162306a36Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-only 262306a36Sopenharmony_ci/* 362306a36Sopenharmony_ci * menu.c - the menu idle governor 462306a36Sopenharmony_ci * 562306a36Sopenharmony_ci * Copyright (C) 2006-2007 Adam Belay <abelay@novell.com> 662306a36Sopenharmony_ci * Copyright (C) 2009 Intel Corporation 762306a36Sopenharmony_ci * Author: 862306a36Sopenharmony_ci * Arjan van de Ven <arjan@linux.intel.com> 962306a36Sopenharmony_ci */ 1062306a36Sopenharmony_ci 1162306a36Sopenharmony_ci#include <linux/kernel.h> 1262306a36Sopenharmony_ci#include <linux/cpuidle.h> 1362306a36Sopenharmony_ci#include <linux/time.h> 1462306a36Sopenharmony_ci#include <linux/ktime.h> 1562306a36Sopenharmony_ci#include <linux/hrtimer.h> 1662306a36Sopenharmony_ci#include <linux/tick.h> 1762306a36Sopenharmony_ci#include <linux/sched.h> 1862306a36Sopenharmony_ci#include <linux/sched/loadavg.h> 1962306a36Sopenharmony_ci#include <linux/sched/stat.h> 2062306a36Sopenharmony_ci#include <linux/math64.h> 2162306a36Sopenharmony_ci 2262306a36Sopenharmony_ci#include "gov.h" 2362306a36Sopenharmony_ci 2462306a36Sopenharmony_ci#define BUCKETS 12 2562306a36Sopenharmony_ci#define INTERVAL_SHIFT 3 2662306a36Sopenharmony_ci#define INTERVALS (1UL << INTERVAL_SHIFT) 2762306a36Sopenharmony_ci#define RESOLUTION 1024 2862306a36Sopenharmony_ci#define DECAY 8 2962306a36Sopenharmony_ci#define MAX_INTERESTING (50000 * NSEC_PER_USEC) 3062306a36Sopenharmony_ci 3162306a36Sopenharmony_ci/* 3262306a36Sopenharmony_ci * Concepts and ideas behind the menu governor 3362306a36Sopenharmony_ci * 3462306a36Sopenharmony_ci * For the menu governor, there are 3 decision factors for picking a C 3562306a36Sopenharmony_ci * state: 3662306a36Sopenharmony_ci * 1) Energy break even point 3762306a36Sopenharmony_ci * 2) Performance impact 3862306a36Sopenharmony_ci * 3) Latency tolerance (from pmqos infrastructure) 3962306a36Sopenharmony_ci * These three factors are treated independently. 4062306a36Sopenharmony_ci * 4162306a36Sopenharmony_ci * Energy break even point 4262306a36Sopenharmony_ci * ----------------------- 4362306a36Sopenharmony_ci * C state entry and exit have an energy cost, and a certain amount of time in 4462306a36Sopenharmony_ci * the C state is required to actually break even on this cost. CPUIDLE 4562306a36Sopenharmony_ci * provides us this duration in the "target_residency" field. So all that we 4662306a36Sopenharmony_ci * need is a good prediction of how long we'll be idle. Like the traditional 4762306a36Sopenharmony_ci * menu governor, we start with the actual known "next timer event" time. 4862306a36Sopenharmony_ci * 4962306a36Sopenharmony_ci * Since there are other source of wakeups (interrupts for example) than 5062306a36Sopenharmony_ci * the next timer event, this estimation is rather optimistic. To get a 5162306a36Sopenharmony_ci * more realistic estimate, a correction factor is applied to the estimate, 5262306a36Sopenharmony_ci * that is based on historic behavior. For example, if in the past the actual 5362306a36Sopenharmony_ci * duration always was 50% of the next timer tick, the correction factor will 5462306a36Sopenharmony_ci * be 0.5. 5562306a36Sopenharmony_ci * 5662306a36Sopenharmony_ci * menu uses a running average for this correction factor, however it uses a 5762306a36Sopenharmony_ci * set of factors, not just a single factor. This stems from the realization 5862306a36Sopenharmony_ci * that the ratio is dependent on the order of magnitude of the expected 5962306a36Sopenharmony_ci * duration; if we expect 500 milliseconds of idle time the likelihood of 6062306a36Sopenharmony_ci * getting an interrupt very early is much higher than if we expect 50 micro 6162306a36Sopenharmony_ci * seconds of idle time. A second independent factor that has big impact on 6262306a36Sopenharmony_ci * the actual factor is if there is (disk) IO outstanding or not. 6362306a36Sopenharmony_ci * (as a special twist, we consider every sleep longer than 50 milliseconds 6462306a36Sopenharmony_ci * as perfect; there are no power gains for sleeping longer than this) 6562306a36Sopenharmony_ci * 6662306a36Sopenharmony_ci * For these two reasons we keep an array of 12 independent factors, that gets 6762306a36Sopenharmony_ci * indexed based on the magnitude of the expected duration as well as the 6862306a36Sopenharmony_ci * "is IO outstanding" property. 6962306a36Sopenharmony_ci * 7062306a36Sopenharmony_ci * Repeatable-interval-detector 7162306a36Sopenharmony_ci * ---------------------------- 7262306a36Sopenharmony_ci * There are some cases where "next timer" is a completely unusable predictor: 7362306a36Sopenharmony_ci * Those cases where the interval is fixed, for example due to hardware 7462306a36Sopenharmony_ci * interrupt mitigation, but also due to fixed transfer rate devices such as 7562306a36Sopenharmony_ci * mice. 7662306a36Sopenharmony_ci * For this, we use a different predictor: We track the duration of the last 8 7762306a36Sopenharmony_ci * intervals and if the stand deviation of these 8 intervals is below a 7862306a36Sopenharmony_ci * threshold value, we use the average of these intervals as prediction. 7962306a36Sopenharmony_ci * 8062306a36Sopenharmony_ci * Limiting Performance Impact 8162306a36Sopenharmony_ci * --------------------------- 8262306a36Sopenharmony_ci * C states, especially those with large exit latencies, can have a real 8362306a36Sopenharmony_ci * noticeable impact on workloads, which is not acceptable for most sysadmins, 8462306a36Sopenharmony_ci * and in addition, less performance has a power price of its own. 8562306a36Sopenharmony_ci * 8662306a36Sopenharmony_ci * As a general rule of thumb, menu assumes that the following heuristic 8762306a36Sopenharmony_ci * holds: 8862306a36Sopenharmony_ci * The busier the system, the less impact of C states is acceptable 8962306a36Sopenharmony_ci * 9062306a36Sopenharmony_ci * This rule-of-thumb is implemented using a performance-multiplier: 9162306a36Sopenharmony_ci * If the exit latency times the performance multiplier is longer than 9262306a36Sopenharmony_ci * the predicted duration, the C state is not considered a candidate 9362306a36Sopenharmony_ci * for selection due to a too high performance impact. So the higher 9462306a36Sopenharmony_ci * this multiplier is, the longer we need to be idle to pick a deep C 9562306a36Sopenharmony_ci * state, and thus the less likely a busy CPU will hit such a deep 9662306a36Sopenharmony_ci * C state. 9762306a36Sopenharmony_ci * 9862306a36Sopenharmony_ci * Two factors are used in determing this multiplier: 9962306a36Sopenharmony_ci * a value of 10 is added for each point of "per cpu load average" we have. 10062306a36Sopenharmony_ci * a value of 5 points is added for each process that is waiting for 10162306a36Sopenharmony_ci * IO on this CPU. 10262306a36Sopenharmony_ci * (these values are experimentally determined) 10362306a36Sopenharmony_ci * 10462306a36Sopenharmony_ci * The load average factor gives a longer term (few seconds) input to the 10562306a36Sopenharmony_ci * decision, while the iowait value gives a cpu local instantanious input. 10662306a36Sopenharmony_ci * The iowait factor may look low, but realize that this is also already 10762306a36Sopenharmony_ci * represented in the system load average. 10862306a36Sopenharmony_ci * 10962306a36Sopenharmony_ci */ 11062306a36Sopenharmony_ci 11162306a36Sopenharmony_cistruct menu_device { 11262306a36Sopenharmony_ci int needs_update; 11362306a36Sopenharmony_ci int tick_wakeup; 11462306a36Sopenharmony_ci 11562306a36Sopenharmony_ci u64 next_timer_ns; 11662306a36Sopenharmony_ci unsigned int bucket; 11762306a36Sopenharmony_ci unsigned int correction_factor[BUCKETS]; 11862306a36Sopenharmony_ci unsigned int intervals[INTERVALS]; 11962306a36Sopenharmony_ci int interval_ptr; 12062306a36Sopenharmony_ci}; 12162306a36Sopenharmony_ci 12262306a36Sopenharmony_cistatic inline int which_bucket(u64 duration_ns, unsigned int nr_iowaiters) 12362306a36Sopenharmony_ci{ 12462306a36Sopenharmony_ci int bucket = 0; 12562306a36Sopenharmony_ci 12662306a36Sopenharmony_ci /* 12762306a36Sopenharmony_ci * We keep two groups of stats; one with no 12862306a36Sopenharmony_ci * IO pending, one without. 12962306a36Sopenharmony_ci * This allows us to calculate 13062306a36Sopenharmony_ci * E(duration)|iowait 13162306a36Sopenharmony_ci */ 13262306a36Sopenharmony_ci if (nr_iowaiters) 13362306a36Sopenharmony_ci bucket = BUCKETS/2; 13462306a36Sopenharmony_ci 13562306a36Sopenharmony_ci if (duration_ns < 10ULL * NSEC_PER_USEC) 13662306a36Sopenharmony_ci return bucket; 13762306a36Sopenharmony_ci if (duration_ns < 100ULL * NSEC_PER_USEC) 13862306a36Sopenharmony_ci return bucket + 1; 13962306a36Sopenharmony_ci if (duration_ns < 1000ULL * NSEC_PER_USEC) 14062306a36Sopenharmony_ci return bucket + 2; 14162306a36Sopenharmony_ci if (duration_ns < 10000ULL * NSEC_PER_USEC) 14262306a36Sopenharmony_ci return bucket + 3; 14362306a36Sopenharmony_ci if (duration_ns < 100000ULL * NSEC_PER_USEC) 14462306a36Sopenharmony_ci return bucket + 4; 14562306a36Sopenharmony_ci return bucket + 5; 14662306a36Sopenharmony_ci} 14762306a36Sopenharmony_ci 14862306a36Sopenharmony_ci/* 14962306a36Sopenharmony_ci * Return a multiplier for the exit latency that is intended 15062306a36Sopenharmony_ci * to take performance requirements into account. 15162306a36Sopenharmony_ci * The more performance critical we estimate the system 15262306a36Sopenharmony_ci * to be, the higher this multiplier, and thus the higher 15362306a36Sopenharmony_ci * the barrier to go to an expensive C state. 15462306a36Sopenharmony_ci */ 15562306a36Sopenharmony_cistatic inline int performance_multiplier(unsigned int nr_iowaiters) 15662306a36Sopenharmony_ci{ 15762306a36Sopenharmony_ci /* for IO wait tasks (per cpu!) we add 10x each */ 15862306a36Sopenharmony_ci return 1 + 10 * nr_iowaiters; 15962306a36Sopenharmony_ci} 16062306a36Sopenharmony_ci 16162306a36Sopenharmony_cistatic DEFINE_PER_CPU(struct menu_device, menu_devices); 16262306a36Sopenharmony_ci 16362306a36Sopenharmony_cistatic void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev); 16462306a36Sopenharmony_ci 16562306a36Sopenharmony_ci/* 16662306a36Sopenharmony_ci * Try detecting repeating patterns by keeping track of the last 8 16762306a36Sopenharmony_ci * intervals, and checking if the standard deviation of that set 16862306a36Sopenharmony_ci * of points is below a threshold. If it is... then use the 16962306a36Sopenharmony_ci * average of these 8 points as the estimated value. 17062306a36Sopenharmony_ci */ 17162306a36Sopenharmony_cistatic unsigned int get_typical_interval(struct menu_device *data) 17262306a36Sopenharmony_ci{ 17362306a36Sopenharmony_ci int i, divisor; 17462306a36Sopenharmony_ci unsigned int min, max, thresh, avg; 17562306a36Sopenharmony_ci uint64_t sum, variance; 17662306a36Sopenharmony_ci 17762306a36Sopenharmony_ci thresh = INT_MAX; /* Discard outliers above this value */ 17862306a36Sopenharmony_ci 17962306a36Sopenharmony_ciagain: 18062306a36Sopenharmony_ci 18162306a36Sopenharmony_ci /* First calculate the average of past intervals */ 18262306a36Sopenharmony_ci min = UINT_MAX; 18362306a36Sopenharmony_ci max = 0; 18462306a36Sopenharmony_ci sum = 0; 18562306a36Sopenharmony_ci divisor = 0; 18662306a36Sopenharmony_ci for (i = 0; i < INTERVALS; i++) { 18762306a36Sopenharmony_ci unsigned int value = data->intervals[i]; 18862306a36Sopenharmony_ci if (value <= thresh) { 18962306a36Sopenharmony_ci sum += value; 19062306a36Sopenharmony_ci divisor++; 19162306a36Sopenharmony_ci if (value > max) 19262306a36Sopenharmony_ci max = value; 19362306a36Sopenharmony_ci 19462306a36Sopenharmony_ci if (value < min) 19562306a36Sopenharmony_ci min = value; 19662306a36Sopenharmony_ci } 19762306a36Sopenharmony_ci } 19862306a36Sopenharmony_ci 19962306a36Sopenharmony_ci if (!max) 20062306a36Sopenharmony_ci return UINT_MAX; 20162306a36Sopenharmony_ci 20262306a36Sopenharmony_ci if (divisor == INTERVALS) 20362306a36Sopenharmony_ci avg = sum >> INTERVAL_SHIFT; 20462306a36Sopenharmony_ci else 20562306a36Sopenharmony_ci avg = div_u64(sum, divisor); 20662306a36Sopenharmony_ci 20762306a36Sopenharmony_ci /* Then try to determine variance */ 20862306a36Sopenharmony_ci variance = 0; 20962306a36Sopenharmony_ci for (i = 0; i < INTERVALS; i++) { 21062306a36Sopenharmony_ci unsigned int value = data->intervals[i]; 21162306a36Sopenharmony_ci if (value <= thresh) { 21262306a36Sopenharmony_ci int64_t diff = (int64_t)value - avg; 21362306a36Sopenharmony_ci variance += diff * diff; 21462306a36Sopenharmony_ci } 21562306a36Sopenharmony_ci } 21662306a36Sopenharmony_ci if (divisor == INTERVALS) 21762306a36Sopenharmony_ci variance >>= INTERVAL_SHIFT; 21862306a36Sopenharmony_ci else 21962306a36Sopenharmony_ci do_div(variance, divisor); 22062306a36Sopenharmony_ci 22162306a36Sopenharmony_ci /* 22262306a36Sopenharmony_ci * The typical interval is obtained when standard deviation is 22362306a36Sopenharmony_ci * small (stddev <= 20 us, variance <= 400 us^2) or standard 22462306a36Sopenharmony_ci * deviation is small compared to the average interval (avg > 22562306a36Sopenharmony_ci * 6*stddev, avg^2 > 36*variance). The average is smaller than 22662306a36Sopenharmony_ci * UINT_MAX aka U32_MAX, so computing its square does not 22762306a36Sopenharmony_ci * overflow a u64. We simply reject this candidate average if 22862306a36Sopenharmony_ci * the standard deviation is greater than 715 s (which is 22962306a36Sopenharmony_ci * rather unlikely). 23062306a36Sopenharmony_ci * 23162306a36Sopenharmony_ci * Use this result only if there is no timer to wake us up sooner. 23262306a36Sopenharmony_ci */ 23362306a36Sopenharmony_ci if (likely(variance <= U64_MAX/36)) { 23462306a36Sopenharmony_ci if ((((u64)avg*avg > variance*36) && (divisor * 4 >= INTERVALS * 3)) 23562306a36Sopenharmony_ci || variance <= 400) { 23662306a36Sopenharmony_ci return avg; 23762306a36Sopenharmony_ci } 23862306a36Sopenharmony_ci } 23962306a36Sopenharmony_ci 24062306a36Sopenharmony_ci /* 24162306a36Sopenharmony_ci * If we have outliers to the upside in our distribution, discard 24262306a36Sopenharmony_ci * those by setting the threshold to exclude these outliers, then 24362306a36Sopenharmony_ci * calculate the average and standard deviation again. Once we get 24462306a36Sopenharmony_ci * down to the bottom 3/4 of our samples, stop excluding samples. 24562306a36Sopenharmony_ci * 24662306a36Sopenharmony_ci * This can deal with workloads that have long pauses interspersed 24762306a36Sopenharmony_ci * with sporadic activity with a bunch of short pauses. 24862306a36Sopenharmony_ci */ 24962306a36Sopenharmony_ci if ((divisor * 4) <= INTERVALS * 3) 25062306a36Sopenharmony_ci return UINT_MAX; 25162306a36Sopenharmony_ci 25262306a36Sopenharmony_ci thresh = max - 1; 25362306a36Sopenharmony_ci goto again; 25462306a36Sopenharmony_ci} 25562306a36Sopenharmony_ci 25662306a36Sopenharmony_ci/** 25762306a36Sopenharmony_ci * menu_select - selects the next idle state to enter 25862306a36Sopenharmony_ci * @drv: cpuidle driver containing state data 25962306a36Sopenharmony_ci * @dev: the CPU 26062306a36Sopenharmony_ci * @stop_tick: indication on whether or not to stop the tick 26162306a36Sopenharmony_ci */ 26262306a36Sopenharmony_cistatic int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev, 26362306a36Sopenharmony_ci bool *stop_tick) 26462306a36Sopenharmony_ci{ 26562306a36Sopenharmony_ci struct menu_device *data = this_cpu_ptr(&menu_devices); 26662306a36Sopenharmony_ci s64 latency_req = cpuidle_governor_latency_req(dev->cpu); 26762306a36Sopenharmony_ci u64 predicted_ns; 26862306a36Sopenharmony_ci u64 interactivity_req; 26962306a36Sopenharmony_ci unsigned int nr_iowaiters; 27062306a36Sopenharmony_ci ktime_t delta, delta_tick; 27162306a36Sopenharmony_ci int i, idx; 27262306a36Sopenharmony_ci 27362306a36Sopenharmony_ci if (data->needs_update) { 27462306a36Sopenharmony_ci menu_update(drv, dev); 27562306a36Sopenharmony_ci data->needs_update = 0; 27662306a36Sopenharmony_ci } 27762306a36Sopenharmony_ci 27862306a36Sopenharmony_ci nr_iowaiters = nr_iowait_cpu(dev->cpu); 27962306a36Sopenharmony_ci 28062306a36Sopenharmony_ci /* Find the shortest expected idle interval. */ 28162306a36Sopenharmony_ci predicted_ns = get_typical_interval(data) * NSEC_PER_USEC; 28262306a36Sopenharmony_ci if (predicted_ns > RESIDENCY_THRESHOLD_NS) { 28362306a36Sopenharmony_ci unsigned int timer_us; 28462306a36Sopenharmony_ci 28562306a36Sopenharmony_ci /* Determine the time till the closest timer. */ 28662306a36Sopenharmony_ci delta = tick_nohz_get_sleep_length(&delta_tick); 28762306a36Sopenharmony_ci if (unlikely(delta < 0)) { 28862306a36Sopenharmony_ci delta = 0; 28962306a36Sopenharmony_ci delta_tick = 0; 29062306a36Sopenharmony_ci } 29162306a36Sopenharmony_ci 29262306a36Sopenharmony_ci data->next_timer_ns = delta; 29362306a36Sopenharmony_ci data->bucket = which_bucket(data->next_timer_ns, nr_iowaiters); 29462306a36Sopenharmony_ci 29562306a36Sopenharmony_ci /* Round up the result for half microseconds. */ 29662306a36Sopenharmony_ci timer_us = div_u64((RESOLUTION * DECAY * NSEC_PER_USEC) / 2 + 29762306a36Sopenharmony_ci data->next_timer_ns * 29862306a36Sopenharmony_ci data->correction_factor[data->bucket], 29962306a36Sopenharmony_ci RESOLUTION * DECAY * NSEC_PER_USEC); 30062306a36Sopenharmony_ci /* Use the lowest expected idle interval to pick the idle state. */ 30162306a36Sopenharmony_ci predicted_ns = min((u64)timer_us * NSEC_PER_USEC, predicted_ns); 30262306a36Sopenharmony_ci } else { 30362306a36Sopenharmony_ci /* 30462306a36Sopenharmony_ci * Because the next timer event is not going to be determined 30562306a36Sopenharmony_ci * in this case, assume that without the tick the closest timer 30662306a36Sopenharmony_ci * will be in distant future and that the closest tick will occur 30762306a36Sopenharmony_ci * after 1/2 of the tick period. 30862306a36Sopenharmony_ci */ 30962306a36Sopenharmony_ci data->next_timer_ns = KTIME_MAX; 31062306a36Sopenharmony_ci delta_tick = TICK_NSEC / 2; 31162306a36Sopenharmony_ci data->bucket = which_bucket(KTIME_MAX, nr_iowaiters); 31262306a36Sopenharmony_ci } 31362306a36Sopenharmony_ci 31462306a36Sopenharmony_ci if (unlikely(drv->state_count <= 1 || latency_req == 0) || 31562306a36Sopenharmony_ci ((data->next_timer_ns < drv->states[1].target_residency_ns || 31662306a36Sopenharmony_ci latency_req < drv->states[1].exit_latency_ns) && 31762306a36Sopenharmony_ci !dev->states_usage[0].disable)) { 31862306a36Sopenharmony_ci /* 31962306a36Sopenharmony_ci * In this case state[0] will be used no matter what, so return 32062306a36Sopenharmony_ci * it right away and keep the tick running if state[0] is a 32162306a36Sopenharmony_ci * polling one. 32262306a36Sopenharmony_ci */ 32362306a36Sopenharmony_ci *stop_tick = !(drv->states[0].flags & CPUIDLE_FLAG_POLLING); 32462306a36Sopenharmony_ci return 0; 32562306a36Sopenharmony_ci } 32662306a36Sopenharmony_ci 32762306a36Sopenharmony_ci if (tick_nohz_tick_stopped()) { 32862306a36Sopenharmony_ci /* 32962306a36Sopenharmony_ci * If the tick is already stopped, the cost of possible short 33062306a36Sopenharmony_ci * idle duration misprediction is much higher, because the CPU 33162306a36Sopenharmony_ci * may be stuck in a shallow idle state for a long time as a 33262306a36Sopenharmony_ci * result of it. In that case say we might mispredict and use 33362306a36Sopenharmony_ci * the known time till the closest timer event for the idle 33462306a36Sopenharmony_ci * state selection. 33562306a36Sopenharmony_ci */ 33662306a36Sopenharmony_ci if (predicted_ns < TICK_NSEC) 33762306a36Sopenharmony_ci predicted_ns = data->next_timer_ns; 33862306a36Sopenharmony_ci } else { 33962306a36Sopenharmony_ci /* 34062306a36Sopenharmony_ci * Use the performance multiplier and the user-configurable 34162306a36Sopenharmony_ci * latency_req to determine the maximum exit latency. 34262306a36Sopenharmony_ci */ 34362306a36Sopenharmony_ci interactivity_req = div64_u64(predicted_ns, 34462306a36Sopenharmony_ci performance_multiplier(nr_iowaiters)); 34562306a36Sopenharmony_ci if (latency_req > interactivity_req) 34662306a36Sopenharmony_ci latency_req = interactivity_req; 34762306a36Sopenharmony_ci } 34862306a36Sopenharmony_ci 34962306a36Sopenharmony_ci /* 35062306a36Sopenharmony_ci * Find the idle state with the lowest power while satisfying 35162306a36Sopenharmony_ci * our constraints. 35262306a36Sopenharmony_ci */ 35362306a36Sopenharmony_ci idx = -1; 35462306a36Sopenharmony_ci for (i = 0; i < drv->state_count; i++) { 35562306a36Sopenharmony_ci struct cpuidle_state *s = &drv->states[i]; 35662306a36Sopenharmony_ci 35762306a36Sopenharmony_ci if (dev->states_usage[i].disable) 35862306a36Sopenharmony_ci continue; 35962306a36Sopenharmony_ci 36062306a36Sopenharmony_ci if (idx == -1) 36162306a36Sopenharmony_ci idx = i; /* first enabled state */ 36262306a36Sopenharmony_ci 36362306a36Sopenharmony_ci if (s->target_residency_ns > predicted_ns) { 36462306a36Sopenharmony_ci /* 36562306a36Sopenharmony_ci * Use a physical idle state, not busy polling, unless 36662306a36Sopenharmony_ci * a timer is going to trigger soon enough. 36762306a36Sopenharmony_ci */ 36862306a36Sopenharmony_ci if ((drv->states[idx].flags & CPUIDLE_FLAG_POLLING) && 36962306a36Sopenharmony_ci s->exit_latency_ns <= latency_req && 37062306a36Sopenharmony_ci s->target_residency_ns <= data->next_timer_ns) { 37162306a36Sopenharmony_ci predicted_ns = s->target_residency_ns; 37262306a36Sopenharmony_ci idx = i; 37362306a36Sopenharmony_ci break; 37462306a36Sopenharmony_ci } 37562306a36Sopenharmony_ci if (predicted_ns < TICK_NSEC) 37662306a36Sopenharmony_ci break; 37762306a36Sopenharmony_ci 37862306a36Sopenharmony_ci if (!tick_nohz_tick_stopped()) { 37962306a36Sopenharmony_ci /* 38062306a36Sopenharmony_ci * If the state selected so far is shallow, 38162306a36Sopenharmony_ci * waking up early won't hurt, so retain the 38262306a36Sopenharmony_ci * tick in that case and let the governor run 38362306a36Sopenharmony_ci * again in the next iteration of the loop. 38462306a36Sopenharmony_ci */ 38562306a36Sopenharmony_ci predicted_ns = drv->states[idx].target_residency_ns; 38662306a36Sopenharmony_ci break; 38762306a36Sopenharmony_ci } 38862306a36Sopenharmony_ci 38962306a36Sopenharmony_ci /* 39062306a36Sopenharmony_ci * If the state selected so far is shallow and this 39162306a36Sopenharmony_ci * state's target residency matches the time till the 39262306a36Sopenharmony_ci * closest timer event, select this one to avoid getting 39362306a36Sopenharmony_ci * stuck in the shallow one for too long. 39462306a36Sopenharmony_ci */ 39562306a36Sopenharmony_ci if (drv->states[idx].target_residency_ns < TICK_NSEC && 39662306a36Sopenharmony_ci s->target_residency_ns <= delta_tick) 39762306a36Sopenharmony_ci idx = i; 39862306a36Sopenharmony_ci 39962306a36Sopenharmony_ci return idx; 40062306a36Sopenharmony_ci } 40162306a36Sopenharmony_ci if (s->exit_latency_ns > latency_req) 40262306a36Sopenharmony_ci break; 40362306a36Sopenharmony_ci 40462306a36Sopenharmony_ci idx = i; 40562306a36Sopenharmony_ci } 40662306a36Sopenharmony_ci 40762306a36Sopenharmony_ci if (idx == -1) 40862306a36Sopenharmony_ci idx = 0; /* No states enabled. Must use 0. */ 40962306a36Sopenharmony_ci 41062306a36Sopenharmony_ci /* 41162306a36Sopenharmony_ci * Don't stop the tick if the selected state is a polling one or if the 41262306a36Sopenharmony_ci * expected idle duration is shorter than the tick period length. 41362306a36Sopenharmony_ci */ 41462306a36Sopenharmony_ci if (((drv->states[idx].flags & CPUIDLE_FLAG_POLLING) || 41562306a36Sopenharmony_ci predicted_ns < TICK_NSEC) && !tick_nohz_tick_stopped()) { 41662306a36Sopenharmony_ci *stop_tick = false; 41762306a36Sopenharmony_ci 41862306a36Sopenharmony_ci if (idx > 0 && drv->states[idx].target_residency_ns > delta_tick) { 41962306a36Sopenharmony_ci /* 42062306a36Sopenharmony_ci * The tick is not going to be stopped and the target 42162306a36Sopenharmony_ci * residency of the state to be returned is not within 42262306a36Sopenharmony_ci * the time until the next timer event including the 42362306a36Sopenharmony_ci * tick, so try to correct that. 42462306a36Sopenharmony_ci */ 42562306a36Sopenharmony_ci for (i = idx - 1; i >= 0; i--) { 42662306a36Sopenharmony_ci if (dev->states_usage[i].disable) 42762306a36Sopenharmony_ci continue; 42862306a36Sopenharmony_ci 42962306a36Sopenharmony_ci idx = i; 43062306a36Sopenharmony_ci if (drv->states[i].target_residency_ns <= delta_tick) 43162306a36Sopenharmony_ci break; 43262306a36Sopenharmony_ci } 43362306a36Sopenharmony_ci } 43462306a36Sopenharmony_ci } 43562306a36Sopenharmony_ci 43662306a36Sopenharmony_ci return idx; 43762306a36Sopenharmony_ci} 43862306a36Sopenharmony_ci 43962306a36Sopenharmony_ci/** 44062306a36Sopenharmony_ci * menu_reflect - records that data structures need update 44162306a36Sopenharmony_ci * @dev: the CPU 44262306a36Sopenharmony_ci * @index: the index of actual entered state 44362306a36Sopenharmony_ci * 44462306a36Sopenharmony_ci * NOTE: it's important to be fast here because this operation will add to 44562306a36Sopenharmony_ci * the overall exit latency. 44662306a36Sopenharmony_ci */ 44762306a36Sopenharmony_cistatic void menu_reflect(struct cpuidle_device *dev, int index) 44862306a36Sopenharmony_ci{ 44962306a36Sopenharmony_ci struct menu_device *data = this_cpu_ptr(&menu_devices); 45062306a36Sopenharmony_ci 45162306a36Sopenharmony_ci dev->last_state_idx = index; 45262306a36Sopenharmony_ci data->needs_update = 1; 45362306a36Sopenharmony_ci data->tick_wakeup = tick_nohz_idle_got_tick(); 45462306a36Sopenharmony_ci} 45562306a36Sopenharmony_ci 45662306a36Sopenharmony_ci/** 45762306a36Sopenharmony_ci * menu_update - attempts to guess what happened after entry 45862306a36Sopenharmony_ci * @drv: cpuidle driver containing state data 45962306a36Sopenharmony_ci * @dev: the CPU 46062306a36Sopenharmony_ci */ 46162306a36Sopenharmony_cistatic void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev) 46262306a36Sopenharmony_ci{ 46362306a36Sopenharmony_ci struct menu_device *data = this_cpu_ptr(&menu_devices); 46462306a36Sopenharmony_ci int last_idx = dev->last_state_idx; 46562306a36Sopenharmony_ci struct cpuidle_state *target = &drv->states[last_idx]; 46662306a36Sopenharmony_ci u64 measured_ns; 46762306a36Sopenharmony_ci unsigned int new_factor; 46862306a36Sopenharmony_ci 46962306a36Sopenharmony_ci /* 47062306a36Sopenharmony_ci * Try to figure out how much time passed between entry to low 47162306a36Sopenharmony_ci * power state and occurrence of the wakeup event. 47262306a36Sopenharmony_ci * 47362306a36Sopenharmony_ci * If the entered idle state didn't support residency measurements, 47462306a36Sopenharmony_ci * we use them anyway if they are short, and if long, 47562306a36Sopenharmony_ci * truncate to the whole expected time. 47662306a36Sopenharmony_ci * 47762306a36Sopenharmony_ci * Any measured amount of time will include the exit latency. 47862306a36Sopenharmony_ci * Since we are interested in when the wakeup begun, not when it 47962306a36Sopenharmony_ci * was completed, we must subtract the exit latency. However, if 48062306a36Sopenharmony_ci * the measured amount of time is less than the exit latency, 48162306a36Sopenharmony_ci * assume the state was never reached and the exit latency is 0. 48262306a36Sopenharmony_ci */ 48362306a36Sopenharmony_ci 48462306a36Sopenharmony_ci if (data->tick_wakeup && data->next_timer_ns > TICK_NSEC) { 48562306a36Sopenharmony_ci /* 48662306a36Sopenharmony_ci * The nohz code said that there wouldn't be any events within 48762306a36Sopenharmony_ci * the tick boundary (if the tick was stopped), but the idle 48862306a36Sopenharmony_ci * duration predictor had a differing opinion. Since the CPU 48962306a36Sopenharmony_ci * was woken up by a tick (that wasn't stopped after all), the 49062306a36Sopenharmony_ci * predictor was not quite right, so assume that the CPU could 49162306a36Sopenharmony_ci * have been idle long (but not forever) to help the idle 49262306a36Sopenharmony_ci * duration predictor do a better job next time. 49362306a36Sopenharmony_ci */ 49462306a36Sopenharmony_ci measured_ns = 9 * MAX_INTERESTING / 10; 49562306a36Sopenharmony_ci } else if ((drv->states[last_idx].flags & CPUIDLE_FLAG_POLLING) && 49662306a36Sopenharmony_ci dev->poll_time_limit) { 49762306a36Sopenharmony_ci /* 49862306a36Sopenharmony_ci * The CPU exited the "polling" state due to a time limit, so 49962306a36Sopenharmony_ci * the idle duration prediction leading to the selection of that 50062306a36Sopenharmony_ci * state was inaccurate. If a better prediction had been made, 50162306a36Sopenharmony_ci * the CPU might have been woken up from idle by the next timer. 50262306a36Sopenharmony_ci * Assume that to be the case. 50362306a36Sopenharmony_ci */ 50462306a36Sopenharmony_ci measured_ns = data->next_timer_ns; 50562306a36Sopenharmony_ci } else { 50662306a36Sopenharmony_ci /* measured value */ 50762306a36Sopenharmony_ci measured_ns = dev->last_residency_ns; 50862306a36Sopenharmony_ci 50962306a36Sopenharmony_ci /* Deduct exit latency */ 51062306a36Sopenharmony_ci if (measured_ns > 2 * target->exit_latency_ns) 51162306a36Sopenharmony_ci measured_ns -= target->exit_latency_ns; 51262306a36Sopenharmony_ci else 51362306a36Sopenharmony_ci measured_ns /= 2; 51462306a36Sopenharmony_ci } 51562306a36Sopenharmony_ci 51662306a36Sopenharmony_ci /* Make sure our coefficients do not exceed unity */ 51762306a36Sopenharmony_ci if (measured_ns > data->next_timer_ns) 51862306a36Sopenharmony_ci measured_ns = data->next_timer_ns; 51962306a36Sopenharmony_ci 52062306a36Sopenharmony_ci /* Update our correction ratio */ 52162306a36Sopenharmony_ci new_factor = data->correction_factor[data->bucket]; 52262306a36Sopenharmony_ci new_factor -= new_factor / DECAY; 52362306a36Sopenharmony_ci 52462306a36Sopenharmony_ci if (data->next_timer_ns > 0 && measured_ns < MAX_INTERESTING) 52562306a36Sopenharmony_ci new_factor += div64_u64(RESOLUTION * measured_ns, 52662306a36Sopenharmony_ci data->next_timer_ns); 52762306a36Sopenharmony_ci else 52862306a36Sopenharmony_ci /* 52962306a36Sopenharmony_ci * we were idle so long that we count it as a perfect 53062306a36Sopenharmony_ci * prediction 53162306a36Sopenharmony_ci */ 53262306a36Sopenharmony_ci new_factor += RESOLUTION; 53362306a36Sopenharmony_ci 53462306a36Sopenharmony_ci /* 53562306a36Sopenharmony_ci * We don't want 0 as factor; we always want at least 53662306a36Sopenharmony_ci * a tiny bit of estimated time. Fortunately, due to rounding, 53762306a36Sopenharmony_ci * new_factor will stay nonzero regardless of measured_us values 53862306a36Sopenharmony_ci * and the compiler can eliminate this test as long as DECAY > 1. 53962306a36Sopenharmony_ci */ 54062306a36Sopenharmony_ci if (DECAY == 1 && unlikely(new_factor == 0)) 54162306a36Sopenharmony_ci new_factor = 1; 54262306a36Sopenharmony_ci 54362306a36Sopenharmony_ci data->correction_factor[data->bucket] = new_factor; 54462306a36Sopenharmony_ci 54562306a36Sopenharmony_ci /* update the repeating-pattern data */ 54662306a36Sopenharmony_ci data->intervals[data->interval_ptr++] = ktime_to_us(measured_ns); 54762306a36Sopenharmony_ci if (data->interval_ptr >= INTERVALS) 54862306a36Sopenharmony_ci data->interval_ptr = 0; 54962306a36Sopenharmony_ci} 55062306a36Sopenharmony_ci 55162306a36Sopenharmony_ci/** 55262306a36Sopenharmony_ci * menu_enable_device - scans a CPU's states and does setup 55362306a36Sopenharmony_ci * @drv: cpuidle driver 55462306a36Sopenharmony_ci * @dev: the CPU 55562306a36Sopenharmony_ci */ 55662306a36Sopenharmony_cistatic int menu_enable_device(struct cpuidle_driver *drv, 55762306a36Sopenharmony_ci struct cpuidle_device *dev) 55862306a36Sopenharmony_ci{ 55962306a36Sopenharmony_ci struct menu_device *data = &per_cpu(menu_devices, dev->cpu); 56062306a36Sopenharmony_ci int i; 56162306a36Sopenharmony_ci 56262306a36Sopenharmony_ci memset(data, 0, sizeof(struct menu_device)); 56362306a36Sopenharmony_ci 56462306a36Sopenharmony_ci /* 56562306a36Sopenharmony_ci * if the correction factor is 0 (eg first time init or cpu hotplug 56662306a36Sopenharmony_ci * etc), we actually want to start out with a unity factor. 56762306a36Sopenharmony_ci */ 56862306a36Sopenharmony_ci for(i = 0; i < BUCKETS; i++) 56962306a36Sopenharmony_ci data->correction_factor[i] = RESOLUTION * DECAY; 57062306a36Sopenharmony_ci 57162306a36Sopenharmony_ci return 0; 57262306a36Sopenharmony_ci} 57362306a36Sopenharmony_ci 57462306a36Sopenharmony_cistatic struct cpuidle_governor menu_governor = { 57562306a36Sopenharmony_ci .name = "menu", 57662306a36Sopenharmony_ci .rating = 20, 57762306a36Sopenharmony_ci .enable = menu_enable_device, 57862306a36Sopenharmony_ci .select = menu_select, 57962306a36Sopenharmony_ci .reflect = menu_reflect, 58062306a36Sopenharmony_ci}; 58162306a36Sopenharmony_ci 58262306a36Sopenharmony_ci/** 58362306a36Sopenharmony_ci * init_menu - initializes the governor 58462306a36Sopenharmony_ci */ 58562306a36Sopenharmony_cistatic int __init init_menu(void) 58662306a36Sopenharmony_ci{ 58762306a36Sopenharmony_ci return cpuidle_register_governor(&menu_governor); 58862306a36Sopenharmony_ci} 58962306a36Sopenharmony_ci 59062306a36Sopenharmony_cipostcore_initcall(init_menu); 591