162306a36Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-or-later
262306a36Sopenharmony_ci/*
362306a36Sopenharmony_ci * sun4i-ss-hash.c - hardware cryptographic accelerator for Allwinner A20 SoC
462306a36Sopenharmony_ci *
562306a36Sopenharmony_ci * Copyright (C) 2013-2015 Corentin LABBE <clabbe.montjoie@gmail.com>
662306a36Sopenharmony_ci *
762306a36Sopenharmony_ci * This file add support for MD5 and SHA1.
862306a36Sopenharmony_ci *
962306a36Sopenharmony_ci * You could find the datasheet in Documentation/arch/arm/sunxi.rst
1062306a36Sopenharmony_ci */
1162306a36Sopenharmony_ci#include "sun4i-ss.h"
1262306a36Sopenharmony_ci#include <asm/unaligned.h>
1362306a36Sopenharmony_ci#include <linux/scatterlist.h>
1462306a36Sopenharmony_ci
1562306a36Sopenharmony_ci/* This is a totally arbitrary value */
1662306a36Sopenharmony_ci#define SS_TIMEOUT 100
1762306a36Sopenharmony_ci
1862306a36Sopenharmony_ciint sun4i_hash_crainit(struct crypto_tfm *tfm)
1962306a36Sopenharmony_ci{
2062306a36Sopenharmony_ci	struct sun4i_tfm_ctx *op = crypto_tfm_ctx(tfm);
2162306a36Sopenharmony_ci	struct ahash_alg *alg = __crypto_ahash_alg(tfm->__crt_alg);
2262306a36Sopenharmony_ci	struct sun4i_ss_alg_template *algt;
2362306a36Sopenharmony_ci	int err;
2462306a36Sopenharmony_ci
2562306a36Sopenharmony_ci	memset(op, 0, sizeof(struct sun4i_tfm_ctx));
2662306a36Sopenharmony_ci
2762306a36Sopenharmony_ci	algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash);
2862306a36Sopenharmony_ci	op->ss = algt->ss;
2962306a36Sopenharmony_ci
3062306a36Sopenharmony_ci	err = pm_runtime_resume_and_get(op->ss->dev);
3162306a36Sopenharmony_ci	if (err < 0)
3262306a36Sopenharmony_ci		return err;
3362306a36Sopenharmony_ci
3462306a36Sopenharmony_ci	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
3562306a36Sopenharmony_ci				 sizeof(struct sun4i_req_ctx));
3662306a36Sopenharmony_ci	return 0;
3762306a36Sopenharmony_ci}
3862306a36Sopenharmony_ci
3962306a36Sopenharmony_civoid sun4i_hash_craexit(struct crypto_tfm *tfm)
4062306a36Sopenharmony_ci{
4162306a36Sopenharmony_ci	struct sun4i_tfm_ctx *op = crypto_tfm_ctx(tfm);
4262306a36Sopenharmony_ci
4362306a36Sopenharmony_ci	pm_runtime_put(op->ss->dev);
4462306a36Sopenharmony_ci}
4562306a36Sopenharmony_ci
4662306a36Sopenharmony_ci/* sun4i_hash_init: initialize request context */
4762306a36Sopenharmony_ciint sun4i_hash_init(struct ahash_request *areq)
4862306a36Sopenharmony_ci{
4962306a36Sopenharmony_ci	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
5062306a36Sopenharmony_ci	struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
5162306a36Sopenharmony_ci	struct ahash_alg *alg = __crypto_ahash_alg(tfm->base.__crt_alg);
5262306a36Sopenharmony_ci	struct sun4i_ss_alg_template *algt;
5362306a36Sopenharmony_ci
5462306a36Sopenharmony_ci	memset(op, 0, sizeof(struct sun4i_req_ctx));
5562306a36Sopenharmony_ci
5662306a36Sopenharmony_ci	algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash);
5762306a36Sopenharmony_ci	op->mode = algt->mode;
5862306a36Sopenharmony_ci
5962306a36Sopenharmony_ci	return 0;
6062306a36Sopenharmony_ci}
6162306a36Sopenharmony_ci
6262306a36Sopenharmony_ciint sun4i_hash_export_md5(struct ahash_request *areq, void *out)
6362306a36Sopenharmony_ci{
6462306a36Sopenharmony_ci	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
6562306a36Sopenharmony_ci	struct md5_state *octx = out;
6662306a36Sopenharmony_ci	int i;
6762306a36Sopenharmony_ci
6862306a36Sopenharmony_ci	octx->byte_count = op->byte_count + op->len;
6962306a36Sopenharmony_ci
7062306a36Sopenharmony_ci	memcpy(octx->block, op->buf, op->len);
7162306a36Sopenharmony_ci
7262306a36Sopenharmony_ci	if (op->byte_count) {
7362306a36Sopenharmony_ci		for (i = 0; i < 4; i++)
7462306a36Sopenharmony_ci			octx->hash[i] = op->hash[i];
7562306a36Sopenharmony_ci	} else {
7662306a36Sopenharmony_ci		octx->hash[0] = SHA1_H0;
7762306a36Sopenharmony_ci		octx->hash[1] = SHA1_H1;
7862306a36Sopenharmony_ci		octx->hash[2] = SHA1_H2;
7962306a36Sopenharmony_ci		octx->hash[3] = SHA1_H3;
8062306a36Sopenharmony_ci	}
8162306a36Sopenharmony_ci
8262306a36Sopenharmony_ci	return 0;
8362306a36Sopenharmony_ci}
8462306a36Sopenharmony_ci
8562306a36Sopenharmony_ciint sun4i_hash_import_md5(struct ahash_request *areq, const void *in)
8662306a36Sopenharmony_ci{
8762306a36Sopenharmony_ci	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
8862306a36Sopenharmony_ci	const struct md5_state *ictx = in;
8962306a36Sopenharmony_ci	int i;
9062306a36Sopenharmony_ci
9162306a36Sopenharmony_ci	sun4i_hash_init(areq);
9262306a36Sopenharmony_ci
9362306a36Sopenharmony_ci	op->byte_count = ictx->byte_count & ~0x3F;
9462306a36Sopenharmony_ci	op->len = ictx->byte_count & 0x3F;
9562306a36Sopenharmony_ci
9662306a36Sopenharmony_ci	memcpy(op->buf, ictx->block, op->len);
9762306a36Sopenharmony_ci
9862306a36Sopenharmony_ci	for (i = 0; i < 4; i++)
9962306a36Sopenharmony_ci		op->hash[i] = ictx->hash[i];
10062306a36Sopenharmony_ci
10162306a36Sopenharmony_ci	return 0;
10262306a36Sopenharmony_ci}
10362306a36Sopenharmony_ci
10462306a36Sopenharmony_ciint sun4i_hash_export_sha1(struct ahash_request *areq, void *out)
10562306a36Sopenharmony_ci{
10662306a36Sopenharmony_ci	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
10762306a36Sopenharmony_ci	struct sha1_state *octx = out;
10862306a36Sopenharmony_ci	int i;
10962306a36Sopenharmony_ci
11062306a36Sopenharmony_ci	octx->count = op->byte_count + op->len;
11162306a36Sopenharmony_ci
11262306a36Sopenharmony_ci	memcpy(octx->buffer, op->buf, op->len);
11362306a36Sopenharmony_ci
11462306a36Sopenharmony_ci	if (op->byte_count) {
11562306a36Sopenharmony_ci		for (i = 0; i < 5; i++)
11662306a36Sopenharmony_ci			octx->state[i] = op->hash[i];
11762306a36Sopenharmony_ci	} else {
11862306a36Sopenharmony_ci		octx->state[0] = SHA1_H0;
11962306a36Sopenharmony_ci		octx->state[1] = SHA1_H1;
12062306a36Sopenharmony_ci		octx->state[2] = SHA1_H2;
12162306a36Sopenharmony_ci		octx->state[3] = SHA1_H3;
12262306a36Sopenharmony_ci		octx->state[4] = SHA1_H4;
12362306a36Sopenharmony_ci	}
12462306a36Sopenharmony_ci
12562306a36Sopenharmony_ci	return 0;
12662306a36Sopenharmony_ci}
12762306a36Sopenharmony_ci
12862306a36Sopenharmony_ciint sun4i_hash_import_sha1(struct ahash_request *areq, const void *in)
12962306a36Sopenharmony_ci{
13062306a36Sopenharmony_ci	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
13162306a36Sopenharmony_ci	const struct sha1_state *ictx = in;
13262306a36Sopenharmony_ci	int i;
13362306a36Sopenharmony_ci
13462306a36Sopenharmony_ci	sun4i_hash_init(areq);
13562306a36Sopenharmony_ci
13662306a36Sopenharmony_ci	op->byte_count = ictx->count & ~0x3F;
13762306a36Sopenharmony_ci	op->len = ictx->count & 0x3F;
13862306a36Sopenharmony_ci
13962306a36Sopenharmony_ci	memcpy(op->buf, ictx->buffer, op->len);
14062306a36Sopenharmony_ci
14162306a36Sopenharmony_ci	for (i = 0; i < 5; i++)
14262306a36Sopenharmony_ci		op->hash[i] = ictx->state[i];
14362306a36Sopenharmony_ci
14462306a36Sopenharmony_ci	return 0;
14562306a36Sopenharmony_ci}
14662306a36Sopenharmony_ci
14762306a36Sopenharmony_ci#define SS_HASH_UPDATE 1
14862306a36Sopenharmony_ci#define SS_HASH_FINAL 2
14962306a36Sopenharmony_ci
15062306a36Sopenharmony_ci/*
15162306a36Sopenharmony_ci * sun4i_hash_update: update hash engine
15262306a36Sopenharmony_ci *
15362306a36Sopenharmony_ci * Could be used for both SHA1 and MD5
15462306a36Sopenharmony_ci * Write data by step of 32bits and put then in the SS.
15562306a36Sopenharmony_ci *
15662306a36Sopenharmony_ci * Since we cannot leave partial data and hash state in the engine,
15762306a36Sopenharmony_ci * we need to get the hash state at the end of this function.
15862306a36Sopenharmony_ci * We can get the hash state every 64 bytes
15962306a36Sopenharmony_ci *
16062306a36Sopenharmony_ci * So the first work is to get the number of bytes to write to SS modulo 64
16162306a36Sopenharmony_ci * The extra bytes will go to a temporary buffer op->buf storing op->len bytes
16262306a36Sopenharmony_ci *
16362306a36Sopenharmony_ci * So at the begin of update()
16462306a36Sopenharmony_ci * if op->len + areq->nbytes < 64
16562306a36Sopenharmony_ci * => all data will be written to wait buffer (op->buf) and end=0
16662306a36Sopenharmony_ci * if not, write all data from op->buf to the device and position end to
16762306a36Sopenharmony_ci * complete to 64bytes
16862306a36Sopenharmony_ci *
16962306a36Sopenharmony_ci * example 1:
17062306a36Sopenharmony_ci * update1 60o => op->len=60
17162306a36Sopenharmony_ci * update2 60o => need one more word to have 64 bytes
17262306a36Sopenharmony_ci * end=4
17362306a36Sopenharmony_ci * so write all data from op->buf and one word of SGs
17462306a36Sopenharmony_ci * write remaining data in op->buf
17562306a36Sopenharmony_ci * final state op->len=56
17662306a36Sopenharmony_ci */
17762306a36Sopenharmony_cistatic int sun4i_hash(struct ahash_request *areq)
17862306a36Sopenharmony_ci{
17962306a36Sopenharmony_ci	/*
18062306a36Sopenharmony_ci	 * i is the total bytes read from SGs, to be compared to areq->nbytes
18162306a36Sopenharmony_ci	 * i is important because we cannot rely on SG length since the sum of
18262306a36Sopenharmony_ci	 * SG->length could be greater than areq->nbytes
18362306a36Sopenharmony_ci	 *
18462306a36Sopenharmony_ci	 * end is the position when we need to stop writing to the device,
18562306a36Sopenharmony_ci	 * to be compared to i
18662306a36Sopenharmony_ci	 *
18762306a36Sopenharmony_ci	 * in_i: advancement in the current SG
18862306a36Sopenharmony_ci	 */
18962306a36Sopenharmony_ci	unsigned int i = 0, end, fill, min_fill, nwait, nbw = 0, j = 0, todo;
19062306a36Sopenharmony_ci	unsigned int in_i = 0;
19162306a36Sopenharmony_ci	u32 spaces, rx_cnt = SS_RX_DEFAULT, bf[32] = {0}, v, ivmode = 0;
19262306a36Sopenharmony_ci	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
19362306a36Sopenharmony_ci	struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
19462306a36Sopenharmony_ci	struct ahash_alg *alg = __crypto_ahash_alg(tfm->base.__crt_alg);
19562306a36Sopenharmony_ci	struct sun4i_tfm_ctx *tfmctx = crypto_ahash_ctx(tfm);
19662306a36Sopenharmony_ci	struct sun4i_ss_ctx *ss = tfmctx->ss;
19762306a36Sopenharmony_ci	struct sun4i_ss_alg_template *algt;
19862306a36Sopenharmony_ci	struct scatterlist *in_sg = areq->src;
19962306a36Sopenharmony_ci	struct sg_mapping_iter mi;
20062306a36Sopenharmony_ci	int in_r, err = 0;
20162306a36Sopenharmony_ci	size_t copied = 0;
20262306a36Sopenharmony_ci	u32 wb = 0;
20362306a36Sopenharmony_ci
20462306a36Sopenharmony_ci	dev_dbg(ss->dev, "%s %s bc=%llu len=%u mode=%x wl=%u h0=%0x",
20562306a36Sopenharmony_ci		__func__, crypto_tfm_alg_name(areq->base.tfm),
20662306a36Sopenharmony_ci		op->byte_count, areq->nbytes, op->mode,
20762306a36Sopenharmony_ci		op->len, op->hash[0]);
20862306a36Sopenharmony_ci
20962306a36Sopenharmony_ci	if (unlikely(!areq->nbytes) && !(op->flags & SS_HASH_FINAL))
21062306a36Sopenharmony_ci		return 0;
21162306a36Sopenharmony_ci
21262306a36Sopenharmony_ci	/* protect against overflow */
21362306a36Sopenharmony_ci	if (unlikely(areq->nbytes > UINT_MAX - op->len)) {
21462306a36Sopenharmony_ci		dev_err(ss->dev, "Cannot process too large request\n");
21562306a36Sopenharmony_ci		return -EINVAL;
21662306a36Sopenharmony_ci	}
21762306a36Sopenharmony_ci
21862306a36Sopenharmony_ci	if (op->len + areq->nbytes < 64 && !(op->flags & SS_HASH_FINAL)) {
21962306a36Sopenharmony_ci		/* linearize data to op->buf */
22062306a36Sopenharmony_ci		copied = sg_pcopy_to_buffer(areq->src, sg_nents(areq->src),
22162306a36Sopenharmony_ci					    op->buf + op->len, areq->nbytes, 0);
22262306a36Sopenharmony_ci		op->len += copied;
22362306a36Sopenharmony_ci		return 0;
22462306a36Sopenharmony_ci	}
22562306a36Sopenharmony_ci
22662306a36Sopenharmony_ci	spin_lock_bh(&ss->slock);
22762306a36Sopenharmony_ci
22862306a36Sopenharmony_ci	/*
22962306a36Sopenharmony_ci	 * if some data have been processed before,
23062306a36Sopenharmony_ci	 * we need to restore the partial hash state
23162306a36Sopenharmony_ci	 */
23262306a36Sopenharmony_ci	if (op->byte_count) {
23362306a36Sopenharmony_ci		ivmode = SS_IV_ARBITRARY;
23462306a36Sopenharmony_ci		for (i = 0; i < crypto_ahash_digestsize(tfm) / 4; i++)
23562306a36Sopenharmony_ci			writel(op->hash[i], ss->base + SS_IV0 + i * 4);
23662306a36Sopenharmony_ci	}
23762306a36Sopenharmony_ci	/* Enable the device */
23862306a36Sopenharmony_ci	writel(op->mode | SS_ENABLED | ivmode, ss->base + SS_CTL);
23962306a36Sopenharmony_ci
24062306a36Sopenharmony_ci	if (!(op->flags & SS_HASH_UPDATE))
24162306a36Sopenharmony_ci		goto hash_final;
24262306a36Sopenharmony_ci
24362306a36Sopenharmony_ci	/* start of handling data */
24462306a36Sopenharmony_ci	if (!(op->flags & SS_HASH_FINAL)) {
24562306a36Sopenharmony_ci		end = ((areq->nbytes + op->len) / 64) * 64 - op->len;
24662306a36Sopenharmony_ci
24762306a36Sopenharmony_ci		if (end > areq->nbytes || areq->nbytes - end > 63) {
24862306a36Sopenharmony_ci			dev_err(ss->dev, "ERROR: Bound error %u %u\n",
24962306a36Sopenharmony_ci				end, areq->nbytes);
25062306a36Sopenharmony_ci			err = -EINVAL;
25162306a36Sopenharmony_ci			goto release_ss;
25262306a36Sopenharmony_ci		}
25362306a36Sopenharmony_ci	} else {
25462306a36Sopenharmony_ci		/* Since we have the flag final, we can go up to modulo 4 */
25562306a36Sopenharmony_ci		if (areq->nbytes < 4)
25662306a36Sopenharmony_ci			end = 0;
25762306a36Sopenharmony_ci		else
25862306a36Sopenharmony_ci			end = ((areq->nbytes + op->len) / 4) * 4 - op->len;
25962306a36Sopenharmony_ci	}
26062306a36Sopenharmony_ci
26162306a36Sopenharmony_ci	/* TODO if SGlen % 4 and !op->len then DMA */
26262306a36Sopenharmony_ci	i = 1;
26362306a36Sopenharmony_ci	while (in_sg && i == 1) {
26462306a36Sopenharmony_ci		if (in_sg->length % 4)
26562306a36Sopenharmony_ci			i = 0;
26662306a36Sopenharmony_ci		in_sg = sg_next(in_sg);
26762306a36Sopenharmony_ci	}
26862306a36Sopenharmony_ci	if (i == 1 && !op->len && areq->nbytes)
26962306a36Sopenharmony_ci		dev_dbg(ss->dev, "We can DMA\n");
27062306a36Sopenharmony_ci
27162306a36Sopenharmony_ci	i = 0;
27262306a36Sopenharmony_ci	sg_miter_start(&mi, areq->src, sg_nents(areq->src),
27362306a36Sopenharmony_ci		       SG_MITER_FROM_SG | SG_MITER_ATOMIC);
27462306a36Sopenharmony_ci	sg_miter_next(&mi);
27562306a36Sopenharmony_ci	in_i = 0;
27662306a36Sopenharmony_ci
27762306a36Sopenharmony_ci	do {
27862306a36Sopenharmony_ci		/*
27962306a36Sopenharmony_ci		 * we need to linearize in two case:
28062306a36Sopenharmony_ci		 * - the buffer is already used
28162306a36Sopenharmony_ci		 * - the SG does not have enough byte remaining ( < 4)
28262306a36Sopenharmony_ci		 */
28362306a36Sopenharmony_ci		if (op->len || (mi.length - in_i) < 4) {
28462306a36Sopenharmony_ci			/*
28562306a36Sopenharmony_ci			 * if we have entered here we have two reason to stop
28662306a36Sopenharmony_ci			 * - the buffer is full
28762306a36Sopenharmony_ci			 * - reach the end
28862306a36Sopenharmony_ci			 */
28962306a36Sopenharmony_ci			while (op->len < 64 && i < end) {
29062306a36Sopenharmony_ci				/* how many bytes we can read from current SG */
29162306a36Sopenharmony_ci				in_r = min(end - i, 64 - op->len);
29262306a36Sopenharmony_ci				in_r = min_t(size_t, mi.length - in_i, in_r);
29362306a36Sopenharmony_ci				memcpy(op->buf + op->len, mi.addr + in_i, in_r);
29462306a36Sopenharmony_ci				op->len += in_r;
29562306a36Sopenharmony_ci				i += in_r;
29662306a36Sopenharmony_ci				in_i += in_r;
29762306a36Sopenharmony_ci				if (in_i == mi.length) {
29862306a36Sopenharmony_ci					sg_miter_next(&mi);
29962306a36Sopenharmony_ci					in_i = 0;
30062306a36Sopenharmony_ci				}
30162306a36Sopenharmony_ci			}
30262306a36Sopenharmony_ci			if (op->len > 3 && !(op->len % 4)) {
30362306a36Sopenharmony_ci				/* write buf to the device */
30462306a36Sopenharmony_ci				writesl(ss->base + SS_RXFIFO, op->buf,
30562306a36Sopenharmony_ci					op->len / 4);
30662306a36Sopenharmony_ci				op->byte_count += op->len;
30762306a36Sopenharmony_ci				op->len = 0;
30862306a36Sopenharmony_ci			}
30962306a36Sopenharmony_ci		}
31062306a36Sopenharmony_ci		if (mi.length - in_i > 3 && i < end) {
31162306a36Sopenharmony_ci			/* how many bytes we can read from current SG */
31262306a36Sopenharmony_ci			in_r = min_t(size_t, mi.length - in_i, areq->nbytes - i);
31362306a36Sopenharmony_ci			in_r = min_t(size_t, ((mi.length - in_i) / 4) * 4, in_r);
31462306a36Sopenharmony_ci			/* how many bytes we can write in the device*/
31562306a36Sopenharmony_ci			todo = min3((u32)(end - i) / 4, rx_cnt, (u32)in_r / 4);
31662306a36Sopenharmony_ci			writesl(ss->base + SS_RXFIFO, mi.addr + in_i, todo);
31762306a36Sopenharmony_ci			op->byte_count += todo * 4;
31862306a36Sopenharmony_ci			i += todo * 4;
31962306a36Sopenharmony_ci			in_i += todo * 4;
32062306a36Sopenharmony_ci			rx_cnt -= todo;
32162306a36Sopenharmony_ci			if (!rx_cnt) {
32262306a36Sopenharmony_ci				spaces = readl(ss->base + SS_FCSR);
32362306a36Sopenharmony_ci				rx_cnt = SS_RXFIFO_SPACES(spaces);
32462306a36Sopenharmony_ci			}
32562306a36Sopenharmony_ci			if (in_i == mi.length) {
32662306a36Sopenharmony_ci				sg_miter_next(&mi);
32762306a36Sopenharmony_ci				in_i = 0;
32862306a36Sopenharmony_ci			}
32962306a36Sopenharmony_ci		}
33062306a36Sopenharmony_ci	} while (i < end);
33162306a36Sopenharmony_ci
33262306a36Sopenharmony_ci	/*
33362306a36Sopenharmony_ci	 * Now we have written to the device all that we can,
33462306a36Sopenharmony_ci	 * store the remaining bytes in op->buf
33562306a36Sopenharmony_ci	 */
33662306a36Sopenharmony_ci	if ((areq->nbytes - i) < 64) {
33762306a36Sopenharmony_ci		while (i < areq->nbytes && in_i < mi.length && op->len < 64) {
33862306a36Sopenharmony_ci			/* how many bytes we can read from current SG */
33962306a36Sopenharmony_ci			in_r = min(areq->nbytes - i, 64 - op->len);
34062306a36Sopenharmony_ci			in_r = min_t(size_t, mi.length - in_i, in_r);
34162306a36Sopenharmony_ci			memcpy(op->buf + op->len, mi.addr + in_i, in_r);
34262306a36Sopenharmony_ci			op->len += in_r;
34362306a36Sopenharmony_ci			i += in_r;
34462306a36Sopenharmony_ci			in_i += in_r;
34562306a36Sopenharmony_ci			if (in_i == mi.length) {
34662306a36Sopenharmony_ci				sg_miter_next(&mi);
34762306a36Sopenharmony_ci				in_i = 0;
34862306a36Sopenharmony_ci			}
34962306a36Sopenharmony_ci		}
35062306a36Sopenharmony_ci	}
35162306a36Sopenharmony_ci
35262306a36Sopenharmony_ci	sg_miter_stop(&mi);
35362306a36Sopenharmony_ci
35462306a36Sopenharmony_ci	/*
35562306a36Sopenharmony_ci	 * End of data process
35662306a36Sopenharmony_ci	 * Now if we have the flag final go to finalize part
35762306a36Sopenharmony_ci	 * If not, store the partial hash
35862306a36Sopenharmony_ci	 */
35962306a36Sopenharmony_ci	if (op->flags & SS_HASH_FINAL)
36062306a36Sopenharmony_ci		goto hash_final;
36162306a36Sopenharmony_ci
36262306a36Sopenharmony_ci	writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL);
36362306a36Sopenharmony_ci	i = 0;
36462306a36Sopenharmony_ci	do {
36562306a36Sopenharmony_ci		v = readl(ss->base + SS_CTL);
36662306a36Sopenharmony_ci		i++;
36762306a36Sopenharmony_ci	} while (i < SS_TIMEOUT && (v & SS_DATA_END));
36862306a36Sopenharmony_ci	if (unlikely(i >= SS_TIMEOUT)) {
36962306a36Sopenharmony_ci		dev_err_ratelimited(ss->dev,
37062306a36Sopenharmony_ci				    "ERROR: hash end timeout %d>%d ctl=%x len=%u\n",
37162306a36Sopenharmony_ci				    i, SS_TIMEOUT, v, areq->nbytes);
37262306a36Sopenharmony_ci		err = -EIO;
37362306a36Sopenharmony_ci		goto release_ss;
37462306a36Sopenharmony_ci	}
37562306a36Sopenharmony_ci
37662306a36Sopenharmony_ci	/*
37762306a36Sopenharmony_ci	 * The datasheet isn't very clear about when to retrieve the digest. The
37862306a36Sopenharmony_ci	 * bit SS_DATA_END is cleared when the engine has processed the data and
37962306a36Sopenharmony_ci	 * when the digest is computed *but* it doesn't mean the digest is
38062306a36Sopenharmony_ci	 * available in the digest registers. Hence the delay to be sure we can
38162306a36Sopenharmony_ci	 * read it.
38262306a36Sopenharmony_ci	 */
38362306a36Sopenharmony_ci	ndelay(1);
38462306a36Sopenharmony_ci
38562306a36Sopenharmony_ci	for (i = 0; i < crypto_ahash_digestsize(tfm) / 4; i++)
38662306a36Sopenharmony_ci		op->hash[i] = readl(ss->base + SS_MD0 + i * 4);
38762306a36Sopenharmony_ci
38862306a36Sopenharmony_ci	goto release_ss;
38962306a36Sopenharmony_ci
39062306a36Sopenharmony_ci/*
39162306a36Sopenharmony_ci * hash_final: finalize hashing operation
39262306a36Sopenharmony_ci *
39362306a36Sopenharmony_ci * If we have some remaining bytes, we write them.
39462306a36Sopenharmony_ci * Then ask the SS for finalizing the hashing operation
39562306a36Sopenharmony_ci *
39662306a36Sopenharmony_ci * I do not check RX FIFO size in this function since the size is 32
39762306a36Sopenharmony_ci * after each enabling and this function neither write more than 32 words.
39862306a36Sopenharmony_ci * If we come from the update part, we cannot have more than
39962306a36Sopenharmony_ci * 3 remaining bytes to write and SS is fast enough to not care about it.
40062306a36Sopenharmony_ci */
40162306a36Sopenharmony_ci
40262306a36Sopenharmony_cihash_final:
40362306a36Sopenharmony_ci	if (IS_ENABLED(CONFIG_CRYPTO_DEV_SUN4I_SS_DEBUG)) {
40462306a36Sopenharmony_ci		algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash);
40562306a36Sopenharmony_ci		algt->stat_req++;
40662306a36Sopenharmony_ci	}
40762306a36Sopenharmony_ci
40862306a36Sopenharmony_ci	/* write the remaining words of the wait buffer */
40962306a36Sopenharmony_ci	if (op->len) {
41062306a36Sopenharmony_ci		nwait = op->len / 4;
41162306a36Sopenharmony_ci		if (nwait) {
41262306a36Sopenharmony_ci			writesl(ss->base + SS_RXFIFO, op->buf, nwait);
41362306a36Sopenharmony_ci			op->byte_count += 4 * nwait;
41462306a36Sopenharmony_ci		}
41562306a36Sopenharmony_ci
41662306a36Sopenharmony_ci		nbw = op->len - 4 * nwait;
41762306a36Sopenharmony_ci		if (nbw) {
41862306a36Sopenharmony_ci			wb = le32_to_cpup((__le32 *)(op->buf + nwait * 4));
41962306a36Sopenharmony_ci			wb &= GENMASK((nbw * 8) - 1, 0);
42062306a36Sopenharmony_ci
42162306a36Sopenharmony_ci			op->byte_count += nbw;
42262306a36Sopenharmony_ci		}
42362306a36Sopenharmony_ci	}
42462306a36Sopenharmony_ci
42562306a36Sopenharmony_ci	/* write the remaining bytes of the nbw buffer */
42662306a36Sopenharmony_ci	wb |= ((1 << 7) << (nbw * 8));
42762306a36Sopenharmony_ci	((__le32 *)bf)[j++] = cpu_to_le32(wb);
42862306a36Sopenharmony_ci
42962306a36Sopenharmony_ci	/*
43062306a36Sopenharmony_ci	 * number of space to pad to obtain 64o minus 8(size) minus 4 (final 1)
43162306a36Sopenharmony_ci	 * I take the operations from other MD5/SHA1 implementations
43262306a36Sopenharmony_ci	 */
43362306a36Sopenharmony_ci
43462306a36Sopenharmony_ci	/* last block size */
43562306a36Sopenharmony_ci	fill = 64 - (op->byte_count % 64);
43662306a36Sopenharmony_ci	min_fill = 2 * sizeof(u32) + (nbw ? 0 : sizeof(u32));
43762306a36Sopenharmony_ci
43862306a36Sopenharmony_ci	/* if we can't fill all data, jump to the next 64 block */
43962306a36Sopenharmony_ci	if (fill < min_fill)
44062306a36Sopenharmony_ci		fill += 64;
44162306a36Sopenharmony_ci
44262306a36Sopenharmony_ci	j += (fill - min_fill) / sizeof(u32);
44362306a36Sopenharmony_ci
44462306a36Sopenharmony_ci	/* write the length of data */
44562306a36Sopenharmony_ci	if (op->mode == SS_OP_SHA1) {
44662306a36Sopenharmony_ci		__be64 *bits = (__be64 *)&bf[j];
44762306a36Sopenharmony_ci		*bits = cpu_to_be64(op->byte_count << 3);
44862306a36Sopenharmony_ci		j += 2;
44962306a36Sopenharmony_ci	} else {
45062306a36Sopenharmony_ci		__le64 *bits = (__le64 *)&bf[j];
45162306a36Sopenharmony_ci		*bits = cpu_to_le64(op->byte_count << 3);
45262306a36Sopenharmony_ci		j += 2;
45362306a36Sopenharmony_ci	}
45462306a36Sopenharmony_ci	writesl(ss->base + SS_RXFIFO, bf, j);
45562306a36Sopenharmony_ci
45662306a36Sopenharmony_ci	/* Tell the SS to stop the hashing */
45762306a36Sopenharmony_ci	writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL);
45862306a36Sopenharmony_ci
45962306a36Sopenharmony_ci	/*
46062306a36Sopenharmony_ci	 * Wait for SS to finish the hash.
46162306a36Sopenharmony_ci	 * The timeout could happen only in case of bad overclocking
46262306a36Sopenharmony_ci	 * or driver bug.
46362306a36Sopenharmony_ci	 */
46462306a36Sopenharmony_ci	i = 0;
46562306a36Sopenharmony_ci	do {
46662306a36Sopenharmony_ci		v = readl(ss->base + SS_CTL);
46762306a36Sopenharmony_ci		i++;
46862306a36Sopenharmony_ci	} while (i < SS_TIMEOUT && (v & SS_DATA_END));
46962306a36Sopenharmony_ci	if (unlikely(i >= SS_TIMEOUT)) {
47062306a36Sopenharmony_ci		dev_err_ratelimited(ss->dev,
47162306a36Sopenharmony_ci				    "ERROR: hash end timeout %d>%d ctl=%x len=%u\n",
47262306a36Sopenharmony_ci				    i, SS_TIMEOUT, v, areq->nbytes);
47362306a36Sopenharmony_ci		err = -EIO;
47462306a36Sopenharmony_ci		goto release_ss;
47562306a36Sopenharmony_ci	}
47662306a36Sopenharmony_ci
47762306a36Sopenharmony_ci	/*
47862306a36Sopenharmony_ci	 * The datasheet isn't very clear about when to retrieve the digest. The
47962306a36Sopenharmony_ci	 * bit SS_DATA_END is cleared when the engine has processed the data and
48062306a36Sopenharmony_ci	 * when the digest is computed *but* it doesn't mean the digest is
48162306a36Sopenharmony_ci	 * available in the digest registers. Hence the delay to be sure we can
48262306a36Sopenharmony_ci	 * read it.
48362306a36Sopenharmony_ci	 */
48462306a36Sopenharmony_ci	ndelay(1);
48562306a36Sopenharmony_ci
48662306a36Sopenharmony_ci	/* Get the hash from the device */
48762306a36Sopenharmony_ci	if (op->mode == SS_OP_SHA1) {
48862306a36Sopenharmony_ci		for (i = 0; i < 5; i++) {
48962306a36Sopenharmony_ci			v = readl(ss->base + SS_MD0 + i * 4);
49062306a36Sopenharmony_ci			if (ss->variant->sha1_in_be)
49162306a36Sopenharmony_ci				put_unaligned_le32(v, areq->result + i * 4);
49262306a36Sopenharmony_ci			else
49362306a36Sopenharmony_ci				put_unaligned_be32(v, areq->result + i * 4);
49462306a36Sopenharmony_ci		}
49562306a36Sopenharmony_ci	} else {
49662306a36Sopenharmony_ci		for (i = 0; i < 4; i++) {
49762306a36Sopenharmony_ci			v = readl(ss->base + SS_MD0 + i * 4);
49862306a36Sopenharmony_ci			put_unaligned_le32(v, areq->result + i * 4);
49962306a36Sopenharmony_ci		}
50062306a36Sopenharmony_ci	}
50162306a36Sopenharmony_ci
50262306a36Sopenharmony_cirelease_ss:
50362306a36Sopenharmony_ci	writel(0, ss->base + SS_CTL);
50462306a36Sopenharmony_ci	spin_unlock_bh(&ss->slock);
50562306a36Sopenharmony_ci	return err;
50662306a36Sopenharmony_ci}
50762306a36Sopenharmony_ci
50862306a36Sopenharmony_ciint sun4i_hash_final(struct ahash_request *areq)
50962306a36Sopenharmony_ci{
51062306a36Sopenharmony_ci	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
51162306a36Sopenharmony_ci
51262306a36Sopenharmony_ci	op->flags = SS_HASH_FINAL;
51362306a36Sopenharmony_ci	return sun4i_hash(areq);
51462306a36Sopenharmony_ci}
51562306a36Sopenharmony_ci
51662306a36Sopenharmony_ciint sun4i_hash_update(struct ahash_request *areq)
51762306a36Sopenharmony_ci{
51862306a36Sopenharmony_ci	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
51962306a36Sopenharmony_ci
52062306a36Sopenharmony_ci	op->flags = SS_HASH_UPDATE;
52162306a36Sopenharmony_ci	return sun4i_hash(areq);
52262306a36Sopenharmony_ci}
52362306a36Sopenharmony_ci
52462306a36Sopenharmony_ci/* sun4i_hash_finup: finalize hashing operation after an update */
52562306a36Sopenharmony_ciint sun4i_hash_finup(struct ahash_request *areq)
52662306a36Sopenharmony_ci{
52762306a36Sopenharmony_ci	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
52862306a36Sopenharmony_ci
52962306a36Sopenharmony_ci	op->flags = SS_HASH_UPDATE | SS_HASH_FINAL;
53062306a36Sopenharmony_ci	return sun4i_hash(areq);
53162306a36Sopenharmony_ci}
53262306a36Sopenharmony_ci
53362306a36Sopenharmony_ci/* combo of init/update/final functions */
53462306a36Sopenharmony_ciint sun4i_hash_digest(struct ahash_request *areq)
53562306a36Sopenharmony_ci{
53662306a36Sopenharmony_ci	int err;
53762306a36Sopenharmony_ci	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
53862306a36Sopenharmony_ci
53962306a36Sopenharmony_ci	err = sun4i_hash_init(areq);
54062306a36Sopenharmony_ci	if (err)
54162306a36Sopenharmony_ci		return err;
54262306a36Sopenharmony_ci
54362306a36Sopenharmony_ci	op->flags = SS_HASH_UPDATE | SS_HASH_FINAL;
54462306a36Sopenharmony_ci	return sun4i_hash(areq);
54562306a36Sopenharmony_ci}
546