1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Cryptographic API.
4 *
5 * Support for ATMEL AES HW acceleration.
6 *
7 * Copyright (c) 2012 Eukréa Electromatique - ATMEL
8 * Author: Nicolas Royer <nicolas@eukrea.com>
9 *
10 * Some ideas are from omap-aes.c driver.
11 */
12
13
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/err.h>
18#include <linux/clk.h>
19#include <linux/io.h>
20#include <linux/hw_random.h>
21#include <linux/platform_device.h>
22
23#include <linux/device.h>
24#include <linux/dmaengine.h>
25#include <linux/init.h>
26#include <linux/errno.h>
27#include <linux/interrupt.h>
28#include <linux/irq.h>
29#include <linux/scatterlist.h>
30#include <linux/dma-mapping.h>
31#include <linux/mod_devicetable.h>
32#include <linux/delay.h>
33#include <linux/crypto.h>
34#include <crypto/scatterwalk.h>
35#include <crypto/algapi.h>
36#include <crypto/aes.h>
37#include <crypto/gcm.h>
38#include <crypto/xts.h>
39#include <crypto/internal/aead.h>
40#include <crypto/internal/skcipher.h>
41#include "atmel-aes-regs.h"
42#include "atmel-authenc.h"
43
44#define ATMEL_AES_PRIORITY	300
45
46#define ATMEL_AES_BUFFER_ORDER	2
47#define ATMEL_AES_BUFFER_SIZE	(PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
48
49#define CFB8_BLOCK_SIZE		1
50#define CFB16_BLOCK_SIZE	2
51#define CFB32_BLOCK_SIZE	4
52#define CFB64_BLOCK_SIZE	8
53
54#define SIZE_IN_WORDS(x)	((x) >> 2)
55
56/* AES flags */
57/* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
58#define AES_FLAGS_ENCRYPT	AES_MR_CYPHER_ENC
59#define AES_FLAGS_GTAGEN	AES_MR_GTAGEN
60#define AES_FLAGS_OPMODE_MASK	(AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
61#define AES_FLAGS_ECB		AES_MR_OPMOD_ECB
62#define AES_FLAGS_CBC		AES_MR_OPMOD_CBC
63#define AES_FLAGS_OFB		AES_MR_OPMOD_OFB
64#define AES_FLAGS_CFB128	(AES_MR_OPMOD_CFB | AES_MR_CFBS_128b)
65#define AES_FLAGS_CFB64		(AES_MR_OPMOD_CFB | AES_MR_CFBS_64b)
66#define AES_FLAGS_CFB32		(AES_MR_OPMOD_CFB | AES_MR_CFBS_32b)
67#define AES_FLAGS_CFB16		(AES_MR_OPMOD_CFB | AES_MR_CFBS_16b)
68#define AES_FLAGS_CFB8		(AES_MR_OPMOD_CFB | AES_MR_CFBS_8b)
69#define AES_FLAGS_CTR		AES_MR_OPMOD_CTR
70#define AES_FLAGS_GCM		AES_MR_OPMOD_GCM
71#define AES_FLAGS_XTS		AES_MR_OPMOD_XTS
72
73#define AES_FLAGS_MODE_MASK	(AES_FLAGS_OPMODE_MASK |	\
74				 AES_FLAGS_ENCRYPT |		\
75				 AES_FLAGS_GTAGEN)
76
77#define AES_FLAGS_BUSY		BIT(3)
78#define AES_FLAGS_DUMP_REG	BIT(4)
79#define AES_FLAGS_OWN_SHA	BIT(5)
80
81#define AES_FLAGS_PERSISTENT	AES_FLAGS_BUSY
82
83#define ATMEL_AES_QUEUE_LENGTH	50
84
85#define ATMEL_AES_DMA_THRESHOLD		256
86
87
88struct atmel_aes_caps {
89	bool			has_dualbuff;
90	bool			has_cfb64;
91	bool			has_gcm;
92	bool			has_xts;
93	bool			has_authenc;
94	u32			max_burst_size;
95};
96
97struct atmel_aes_dev;
98
99
100typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
101
102
103struct atmel_aes_base_ctx {
104	struct atmel_aes_dev	*dd;
105	atmel_aes_fn_t		start;
106	int			keylen;
107	u32			key[AES_KEYSIZE_256 / sizeof(u32)];
108	u16			block_size;
109	bool			is_aead;
110};
111
112struct atmel_aes_ctx {
113	struct atmel_aes_base_ctx	base;
114};
115
116struct atmel_aes_ctr_ctx {
117	struct atmel_aes_base_ctx	base;
118
119	__be32			iv[AES_BLOCK_SIZE / sizeof(u32)];
120	size_t			offset;
121	struct scatterlist	src[2];
122	struct scatterlist	dst[2];
123	u32			blocks;
124};
125
126struct atmel_aes_gcm_ctx {
127	struct atmel_aes_base_ctx	base;
128
129	struct scatterlist	src[2];
130	struct scatterlist	dst[2];
131
132	__be32			j0[AES_BLOCK_SIZE / sizeof(u32)];
133	u32			tag[AES_BLOCK_SIZE / sizeof(u32)];
134	__be32			ghash[AES_BLOCK_SIZE / sizeof(u32)];
135	size_t			textlen;
136
137	const __be32		*ghash_in;
138	__be32			*ghash_out;
139	atmel_aes_fn_t		ghash_resume;
140};
141
142struct atmel_aes_xts_ctx {
143	struct atmel_aes_base_ctx	base;
144
145	u32			key2[AES_KEYSIZE_256 / sizeof(u32)];
146	struct crypto_skcipher *fallback_tfm;
147};
148
149#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
150struct atmel_aes_authenc_ctx {
151	struct atmel_aes_base_ctx	base;
152	struct atmel_sha_authenc_ctx	*auth;
153};
154#endif
155
156struct atmel_aes_reqctx {
157	unsigned long		mode;
158	u8			lastc[AES_BLOCK_SIZE];
159	struct skcipher_request fallback_req;
160};
161
162#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
163struct atmel_aes_authenc_reqctx {
164	struct atmel_aes_reqctx	base;
165
166	struct scatterlist	src[2];
167	struct scatterlist	dst[2];
168	size_t			textlen;
169	u32			digest[SHA512_DIGEST_SIZE / sizeof(u32)];
170
171	/* auth_req MUST be place last. */
172	struct ahash_request	auth_req;
173};
174#endif
175
176struct atmel_aes_dma {
177	struct dma_chan		*chan;
178	struct scatterlist	*sg;
179	int			nents;
180	unsigned int		remainder;
181	unsigned int		sg_len;
182};
183
184struct atmel_aes_dev {
185	struct list_head	list;
186	unsigned long		phys_base;
187	void __iomem		*io_base;
188
189	struct crypto_async_request	*areq;
190	struct atmel_aes_base_ctx	*ctx;
191
192	bool			is_async;
193	atmel_aes_fn_t		resume;
194	atmel_aes_fn_t		cpu_transfer_complete;
195
196	struct device		*dev;
197	struct clk		*iclk;
198	int			irq;
199
200	unsigned long		flags;
201
202	spinlock_t		lock;
203	struct crypto_queue	queue;
204
205	struct tasklet_struct	done_task;
206	struct tasklet_struct	queue_task;
207
208	size_t			total;
209	size_t			datalen;
210	u32			*data;
211
212	struct atmel_aes_dma	src;
213	struct atmel_aes_dma	dst;
214
215	size_t			buflen;
216	void			*buf;
217	struct scatterlist	aligned_sg;
218	struct scatterlist	*real_dst;
219
220	struct atmel_aes_caps	caps;
221
222	u32			hw_version;
223};
224
225struct atmel_aes_drv {
226	struct list_head	dev_list;
227	spinlock_t		lock;
228};
229
230static struct atmel_aes_drv atmel_aes = {
231	.dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
232	.lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
233};
234
235#ifdef VERBOSE_DEBUG
236static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
237{
238	switch (offset) {
239	case AES_CR:
240		return "CR";
241
242	case AES_MR:
243		return "MR";
244
245	case AES_ISR:
246		return "ISR";
247
248	case AES_IMR:
249		return "IMR";
250
251	case AES_IER:
252		return "IER";
253
254	case AES_IDR:
255		return "IDR";
256
257	case AES_KEYWR(0):
258	case AES_KEYWR(1):
259	case AES_KEYWR(2):
260	case AES_KEYWR(3):
261	case AES_KEYWR(4):
262	case AES_KEYWR(5):
263	case AES_KEYWR(6):
264	case AES_KEYWR(7):
265		snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
266		break;
267
268	case AES_IDATAR(0):
269	case AES_IDATAR(1):
270	case AES_IDATAR(2):
271	case AES_IDATAR(3):
272		snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
273		break;
274
275	case AES_ODATAR(0):
276	case AES_ODATAR(1):
277	case AES_ODATAR(2):
278	case AES_ODATAR(3):
279		snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
280		break;
281
282	case AES_IVR(0):
283	case AES_IVR(1):
284	case AES_IVR(2):
285	case AES_IVR(3):
286		snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
287		break;
288
289	case AES_AADLENR:
290		return "AADLENR";
291
292	case AES_CLENR:
293		return "CLENR";
294
295	case AES_GHASHR(0):
296	case AES_GHASHR(1):
297	case AES_GHASHR(2):
298	case AES_GHASHR(3):
299		snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
300		break;
301
302	case AES_TAGR(0):
303	case AES_TAGR(1):
304	case AES_TAGR(2):
305	case AES_TAGR(3):
306		snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
307		break;
308
309	case AES_CTRR:
310		return "CTRR";
311
312	case AES_GCMHR(0):
313	case AES_GCMHR(1):
314	case AES_GCMHR(2):
315	case AES_GCMHR(3):
316		snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
317		break;
318
319	case AES_EMR:
320		return "EMR";
321
322	case AES_TWR(0):
323	case AES_TWR(1):
324	case AES_TWR(2):
325	case AES_TWR(3):
326		snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2);
327		break;
328
329	case AES_ALPHAR(0):
330	case AES_ALPHAR(1):
331	case AES_ALPHAR(2):
332	case AES_ALPHAR(3):
333		snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2);
334		break;
335
336	default:
337		snprintf(tmp, sz, "0x%02x", offset);
338		break;
339	}
340
341	return tmp;
342}
343#endif /* VERBOSE_DEBUG */
344
345/* Shared functions */
346
347static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
348{
349	u32 value = readl_relaxed(dd->io_base + offset);
350
351#ifdef VERBOSE_DEBUG
352	if (dd->flags & AES_FLAGS_DUMP_REG) {
353		char tmp[16];
354
355		dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
356			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
357	}
358#endif /* VERBOSE_DEBUG */
359
360	return value;
361}
362
363static inline void atmel_aes_write(struct atmel_aes_dev *dd,
364					u32 offset, u32 value)
365{
366#ifdef VERBOSE_DEBUG
367	if (dd->flags & AES_FLAGS_DUMP_REG) {
368		char tmp[16];
369
370		dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
371			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
372	}
373#endif /* VERBOSE_DEBUG */
374
375	writel_relaxed(value, dd->io_base + offset);
376}
377
378static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
379					u32 *value, int count)
380{
381	for (; count--; value++, offset += 4)
382		*value = atmel_aes_read(dd, offset);
383}
384
385static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
386			      const u32 *value, int count)
387{
388	for (; count--; value++, offset += 4)
389		atmel_aes_write(dd, offset, *value);
390}
391
392static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
393					void *value)
394{
395	atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
396}
397
398static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
399					 const void *value)
400{
401	atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
402}
403
404static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
405						atmel_aes_fn_t resume)
406{
407	u32 isr = atmel_aes_read(dd, AES_ISR);
408
409	if (unlikely(isr & AES_INT_DATARDY))
410		return resume(dd);
411
412	dd->resume = resume;
413	atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
414	return -EINPROGRESS;
415}
416
417static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
418{
419	len &= block_size - 1;
420	return len ? block_size - len : 0;
421}
422
423static struct atmel_aes_dev *atmel_aes_dev_alloc(struct atmel_aes_base_ctx *ctx)
424{
425	struct atmel_aes_dev *aes_dd;
426
427	spin_lock_bh(&atmel_aes.lock);
428	/* One AES IP per SoC. */
429	aes_dd = list_first_entry_or_null(&atmel_aes.dev_list,
430					  struct atmel_aes_dev, list);
431	spin_unlock_bh(&atmel_aes.lock);
432	return aes_dd;
433}
434
435static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
436{
437	int err;
438
439	err = clk_enable(dd->iclk);
440	if (err)
441		return err;
442
443	atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
444	atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
445
446	return 0;
447}
448
449static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
450{
451	return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
452}
453
454static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
455{
456	int err;
457
458	err = atmel_aes_hw_init(dd);
459	if (err)
460		return err;
461
462	dd->hw_version = atmel_aes_get_version(dd);
463
464	dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
465
466	clk_disable(dd->iclk);
467	return 0;
468}
469
470static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
471				      const struct atmel_aes_reqctx *rctx)
472{
473	/* Clear all but persistent flags and set request flags. */
474	dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
475}
476
477static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
478{
479	return (dd->flags & AES_FLAGS_ENCRYPT);
480}
481
482#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
483static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err);
484#endif
485
486static void atmel_aes_set_iv_as_last_ciphertext_block(struct atmel_aes_dev *dd)
487{
488	struct skcipher_request *req = skcipher_request_cast(dd->areq);
489	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
490	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
491	unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
492
493	if (req->cryptlen < ivsize)
494		return;
495
496	if (rctx->mode & AES_FLAGS_ENCRYPT)
497		scatterwalk_map_and_copy(req->iv, req->dst,
498					 req->cryptlen - ivsize, ivsize, 0);
499	else
500		memcpy(req->iv, rctx->lastc, ivsize);
501}
502
503static inline struct atmel_aes_ctr_ctx *
504atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
505{
506	return container_of(ctx, struct atmel_aes_ctr_ctx, base);
507}
508
509static void atmel_aes_ctr_update_req_iv(struct atmel_aes_dev *dd)
510{
511	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
512	struct skcipher_request *req = skcipher_request_cast(dd->areq);
513	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
514	unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
515	int i;
516
517	/*
518	 * The CTR transfer works in fragments of data of maximum 1 MByte
519	 * because of the 16 bit CTR counter embedded in the IP. When reaching
520	 * here, ctx->blocks contains the number of blocks of the last fragment
521	 * processed, there is no need to explicit cast it to u16.
522	 */
523	for (i = 0; i < ctx->blocks; i++)
524		crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
525
526	memcpy(req->iv, ctx->iv, ivsize);
527}
528
529static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
530{
531	struct skcipher_request *req = skcipher_request_cast(dd->areq);
532	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
533
534#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
535	if (dd->ctx->is_aead)
536		atmel_aes_authenc_complete(dd, err);
537#endif
538
539	clk_disable(dd->iclk);
540	dd->flags &= ~AES_FLAGS_BUSY;
541
542	if (!err && !dd->ctx->is_aead &&
543	    (rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_ECB) {
544		if ((rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_CTR)
545			atmel_aes_set_iv_as_last_ciphertext_block(dd);
546		else
547			atmel_aes_ctr_update_req_iv(dd);
548	}
549
550	if (dd->is_async)
551		crypto_request_complete(dd->areq, err);
552
553	tasklet_schedule(&dd->queue_task);
554
555	return err;
556}
557
558static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma,
559				     const __be32 *iv, const u32 *key, int keylen)
560{
561	u32 valmr = 0;
562
563	/* MR register must be set before IV registers */
564	if (keylen == AES_KEYSIZE_128)
565		valmr |= AES_MR_KEYSIZE_128;
566	else if (keylen == AES_KEYSIZE_192)
567		valmr |= AES_MR_KEYSIZE_192;
568	else
569		valmr |= AES_MR_KEYSIZE_256;
570
571	valmr |= dd->flags & AES_FLAGS_MODE_MASK;
572
573	if (use_dma) {
574		valmr |= AES_MR_SMOD_IDATAR0;
575		if (dd->caps.has_dualbuff)
576			valmr |= AES_MR_DUALBUFF;
577	} else {
578		valmr |= AES_MR_SMOD_AUTO;
579	}
580
581	atmel_aes_write(dd, AES_MR, valmr);
582
583	atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen));
584
585	if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
586		atmel_aes_write_block(dd, AES_IVR(0), iv);
587}
588
589static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
590					const __be32 *iv)
591
592{
593	atmel_aes_write_ctrl_key(dd, use_dma, iv,
594				 dd->ctx->key, dd->ctx->keylen);
595}
596
597/* CPU transfer */
598
599static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
600{
601	int err = 0;
602	u32 isr;
603
604	for (;;) {
605		atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
606		dd->data += 4;
607		dd->datalen -= AES_BLOCK_SIZE;
608
609		if (dd->datalen < AES_BLOCK_SIZE)
610			break;
611
612		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
613
614		isr = atmel_aes_read(dd, AES_ISR);
615		if (!(isr & AES_INT_DATARDY)) {
616			dd->resume = atmel_aes_cpu_transfer;
617			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
618			return -EINPROGRESS;
619		}
620	}
621
622	if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
623				 dd->buf, dd->total))
624		err = -EINVAL;
625
626	if (err)
627		return atmel_aes_complete(dd, err);
628
629	return dd->cpu_transfer_complete(dd);
630}
631
632static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
633			       struct scatterlist *src,
634			       struct scatterlist *dst,
635			       size_t len,
636			       atmel_aes_fn_t resume)
637{
638	size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
639
640	if (unlikely(len == 0))
641		return -EINVAL;
642
643	sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
644
645	dd->total = len;
646	dd->real_dst = dst;
647	dd->cpu_transfer_complete = resume;
648	dd->datalen = len + padlen;
649	dd->data = (u32 *)dd->buf;
650	atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
651	return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
652}
653
654
655/* DMA transfer */
656
657static void atmel_aes_dma_callback(void *data);
658
659static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
660				    struct scatterlist *sg,
661				    size_t len,
662				    struct atmel_aes_dma *dma)
663{
664	int nents;
665
666	if (!IS_ALIGNED(len, dd->ctx->block_size))
667		return false;
668
669	for (nents = 0; sg; sg = sg_next(sg), ++nents) {
670		if (!IS_ALIGNED(sg->offset, sizeof(u32)))
671			return false;
672
673		if (len <= sg->length) {
674			if (!IS_ALIGNED(len, dd->ctx->block_size))
675				return false;
676
677			dma->nents = nents+1;
678			dma->remainder = sg->length - len;
679			sg->length = len;
680			return true;
681		}
682
683		if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
684			return false;
685
686		len -= sg->length;
687	}
688
689	return false;
690}
691
692static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
693{
694	struct scatterlist *sg = dma->sg;
695	int nents = dma->nents;
696
697	if (!dma->remainder)
698		return;
699
700	while (--nents > 0 && sg)
701		sg = sg_next(sg);
702
703	if (!sg)
704		return;
705
706	sg->length += dma->remainder;
707}
708
709static int atmel_aes_map(struct atmel_aes_dev *dd,
710			 struct scatterlist *src,
711			 struct scatterlist *dst,
712			 size_t len)
713{
714	bool src_aligned, dst_aligned;
715	size_t padlen;
716
717	dd->total = len;
718	dd->src.sg = src;
719	dd->dst.sg = dst;
720	dd->real_dst = dst;
721
722	src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
723	if (src == dst)
724		dst_aligned = src_aligned;
725	else
726		dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
727	if (!src_aligned || !dst_aligned) {
728		padlen = atmel_aes_padlen(len, dd->ctx->block_size);
729
730		if (dd->buflen < len + padlen)
731			return -ENOMEM;
732
733		if (!src_aligned) {
734			sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
735			dd->src.sg = &dd->aligned_sg;
736			dd->src.nents = 1;
737			dd->src.remainder = 0;
738		}
739
740		if (!dst_aligned) {
741			dd->dst.sg = &dd->aligned_sg;
742			dd->dst.nents = 1;
743			dd->dst.remainder = 0;
744		}
745
746		sg_init_table(&dd->aligned_sg, 1);
747		sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
748	}
749
750	if (dd->src.sg == dd->dst.sg) {
751		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
752					    DMA_BIDIRECTIONAL);
753		dd->dst.sg_len = dd->src.sg_len;
754		if (!dd->src.sg_len)
755			return -EFAULT;
756	} else {
757		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
758					    DMA_TO_DEVICE);
759		if (!dd->src.sg_len)
760			return -EFAULT;
761
762		dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
763					    DMA_FROM_DEVICE);
764		if (!dd->dst.sg_len) {
765			dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
766				     DMA_TO_DEVICE);
767			return -EFAULT;
768		}
769	}
770
771	return 0;
772}
773
774static void atmel_aes_unmap(struct atmel_aes_dev *dd)
775{
776	if (dd->src.sg == dd->dst.sg) {
777		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
778			     DMA_BIDIRECTIONAL);
779
780		if (dd->src.sg != &dd->aligned_sg)
781			atmel_aes_restore_sg(&dd->src);
782	} else {
783		dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
784			     DMA_FROM_DEVICE);
785
786		if (dd->dst.sg != &dd->aligned_sg)
787			atmel_aes_restore_sg(&dd->dst);
788
789		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
790			     DMA_TO_DEVICE);
791
792		if (dd->src.sg != &dd->aligned_sg)
793			atmel_aes_restore_sg(&dd->src);
794	}
795
796	if (dd->dst.sg == &dd->aligned_sg)
797		sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
798				    dd->buf, dd->total);
799}
800
801static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
802					enum dma_slave_buswidth addr_width,
803					enum dma_transfer_direction dir,
804					u32 maxburst)
805{
806	struct dma_async_tx_descriptor *desc;
807	struct dma_slave_config config;
808	dma_async_tx_callback callback;
809	struct atmel_aes_dma *dma;
810	int err;
811
812	memset(&config, 0, sizeof(config));
813	config.src_addr_width = addr_width;
814	config.dst_addr_width = addr_width;
815	config.src_maxburst = maxburst;
816	config.dst_maxburst = maxburst;
817
818	switch (dir) {
819	case DMA_MEM_TO_DEV:
820		dma = &dd->src;
821		callback = NULL;
822		config.dst_addr = dd->phys_base + AES_IDATAR(0);
823		break;
824
825	case DMA_DEV_TO_MEM:
826		dma = &dd->dst;
827		callback = atmel_aes_dma_callback;
828		config.src_addr = dd->phys_base + AES_ODATAR(0);
829		break;
830
831	default:
832		return -EINVAL;
833	}
834
835	err = dmaengine_slave_config(dma->chan, &config);
836	if (err)
837		return err;
838
839	desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
840				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
841	if (!desc)
842		return -ENOMEM;
843
844	desc->callback = callback;
845	desc->callback_param = dd;
846	dmaengine_submit(desc);
847	dma_async_issue_pending(dma->chan);
848
849	return 0;
850}
851
852static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
853			       struct scatterlist *src,
854			       struct scatterlist *dst,
855			       size_t len,
856			       atmel_aes_fn_t resume)
857{
858	enum dma_slave_buswidth addr_width;
859	u32 maxburst;
860	int err;
861
862	switch (dd->ctx->block_size) {
863	case CFB8_BLOCK_SIZE:
864		addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
865		maxburst = 1;
866		break;
867
868	case CFB16_BLOCK_SIZE:
869		addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
870		maxburst = 1;
871		break;
872
873	case CFB32_BLOCK_SIZE:
874	case CFB64_BLOCK_SIZE:
875		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
876		maxburst = 1;
877		break;
878
879	case AES_BLOCK_SIZE:
880		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
881		maxburst = dd->caps.max_burst_size;
882		break;
883
884	default:
885		err = -EINVAL;
886		goto exit;
887	}
888
889	err = atmel_aes_map(dd, src, dst, len);
890	if (err)
891		goto exit;
892
893	dd->resume = resume;
894
895	/* Set output DMA transfer first */
896	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
897					   maxburst);
898	if (err)
899		goto unmap;
900
901	/* Then set input DMA transfer */
902	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
903					   maxburst);
904	if (err)
905		goto output_transfer_stop;
906
907	return -EINPROGRESS;
908
909output_transfer_stop:
910	dmaengine_terminate_sync(dd->dst.chan);
911unmap:
912	atmel_aes_unmap(dd);
913exit:
914	return atmel_aes_complete(dd, err);
915}
916
917static void atmel_aes_dma_callback(void *data)
918{
919	struct atmel_aes_dev *dd = data;
920
921	atmel_aes_unmap(dd);
922	dd->is_async = true;
923	(void)dd->resume(dd);
924}
925
926static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
927				  struct crypto_async_request *new_areq)
928{
929	struct crypto_async_request *areq, *backlog;
930	struct atmel_aes_base_ctx *ctx;
931	unsigned long flags;
932	bool start_async;
933	int err, ret = 0;
934
935	spin_lock_irqsave(&dd->lock, flags);
936	if (new_areq)
937		ret = crypto_enqueue_request(&dd->queue, new_areq);
938	if (dd->flags & AES_FLAGS_BUSY) {
939		spin_unlock_irqrestore(&dd->lock, flags);
940		return ret;
941	}
942	backlog = crypto_get_backlog(&dd->queue);
943	areq = crypto_dequeue_request(&dd->queue);
944	if (areq)
945		dd->flags |= AES_FLAGS_BUSY;
946	spin_unlock_irqrestore(&dd->lock, flags);
947
948	if (!areq)
949		return ret;
950
951	if (backlog)
952		crypto_request_complete(backlog, -EINPROGRESS);
953
954	ctx = crypto_tfm_ctx(areq->tfm);
955
956	dd->areq = areq;
957	dd->ctx = ctx;
958	start_async = (areq != new_areq);
959	dd->is_async = start_async;
960
961	/* WARNING: ctx->start() MAY change dd->is_async. */
962	err = ctx->start(dd);
963	return (start_async) ? ret : err;
964}
965
966
967/* AES async block ciphers */
968
969static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
970{
971	return atmel_aes_complete(dd, 0);
972}
973
974static int atmel_aes_start(struct atmel_aes_dev *dd)
975{
976	struct skcipher_request *req = skcipher_request_cast(dd->areq);
977	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
978	bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD ||
979			dd->ctx->block_size != AES_BLOCK_SIZE);
980	int err;
981
982	atmel_aes_set_mode(dd, rctx);
983
984	err = atmel_aes_hw_init(dd);
985	if (err)
986		return atmel_aes_complete(dd, err);
987
988	atmel_aes_write_ctrl(dd, use_dma, (void *)req->iv);
989	if (use_dma)
990		return atmel_aes_dma_start(dd, req->src, req->dst,
991					   req->cryptlen,
992					   atmel_aes_transfer_complete);
993
994	return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
995				   atmel_aes_transfer_complete);
996}
997
998static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
999{
1000	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1001	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1002	struct scatterlist *src, *dst;
1003	size_t datalen;
1004	u32 ctr;
1005	u16 start, end;
1006	bool use_dma, fragmented = false;
1007
1008	/* Check for transfer completion. */
1009	ctx->offset += dd->total;
1010	if (ctx->offset >= req->cryptlen)
1011		return atmel_aes_transfer_complete(dd);
1012
1013	/* Compute data length. */
1014	datalen = req->cryptlen - ctx->offset;
1015	ctx->blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
1016	ctr = be32_to_cpu(ctx->iv[3]);
1017
1018	/* Check 16bit counter overflow. */
1019	start = ctr & 0xffff;
1020	end = start + ctx->blocks - 1;
1021
1022	if (ctx->blocks >> 16 || end < start) {
1023		ctr |= 0xffff;
1024		datalen = AES_BLOCK_SIZE * (0x10000 - start);
1025		fragmented = true;
1026	}
1027
1028	use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
1029
1030	/* Jump to offset. */
1031	src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
1032	dst = ((req->src == req->dst) ? src :
1033	       scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
1034
1035	/* Configure hardware. */
1036	atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
1037	if (unlikely(fragmented)) {
1038		/*
1039		 * Increment the counter manually to cope with the hardware
1040		 * counter overflow.
1041		 */
1042		ctx->iv[3] = cpu_to_be32(ctr);
1043		crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
1044	}
1045
1046	if (use_dma)
1047		return atmel_aes_dma_start(dd, src, dst, datalen,
1048					   atmel_aes_ctr_transfer);
1049
1050	return atmel_aes_cpu_start(dd, src, dst, datalen,
1051				   atmel_aes_ctr_transfer);
1052}
1053
1054static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
1055{
1056	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1057	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1058	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1059	int err;
1060
1061	atmel_aes_set_mode(dd, rctx);
1062
1063	err = atmel_aes_hw_init(dd);
1064	if (err)
1065		return atmel_aes_complete(dd, err);
1066
1067	memcpy(ctx->iv, req->iv, AES_BLOCK_SIZE);
1068	ctx->offset = 0;
1069	dd->total = 0;
1070	return atmel_aes_ctr_transfer(dd);
1071}
1072
1073static int atmel_aes_xts_fallback(struct skcipher_request *req, bool enc)
1074{
1075	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1076	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(
1077			crypto_skcipher_reqtfm(req));
1078
1079	skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
1080	skcipher_request_set_callback(&rctx->fallback_req, req->base.flags,
1081				      req->base.complete, req->base.data);
1082	skcipher_request_set_crypt(&rctx->fallback_req, req->src, req->dst,
1083				   req->cryptlen, req->iv);
1084
1085	return enc ? crypto_skcipher_encrypt(&rctx->fallback_req) :
1086		     crypto_skcipher_decrypt(&rctx->fallback_req);
1087}
1088
1089static int atmel_aes_crypt(struct skcipher_request *req, unsigned long mode)
1090{
1091	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
1092	struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(skcipher);
1093	struct atmel_aes_reqctx *rctx;
1094	u32 opmode = mode & AES_FLAGS_OPMODE_MASK;
1095
1096	if (opmode == AES_FLAGS_XTS) {
1097		if (req->cryptlen < XTS_BLOCK_SIZE)
1098			return -EINVAL;
1099
1100		if (!IS_ALIGNED(req->cryptlen, XTS_BLOCK_SIZE))
1101			return atmel_aes_xts_fallback(req,
1102						      mode & AES_FLAGS_ENCRYPT);
1103	}
1104
1105	/*
1106	 * ECB, CBC, CFB, OFB or CTR mode require the plaintext and ciphertext
1107	 * to have a positve integer length.
1108	 */
1109	if (!req->cryptlen && opmode != AES_FLAGS_XTS)
1110		return 0;
1111
1112	if ((opmode == AES_FLAGS_ECB || opmode == AES_FLAGS_CBC) &&
1113	    !IS_ALIGNED(req->cryptlen, crypto_skcipher_blocksize(skcipher)))
1114		return -EINVAL;
1115
1116	switch (mode & AES_FLAGS_OPMODE_MASK) {
1117	case AES_FLAGS_CFB8:
1118		ctx->block_size = CFB8_BLOCK_SIZE;
1119		break;
1120
1121	case AES_FLAGS_CFB16:
1122		ctx->block_size = CFB16_BLOCK_SIZE;
1123		break;
1124
1125	case AES_FLAGS_CFB32:
1126		ctx->block_size = CFB32_BLOCK_SIZE;
1127		break;
1128
1129	case AES_FLAGS_CFB64:
1130		ctx->block_size = CFB64_BLOCK_SIZE;
1131		break;
1132
1133	default:
1134		ctx->block_size = AES_BLOCK_SIZE;
1135		break;
1136	}
1137	ctx->is_aead = false;
1138
1139	rctx = skcipher_request_ctx(req);
1140	rctx->mode = mode;
1141
1142	if (opmode != AES_FLAGS_ECB &&
1143	    !(mode & AES_FLAGS_ENCRYPT)) {
1144		unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
1145
1146		if (req->cryptlen >= ivsize)
1147			scatterwalk_map_and_copy(rctx->lastc, req->src,
1148						 req->cryptlen - ivsize,
1149						 ivsize, 0);
1150	}
1151
1152	return atmel_aes_handle_queue(ctx->dd, &req->base);
1153}
1154
1155static int atmel_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
1156			   unsigned int keylen)
1157{
1158	struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(tfm);
1159
1160	if (keylen != AES_KEYSIZE_128 &&
1161	    keylen != AES_KEYSIZE_192 &&
1162	    keylen != AES_KEYSIZE_256)
1163		return -EINVAL;
1164
1165	memcpy(ctx->key, key, keylen);
1166	ctx->keylen = keylen;
1167
1168	return 0;
1169}
1170
1171static int atmel_aes_ecb_encrypt(struct skcipher_request *req)
1172{
1173	return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1174}
1175
1176static int atmel_aes_ecb_decrypt(struct skcipher_request *req)
1177{
1178	return atmel_aes_crypt(req, AES_FLAGS_ECB);
1179}
1180
1181static int atmel_aes_cbc_encrypt(struct skcipher_request *req)
1182{
1183	return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
1184}
1185
1186static int atmel_aes_cbc_decrypt(struct skcipher_request *req)
1187{
1188	return atmel_aes_crypt(req, AES_FLAGS_CBC);
1189}
1190
1191static int atmel_aes_ofb_encrypt(struct skcipher_request *req)
1192{
1193	return atmel_aes_crypt(req, AES_FLAGS_OFB | AES_FLAGS_ENCRYPT);
1194}
1195
1196static int atmel_aes_ofb_decrypt(struct skcipher_request *req)
1197{
1198	return atmel_aes_crypt(req, AES_FLAGS_OFB);
1199}
1200
1201static int atmel_aes_cfb_encrypt(struct skcipher_request *req)
1202{
1203	return atmel_aes_crypt(req, AES_FLAGS_CFB128 | AES_FLAGS_ENCRYPT);
1204}
1205
1206static int atmel_aes_cfb_decrypt(struct skcipher_request *req)
1207{
1208	return atmel_aes_crypt(req, AES_FLAGS_CFB128);
1209}
1210
1211static int atmel_aes_cfb64_encrypt(struct skcipher_request *req)
1212{
1213	return atmel_aes_crypt(req, AES_FLAGS_CFB64 | AES_FLAGS_ENCRYPT);
1214}
1215
1216static int atmel_aes_cfb64_decrypt(struct skcipher_request *req)
1217{
1218	return atmel_aes_crypt(req, AES_FLAGS_CFB64);
1219}
1220
1221static int atmel_aes_cfb32_encrypt(struct skcipher_request *req)
1222{
1223	return atmel_aes_crypt(req, AES_FLAGS_CFB32 | AES_FLAGS_ENCRYPT);
1224}
1225
1226static int atmel_aes_cfb32_decrypt(struct skcipher_request *req)
1227{
1228	return atmel_aes_crypt(req, AES_FLAGS_CFB32);
1229}
1230
1231static int atmel_aes_cfb16_encrypt(struct skcipher_request *req)
1232{
1233	return atmel_aes_crypt(req, AES_FLAGS_CFB16 | AES_FLAGS_ENCRYPT);
1234}
1235
1236static int atmel_aes_cfb16_decrypt(struct skcipher_request *req)
1237{
1238	return atmel_aes_crypt(req, AES_FLAGS_CFB16);
1239}
1240
1241static int atmel_aes_cfb8_encrypt(struct skcipher_request *req)
1242{
1243	return atmel_aes_crypt(req, AES_FLAGS_CFB8 | AES_FLAGS_ENCRYPT);
1244}
1245
1246static int atmel_aes_cfb8_decrypt(struct skcipher_request *req)
1247{
1248	return atmel_aes_crypt(req, AES_FLAGS_CFB8);
1249}
1250
1251static int atmel_aes_ctr_encrypt(struct skcipher_request *req)
1252{
1253	return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
1254}
1255
1256static int atmel_aes_ctr_decrypt(struct skcipher_request *req)
1257{
1258	return atmel_aes_crypt(req, AES_FLAGS_CTR);
1259}
1260
1261static int atmel_aes_init_tfm(struct crypto_skcipher *tfm)
1262{
1263	struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1264	struct atmel_aes_dev *dd;
1265
1266	dd = atmel_aes_dev_alloc(&ctx->base);
1267	if (!dd)
1268		return -ENODEV;
1269
1270	crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1271	ctx->base.dd = dd;
1272	ctx->base.start = atmel_aes_start;
1273
1274	return 0;
1275}
1276
1277static int atmel_aes_ctr_init_tfm(struct crypto_skcipher *tfm)
1278{
1279	struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1280	struct atmel_aes_dev *dd;
1281
1282	dd = atmel_aes_dev_alloc(&ctx->base);
1283	if (!dd)
1284		return -ENODEV;
1285
1286	crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1287	ctx->base.dd = dd;
1288	ctx->base.start = atmel_aes_ctr_start;
1289
1290	return 0;
1291}
1292
1293static struct skcipher_alg aes_algs[] = {
1294{
1295	.base.cra_name		= "ecb(aes)",
1296	.base.cra_driver_name	= "atmel-ecb-aes",
1297	.base.cra_blocksize	= AES_BLOCK_SIZE,
1298	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1299
1300	.init			= atmel_aes_init_tfm,
1301	.min_keysize		= AES_MIN_KEY_SIZE,
1302	.max_keysize		= AES_MAX_KEY_SIZE,
1303	.setkey			= atmel_aes_setkey,
1304	.encrypt		= atmel_aes_ecb_encrypt,
1305	.decrypt		= atmel_aes_ecb_decrypt,
1306},
1307{
1308	.base.cra_name		= "cbc(aes)",
1309	.base.cra_driver_name	= "atmel-cbc-aes",
1310	.base.cra_blocksize	= AES_BLOCK_SIZE,
1311	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1312
1313	.init			= atmel_aes_init_tfm,
1314	.min_keysize		= AES_MIN_KEY_SIZE,
1315	.max_keysize		= AES_MAX_KEY_SIZE,
1316	.setkey			= atmel_aes_setkey,
1317	.encrypt		= atmel_aes_cbc_encrypt,
1318	.decrypt		= atmel_aes_cbc_decrypt,
1319	.ivsize			= AES_BLOCK_SIZE,
1320},
1321{
1322	.base.cra_name		= "ofb(aes)",
1323	.base.cra_driver_name	= "atmel-ofb-aes",
1324	.base.cra_blocksize	= 1,
1325	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1326
1327	.init			= atmel_aes_init_tfm,
1328	.min_keysize		= AES_MIN_KEY_SIZE,
1329	.max_keysize		= AES_MAX_KEY_SIZE,
1330	.setkey			= atmel_aes_setkey,
1331	.encrypt		= atmel_aes_ofb_encrypt,
1332	.decrypt		= atmel_aes_ofb_decrypt,
1333	.ivsize			= AES_BLOCK_SIZE,
1334},
1335{
1336	.base.cra_name		= "cfb(aes)",
1337	.base.cra_driver_name	= "atmel-cfb-aes",
1338	.base.cra_blocksize	= 1,
1339	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1340
1341	.init			= atmel_aes_init_tfm,
1342	.min_keysize		= AES_MIN_KEY_SIZE,
1343	.max_keysize		= AES_MAX_KEY_SIZE,
1344	.setkey			= atmel_aes_setkey,
1345	.encrypt		= atmel_aes_cfb_encrypt,
1346	.decrypt		= atmel_aes_cfb_decrypt,
1347	.ivsize			= AES_BLOCK_SIZE,
1348},
1349{
1350	.base.cra_name		= "cfb32(aes)",
1351	.base.cra_driver_name	= "atmel-cfb32-aes",
1352	.base.cra_blocksize	= CFB32_BLOCK_SIZE,
1353	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1354
1355	.init			= atmel_aes_init_tfm,
1356	.min_keysize		= AES_MIN_KEY_SIZE,
1357	.max_keysize		= AES_MAX_KEY_SIZE,
1358	.setkey			= atmel_aes_setkey,
1359	.encrypt		= atmel_aes_cfb32_encrypt,
1360	.decrypt		= atmel_aes_cfb32_decrypt,
1361	.ivsize			= AES_BLOCK_SIZE,
1362},
1363{
1364	.base.cra_name		= "cfb16(aes)",
1365	.base.cra_driver_name	= "atmel-cfb16-aes",
1366	.base.cra_blocksize	= CFB16_BLOCK_SIZE,
1367	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1368
1369	.init			= atmel_aes_init_tfm,
1370	.min_keysize		= AES_MIN_KEY_SIZE,
1371	.max_keysize		= AES_MAX_KEY_SIZE,
1372	.setkey			= atmel_aes_setkey,
1373	.encrypt		= atmel_aes_cfb16_encrypt,
1374	.decrypt		= atmel_aes_cfb16_decrypt,
1375	.ivsize			= AES_BLOCK_SIZE,
1376},
1377{
1378	.base.cra_name		= "cfb8(aes)",
1379	.base.cra_driver_name	= "atmel-cfb8-aes",
1380	.base.cra_blocksize	= CFB8_BLOCK_SIZE,
1381	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1382
1383	.init			= atmel_aes_init_tfm,
1384	.min_keysize		= AES_MIN_KEY_SIZE,
1385	.max_keysize		= AES_MAX_KEY_SIZE,
1386	.setkey			= atmel_aes_setkey,
1387	.encrypt		= atmel_aes_cfb8_encrypt,
1388	.decrypt		= atmel_aes_cfb8_decrypt,
1389	.ivsize			= AES_BLOCK_SIZE,
1390},
1391{
1392	.base.cra_name		= "ctr(aes)",
1393	.base.cra_driver_name	= "atmel-ctr-aes",
1394	.base.cra_blocksize	= 1,
1395	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctr_ctx),
1396
1397	.init			= atmel_aes_ctr_init_tfm,
1398	.min_keysize		= AES_MIN_KEY_SIZE,
1399	.max_keysize		= AES_MAX_KEY_SIZE,
1400	.setkey			= atmel_aes_setkey,
1401	.encrypt		= atmel_aes_ctr_encrypt,
1402	.decrypt		= atmel_aes_ctr_decrypt,
1403	.ivsize			= AES_BLOCK_SIZE,
1404},
1405};
1406
1407static struct skcipher_alg aes_cfb64_alg = {
1408	.base.cra_name		= "cfb64(aes)",
1409	.base.cra_driver_name	= "atmel-cfb64-aes",
1410	.base.cra_blocksize	= CFB64_BLOCK_SIZE,
1411	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1412
1413	.init			= atmel_aes_init_tfm,
1414	.min_keysize		= AES_MIN_KEY_SIZE,
1415	.max_keysize		= AES_MAX_KEY_SIZE,
1416	.setkey			= atmel_aes_setkey,
1417	.encrypt		= atmel_aes_cfb64_encrypt,
1418	.decrypt		= atmel_aes_cfb64_decrypt,
1419	.ivsize			= AES_BLOCK_SIZE,
1420};
1421
1422
1423/* gcm aead functions */
1424
1425static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1426			       const u32 *data, size_t datalen,
1427			       const __be32 *ghash_in, __be32 *ghash_out,
1428			       atmel_aes_fn_t resume);
1429static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
1430static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
1431
1432static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
1433static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
1434static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
1435static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
1436static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
1437static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
1438static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
1439
1440static inline struct atmel_aes_gcm_ctx *
1441atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
1442{
1443	return container_of(ctx, struct atmel_aes_gcm_ctx, base);
1444}
1445
1446static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1447			       const u32 *data, size_t datalen,
1448			       const __be32 *ghash_in, __be32 *ghash_out,
1449			       atmel_aes_fn_t resume)
1450{
1451	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1452
1453	dd->data = (u32 *)data;
1454	dd->datalen = datalen;
1455	ctx->ghash_in = ghash_in;
1456	ctx->ghash_out = ghash_out;
1457	ctx->ghash_resume = resume;
1458
1459	atmel_aes_write_ctrl(dd, false, NULL);
1460	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
1461}
1462
1463static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
1464{
1465	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1466
1467	/* Set the data length. */
1468	atmel_aes_write(dd, AES_AADLENR, dd->total);
1469	atmel_aes_write(dd, AES_CLENR, 0);
1470
1471	/* If needed, overwrite the GCM Intermediate Hash Word Registers */
1472	if (ctx->ghash_in)
1473		atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
1474
1475	return atmel_aes_gcm_ghash_finalize(dd);
1476}
1477
1478static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
1479{
1480	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1481	u32 isr;
1482
1483	/* Write data into the Input Data Registers. */
1484	while (dd->datalen > 0) {
1485		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1486		dd->data += 4;
1487		dd->datalen -= AES_BLOCK_SIZE;
1488
1489		isr = atmel_aes_read(dd, AES_ISR);
1490		if (!(isr & AES_INT_DATARDY)) {
1491			dd->resume = atmel_aes_gcm_ghash_finalize;
1492			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1493			return -EINPROGRESS;
1494		}
1495	}
1496
1497	/* Read the computed hash from GHASHRx. */
1498	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
1499
1500	return ctx->ghash_resume(dd);
1501}
1502
1503
1504static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
1505{
1506	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1507	struct aead_request *req = aead_request_cast(dd->areq);
1508	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1509	struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
1510	size_t ivsize = crypto_aead_ivsize(tfm);
1511	size_t datalen, padlen;
1512	const void *iv = req->iv;
1513	u8 *data = dd->buf;
1514	int err;
1515
1516	atmel_aes_set_mode(dd, rctx);
1517
1518	err = atmel_aes_hw_init(dd);
1519	if (err)
1520		return atmel_aes_complete(dd, err);
1521
1522	if (likely(ivsize == GCM_AES_IV_SIZE)) {
1523		memcpy(ctx->j0, iv, ivsize);
1524		ctx->j0[3] = cpu_to_be32(1);
1525		return atmel_aes_gcm_process(dd);
1526	}
1527
1528	padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
1529	datalen = ivsize + padlen + AES_BLOCK_SIZE;
1530	if (datalen > dd->buflen)
1531		return atmel_aes_complete(dd, -EINVAL);
1532
1533	memcpy(data, iv, ivsize);
1534	memset(data + ivsize, 0, padlen + sizeof(u64));
1535	((__be64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
1536
1537	return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
1538				   NULL, ctx->j0, atmel_aes_gcm_process);
1539}
1540
1541static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
1542{
1543	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1544	struct aead_request *req = aead_request_cast(dd->areq);
1545	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1546	bool enc = atmel_aes_is_encrypt(dd);
1547	u32 authsize;
1548
1549	/* Compute text length. */
1550	authsize = crypto_aead_authsize(tfm);
1551	ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
1552
1553	/*
1554	 * According to tcrypt test suite, the GCM Automatic Tag Generation
1555	 * fails when both the message and its associated data are empty.
1556	 */
1557	if (likely(req->assoclen != 0 || ctx->textlen != 0))
1558		dd->flags |= AES_FLAGS_GTAGEN;
1559
1560	atmel_aes_write_ctrl(dd, false, NULL);
1561	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
1562}
1563
1564static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
1565{
1566	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1567	struct aead_request *req = aead_request_cast(dd->areq);
1568	__be32 j0_lsw, *j0 = ctx->j0;
1569	size_t padlen;
1570
1571	/* Write incr32(J0) into IV. */
1572	j0_lsw = j0[3];
1573	be32_add_cpu(&j0[3], 1);
1574	atmel_aes_write_block(dd, AES_IVR(0), j0);
1575	j0[3] = j0_lsw;
1576
1577	/* Set aad and text lengths. */
1578	atmel_aes_write(dd, AES_AADLENR, req->assoclen);
1579	atmel_aes_write(dd, AES_CLENR, ctx->textlen);
1580
1581	/* Check whether AAD are present. */
1582	if (unlikely(req->assoclen == 0)) {
1583		dd->datalen = 0;
1584		return atmel_aes_gcm_data(dd);
1585	}
1586
1587	/* Copy assoc data and add padding. */
1588	padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
1589	if (unlikely(req->assoclen + padlen > dd->buflen))
1590		return atmel_aes_complete(dd, -EINVAL);
1591	sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
1592
1593	/* Write assoc data into the Input Data register. */
1594	dd->data = (u32 *)dd->buf;
1595	dd->datalen = req->assoclen + padlen;
1596	return atmel_aes_gcm_data(dd);
1597}
1598
1599static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
1600{
1601	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1602	struct aead_request *req = aead_request_cast(dd->areq);
1603	bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
1604	struct scatterlist *src, *dst;
1605	u32 isr, mr;
1606
1607	/* Write AAD first. */
1608	while (dd->datalen > 0) {
1609		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1610		dd->data += 4;
1611		dd->datalen -= AES_BLOCK_SIZE;
1612
1613		isr = atmel_aes_read(dd, AES_ISR);
1614		if (!(isr & AES_INT_DATARDY)) {
1615			dd->resume = atmel_aes_gcm_data;
1616			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1617			return -EINPROGRESS;
1618		}
1619	}
1620
1621	/* GMAC only. */
1622	if (unlikely(ctx->textlen == 0))
1623		return atmel_aes_gcm_tag_init(dd);
1624
1625	/* Prepare src and dst scatter lists to transfer cipher/plain texts */
1626	src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
1627	dst = ((req->src == req->dst) ? src :
1628	       scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
1629
1630	if (use_dma) {
1631		/* Update the Mode Register for DMA transfers. */
1632		mr = atmel_aes_read(dd, AES_MR);
1633		mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
1634		mr |= AES_MR_SMOD_IDATAR0;
1635		if (dd->caps.has_dualbuff)
1636			mr |= AES_MR_DUALBUFF;
1637		atmel_aes_write(dd, AES_MR, mr);
1638
1639		return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
1640					   atmel_aes_gcm_tag_init);
1641	}
1642
1643	return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
1644				   atmel_aes_gcm_tag_init);
1645}
1646
1647static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
1648{
1649	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1650	struct aead_request *req = aead_request_cast(dd->areq);
1651	__be64 *data = dd->buf;
1652
1653	if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
1654		if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
1655			dd->resume = atmel_aes_gcm_tag_init;
1656			atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
1657			return -EINPROGRESS;
1658		}
1659
1660		return atmel_aes_gcm_finalize(dd);
1661	}
1662
1663	/* Read the GCM Intermediate Hash Word Registers. */
1664	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
1665
1666	data[0] = cpu_to_be64(req->assoclen * 8);
1667	data[1] = cpu_to_be64(ctx->textlen * 8);
1668
1669	return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
1670				   ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
1671}
1672
1673static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
1674{
1675	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1676	unsigned long flags;
1677
1678	/*
1679	 * Change mode to CTR to complete the tag generation.
1680	 * Use J0 as Initialization Vector.
1681	 */
1682	flags = dd->flags;
1683	dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
1684	dd->flags |= AES_FLAGS_CTR;
1685	atmel_aes_write_ctrl(dd, false, ctx->j0);
1686	dd->flags = flags;
1687
1688	atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
1689	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
1690}
1691
1692static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
1693{
1694	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1695	struct aead_request *req = aead_request_cast(dd->areq);
1696	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1697	bool enc = atmel_aes_is_encrypt(dd);
1698	u32 offset, authsize, itag[4], *otag = ctx->tag;
1699	int err;
1700
1701	/* Read the computed tag. */
1702	if (likely(dd->flags & AES_FLAGS_GTAGEN))
1703		atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
1704	else
1705		atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
1706
1707	offset = req->assoclen + ctx->textlen;
1708	authsize = crypto_aead_authsize(tfm);
1709	if (enc) {
1710		scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
1711		err = 0;
1712	} else {
1713		scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
1714		err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
1715	}
1716
1717	return atmel_aes_complete(dd, err);
1718}
1719
1720static int atmel_aes_gcm_crypt(struct aead_request *req,
1721			       unsigned long mode)
1722{
1723	struct atmel_aes_base_ctx *ctx;
1724	struct atmel_aes_reqctx *rctx;
1725
1726	ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1727	ctx->block_size = AES_BLOCK_SIZE;
1728	ctx->is_aead = true;
1729
1730	rctx = aead_request_ctx(req);
1731	rctx->mode = AES_FLAGS_GCM | mode;
1732
1733	return atmel_aes_handle_queue(ctx->dd, &req->base);
1734}
1735
1736static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
1737				unsigned int keylen)
1738{
1739	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1740
1741	if (keylen != AES_KEYSIZE_256 &&
1742	    keylen != AES_KEYSIZE_192 &&
1743	    keylen != AES_KEYSIZE_128)
1744		return -EINVAL;
1745
1746	memcpy(ctx->key, key, keylen);
1747	ctx->keylen = keylen;
1748
1749	return 0;
1750}
1751
1752static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
1753				     unsigned int authsize)
1754{
1755	return crypto_gcm_check_authsize(authsize);
1756}
1757
1758static int atmel_aes_gcm_encrypt(struct aead_request *req)
1759{
1760	return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1761}
1762
1763static int atmel_aes_gcm_decrypt(struct aead_request *req)
1764{
1765	return atmel_aes_gcm_crypt(req, 0);
1766}
1767
1768static int atmel_aes_gcm_init(struct crypto_aead *tfm)
1769{
1770	struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
1771	struct atmel_aes_dev *dd;
1772
1773	dd = atmel_aes_dev_alloc(&ctx->base);
1774	if (!dd)
1775		return -ENODEV;
1776
1777	crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1778	ctx->base.dd = dd;
1779	ctx->base.start = atmel_aes_gcm_start;
1780
1781	return 0;
1782}
1783
1784static struct aead_alg aes_gcm_alg = {
1785	.setkey		= atmel_aes_gcm_setkey,
1786	.setauthsize	= atmel_aes_gcm_setauthsize,
1787	.encrypt	= atmel_aes_gcm_encrypt,
1788	.decrypt	= atmel_aes_gcm_decrypt,
1789	.init		= atmel_aes_gcm_init,
1790	.ivsize		= GCM_AES_IV_SIZE,
1791	.maxauthsize	= AES_BLOCK_SIZE,
1792
1793	.base = {
1794		.cra_name		= "gcm(aes)",
1795		.cra_driver_name	= "atmel-gcm-aes",
1796		.cra_blocksize		= 1,
1797		.cra_ctxsize		= sizeof(struct atmel_aes_gcm_ctx),
1798	},
1799};
1800
1801
1802/* xts functions */
1803
1804static inline struct atmel_aes_xts_ctx *
1805atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx)
1806{
1807	return container_of(ctx, struct atmel_aes_xts_ctx, base);
1808}
1809
1810static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd);
1811
1812static int atmel_aes_xts_start(struct atmel_aes_dev *dd)
1813{
1814	struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx);
1815	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1816	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1817	unsigned long flags;
1818	int err;
1819
1820	atmel_aes_set_mode(dd, rctx);
1821
1822	err = atmel_aes_hw_init(dd);
1823	if (err)
1824		return atmel_aes_complete(dd, err);
1825
1826	/* Compute the tweak value from req->iv with ecb(aes). */
1827	flags = dd->flags;
1828	dd->flags &= ~AES_FLAGS_MODE_MASK;
1829	dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1830	atmel_aes_write_ctrl_key(dd, false, NULL,
1831				 ctx->key2, ctx->base.keylen);
1832	dd->flags = flags;
1833
1834	atmel_aes_write_block(dd, AES_IDATAR(0), req->iv);
1835	return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data);
1836}
1837
1838static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd)
1839{
1840	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1841	bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD);
1842	u32 tweak[AES_BLOCK_SIZE / sizeof(u32)];
1843	static const __le32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), };
1844	u8 *tweak_bytes = (u8 *)tweak;
1845	int i;
1846
1847	/* Read the computed ciphered tweak value. */
1848	atmel_aes_read_block(dd, AES_ODATAR(0), tweak);
1849	/*
1850	 * Hardware quirk:
1851	 * the order of the ciphered tweak bytes need to be reversed before
1852	 * writing them into the ODATARx registers.
1853	 */
1854	for (i = 0; i < AES_BLOCK_SIZE/2; ++i)
1855		swap(tweak_bytes[i], tweak_bytes[AES_BLOCK_SIZE - 1 - i]);
1856
1857	/* Process the data. */
1858	atmel_aes_write_ctrl(dd, use_dma, NULL);
1859	atmel_aes_write_block(dd, AES_TWR(0), tweak);
1860	atmel_aes_write_block(dd, AES_ALPHAR(0), one);
1861	if (use_dma)
1862		return atmel_aes_dma_start(dd, req->src, req->dst,
1863					   req->cryptlen,
1864					   atmel_aes_transfer_complete);
1865
1866	return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
1867				   atmel_aes_transfer_complete);
1868}
1869
1870static int atmel_aes_xts_setkey(struct crypto_skcipher *tfm, const u8 *key,
1871				unsigned int keylen)
1872{
1873	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1874	int err;
1875
1876	err = xts_verify_key(tfm, key, keylen);
1877	if (err)
1878		return err;
1879
1880	crypto_skcipher_clear_flags(ctx->fallback_tfm, CRYPTO_TFM_REQ_MASK);
1881	crypto_skcipher_set_flags(ctx->fallback_tfm, tfm->base.crt_flags &
1882				  CRYPTO_TFM_REQ_MASK);
1883	err = crypto_skcipher_setkey(ctx->fallback_tfm, key, keylen);
1884	if (err)
1885		return err;
1886
1887	memcpy(ctx->base.key, key, keylen/2);
1888	memcpy(ctx->key2, key + keylen/2, keylen/2);
1889	ctx->base.keylen = keylen/2;
1890
1891	return 0;
1892}
1893
1894static int atmel_aes_xts_encrypt(struct skcipher_request *req)
1895{
1896	return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT);
1897}
1898
1899static int atmel_aes_xts_decrypt(struct skcipher_request *req)
1900{
1901	return atmel_aes_crypt(req, AES_FLAGS_XTS);
1902}
1903
1904static int atmel_aes_xts_init_tfm(struct crypto_skcipher *tfm)
1905{
1906	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1907	struct atmel_aes_dev *dd;
1908	const char *tfm_name = crypto_tfm_alg_name(&tfm->base);
1909
1910	dd = atmel_aes_dev_alloc(&ctx->base);
1911	if (!dd)
1912		return -ENODEV;
1913
1914	ctx->fallback_tfm = crypto_alloc_skcipher(tfm_name, 0,
1915						  CRYPTO_ALG_NEED_FALLBACK);
1916	if (IS_ERR(ctx->fallback_tfm))
1917		return PTR_ERR(ctx->fallback_tfm);
1918
1919	crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx) +
1920				    crypto_skcipher_reqsize(ctx->fallback_tfm));
1921	ctx->base.dd = dd;
1922	ctx->base.start = atmel_aes_xts_start;
1923
1924	return 0;
1925}
1926
1927static void atmel_aes_xts_exit_tfm(struct crypto_skcipher *tfm)
1928{
1929	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1930
1931	crypto_free_skcipher(ctx->fallback_tfm);
1932}
1933
1934static struct skcipher_alg aes_xts_alg = {
1935	.base.cra_name		= "xts(aes)",
1936	.base.cra_driver_name	= "atmel-xts-aes",
1937	.base.cra_blocksize	= AES_BLOCK_SIZE,
1938	.base.cra_ctxsize	= sizeof(struct atmel_aes_xts_ctx),
1939	.base.cra_flags		= CRYPTO_ALG_NEED_FALLBACK,
1940
1941	.min_keysize		= 2 * AES_MIN_KEY_SIZE,
1942	.max_keysize		= 2 * AES_MAX_KEY_SIZE,
1943	.ivsize			= AES_BLOCK_SIZE,
1944	.setkey			= atmel_aes_xts_setkey,
1945	.encrypt		= atmel_aes_xts_encrypt,
1946	.decrypt		= atmel_aes_xts_decrypt,
1947	.init			= atmel_aes_xts_init_tfm,
1948	.exit			= atmel_aes_xts_exit_tfm,
1949};
1950
1951#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
1952/* authenc aead functions */
1953
1954static int atmel_aes_authenc_start(struct atmel_aes_dev *dd);
1955static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1956				  bool is_async);
1957static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1958				      bool is_async);
1959static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd);
1960static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
1961				   bool is_async);
1962
1963static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err)
1964{
1965	struct aead_request *req = aead_request_cast(dd->areq);
1966	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1967
1968	if (err && (dd->flags & AES_FLAGS_OWN_SHA))
1969		atmel_sha_authenc_abort(&rctx->auth_req);
1970	dd->flags &= ~AES_FLAGS_OWN_SHA;
1971}
1972
1973static int atmel_aes_authenc_start(struct atmel_aes_dev *dd)
1974{
1975	struct aead_request *req = aead_request_cast(dd->areq);
1976	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1977	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1978	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1979	int err;
1980
1981	atmel_aes_set_mode(dd, &rctx->base);
1982
1983	err = atmel_aes_hw_init(dd);
1984	if (err)
1985		return atmel_aes_complete(dd, err);
1986
1987	return atmel_sha_authenc_schedule(&rctx->auth_req, ctx->auth,
1988					  atmel_aes_authenc_init, dd);
1989}
1990
1991static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1992				  bool is_async)
1993{
1994	struct aead_request *req = aead_request_cast(dd->areq);
1995	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1996
1997	if (is_async)
1998		dd->is_async = true;
1999	if (err)
2000		return atmel_aes_complete(dd, err);
2001
2002	/* If here, we've got the ownership of the SHA device. */
2003	dd->flags |= AES_FLAGS_OWN_SHA;
2004
2005	/* Configure the SHA device. */
2006	return atmel_sha_authenc_init(&rctx->auth_req,
2007				      req->src, req->assoclen,
2008				      rctx->textlen,
2009				      atmel_aes_authenc_transfer, dd);
2010}
2011
2012static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
2013				      bool is_async)
2014{
2015	struct aead_request *req = aead_request_cast(dd->areq);
2016	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2017	bool enc = atmel_aes_is_encrypt(dd);
2018	struct scatterlist *src, *dst;
2019	__be32 iv[AES_BLOCK_SIZE / sizeof(u32)];
2020	u32 emr;
2021
2022	if (is_async)
2023		dd->is_async = true;
2024	if (err)
2025		return atmel_aes_complete(dd, err);
2026
2027	/* Prepare src and dst scatter-lists to transfer cipher/plain texts. */
2028	src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen);
2029	dst = src;
2030
2031	if (req->src != req->dst)
2032		dst = scatterwalk_ffwd(rctx->dst, req->dst, req->assoclen);
2033
2034	/* Configure the AES device. */
2035	memcpy(iv, req->iv, sizeof(iv));
2036
2037	/*
2038	 * Here we always set the 2nd parameter of atmel_aes_write_ctrl() to
2039	 * 'true' even if the data transfer is actually performed by the CPU (so
2040	 * not by the DMA) because we must force the AES_MR_SMOD bitfield to the
2041	 * value AES_MR_SMOD_IDATAR0. Indeed, both AES_MR_SMOD and SHA_MR_SMOD
2042	 * must be set to *_MR_SMOD_IDATAR0.
2043	 */
2044	atmel_aes_write_ctrl(dd, true, iv);
2045	emr = AES_EMR_PLIPEN;
2046	if (!enc)
2047		emr |= AES_EMR_PLIPD;
2048	atmel_aes_write(dd, AES_EMR, emr);
2049
2050	/* Transfer data. */
2051	return atmel_aes_dma_start(dd, src, dst, rctx->textlen,
2052				   atmel_aes_authenc_digest);
2053}
2054
2055static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd)
2056{
2057	struct aead_request *req = aead_request_cast(dd->areq);
2058	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2059
2060	/* atmel_sha_authenc_final() releases the SHA device. */
2061	dd->flags &= ~AES_FLAGS_OWN_SHA;
2062	return atmel_sha_authenc_final(&rctx->auth_req,
2063				       rctx->digest, sizeof(rctx->digest),
2064				       atmel_aes_authenc_final, dd);
2065}
2066
2067static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
2068				   bool is_async)
2069{
2070	struct aead_request *req = aead_request_cast(dd->areq);
2071	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2072	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2073	bool enc = atmel_aes_is_encrypt(dd);
2074	u32 idigest[SHA512_DIGEST_SIZE / sizeof(u32)], *odigest = rctx->digest;
2075	u32 offs, authsize;
2076
2077	if (is_async)
2078		dd->is_async = true;
2079	if (err)
2080		goto complete;
2081
2082	offs = req->assoclen + rctx->textlen;
2083	authsize = crypto_aead_authsize(tfm);
2084	if (enc) {
2085		scatterwalk_map_and_copy(odigest, req->dst, offs, authsize, 1);
2086	} else {
2087		scatterwalk_map_and_copy(idigest, req->src, offs, authsize, 0);
2088		if (crypto_memneq(idigest, odigest, authsize))
2089			err = -EBADMSG;
2090	}
2091
2092complete:
2093	return atmel_aes_complete(dd, err);
2094}
2095
2096static int atmel_aes_authenc_setkey(struct crypto_aead *tfm, const u8 *key,
2097				    unsigned int keylen)
2098{
2099	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2100	struct crypto_authenc_keys keys;
2101	int err;
2102
2103	if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
2104		goto badkey;
2105
2106	if (keys.enckeylen > sizeof(ctx->base.key))
2107		goto badkey;
2108
2109	/* Save auth key. */
2110	err = atmel_sha_authenc_setkey(ctx->auth,
2111				       keys.authkey, keys.authkeylen,
2112				       crypto_aead_get_flags(tfm));
2113	if (err) {
2114		memzero_explicit(&keys, sizeof(keys));
2115		return err;
2116	}
2117
2118	/* Save enc key. */
2119	ctx->base.keylen = keys.enckeylen;
2120	memcpy(ctx->base.key, keys.enckey, keys.enckeylen);
2121
2122	memzero_explicit(&keys, sizeof(keys));
2123	return 0;
2124
2125badkey:
2126	memzero_explicit(&keys, sizeof(keys));
2127	return -EINVAL;
2128}
2129
2130static int atmel_aes_authenc_init_tfm(struct crypto_aead *tfm,
2131				      unsigned long auth_mode)
2132{
2133	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2134	unsigned int auth_reqsize = atmel_sha_authenc_get_reqsize();
2135	struct atmel_aes_dev *dd;
2136
2137	dd = atmel_aes_dev_alloc(&ctx->base);
2138	if (!dd)
2139		return -ENODEV;
2140
2141	ctx->auth = atmel_sha_authenc_spawn(auth_mode);
2142	if (IS_ERR(ctx->auth))
2143		return PTR_ERR(ctx->auth);
2144
2145	crypto_aead_set_reqsize(tfm, (sizeof(struct atmel_aes_authenc_reqctx) +
2146				      auth_reqsize));
2147	ctx->base.dd = dd;
2148	ctx->base.start = atmel_aes_authenc_start;
2149
2150	return 0;
2151}
2152
2153static int atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead *tfm)
2154{
2155	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA1);
2156}
2157
2158static int atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead *tfm)
2159{
2160	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA224);
2161}
2162
2163static int atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead *tfm)
2164{
2165	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA256);
2166}
2167
2168static int atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead *tfm)
2169{
2170	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA384);
2171}
2172
2173static int atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead *tfm)
2174{
2175	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA512);
2176}
2177
2178static void atmel_aes_authenc_exit_tfm(struct crypto_aead *tfm)
2179{
2180	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2181
2182	atmel_sha_authenc_free(ctx->auth);
2183}
2184
2185static int atmel_aes_authenc_crypt(struct aead_request *req,
2186				   unsigned long mode)
2187{
2188	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2189	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2190	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
2191	u32 authsize = crypto_aead_authsize(tfm);
2192	bool enc = (mode & AES_FLAGS_ENCRYPT);
2193
2194	/* Compute text length. */
2195	if (!enc && req->cryptlen < authsize)
2196		return -EINVAL;
2197	rctx->textlen = req->cryptlen - (enc ? 0 : authsize);
2198
2199	/*
2200	 * Currently, empty messages are not supported yet:
2201	 * the SHA auto-padding can be used only on non-empty messages.
2202	 * Hence a special case needs to be implemented for empty message.
2203	 */
2204	if (!rctx->textlen && !req->assoclen)
2205		return -EINVAL;
2206
2207	rctx->base.mode = mode;
2208	ctx->block_size = AES_BLOCK_SIZE;
2209	ctx->is_aead = true;
2210
2211	return atmel_aes_handle_queue(ctx->dd, &req->base);
2212}
2213
2214static int atmel_aes_authenc_cbc_aes_encrypt(struct aead_request *req)
2215{
2216	return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
2217}
2218
2219static int atmel_aes_authenc_cbc_aes_decrypt(struct aead_request *req)
2220{
2221	return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC);
2222}
2223
2224static struct aead_alg aes_authenc_algs[] = {
2225{
2226	.setkey		= atmel_aes_authenc_setkey,
2227	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2228	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2229	.init		= atmel_aes_authenc_hmac_sha1_init_tfm,
2230	.exit		= atmel_aes_authenc_exit_tfm,
2231	.ivsize		= AES_BLOCK_SIZE,
2232	.maxauthsize	= SHA1_DIGEST_SIZE,
2233
2234	.base = {
2235		.cra_name		= "authenc(hmac(sha1),cbc(aes))",
2236		.cra_driver_name	= "atmel-authenc-hmac-sha1-cbc-aes",
2237		.cra_blocksize		= AES_BLOCK_SIZE,
2238		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2239	},
2240},
2241{
2242	.setkey		= atmel_aes_authenc_setkey,
2243	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2244	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2245	.init		= atmel_aes_authenc_hmac_sha224_init_tfm,
2246	.exit		= atmel_aes_authenc_exit_tfm,
2247	.ivsize		= AES_BLOCK_SIZE,
2248	.maxauthsize	= SHA224_DIGEST_SIZE,
2249
2250	.base = {
2251		.cra_name		= "authenc(hmac(sha224),cbc(aes))",
2252		.cra_driver_name	= "atmel-authenc-hmac-sha224-cbc-aes",
2253		.cra_blocksize		= AES_BLOCK_SIZE,
2254		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2255	},
2256},
2257{
2258	.setkey		= atmel_aes_authenc_setkey,
2259	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2260	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2261	.init		= atmel_aes_authenc_hmac_sha256_init_tfm,
2262	.exit		= atmel_aes_authenc_exit_tfm,
2263	.ivsize		= AES_BLOCK_SIZE,
2264	.maxauthsize	= SHA256_DIGEST_SIZE,
2265
2266	.base = {
2267		.cra_name		= "authenc(hmac(sha256),cbc(aes))",
2268		.cra_driver_name	= "atmel-authenc-hmac-sha256-cbc-aes",
2269		.cra_blocksize		= AES_BLOCK_SIZE,
2270		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2271	},
2272},
2273{
2274	.setkey		= atmel_aes_authenc_setkey,
2275	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2276	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2277	.init		= atmel_aes_authenc_hmac_sha384_init_tfm,
2278	.exit		= atmel_aes_authenc_exit_tfm,
2279	.ivsize		= AES_BLOCK_SIZE,
2280	.maxauthsize	= SHA384_DIGEST_SIZE,
2281
2282	.base = {
2283		.cra_name		= "authenc(hmac(sha384),cbc(aes))",
2284		.cra_driver_name	= "atmel-authenc-hmac-sha384-cbc-aes",
2285		.cra_blocksize		= AES_BLOCK_SIZE,
2286		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2287	},
2288},
2289{
2290	.setkey		= atmel_aes_authenc_setkey,
2291	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2292	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2293	.init		= atmel_aes_authenc_hmac_sha512_init_tfm,
2294	.exit		= atmel_aes_authenc_exit_tfm,
2295	.ivsize		= AES_BLOCK_SIZE,
2296	.maxauthsize	= SHA512_DIGEST_SIZE,
2297
2298	.base = {
2299		.cra_name		= "authenc(hmac(sha512),cbc(aes))",
2300		.cra_driver_name	= "atmel-authenc-hmac-sha512-cbc-aes",
2301		.cra_blocksize		= AES_BLOCK_SIZE,
2302		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2303	},
2304},
2305};
2306#endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2307
2308/* Probe functions */
2309
2310static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
2311{
2312	dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
2313	dd->buflen = ATMEL_AES_BUFFER_SIZE;
2314	dd->buflen &= ~(AES_BLOCK_SIZE - 1);
2315
2316	if (!dd->buf) {
2317		dev_err(dd->dev, "unable to alloc pages.\n");
2318		return -ENOMEM;
2319	}
2320
2321	return 0;
2322}
2323
2324static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
2325{
2326	free_page((unsigned long)dd->buf);
2327}
2328
2329static int atmel_aes_dma_init(struct atmel_aes_dev *dd)
2330{
2331	int ret;
2332
2333	/* Try to grab 2 DMA channels */
2334	dd->src.chan = dma_request_chan(dd->dev, "tx");
2335	if (IS_ERR(dd->src.chan)) {
2336		ret = PTR_ERR(dd->src.chan);
2337		goto err_dma_in;
2338	}
2339
2340	dd->dst.chan = dma_request_chan(dd->dev, "rx");
2341	if (IS_ERR(dd->dst.chan)) {
2342		ret = PTR_ERR(dd->dst.chan);
2343		goto err_dma_out;
2344	}
2345
2346	return 0;
2347
2348err_dma_out:
2349	dma_release_channel(dd->src.chan);
2350err_dma_in:
2351	dev_err(dd->dev, "no DMA channel available\n");
2352	return ret;
2353}
2354
2355static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
2356{
2357	dma_release_channel(dd->dst.chan);
2358	dma_release_channel(dd->src.chan);
2359}
2360
2361static void atmel_aes_queue_task(unsigned long data)
2362{
2363	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2364
2365	atmel_aes_handle_queue(dd, NULL);
2366}
2367
2368static void atmel_aes_done_task(unsigned long data)
2369{
2370	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2371
2372	dd->is_async = true;
2373	(void)dd->resume(dd);
2374}
2375
2376static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
2377{
2378	struct atmel_aes_dev *aes_dd = dev_id;
2379	u32 reg;
2380
2381	reg = atmel_aes_read(aes_dd, AES_ISR);
2382	if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
2383		atmel_aes_write(aes_dd, AES_IDR, reg);
2384		if (AES_FLAGS_BUSY & aes_dd->flags)
2385			tasklet_schedule(&aes_dd->done_task);
2386		else
2387			dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
2388		return IRQ_HANDLED;
2389	}
2390
2391	return IRQ_NONE;
2392}
2393
2394static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
2395{
2396	int i;
2397
2398#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2399	if (dd->caps.has_authenc)
2400		for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++)
2401			crypto_unregister_aead(&aes_authenc_algs[i]);
2402#endif
2403
2404	if (dd->caps.has_xts)
2405		crypto_unregister_skcipher(&aes_xts_alg);
2406
2407	if (dd->caps.has_gcm)
2408		crypto_unregister_aead(&aes_gcm_alg);
2409
2410	if (dd->caps.has_cfb64)
2411		crypto_unregister_skcipher(&aes_cfb64_alg);
2412
2413	for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
2414		crypto_unregister_skcipher(&aes_algs[i]);
2415}
2416
2417static void atmel_aes_crypto_alg_init(struct crypto_alg *alg)
2418{
2419	alg->cra_flags |= CRYPTO_ALG_ASYNC;
2420	alg->cra_alignmask = 0xf;
2421	alg->cra_priority = ATMEL_AES_PRIORITY;
2422	alg->cra_module = THIS_MODULE;
2423}
2424
2425static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
2426{
2427	int err, i, j;
2428
2429	for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
2430		atmel_aes_crypto_alg_init(&aes_algs[i].base);
2431
2432		err = crypto_register_skcipher(&aes_algs[i]);
2433		if (err)
2434			goto err_aes_algs;
2435	}
2436
2437	if (dd->caps.has_cfb64) {
2438		atmel_aes_crypto_alg_init(&aes_cfb64_alg.base);
2439
2440		err = crypto_register_skcipher(&aes_cfb64_alg);
2441		if (err)
2442			goto err_aes_cfb64_alg;
2443	}
2444
2445	if (dd->caps.has_gcm) {
2446		atmel_aes_crypto_alg_init(&aes_gcm_alg.base);
2447
2448		err = crypto_register_aead(&aes_gcm_alg);
2449		if (err)
2450			goto err_aes_gcm_alg;
2451	}
2452
2453	if (dd->caps.has_xts) {
2454		atmel_aes_crypto_alg_init(&aes_xts_alg.base);
2455
2456		err = crypto_register_skcipher(&aes_xts_alg);
2457		if (err)
2458			goto err_aes_xts_alg;
2459	}
2460
2461#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2462	if (dd->caps.has_authenc) {
2463		for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) {
2464			atmel_aes_crypto_alg_init(&aes_authenc_algs[i].base);
2465
2466			err = crypto_register_aead(&aes_authenc_algs[i]);
2467			if (err)
2468				goto err_aes_authenc_alg;
2469		}
2470	}
2471#endif
2472
2473	return 0;
2474
2475#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2476	/* i = ARRAY_SIZE(aes_authenc_algs); */
2477err_aes_authenc_alg:
2478	for (j = 0; j < i; j++)
2479		crypto_unregister_aead(&aes_authenc_algs[j]);
2480	crypto_unregister_skcipher(&aes_xts_alg);
2481#endif
2482err_aes_xts_alg:
2483	crypto_unregister_aead(&aes_gcm_alg);
2484err_aes_gcm_alg:
2485	crypto_unregister_skcipher(&aes_cfb64_alg);
2486err_aes_cfb64_alg:
2487	i = ARRAY_SIZE(aes_algs);
2488err_aes_algs:
2489	for (j = 0; j < i; j++)
2490		crypto_unregister_skcipher(&aes_algs[j]);
2491
2492	return err;
2493}
2494
2495static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
2496{
2497	dd->caps.has_dualbuff = 0;
2498	dd->caps.has_cfb64 = 0;
2499	dd->caps.has_gcm = 0;
2500	dd->caps.has_xts = 0;
2501	dd->caps.has_authenc = 0;
2502	dd->caps.max_burst_size = 1;
2503
2504	/* keep only major version number */
2505	switch (dd->hw_version & 0xff0) {
2506	case 0x700:
2507	case 0x600:
2508	case 0x500:
2509		dd->caps.has_dualbuff = 1;
2510		dd->caps.has_cfb64 = 1;
2511		dd->caps.has_gcm = 1;
2512		dd->caps.has_xts = 1;
2513		dd->caps.has_authenc = 1;
2514		dd->caps.max_burst_size = 4;
2515		break;
2516	case 0x200:
2517		dd->caps.has_dualbuff = 1;
2518		dd->caps.has_cfb64 = 1;
2519		dd->caps.has_gcm = 1;
2520		dd->caps.max_burst_size = 4;
2521		break;
2522	case 0x130:
2523		dd->caps.has_dualbuff = 1;
2524		dd->caps.has_cfb64 = 1;
2525		dd->caps.max_burst_size = 4;
2526		break;
2527	case 0x120:
2528		break;
2529	default:
2530		dev_warn(dd->dev,
2531				"Unmanaged aes version, set minimum capabilities\n");
2532		break;
2533	}
2534}
2535
2536static const struct of_device_id atmel_aes_dt_ids[] = {
2537	{ .compatible = "atmel,at91sam9g46-aes" },
2538	{ /* sentinel */ }
2539};
2540MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
2541
2542static int atmel_aes_probe(struct platform_device *pdev)
2543{
2544	struct atmel_aes_dev *aes_dd;
2545	struct device *dev = &pdev->dev;
2546	struct resource *aes_res;
2547	int err;
2548
2549	aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
2550	if (!aes_dd)
2551		return -ENOMEM;
2552
2553	aes_dd->dev = dev;
2554
2555	platform_set_drvdata(pdev, aes_dd);
2556
2557	INIT_LIST_HEAD(&aes_dd->list);
2558	spin_lock_init(&aes_dd->lock);
2559
2560	tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
2561					(unsigned long)aes_dd);
2562	tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
2563					(unsigned long)aes_dd);
2564
2565	crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
2566
2567	aes_dd->io_base = devm_platform_get_and_ioremap_resource(pdev, 0, &aes_res);
2568	if (IS_ERR(aes_dd->io_base)) {
2569		err = PTR_ERR(aes_dd->io_base);
2570		goto err_tasklet_kill;
2571	}
2572	aes_dd->phys_base = aes_res->start;
2573
2574	/* Get the IRQ */
2575	aes_dd->irq = platform_get_irq(pdev,  0);
2576	if (aes_dd->irq < 0) {
2577		err = aes_dd->irq;
2578		goto err_tasklet_kill;
2579	}
2580
2581	err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
2582			       IRQF_SHARED, "atmel-aes", aes_dd);
2583	if (err) {
2584		dev_err(dev, "unable to request aes irq.\n");
2585		goto err_tasklet_kill;
2586	}
2587
2588	/* Initializing the clock */
2589	aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
2590	if (IS_ERR(aes_dd->iclk)) {
2591		dev_err(dev, "clock initialization failed.\n");
2592		err = PTR_ERR(aes_dd->iclk);
2593		goto err_tasklet_kill;
2594	}
2595
2596	err = clk_prepare(aes_dd->iclk);
2597	if (err)
2598		goto err_tasklet_kill;
2599
2600	err = atmel_aes_hw_version_init(aes_dd);
2601	if (err)
2602		goto err_iclk_unprepare;
2603
2604	atmel_aes_get_cap(aes_dd);
2605
2606#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2607	if (aes_dd->caps.has_authenc && !atmel_sha_authenc_is_ready()) {
2608		err = -EPROBE_DEFER;
2609		goto err_iclk_unprepare;
2610	}
2611#endif
2612
2613	err = atmel_aes_buff_init(aes_dd);
2614	if (err)
2615		goto err_iclk_unprepare;
2616
2617	err = atmel_aes_dma_init(aes_dd);
2618	if (err)
2619		goto err_buff_cleanup;
2620
2621	spin_lock(&atmel_aes.lock);
2622	list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
2623	spin_unlock(&atmel_aes.lock);
2624
2625	err = atmel_aes_register_algs(aes_dd);
2626	if (err)
2627		goto err_algs;
2628
2629	dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
2630			dma_chan_name(aes_dd->src.chan),
2631			dma_chan_name(aes_dd->dst.chan));
2632
2633	return 0;
2634
2635err_algs:
2636	spin_lock(&atmel_aes.lock);
2637	list_del(&aes_dd->list);
2638	spin_unlock(&atmel_aes.lock);
2639	atmel_aes_dma_cleanup(aes_dd);
2640err_buff_cleanup:
2641	atmel_aes_buff_cleanup(aes_dd);
2642err_iclk_unprepare:
2643	clk_unprepare(aes_dd->iclk);
2644err_tasklet_kill:
2645	tasklet_kill(&aes_dd->done_task);
2646	tasklet_kill(&aes_dd->queue_task);
2647
2648	return err;
2649}
2650
2651static int atmel_aes_remove(struct platform_device *pdev)
2652{
2653	struct atmel_aes_dev *aes_dd;
2654
2655	aes_dd = platform_get_drvdata(pdev);
2656
2657	spin_lock(&atmel_aes.lock);
2658	list_del(&aes_dd->list);
2659	spin_unlock(&atmel_aes.lock);
2660
2661	atmel_aes_unregister_algs(aes_dd);
2662
2663	tasklet_kill(&aes_dd->done_task);
2664	tasklet_kill(&aes_dd->queue_task);
2665
2666	atmel_aes_dma_cleanup(aes_dd);
2667	atmel_aes_buff_cleanup(aes_dd);
2668
2669	clk_unprepare(aes_dd->iclk);
2670
2671	return 0;
2672}
2673
2674static struct platform_driver atmel_aes_driver = {
2675	.probe		= atmel_aes_probe,
2676	.remove		= atmel_aes_remove,
2677	.driver		= {
2678		.name	= "atmel_aes",
2679		.of_match_table = atmel_aes_dt_ids,
2680	},
2681};
2682
2683module_platform_driver(atmel_aes_driver);
2684
2685MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
2686MODULE_LICENSE("GPL v2");
2687MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");
2688