573	ctx->offset = 0;
1574
1575	/* Prepare the first block to be written. */
1576	ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
1577	scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
1578				 ctx->offset, ctx->bufcnt, 0);
1579
1580	dd->cpu_transfer_complete = resume;
1581	return atmel_sha_cpu_transfer(dd);
1582}
1583
1584static int atmel_sha_cpu_hash(struct atmel_sha_dev *dd,
1585			      const void *data, unsigned int datalen,
1586			      bool auto_padding,
1587			      atmel_sha_fn_t resume)
1588{
1589	struct ahash_request *req = dd->req;
1590	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1591	u32 msglen = (auto_padding) ? datalen : 0;
1592	u32 mr = SHA_MR_MODE_AUTO;
1593
1594	if (!(IS_ALIGNED(datalen, ctx->block_size) || auto_padding))
1595		return atmel_sha_complete(dd, -EINVAL);
1596
1597	mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
1598	atmel_sha_write(dd, SHA_MR, mr);
1599	atmel_sha_write(dd, SHA_MSR, msglen);
1600	atmel_sha_write(dd, SHA_BCR, msglen);
1601	atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1602
1603	sg_init_one(&dd->tmp, data, datalen);
1604	return atmel_sha_cpu_start(dd, &dd->tmp, datalen, false, true, resume);
1605}
1606
1607
1608/* hmac functions */
1609
1610struct atmel_sha_hmac_key {
1611	bool			valid;
1612	unsigned int		keylen;
1613	u8			buffer[SHA512_BLOCK_SIZE];
1614	u8			*keydup;
1615};
1616
1617static inline void atmel_sha_hmac_key_init(struct atmel_sha_hmac_key *hkey)
1618{
1619	memset(hkey, 0, sizeof(*hkey));
1620}
1621
1622static inline void atmel_sha_hmac_key_release(struct atmel_sha_hmac_key *hkey)
1623{
1624	kfree(hkey->keydup);
1625	memset(hkey, 0, sizeof(*hkey));
1626}
1627
1628static inline int atmel_sha_hmac_key_set(struct atmel_sha_hmac_key *hkey,
1629					 const u8 *key,
1630					 unsigned int keylen)
1631{
1632	atmel_sha_hmac_key_release(hkey);
1633
1634	if (keylen > sizeof(hkey->buffer)) {
1635		hkey->keydup = kmemdup(key, keylen, GFP_KERNEL);
1636		if (!hkey->keydup)
1637			return -ENOMEM;
1638
1639	} else {
1640		memcpy(hkey->buffer, key, keylen);
1641	}
1642
1643	hkey->valid = true;
1644	hkey->keylen = keylen;
1645	return 0;
1646}
1647
1648static inline bool atmel_sha_hmac_key_get(const struct atmel_sha_hmac_key *hkey,
1649					  const u8 **key,
1650					  unsigned int *keylen)
1651{
1652	if (!hkey->valid)
1653		return false;
1654
1655	*keylen = hkey->keylen;
1656	*key = (hkey->keydup) ? hkey->keydup : hkey->buffer;
1657	return true;
1658}
1659
1660
1661struct atmel_sha_hmac_ctx {
1662	struct atmel_sha_ctx	base;
1663
1664	struct atmel_sha_hmac_key	hkey;
1665	u32			ipad[SHA512_BLOCK_SIZE / sizeof(u32)];
1666	u32			opad[SHA512_BLOCK_SIZE / sizeof(u32)];
1667	atmel_sha_fn_t		resume;
1668};
1669
1670static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
1671				atmel_sha_fn_t resume);
1672static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
1673				      const u8 *key, unsigned int keylen);
1674static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd);
1675static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd);
1676static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd);
1677static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd);
1678
1679static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd);
1680static int atmel_sha_hmac_final(struct atmel_sha_dev *dd);
1681static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd);
1682static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd);
1683
1684static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
1685				atmel_sha_fn_t resume)
1686{
1687	struct ahash_request *req = dd->req;
1688	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1689	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1690	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1691	unsigned int keylen;
1692	const u8 *key;
1693	size_t bs;
1694
1695	hmac->resume = resume;
1696	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
1697	case SHA_FLAGS_SHA1:
1698		ctx->block_size = SHA1_BLOCK_SIZE;
1699		ctx->hash_size = SHA1_DIGEST_SIZE;
1700		break;
1701
1702	case SHA_FLAGS_SHA224:
1703		ctx->block_size = SHA224_BLOCK_SIZE;
1704		ctx->hash_size = SHA256_DIGEST_SIZE;
1705		break;
1706
1707	case SHA_FLAGS_SHA256:
1708		ctx->block_size = SHA256_BLOCK_SIZE;
1709		ctx->hash_size = SHA256_DIGEST_SIZE;
1710		break;
1711
1712	case SHA_FLAGS_SHA384:
1713		ctx->block_size = SHA384_BLOCK_SIZE;
1714		ctx->hash_size = SHA512_DIGEST_SIZE;
1715		break;
1716
1717	case SHA_FLAGS_SHA512:
1718		ctx->block_size = SHA512_BLOCK_SIZE;
1719		ctx->hash_size = SHA512_DIGEST_SIZE;
1720		break;
1721
1722	default:
1723		return atmel_sha_complete(dd, -EINVAL);
1724	}
1725	bs = ctx->block_size;
1726
1727	if (likely(!atmel_sha_hmac_key_get(&hmac->hkey, &key, &keylen)))
1728		return resume(dd);
1729
1730	/* Compute K' from K. */
1731	if (unlikely(keylen > bs))
1732		return atmel_sha_hmac_prehash_key(dd, key, keylen);
1733
1734	/* Prepare ipad. */
1735	memcpy((u8 *)hmac->ipad, key, keylen);
1736	memset((u8 *)hmac->ipad + keylen, 0, bs - keylen);
1737	return atmel_sha_hmac_compute_ipad_hash(dd);
1738}
1739
1740static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
1741				      const u8 *key, unsigned int keylen)
1742{
1743	return atmel_sha_cpu_hash(dd, key, keylen, true,
1744				  atmel_sha_hmac_prehash_key_done);
1745}
1746
1747static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd)
1748{
1749	struct ahash_request *req = dd->req;
1750	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1751	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1752	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1753	size_t ds = crypto_ahash_digestsize(tfm);
1754	size_t bs = ctx->block_size;
1755	size_t i, num_words = ds / sizeof(u32);
1756
1757	/* Prepare ipad. */
1758	for (i = 0; i < num_words; ++i)
1759		hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1760	memset((u8 *)hmac->ipad + ds, 0, bs - ds);
1761	return atmel_sha_hmac_compute_ipad_hash(dd);
1762}
1763
1764static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd)
1765{
1766	struct ahash_request *req = dd->req;
1767	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1768	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1769	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1770	size_t bs = ctx->block_size;
1771	size_t i, num_words = bs / sizeof(u32);
1772
1773	unsafe_memcpy(hmac->opad, hmac->ipad, bs,
1774		      "fortified memcpy causes -Wrestrict warning");
1775	for (i = 0; i < num_words; ++i) {
1776		hmac->ipad[i] ^= 0x36363636;
1777		hmac->opad[i] ^= 0x5c5c5c5c;
1778	}
1779
1780	return atmel_sha_cpu_hash(dd, hmac->ipad, bs, false,
1781				  atmel_sha_hmac_compute_opad_hash);
1782}
1783
1784static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd)
1785{
1786	struct ahash_request *req = dd->req;
1787	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1788	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1789	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1790	size_t bs = ctx->block_size;
1791	size_t hs = ctx->hash_size;
1792	size_t i, num_words = hs / sizeof(u32);
1793
1794	for (i = 0; i < num_words; ++i)
1795		hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1796	return atmel_sha_cpu_hash(dd, hmac->opad, bs, false,
1797				  atmel_sha_hmac_setup_done);
1798}
1799
1800static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd)
1801{
1802	struct ahash_request *req = dd->req;
1803	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1804	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1805	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1806	size_t hs = ctx->hash_size;
1807	size_t i, num_words = hs / sizeof(u32);
1808
1809	for (i = 0; i < num_words; ++i)
1810		hmac->opad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1811	atmel_sha_hmac_key_release(&hmac->hkey);
1812	return hmac->resume(dd);
1813}
1814
1815static int atmel_sha_hmac_start(struct atmel_sha_dev *dd)
1816{
1817	struct ahash_request *req = dd->req;
1818	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1819	int err;
1820
1821	err = atmel_sha_hw_init(dd);
1822	if (err)
1823		return atmel_sha_complete(dd, err);
1824
1825	switch (ctx->op) {
1826	case SHA_OP_INIT:
1827		err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_init_done);
1828		break;
1829
1830	case SHA_OP_UPDATE:
1831		dd->resume = atmel_sha_done;
1832		err = atmel_sha_update_req(dd);
1833		break;
1834
1835	case SHA_OP_FINAL:
1836		dd->resume = atmel_sha_hmac_final;
1837		err = atmel_sha_final_req(dd);
1838		break;
1839
1840	case SHA_OP_DIGEST:
1841		err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_digest2);
1842		break;
1843
1844	default:
1845		return atmel_sha_complete(dd, -EINVAL);
1846	}
1847
1848	return err;
1849}
1850
1851static int atmel_sha_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
1852				 unsigned int keylen)
1853{
1854	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1855
1856	return atmel_sha_hmac_key_set(&hmac->hkey, key, keylen);
1857}
1858
1859static int atmel_sha_hmac_init(struct ahash_request *req)
1860{
1861	int err;
1862
1863	err = atmel_sha_init(req);
1864	if (err)
1865		return err;
1866
1867	return atmel_sha_enqueue(req, SHA_OP_INIT);
1868}
1869
1870static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd)
1871{
1872	struct ahash_request *req = dd->req;
1873	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1874	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1875	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1876	size_t bs = ctx->block_size;
1877	size_t hs = ctx->hash_size;
1878
1879	ctx->bufcnt = 0;
1880	ctx->digcnt[0] = bs;
1881	ctx->digcnt[1] = 0;
1882	ctx->flags |= SHA_FLAGS_RESTORE;
1883	memcpy(ctx->digest, hmac->ipad, hs);
1884	return atmel_sha_complete(dd, 0);
1885}
1886
1887static int atmel_sha_hmac_final(struct atmel_sha_dev *dd)
1888{
1889	struct ahash_request *req = dd->req;
1890	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1891	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1892	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1893	u32 *digest = (u32 *)ctx->digest;
1894	size_t ds = crypto_ahash_digestsize(tfm);
1895	size_t bs = ctx->block_size;
1896	size_t hs = ctx->hash_size;
1897	size_t i, num_words;
1898	u32 mr;
1899
1900	/* Save d = SHA((K' + ipad) | msg). */
1901	num_words = ds / sizeof(u32);
1902	for (i = 0; i < num_words; ++i)
1903		digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1904
1905	/* Restore context to finish computing SHA((K' + opad) | d). */
1906	atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
1907	num_words = hs / sizeof(u32);
1908	for (i = 0; i < num_words; ++i)
1909		atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
1910
1911	mr = SHA_MR_MODE_AUTO | SHA_MR_UIHV;
1912	mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
1913	atmel_sha_write(dd, SHA_MR, mr);
1914	atmel_sha_write(dd, SHA_MSR, bs + ds);
1915	atmel_sha_write(dd, SHA_BCR, ds);
1916	atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1917
1918	sg_init_one(&dd->tmp, digest, ds);
1919	return atmel_sha_cpu_start(dd, &dd->tmp, ds, false, true,
1920				   atmel_sha_hmac_final_done);
1921}
1922
1923static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd)
1924{
1925	/*
1926	 * req->result might not be sizeof(u32) aligned, so copy the
1927	 * digest into ctx->digest[] before memcpy() the data into
1928	 * req->result.
1929	 */
1930	atmel_sha_copy_hash(dd->req);
1931	atmel_sha_copy_ready_hash(dd->req);
1932	return atmel_sha_complete(dd, 0);
1933}
1934
1935static int atmel_sha_hmac_digest(struct ahash_request *req)
1936{
1937	int err;
1938
1939	err = atmel_sha_init(req);
1940	if (err)
1941		return err;
1942
1943	return atmel_sha_enqueue(req, SHA_OP_DIGEST);
1944}
1945
1946static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd)
1947{
1948	struct ahash_request *req = dd->req;
1949	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1950	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1951	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1952	struct scatterlist *sgbuf;
1953	size_t hs = ctx->hash_size;
1954	size_t i, num_words = hs / sizeof(u32);
1955	bool use_dma = false;
1956	u32 mr;
1957
1958	/* Special case for empty message. */
1959	if (!req->nbytes) {
1960		req->nbytes = 0;
1961		ctx->bufcnt = 0;
1962		ctx->digcnt[0] = 0;
1963		ctx->digcnt[1] = 0;
1964		switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
1965		case SHA_FLAGS_SHA1:
1966		case SHA_FLAGS_SHA224:
1967		case SHA_FLAGS_SHA256:
1968			atmel_sha_fill_padding(ctx, 64);
1969			break;
1970
1971		case SHA_FLAGS_SHA384:
1972		case SHA_FLAGS_SHA512:
1973			atmel_sha_fill_padding(ctx, 128);
1974			break;
1975		}
1976		sg_init_one(&dd->tmp, ctx->buffer, ctx->bufcnt);
1977	}
1978
1979	/* Check DMA threshold and alignment. */
1980	if (req->nbytes > ATMEL_SHA_DMA_THRESHOLD &&
1981	    atmel_sha_dma_check_aligned(dd, req->src, req->nbytes))
1982		use_dma = true;
1983
1984	/* Write both initial hash values to compute a HMAC. */
1985	atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
1986	for (i = 0; i < num_words; ++i)
1987		atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
1988
1989	atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
1990	for (i = 0; i < num_words; ++i)
1991		atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
1992
1993	/* Write the Mode, Message Size, Bytes Count then Control Registers. */
1994	mr = (SHA_MR_HMAC | SHA_MR_DUALBUFF);
1995	mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
1996	if (use_dma)
1997		mr |= SHA_MR_MODE_IDATAR0;
1998	else
1999		mr |= SHA_MR_MODE_AUTO;
2000	atmel_sha_write(dd, SHA_MR, mr);
2001
2002	atmel_sha_write(dd, SHA_MSR, req->nbytes);
2003	atmel_sha_write(dd, SHA_BCR, req->nbytes);
2004
2005	atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
2006
2007	/* Special case for empty message. */
2008	if (!req->nbytes) {
2009		sgbuf = &dd->tmp;
2010		req->nbytes = ctx->bufcnt;
2011	} else {
2012		sgbuf = req->src;
2013	}
2014
2015	/* Process data. */
2016	if (use_dma)
2017		return atmel_sha_dma_start(dd, sgbuf, req->nbytes,
2018					   atmel_sha_hmac_final_done);
2019
2020	return atmel_sha_cpu_start(dd, sgbuf, req->nbytes, false, true,
2021				   atmel_sha_hmac_final_done);
2022}
2023
2024static int atmel_sha_hmac_cra_init(struct crypto_tfm *tfm)
2025{
2026	struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
2027
2028	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
2029				 sizeof(struct atmel_sha_reqctx));
2030	hmac->base.start = atmel_sha_hmac_start;
2031	atmel_sha_hmac_key_init(&hmac->hkey);
2032
2033	return 0;
2034}
2035
2036static void atmel_sha_hmac_cra_exit(struct crypto_tfm *tfm)
2037{
2038	struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
2039
2040	atmel_sha_hmac_key_release(&hmac->hkey);
2041}
2042
2043static void atmel_sha_hmac_alg_init(struct ahash_alg *alg)
2044{
2045	alg->halg.base.cra_priority = ATMEL_SHA_PRIORITY;
2046	alg->halg.base.cra_flags = CRYPTO_ALG_ASYNC;
2047	alg->halg.base.cra_ctxsize = sizeof(struct atmel_sha_hmac_ctx);
2048	alg->halg.base.cra_module = THIS_MODULE;
2049	alg->halg.base.cra_init	= atmel_sha_hmac_cra_init;
2050	alg->halg.base.cra_exit	= atmel_sha_hmac_cra_exit;
2051
2052	alg->halg.statesize = sizeof(struct atmel_sha_reqctx);
2053
2054	alg->init = atmel_sha_hmac_init;
2055	alg->update = atmel_sha_update;
2056	alg->final = atmel_sha_final;
2057	alg->digest = atmel_sha_hmac_digest;
2058	alg->setkey = atmel_sha_hmac_setkey;
2059	alg->export = atmel_sha_export;
2060	alg->import = atmel_sha_import;
2061}
2062
2063static struct ahash_alg sha_hmac_algs[] = {
2064{
2065	.halg.base.cra_name		= "hmac(sha1)",
2066	.halg.base.cra_driver_name	= "atmel-hmac-sha1",
2067	.halg.base.cra_blocksize	= SHA1_BLOCK_SIZE,
2068
2069	.halg.digestsize = SHA1_DIGEST_SIZE,
2070},
2071{
2072	.halg.base.cra_name		= "hmac(sha224)",
2073	.halg.base.cra_driver_name	= "atmel-hmac-sha224",
2074	.halg.base.cra_blocksize	= SHA224_BLOCK_SIZE,
2075
2076	.halg.digestsize = SHA224_DIGEST_SIZE,
2077},
2078{
2079	.halg.base.cra_name		= "hmac(sha256)",
2080	.halg.base.cra_driver_name	= "atmel-hmac-sha256",
2081	.halg.base.cra_blocksize	= SHA256_BLOCK_SIZE,
2082
2083	.halg.digestsize = SHA256_DIGEST_SIZE,
2084},
2085{
2086	.halg.base.cra_name		= "hmac(sha384)",
2087	.halg.base.cra_driver_name	= "atmel-hmac-sha384",
2088	.halg.base.cra_blocksize	= SHA384_BLOCK_SIZE,
2089
2090	.halg.digestsize = SHA384_DIGEST_SIZE,
2091},
2092{
2093	.halg.base.cra_name		= "hmac(sha512)",
2094	.halg.base.cra_driver_name	= "atmel-hmac-sha512",
2095	.halg.base.cra_blocksize	= SHA512_BLOCK_SIZE,
2096
2097	.halg.digestsize = SHA512_DIGEST_SIZE,
2098},
2099};
2100
2101#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2102/* authenc functions */
2103
2104static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd);
2105static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd);
2106static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd);
2107
2108
2109struct atmel_sha_authenc_ctx {
2110	struct crypto_ahash	*tfm;
2111};
2112
2113struct atmel_sha_authenc_reqctx {
2114	struct atmel_sha_reqctx	base;
2115
2116	atmel_aes_authenc_fn_t	cb;
2117	struct atmel_aes_dev	*aes_dev;
2118
2119	/* _init() parameters. */
2120	struct scatterlist	*assoc;
2121	u32			assoclen;
2122	u32			textlen;
2123
2124	/* _final() parameters. */
2125	u32			*digest;
2126	unsigned int		digestlen;
2127};
2128
2129static void atmel_sha_authenc_complete(void *data, int err)
2130{
2131	struct ahash_request *req = data;
2132	struct atmel_sha_authenc_reqctx *authctx  = ahash_request_ctx(req);
2133
2134	authctx->cb(authctx->aes_dev, err, authctx->base.dd->is_async);
2135}
2136
2137static int atmel_sha_authenc_start(struct atmel_sha_dev *dd)
2138{
2139	struct ahash_request *req = dd->req;
2140	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2141	int err;
2142
2143	/*
2144	 * Force atmel_sha_complete() to call req->base.complete(), ie
2145	 * atmel_sha_authenc_complete(), which in turn calls authctx->cb().
2146	 */
2147	dd->force_complete = true;
2148
2149	err = atmel_sha_hw_init(dd);
2150	return authctx->cb(authctx->aes_dev, err, dd->is_async);
2151}
2152
2153bool atmel_sha_authenc_is_ready(void)
2154{
2155	struct atmel_sha_ctx dummy;
2156
2157	dummy.dd = NULL;
2158	return (atmel_sha_find_dev(&dummy) != NULL);
2159}
2160EXPORT_SYMBOL_GPL(atmel_sha_authenc_is_ready);
2161
2162unsigned int atmel_sha_authenc_get_reqsize(void)
2163{
2164	return sizeof(struct atmel_sha_authenc_reqctx);
2165}
2166EXPORT_SYMBOL_GPL(atmel_sha_authenc_get_reqsize);
2167
2168struct atmel_sha_authenc_ctx *atmel_sha_authenc_spawn(unsigned long mode)
2169{
2170	struct atmel_sha_authenc_ctx *auth;
2171	struct crypto_ahash *tfm;
2172	struct atmel_sha_ctx *tctx;
2173	const char *name;
2174	int err = -EINVAL;
2175
2176	switch (mode & SHA_FLAGS_MODE_MASK) {
2177	case SHA_FLAGS_HMAC_SHA1:
2178		name = "atmel-hmac-sha1";
2179		break;
2180
2181	case SHA_FLAGS_HMAC_SHA224:
2182		name = "atmel-hmac-sha224";
2183		break;
2184
2185	case SHA_FLAGS_HMAC_SHA256:
2186		name = "atmel-hmac-sha256";
2187		break;
2188
2189	case SHA_FLAGS_HMAC_SHA384:
2190		name = "atmel-hmac-sha384";
2191		break;
2192
2193	case SHA_FLAGS_HMAC_SHA512:
2194		name = "atmel-hmac-sha512";
2195		break;
2196
2197	default:
2198		goto error;
2199	}
2200
2201	tfm = crypto_alloc_ahash(name, 0, 0);
2202	if (IS_ERR(tfm)) {
2203		err = PTR_ERR(tfm);
2204		goto error;
2205	}
2206	tctx = crypto_ahash_ctx(tfm);
2207	tctx->start = atmel_sha_authenc_start;
2208	tctx->flags = mode;
2209
2210	auth = kzalloc(sizeof(*auth), GFP_KERNEL);
2211	if (!auth) {
2212		err = -ENOMEM;
2213		goto err_free_ahash;
2214	}
2215	auth->tfm = tfm;
2216
2217	return auth;
2218
2219err_free_ahash:
2220	crypto_free_ahash(tfm);
2221error:
2222	return ERR_PTR(err);
2223}
2224EXPORT_SYMBOL_GPL(atmel_sha_authenc_spawn);
2225
2226void atmel_sha_authenc_free(struct atmel_sha_authenc_ctx *auth)
2227{
2228	if (auth)
2229		crypto_free_ahash(auth->tfm);
2230	kfree(auth);
2231}
2232EXPORT_SYMBOL_GPL(atmel_sha_authenc_free);
2233
2234int atmel_sha_authenc_setkey(struct atmel_sha_authenc_ctx *auth,
2235			     const u8 *key, unsigned int keylen, u32 flags)
2236{
2237	struct crypto_ahash *tfm = auth->tfm;
2238
2239	crypto_ahash_clear_flags(tfm, CRYPTO_TFM_REQ_MASK);
2240	crypto_ahash_set_flags(tfm, flags & CRYPTO_TFM_REQ_MASK);
2241	return crypto_ahash_setkey(tfm, key, keylen);
2242}
2243EXPORT_SYMBOL_GPL(atmel_sha_authenc_setkey);
2244
2245int atmel_sha_authenc_schedule(struct ahash_request *req,
2246			       struct atmel_sha_authenc_ctx *auth,
2247			       atmel_aes_authenc_fn_t cb,
2248			       struct atmel_aes_dev *aes_dev)
2249{
2250	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2251	struct atmel_sha_reqctx *ctx = &authctx->base;
2252	struct crypto_ahash *tfm = auth->tfm;
2253	struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
2254	struct atmel_sha_dev *dd;
2255
2256	/* Reset request context (MUST be done first). */
2257	memset(authctx, 0, sizeof(*authctx));
2258
2259	/* Get SHA device. */
2260	dd = atmel_sha_find_dev(tctx);
2261	if (!dd)
2262		return cb(aes_dev, -ENODEV, false);
2263
2264	/* Init request context. */
2265	ctx->dd = dd;
2266	ctx->buflen = SHA_BUFFER_LEN;
2267	authctx->cb = cb;
2268	authctx->aes_dev = aes_dev;
2269	ahash_request_set_tfm(req, tfm);
2270	ahash_request_set_callback(req, 0, atmel_sha_authenc_complete, req);
2271
2272	return atmel_sha_handle_queue(dd, req);
2273}
2274EXPORT_SYMBOL_GPL(atmel_sha_authenc_schedule);
2275
2276int atmel_sha_authenc_init(struct ahash_request *req,
2277			   struct scatterlist *assoc, unsigned int assoclen,
2278			   unsigned int textlen,
2279			   atmel_aes_authenc_fn_t cb,
2280			   struct atmel_aes_dev *aes_dev)
2281{
2282	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2283	struct atmel_sha_reqctx *ctx = &authctx->base;
2284	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2285	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2286	struct atmel_sha_dev *dd = ctx->dd;
2287
2288	if (unlikely(!IS_ALIGNED(assoclen, sizeof(u32))))
2289		return atmel_sha_complete(dd, -EINVAL);
2290
2291	authctx->cb = cb;
2292	authctx->aes_dev = aes_dev;
2293	authctx->assoc = assoc;
2294	authctx->assoclen = assoclen;
2295	authctx->textlen = textlen;
2296
2297	ctx->flags = hmac->base.flags;
2298	return atmel_sha_hmac_setup(dd, atmel_sha_authenc_init2);
2299}
2300EXPORT_SYMBOL_GPL(atmel_sha_authenc_init);
2301
2302static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd)
2303{
2304	struct ahash_request *req = dd->req;
2305	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2306	struct atmel_sha_reqctx *ctx = &authctx->base;
2307	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2308	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2309	size_t hs = ctx->hash_size;
2310	size_t i, num_words = hs / sizeof(u32);
2311	u32 mr, msg_size;
2312
2313	atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
2314	for (i = 0; i < num_words; ++i)
2315		atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
2316
2317	atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
2318	for (i = 0; i < num_words; ++i)
2319		atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
2320
2321	mr = (SHA_MR_MODE_IDATAR0 |
2322	      SHA_MR_HMAC |
2323	      SHA_MR_DUALBUFF);
2324	mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
2325	atmel_sha_write(dd, SHA_MR, mr);
2326
2327	msg_size = authctx->assoclen + authctx->textlen;
2328	atmel_sha_write(dd, SHA_MSR, msg_size);
2329	atmel_sha_write(dd, SHA_BCR, msg_size);
2330
2331	atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
2332
2333	/* Process assoc data. */
2334	return atmel_sha_cpu_start(dd, authctx->assoc, authctx->assoclen,
2335				   true, false,
2336				   atmel_sha_authenc_init_done);
2337}
2338
2339static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd)
2340{
2341	struct ahash_request *req = dd->req;
2342	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2343
2344	return authctx->cb(authctx->aes_dev, 0, dd->is_async);
2345}
2346
2347int atmel_sha_authenc_final(struct ahash_request *req,
2348			    u32 *digest, unsigned int digestlen,
2349			    atmel_aes_authenc_fn_t cb,
2350			    struct atmel_aes_dev *aes_dev)
2351{
2352	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2353	struct atmel_sha_reqctx *ctx = &authctx->base;
2354	struct atmel_sha_dev *dd = ctx->dd;
2355
2356	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
2357	case SHA_FLAGS_SHA1:
2358		authctx->digestlen = SHA1_DIGEST_SIZE;
2359		break;
2360
2361	case SHA_FLAGS_SHA224:
2362		authctx->digestlen = SHA224_DIGEST_SIZE;
2363		break;
2364
2365	case SHA_FLAGS_SHA256:
2366		authctx->digestlen = SHA256_DIGEST_SIZE;
2367		break;
2368
2369	case SHA_FLAGS_SHA384:
2370		authctx->digestlen = SHA384_DIGEST_SIZE;
2371		break;
2372
2373	case SHA_FLAGS_SHA512:
2374		authctx->digestlen = SHA512_DIGEST_SIZE;
2375		break;
2376
2377	default:
2378		return atmel_sha_complete(dd, -EINVAL);
2379	}
2380	if (authctx->digestlen > digestlen)
2381		authctx->digestlen = digestlen;
2382
2383	authctx->cb = cb;
2384	authctx->aes_dev = aes_dev;
2385	authctx->digest = digest;
2386	return atmel_sha_wait_for_data_ready(dd,
2387					     atmel_sha_authenc_final_done);
2388}
2389EXPORT_SYMBOL_GPL(atmel_sha_authenc_final);
2390
2391static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd)
2392{
2393	struct ahash_request *req = dd->req;
2394	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2395	size_t i, num_words = authctx->digestlen / sizeof(u32);
2396
2397	for (i = 0; i < num_words; ++i)
2398		authctx->digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
2399
2400	return atmel_sha_complete(dd, 0);
2401}
2402
2403void atmel_sha_authenc_abort(struct ahash_request *req)
2404{
2405	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2406	struct atmel_sha_reqctx *ctx = &authctx->base;
2407	struct atmel_sha_dev *dd = ctx->dd;
2408
2409	/* Prevent atmel_sha_complete() from calling req->base.complete(). */
2410	dd->is_async = false;
2411	dd->force_complete = false;
2412	(void)atmel_sha_complete(dd, 0);
2413}
2414EXPORT_SYMBOL_GPL(atmel_sha_authenc_abort);
2415
2416#endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2417
2418
2419static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd)
2420{
2421	int i;
2422
2423	if (dd->caps.has_hmac)
2424		for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++)
2425			crypto_unregister_ahash(&sha_hmac_algs[i]);
2426
2427	for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++)
2428		crypto_unregister_ahash(&sha_1_256_algs[i]);
2429
2430	if (dd->caps.has_sha224)
2431		crypto_unregister_ahash(&sha_224_alg);
2432
2433	if (dd->caps.has_sha_384_512) {
2434		for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++)
2435			crypto_unregister_ahash(&sha_384_512_algs[i]);
2436	}
2437}
2438
2439static int atmel_sha_register_algs(struct atmel_sha_dev *dd)
2440{
2441	int err, i, j;
2442
2443	for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++) {
2444		atmel_sha_alg_init(&sha_1_256_algs[i]);
2445
2446		err = crypto_register_ahash(&sha_1_256_algs[i]);
2447		if (err)
2448			goto err_sha_1_256_algs;
2449	}
2450
2451	if (dd->caps.has_sha224) {
2452		atmel_sha_alg_init(&sha_224_alg);
2453
2454		err = crypto_register_ahash(&sha_224_alg);
2455		if (err)
2456			goto err_sha_224_algs;
2457	}
2458
2459	if (dd->caps.has_sha_384_512) {
2460		for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++) {
2461			atmel_sha_alg_init(&sha_384_512_algs[i]);
2462
2463			err = crypto_register_ahash(&sha_384_512_algs[i]);
2464			if (err)
2465				goto err_sha_384_512_algs;
2466		}
2467	}
2468
2469	if (dd->caps.has_hmac) {
2470		for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++) {
2471			atmel_sha_hmac_alg_init(&sha_hmac_algs[i]);
2472
2473			err = crypto_register_ahash(&sha_hmac_algs[i]);
2474			if (err)
2475				goto err_sha_hmac_algs;
2476		}
2477	}
2478
2479	return 0;
2480
2481	/*i = ARRAY_SIZE(sha_hmac_algs);*/
2482err_sha_hmac_algs:
2483	for (j = 0; j < i; j++)
2484		crypto_unregister_ahash(&sha_hmac_algs[j]);
2485	i = ARRAY_SIZE(sha_384_512_algs);
2486err_sha_384_512_algs:
2487	for (j = 0; j < i; j++)
2488		crypto_unregister_ahash(&sha_384_512_algs[j]);
2489	crypto_unregister_ahash(&sha_224_alg);
2490err_sha_224_algs:
2491	i = ARRAY_SIZE(sha_1_256_algs);
2492err_sha_1_256_algs:
2493	for (j = 0; j < i; j++)
2494		crypto_unregister_ahash(&sha_1_256_algs[j]);
2495
2496	return err;
2497}
2498
2499static int atmel_sha_dma_init(struct atmel_sha_dev *dd)
2500{
2501	dd->dma_lch_in.chan = dma_request_chan(dd->dev, "tx");
2502	if (IS_ERR(dd->dma_lch_in.chan)) {
2503		return dev_err_probe(dd->dev, PTR_ERR(dd->dma_lch_in.chan),
2504			"DMA channel is not available\n");
2505	}
2506
2507	dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base +
2508		SHA_REG_DIN(0);
2509	dd->dma_lch_in.dma_conf.src_maxburst = 1;
2510	dd->dma_lch_in.dma_conf.src_addr_width =
2511		DMA_SLAVE_BUSWIDTH_4_BYTES;
2512	dd->dma_lch_in.dma_conf.dst_maxburst = 1;
2513	dd->dma_lch_in.dma_conf.dst_addr_width =
2514		DMA_SLAVE_BUSWIDTH_4_BYTES;
2515	dd->dma_lch_in.dma_conf.device_fc = false;
2516
2517	return 0;
2518}
2519
2520static void atmel_sha_dma_cleanup(struct atmel_sha_dev *dd)
2521{
2522	dma_release_channel(dd->dma_lch_in.chan);
2523}
2524
2525static void atmel_sha_get_cap(struct atmel_sha_dev *dd)
2526{
2527
2528	dd->caps.has_dma = 0;
2529	dd->caps.has_dualbuff = 0;
2530	dd->caps.has_sha224 = 0;
2531	dd->caps.has_sha_384_512 = 0;
2532	dd->caps.has_uihv = 0;
2533	dd->caps.has_hmac = 0;
2534
2535	/* keep only major version number */
2536	switch (dd->hw_version & 0xff0) {
2537	case 0x700:
2538	case 0x600:
2539	case 0x510:
2540		dd->caps.has_dma = 1;
2541		dd->caps.has_dualbuff = 1;
2542		dd->caps.has_sha224 = 1;
2543		dd->caps.has_sha_384_512 = 1;
2544		dd->caps.has_uihv = 1;
2545		dd->caps.has_hmac = 1;
2546		break;
2547	case 0x420:
2548		dd->caps.has_dma = 1;
2549		dd->caps.has_dualbuff = 1;
2550		dd->caps.has_sha224 = 1;
2551		dd->caps.has_sha_384_512 = 1;
2552		dd->caps.has_uihv = 1;
2553		break;
2554	case 0x410:
2555		dd->caps.has_dma = 1;
2556		dd->caps.has_dualbuff = 1;
2557		dd->caps.has_sha224 = 1;
2558		dd->caps.has_sha_384_512 = 1;
2559		break;
2560	case 0x400:
2561		dd->caps.has_dma = 1;
2562		dd->caps.has_dualbuff = 1;
2563		dd->caps.has_sha224 = 1;
2564		break;
2565	case 0x320:
2566		break;
2567	default:
2568		dev_warn(dd->dev,
2569				"Unmanaged sha version, set minimum capabilities\n");
2570		break;
2571	}
2572}
2573
2574static const struct of_device_id atmel_sha_dt_ids[] = {
2575	{ .compatible = "atmel,at91sam9g46-sha" },
2576	{ /* sentinel */ }
2577};
2578
2579MODULE_DEVICE_TABLE(of, atmel_sha_dt_ids);
2580
2581static int atmel_sha_probe(struct platform_device *pdev)
2582{
2583	struct atmel_sha_dev *sha_dd;
2584	struct device *dev = &pdev->dev;
2585	struct resource *sha_res;
2586	int err;
2587
2588	sha_dd = devm_kzalloc(&pdev->dev, sizeof(*sha_dd), GFP_KERNEL);
2589	if (!sha_dd)
2590		return -ENOMEM;
2591
2592	sha_dd->dev = dev;
2593
2594	platform_set_drvdata(pdev, sha_dd);
2595
2596	INIT_LIST_HEAD(&sha_dd->list);
2597	spin_lock_init(&sha_dd->lock);
2598
2599	tasklet_init(&sha_dd->done_task, atmel_sha_done_task,
2600					(unsigned long)sha_dd);
2601	tasklet_init(&sha_dd->queue_task, atmel_sha_queue_task,
2602					(unsigned long)sha_dd);
2603
2604	crypto_init_queue(&sha_dd->queue, ATMEL_SHA_QUEUE_LENGTH);
2605
2606	sha_dd->io_base = devm_platform_get_and_ioremap_resource(pdev, 0, &sha_res);
2607	if (IS_ERR(sha_dd->io_base)) {
2608		err = PTR_ERR(sha_dd->io_base);
2609		goto err_tasklet_kill;
2610	}
2611	sha_dd->phys_base = sha_res->start;
2612
2613	/* Get the IRQ */
2614	sha_dd->irq = platform_get_irq(pdev,  0);
2615	if (sha_dd->irq < 0) {
2616		err = sha_dd->irq;
2617		goto err_tasklet_kill;
2618	}
2619
2620	err = devm_request_irq(&pdev->dev, sha_dd->irq, atmel_sha_irq,
2621			       IRQF_SHARED, "atmel-sha", sha_dd);
2622	if (err) {
2623		dev_err(dev, "unable to request sha irq.\n");
2624		goto err_tasklet_kill;
2625	}
2626
2627	/* Initializing the clock */
2628	sha_dd->iclk = devm_clk_get(&pdev->dev, "sha_clk");
2629	if (IS_ERR(sha_dd->iclk)) {
2630		dev_err(dev, "clock initialization failed.\n");
2631		err = PTR_ERR(sha_dd->iclk);
2632		goto err_tasklet_kill;
2633	}
2634
2635	err = clk_prepare(sha_dd->iclk);
2636	if (err)
2637		goto err_tasklet_kill;
2638
2639	err = atmel_sha_hw_version_init(sha_dd);
2640	if (err)
2641		goto err_iclk_unprepare;
2642
2643	atmel_sha_get_cap(sha_dd);
2644
2645	if (sha_dd->caps.has_dma) {
2646		err = atmel_sha_dma_init(sha_dd);
2647		if (err)
2648			goto err_iclk_unprepare;
2649
2650		dev_info(dev, "using %s for DMA transfers\n",
2651				dma_chan_name(sha_dd->dma_lch_in.chan));
2652	}
2653
2654	spin_lock(&atmel_sha.lock);
2655	list_add_tail(&sha_dd->list, &atmel_sha.dev_list);
2656	spin_unlock(&atmel_sha.lock);
2657
2658	err = atmel_sha_register_algs(sha_dd);
2659	if (err)
2660		goto err_algs;
2661
2662	dev_info(dev, "Atmel SHA1/SHA256%s%s\n",
2663			sha_dd->caps.has_sha224 ? "/SHA224" : "",
2664			sha_dd->caps.has_sha_384_512 ? "/SHA384/SHA512" : "");
2665
2666	return 0;
2667
2668err_algs:
2669	spin_lock(&atmel_sha.lock);
2670	list_del(&sha_dd->list);
2671	spin_unlock(&atmel_sha.lock);
2672	if (sha_dd->caps.has_dma)
2673		atmel_sha_dma_cleanup(sha_dd);
2674err_iclk_unprepare:
2675	clk_unprepare(sha_dd->iclk);
2676err_tasklet_kill:
2677	tasklet_kill(&sha_dd->queue_task);
2678	tasklet_kill(&sha_dd->done_task);
2679
2680	return err;
2681}
2682
2683static int atmel_sha_remove(struct platform_device *pdev)
2684{
2685	struct atmel_sha_dev *sha_dd = platform_get_drvdata(pdev);
2686
2687	spin_lock(&atmel_sha.lock);
2688	list_del(&sha_dd->list);
2689	spin_unlock(&atmel_sha.lock);
2690
2691	atmel_sha_unregister_algs(sha_dd);
2692
2693	tasklet_kill(&sha_dd->queue_task);
2694	tasklet_kill(&sha_dd->done_task);
2695
2696	if (sha_dd->caps.has_dma)
2697		atmel_sha_dma_cleanup(sha_dd);
2698
2699	clk_unprepare(sha_dd->iclk);
2700
2701	return 0;
2702}
2703
2704static struct platform_driver atmel_sha_driver = {
2705	.probe		= atmel_sha_probe,
2706	.remove		= atmel_sha_remove,
2707	.driver		= {
2708		.name	= "atmel_sha",
2709		.of_match_table	= atmel_sha_dt_ids,
2710	},
2711};
2712
2713module_platform_driver(atmel_sha_driver);
2714
2715MODULE_DESCRIPTION("Atmel SHA (1/256/224/384/512) hw acceleration support.");
2716MODULE_LICENSE("GPL v2");
2717MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");
2718