1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *  linux/drivers/cpufreq/cpufreq.c
4 *
5 *  Copyright (C) 2001 Russell King
6 *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7 *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8 *
9 *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10 *	Added handling for CPU hotplug
11 *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12 *	Fix handling for CPU hotplug -- affected CPUs
13 */
14
15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17#include <linux/cpu.h>
18#include <linux/cpufreq.h>
19#include <linux/cpu_cooling.h>
20#include <linux/delay.h>
21#include <linux/device.h>
22#include <linux/init.h>
23#include <linux/kernel_stat.h>
24#include <linux/module.h>
25#include <linux/mutex.h>
26#include <linux/pm_qos.h>
27#include <linux/slab.h>
28#include <linux/suspend.h>
29#include <linux/syscore_ops.h>
30#include <linux/tick.h>
31#include <linux/units.h>
32#include <trace/events/power.h>
33
34static LIST_HEAD(cpufreq_policy_list);
35
36/* Macros to iterate over CPU policies */
37#define for_each_suitable_policy(__policy, __active)			 \
38	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
39		if ((__active) == !policy_is_inactive(__policy))
40
41#define for_each_active_policy(__policy)		\
42	for_each_suitable_policy(__policy, true)
43#define for_each_inactive_policy(__policy)		\
44	for_each_suitable_policy(__policy, false)
45
46/* Iterate over governors */
47static LIST_HEAD(cpufreq_governor_list);
48#define for_each_governor(__governor)				\
49	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
50
51static char default_governor[CPUFREQ_NAME_LEN];
52
53/*
54 * The "cpufreq driver" - the arch- or hardware-dependent low
55 * level driver of CPUFreq support, and its spinlock. This lock
56 * also protects the cpufreq_cpu_data array.
57 */
58static struct cpufreq_driver *cpufreq_driver;
59static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
60static DEFINE_RWLOCK(cpufreq_driver_lock);
61
62static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
63bool cpufreq_supports_freq_invariance(void)
64{
65	return static_branch_likely(&cpufreq_freq_invariance);
66}
67
68/* Flag to suspend/resume CPUFreq governors */
69static bool cpufreq_suspended;
70
71static inline bool has_target(void)
72{
73	return cpufreq_driver->target_index || cpufreq_driver->target;
74}
75
76bool has_target_index(void)
77{
78	return !!cpufreq_driver->target_index;
79}
80
81/* internal prototypes */
82static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
83static int cpufreq_init_governor(struct cpufreq_policy *policy);
84static void cpufreq_exit_governor(struct cpufreq_policy *policy);
85static void cpufreq_governor_limits(struct cpufreq_policy *policy);
86static int cpufreq_set_policy(struct cpufreq_policy *policy,
87			      struct cpufreq_governor *new_gov,
88			      unsigned int new_pol);
89static bool cpufreq_boost_supported(void);
90
91/*
92 * Two notifier lists: the "policy" list is involved in the
93 * validation process for a new CPU frequency policy; the
94 * "transition" list for kernel code that needs to handle
95 * changes to devices when the CPU clock speed changes.
96 * The mutex locks both lists.
97 */
98static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
99SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
100
101static int off __read_mostly;
102static int cpufreq_disabled(void)
103{
104	return off;
105}
106void disable_cpufreq(void)
107{
108	off = 1;
109}
110static DEFINE_MUTEX(cpufreq_governor_mutex);
111
112bool have_governor_per_policy(void)
113{
114	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
115}
116EXPORT_SYMBOL_GPL(have_governor_per_policy);
117
118static struct kobject *cpufreq_global_kobject;
119
120struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
121{
122	if (have_governor_per_policy())
123		return &policy->kobj;
124	else
125		return cpufreq_global_kobject;
126}
127EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
128
129static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
130{
131	struct kernel_cpustat kcpustat;
132	u64 cur_wall_time;
133	u64 idle_time;
134	u64 busy_time;
135
136	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
137
138	kcpustat_cpu_fetch(&kcpustat, cpu);
139
140	busy_time = kcpustat.cpustat[CPUTIME_USER];
141	busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
142	busy_time += kcpustat.cpustat[CPUTIME_IRQ];
143	busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
144	busy_time += kcpustat.cpustat[CPUTIME_STEAL];
145	busy_time += kcpustat.cpustat[CPUTIME_NICE];
146
147	idle_time = cur_wall_time - busy_time;
148	if (wall)
149		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
150
151	return div_u64(idle_time, NSEC_PER_USEC);
152}
153
154u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
155{
156	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
157
158	if (idle_time == -1ULL)
159		return get_cpu_idle_time_jiffy(cpu, wall);
160	else if (!io_busy)
161		idle_time += get_cpu_iowait_time_us(cpu, wall);
162
163	return idle_time;
164}
165EXPORT_SYMBOL_GPL(get_cpu_idle_time);
166
167/*
168 * This is a generic cpufreq init() routine which can be used by cpufreq
169 * drivers of SMP systems. It will do following:
170 * - validate & show freq table passed
171 * - set policies transition latency
172 * - policy->cpus with all possible CPUs
173 */
174void cpufreq_generic_init(struct cpufreq_policy *policy,
175		struct cpufreq_frequency_table *table,
176		unsigned int transition_latency)
177{
178	policy->freq_table = table;
179	policy->cpuinfo.transition_latency = transition_latency;
180
181	/*
182	 * The driver only supports the SMP configuration where all processors
183	 * share the clock and voltage and clock.
184	 */
185	cpumask_setall(policy->cpus);
186}
187EXPORT_SYMBOL_GPL(cpufreq_generic_init);
188
189struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
190{
191	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
192
193	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
194}
195EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
196
197unsigned int cpufreq_generic_get(unsigned int cpu)
198{
199	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
200
201	if (!policy || IS_ERR(policy->clk)) {
202		pr_err("%s: No %s associated to cpu: %d\n",
203		       __func__, policy ? "clk" : "policy", cpu);
204		return 0;
205	}
206
207	return clk_get_rate(policy->clk) / 1000;
208}
209EXPORT_SYMBOL_GPL(cpufreq_generic_get);
210
211/**
212 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
213 * @cpu: CPU to find the policy for.
214 *
215 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
216 * the kobject reference counter of that policy.  Return a valid policy on
217 * success or NULL on failure.
218 *
219 * The policy returned by this function has to be released with the help of
220 * cpufreq_cpu_put() to balance its kobject reference counter properly.
221 */
222struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
223{
224	struct cpufreq_policy *policy = NULL;
225	unsigned long flags;
226
227	if (WARN_ON(cpu >= nr_cpu_ids))
228		return NULL;
229
230	/* get the cpufreq driver */
231	read_lock_irqsave(&cpufreq_driver_lock, flags);
232
233	if (cpufreq_driver) {
234		/* get the CPU */
235		policy = cpufreq_cpu_get_raw(cpu);
236		if (policy)
237			kobject_get(&policy->kobj);
238	}
239
240	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
241
242	return policy;
243}
244EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
245
246/**
247 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
248 * @policy: cpufreq policy returned by cpufreq_cpu_get().
249 */
250void cpufreq_cpu_put(struct cpufreq_policy *policy)
251{
252	kobject_put(&policy->kobj);
253}
254EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
255
256/**
257 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
258 * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
259 */
260void cpufreq_cpu_release(struct cpufreq_policy *policy)
261{
262	if (WARN_ON(!policy))
263		return;
264
265	lockdep_assert_held(&policy->rwsem);
266
267	up_write(&policy->rwsem);
268
269	cpufreq_cpu_put(policy);
270}
271
272/**
273 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
274 * @cpu: CPU to find the policy for.
275 *
276 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
277 * if the policy returned by it is not NULL, acquire its rwsem for writing.
278 * Return the policy if it is active or release it and return NULL otherwise.
279 *
280 * The policy returned by this function has to be released with the help of
281 * cpufreq_cpu_release() in order to release its rwsem and balance its usage
282 * counter properly.
283 */
284struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
285{
286	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
287
288	if (!policy)
289		return NULL;
290
291	down_write(&policy->rwsem);
292
293	if (policy_is_inactive(policy)) {
294		cpufreq_cpu_release(policy);
295		return NULL;
296	}
297
298	return policy;
299}
300
301/*********************************************************************
302 *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
303 *********************************************************************/
304
305/**
306 * adjust_jiffies - Adjust the system "loops_per_jiffy".
307 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
308 * @ci: Frequency change information.
309 *
310 * This function alters the system "loops_per_jiffy" for the clock
311 * speed change. Note that loops_per_jiffy cannot be updated on SMP
312 * systems as each CPU might be scaled differently. So, use the arch
313 * per-CPU loops_per_jiffy value wherever possible.
314 */
315static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
316{
317#ifndef CONFIG_SMP
318	static unsigned long l_p_j_ref;
319	static unsigned int l_p_j_ref_freq;
320
321	if (ci->flags & CPUFREQ_CONST_LOOPS)
322		return;
323
324	if (!l_p_j_ref_freq) {
325		l_p_j_ref = loops_per_jiffy;
326		l_p_j_ref_freq = ci->old;
327		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
328			 l_p_j_ref, l_p_j_ref_freq);
329	}
330	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
331		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
332								ci->new);
333		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
334			 loops_per_jiffy, ci->new);
335	}
336#endif
337}
338
339/**
340 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
341 * @policy: cpufreq policy to enable fast frequency switching for.
342 * @freqs: contain details of the frequency update.
343 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
344 *
345 * This function calls the transition notifiers and adjust_jiffies().
346 *
347 * It is called twice on all CPU frequency changes that have external effects.
348 */
349static void cpufreq_notify_transition(struct cpufreq_policy *policy,
350				      struct cpufreq_freqs *freqs,
351				      unsigned int state)
352{
353	int cpu;
354
355	BUG_ON(irqs_disabled());
356
357	if (cpufreq_disabled())
358		return;
359
360	freqs->policy = policy;
361	freqs->flags = cpufreq_driver->flags;
362	pr_debug("notification %u of frequency transition to %u kHz\n",
363		 state, freqs->new);
364
365	switch (state) {
366	case CPUFREQ_PRECHANGE:
367		/*
368		 * Detect if the driver reported a value as "old frequency"
369		 * which is not equal to what the cpufreq core thinks is
370		 * "old frequency".
371		 */
372		if (policy->cur && policy->cur != freqs->old) {
373			pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
374				 freqs->old, policy->cur);
375			freqs->old = policy->cur;
376		}
377
378		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
379					 CPUFREQ_PRECHANGE, freqs);
380
381		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
382		break;
383
384	case CPUFREQ_POSTCHANGE:
385		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
386		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
387			 cpumask_pr_args(policy->cpus));
388
389		for_each_cpu(cpu, policy->cpus)
390			trace_cpu_frequency(freqs->new, cpu);
391
392		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
393					 CPUFREQ_POSTCHANGE, freqs);
394
395		cpufreq_stats_record_transition(policy, freqs->new);
396		policy->cur = freqs->new;
397	}
398}
399
400/* Do post notifications when there are chances that transition has failed */
401static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
402		struct cpufreq_freqs *freqs, int transition_failed)
403{
404	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
405	if (!transition_failed)
406		return;
407
408	swap(freqs->old, freqs->new);
409	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
410	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
411}
412
413void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
414		struct cpufreq_freqs *freqs)
415{
416
417	/*
418	 * Catch double invocations of _begin() which lead to self-deadlock.
419	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
420	 * doesn't invoke _begin() on their behalf, and hence the chances of
421	 * double invocations are very low. Moreover, there are scenarios
422	 * where these checks can emit false-positive warnings in these
423	 * drivers; so we avoid that by skipping them altogether.
424	 */
425	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
426				&& current == policy->transition_task);
427
428wait:
429	wait_event(policy->transition_wait, !policy->transition_ongoing);
430
431	spin_lock(&policy->transition_lock);
432
433	if (unlikely(policy->transition_ongoing)) {
434		spin_unlock(&policy->transition_lock);
435		goto wait;
436	}
437
438	policy->transition_ongoing = true;
439	policy->transition_task = current;
440
441	spin_unlock(&policy->transition_lock);
442
443	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
444}
445EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
446
447void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
448		struct cpufreq_freqs *freqs, int transition_failed)
449{
450	if (WARN_ON(!policy->transition_ongoing))
451		return;
452
453	cpufreq_notify_post_transition(policy, freqs, transition_failed);
454
455	arch_set_freq_scale(policy->related_cpus,
456			    policy->cur,
457			    policy->cpuinfo.max_freq);
458
459	spin_lock(&policy->transition_lock);
460	policy->transition_ongoing = false;
461	policy->transition_task = NULL;
462	spin_unlock(&policy->transition_lock);
463
464	wake_up(&policy->transition_wait);
465}
466EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
467
468/*
469 * Fast frequency switching status count.  Positive means "enabled", negative
470 * means "disabled" and 0 means "not decided yet".
471 */
472static int cpufreq_fast_switch_count;
473static DEFINE_MUTEX(cpufreq_fast_switch_lock);
474
475static void cpufreq_list_transition_notifiers(void)
476{
477	struct notifier_block *nb;
478
479	pr_info("Registered transition notifiers:\n");
480
481	mutex_lock(&cpufreq_transition_notifier_list.mutex);
482
483	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
484		pr_info("%pS\n", nb->notifier_call);
485
486	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
487}
488
489/**
490 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
491 * @policy: cpufreq policy to enable fast frequency switching for.
492 *
493 * Try to enable fast frequency switching for @policy.
494 *
495 * The attempt will fail if there is at least one transition notifier registered
496 * at this point, as fast frequency switching is quite fundamentally at odds
497 * with transition notifiers.  Thus if successful, it will make registration of
498 * transition notifiers fail going forward.
499 */
500void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
501{
502	lockdep_assert_held(&policy->rwsem);
503
504	if (!policy->fast_switch_possible)
505		return;
506
507	mutex_lock(&cpufreq_fast_switch_lock);
508	if (cpufreq_fast_switch_count >= 0) {
509		cpufreq_fast_switch_count++;
510		policy->fast_switch_enabled = true;
511	} else {
512		pr_warn("CPU%u: Fast frequency switching not enabled\n",
513			policy->cpu);
514		cpufreq_list_transition_notifiers();
515	}
516	mutex_unlock(&cpufreq_fast_switch_lock);
517}
518EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
519
520/**
521 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
522 * @policy: cpufreq policy to disable fast frequency switching for.
523 */
524void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
525{
526	mutex_lock(&cpufreq_fast_switch_lock);
527	if (policy->fast_switch_enabled) {
528		policy->fast_switch_enabled = false;
529		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
530			cpufreq_fast_switch_count--;
531	}
532	mutex_unlock(&cpufreq_fast_switch_lock);
533}
534EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
535
536static unsigned int __resolve_freq(struct cpufreq_policy *policy,
537		unsigned int target_freq, unsigned int relation)
538{
539	unsigned int idx;
540
541	target_freq = clamp_val(target_freq, policy->min, policy->max);
542
543	if (!policy->freq_table)
544		return target_freq;
545
546	idx = cpufreq_frequency_table_target(policy, target_freq, relation);
547	policy->cached_resolved_idx = idx;
548	policy->cached_target_freq = target_freq;
549	return policy->freq_table[idx].frequency;
550}
551
552/**
553 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
554 * one.
555 * @policy: associated policy to interrogate
556 * @target_freq: target frequency to resolve.
557 *
558 * The target to driver frequency mapping is cached in the policy.
559 *
560 * Return: Lowest driver-supported frequency greater than or equal to the
561 * given target_freq, subject to policy (min/max) and driver limitations.
562 */
563unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
564					 unsigned int target_freq)
565{
566	return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE);
567}
568EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
569
570unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
571{
572	unsigned int latency;
573
574	if (policy->transition_delay_us)
575		return policy->transition_delay_us;
576
577	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
578	if (latency) {
579		/*
580		 * For platforms that can change the frequency very fast (< 10
581		 * us), the above formula gives a decent transition delay. But
582		 * for platforms where transition_latency is in milliseconds, it
583		 * ends up giving unrealistic values.
584		 *
585		 * Cap the default transition delay to 10 ms, which seems to be
586		 * a reasonable amount of time after which we should reevaluate
587		 * the frequency.
588		 */
589		return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
590	}
591
592	return LATENCY_MULTIPLIER;
593}
594EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
595
596/*********************************************************************
597 *                          SYSFS INTERFACE                          *
598 *********************************************************************/
599static ssize_t show_boost(struct kobject *kobj,
600			  struct kobj_attribute *attr, char *buf)
601{
602	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
603}
604
605static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
606			   const char *buf, size_t count)
607{
608	int ret, enable;
609
610	ret = sscanf(buf, "%d", &enable);
611	if (ret != 1 || enable < 0 || enable > 1)
612		return -EINVAL;
613
614	if (cpufreq_boost_trigger_state(enable)) {
615		pr_err("%s: Cannot %s BOOST!\n",
616		       __func__, enable ? "enable" : "disable");
617		return -EINVAL;
618	}
619
620	pr_debug("%s: cpufreq BOOST %s\n",
621		 __func__, enable ? "enabled" : "disabled");
622
623	return count;
624}
625define_one_global_rw(boost);
626
627static ssize_t show_local_boost(struct cpufreq_policy *policy, char *buf)
628{
629	return sysfs_emit(buf, "%d\n", policy->boost_enabled);
630}
631
632static ssize_t store_local_boost(struct cpufreq_policy *policy,
633				 const char *buf, size_t count)
634{
635	int ret, enable;
636
637	ret = kstrtoint(buf, 10, &enable);
638	if (ret || enable < 0 || enable > 1)
639		return -EINVAL;
640
641	if (!cpufreq_driver->boost_enabled)
642		return -EINVAL;
643
644	if (policy->boost_enabled == enable)
645		return count;
646
647	policy->boost_enabled = enable;
648
649	cpus_read_lock();
650	ret = cpufreq_driver->set_boost(policy, enable);
651	cpus_read_unlock();
652
653	if (ret) {
654		policy->boost_enabled = !policy->boost_enabled;
655		return ret;
656	}
657
658	return count;
659}
660
661static struct freq_attr local_boost = __ATTR(boost, 0644, show_local_boost, store_local_boost);
662
663static struct cpufreq_governor *find_governor(const char *str_governor)
664{
665	struct cpufreq_governor *t;
666
667	for_each_governor(t)
668		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
669			return t;
670
671	return NULL;
672}
673
674static struct cpufreq_governor *get_governor(const char *str_governor)
675{
676	struct cpufreq_governor *t;
677
678	mutex_lock(&cpufreq_governor_mutex);
679	t = find_governor(str_governor);
680	if (!t)
681		goto unlock;
682
683	if (!try_module_get(t->owner))
684		t = NULL;
685
686unlock:
687	mutex_unlock(&cpufreq_governor_mutex);
688
689	return t;
690}
691
692static unsigned int cpufreq_parse_policy(char *str_governor)
693{
694	if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
695		return CPUFREQ_POLICY_PERFORMANCE;
696
697	if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
698		return CPUFREQ_POLICY_POWERSAVE;
699
700	return CPUFREQ_POLICY_UNKNOWN;
701}
702
703/**
704 * cpufreq_parse_governor - parse a governor string only for has_target()
705 * @str_governor: Governor name.
706 */
707static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
708{
709	struct cpufreq_governor *t;
710
711	t = get_governor(str_governor);
712	if (t)
713		return t;
714
715	if (request_module("cpufreq_%s", str_governor))
716		return NULL;
717
718	return get_governor(str_governor);
719}
720
721/*
722 * cpufreq_per_cpu_attr_read() / show_##file_name() -
723 * print out cpufreq information
724 *
725 * Write out information from cpufreq_driver->policy[cpu]; object must be
726 * "unsigned int".
727 */
728
729#define show_one(file_name, object)			\
730static ssize_t show_##file_name				\
731(struct cpufreq_policy *policy, char *buf)		\
732{							\
733	return sprintf(buf, "%u\n", policy->object);	\
734}
735
736show_one(cpuinfo_min_freq, cpuinfo.min_freq);
737show_one(cpuinfo_max_freq, cpuinfo.max_freq);
738show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
739show_one(scaling_min_freq, min);
740show_one(scaling_max_freq, max);
741
742__weak unsigned int arch_freq_get_on_cpu(int cpu)
743{
744	return 0;
745}
746
747static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
748{
749	ssize_t ret;
750	unsigned int freq;
751
752	freq = arch_freq_get_on_cpu(policy->cpu);
753	if (freq)
754		ret = sprintf(buf, "%u\n", freq);
755	else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
756		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
757	else
758		ret = sprintf(buf, "%u\n", policy->cur);
759	return ret;
760}
761
762/*
763 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
764 */
765#define store_one(file_name, object)			\
766static ssize_t store_##file_name					\
767(struct cpufreq_policy *policy, const char *buf, size_t count)		\
768{									\
769	unsigned long val;						\
770	int ret;							\
771									\
772	ret = kstrtoul(buf, 0, &val);					\
773	if (ret)							\
774		return ret;						\
775									\
776	ret = freq_qos_update_request(policy->object##_freq_req, val);\
777	return ret >= 0 ? count : ret;					\
778}
779
780store_one(scaling_min_freq, min);
781store_one(scaling_max_freq, max);
782
783/*
784 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
785 */
786static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
787					char *buf)
788{
789	unsigned int cur_freq = __cpufreq_get(policy);
790
791	if (cur_freq)
792		return sprintf(buf, "%u\n", cur_freq);
793
794	return sprintf(buf, "<unknown>\n");
795}
796
797/*
798 * show_scaling_governor - show the current policy for the specified CPU
799 */
800static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
801{
802	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
803		return sprintf(buf, "powersave\n");
804	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
805		return sprintf(buf, "performance\n");
806	else if (policy->governor)
807		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
808				policy->governor->name);
809	return -EINVAL;
810}
811
812/*
813 * store_scaling_governor - store policy for the specified CPU
814 */
815static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
816					const char *buf, size_t count)
817{
818	char str_governor[16];
819	int ret;
820
821	ret = sscanf(buf, "%15s", str_governor);
822	if (ret != 1)
823		return -EINVAL;
824
825	if (cpufreq_driver->setpolicy) {
826		unsigned int new_pol;
827
828		new_pol = cpufreq_parse_policy(str_governor);
829		if (!new_pol)
830			return -EINVAL;
831
832		ret = cpufreq_set_policy(policy, NULL, new_pol);
833	} else {
834		struct cpufreq_governor *new_gov;
835
836		new_gov = cpufreq_parse_governor(str_governor);
837		if (!new_gov)
838			return -EINVAL;
839
840		ret = cpufreq_set_policy(policy, new_gov,
841					 CPUFREQ_POLICY_UNKNOWN);
842
843		module_put(new_gov->owner);
844	}
845
846	return ret ? ret : count;
847}
848
849/*
850 * show_scaling_driver - show the cpufreq driver currently loaded
851 */
852static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
853{
854	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
855}
856
857/*
858 * show_scaling_available_governors - show the available CPUfreq governors
859 */
860static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
861						char *buf)
862{
863	ssize_t i = 0;
864	struct cpufreq_governor *t;
865
866	if (!has_target()) {
867		i += sprintf(buf, "performance powersave");
868		goto out;
869	}
870
871	mutex_lock(&cpufreq_governor_mutex);
872	for_each_governor(t) {
873		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
874		    - (CPUFREQ_NAME_LEN + 2)))
875			break;
876		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
877	}
878	mutex_unlock(&cpufreq_governor_mutex);
879out:
880	i += sprintf(&buf[i], "\n");
881	return i;
882}
883
884ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
885{
886	ssize_t i = 0;
887	unsigned int cpu;
888
889	for_each_cpu(cpu, mask) {
890		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u ", cpu);
891		if (i >= (PAGE_SIZE - 5))
892			break;
893	}
894
895	/* Remove the extra space at the end */
896	i--;
897
898	i += sprintf(&buf[i], "\n");
899	return i;
900}
901EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
902
903/*
904 * show_related_cpus - show the CPUs affected by each transition even if
905 * hw coordination is in use
906 */
907static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
908{
909	return cpufreq_show_cpus(policy->related_cpus, buf);
910}
911
912/*
913 * show_affected_cpus - show the CPUs affected by each transition
914 */
915static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
916{
917	return cpufreq_show_cpus(policy->cpus, buf);
918}
919
920static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
921					const char *buf, size_t count)
922{
923	unsigned int freq = 0;
924	unsigned int ret;
925
926	if (!policy->governor || !policy->governor->store_setspeed)
927		return -EINVAL;
928
929	ret = sscanf(buf, "%u", &freq);
930	if (ret != 1)
931		return -EINVAL;
932
933	policy->governor->store_setspeed(policy, freq);
934
935	return count;
936}
937
938static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
939{
940	if (!policy->governor || !policy->governor->show_setspeed)
941		return sprintf(buf, "<unsupported>\n");
942
943	return policy->governor->show_setspeed(policy, buf);
944}
945
946/*
947 * show_bios_limit - show the current cpufreq HW/BIOS limitation
948 */
949static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
950{
951	unsigned int limit;
952	int ret;
953	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
954	if (!ret)
955		return sprintf(buf, "%u\n", limit);
956	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
957}
958
959cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
960cpufreq_freq_attr_ro(cpuinfo_min_freq);
961cpufreq_freq_attr_ro(cpuinfo_max_freq);
962cpufreq_freq_attr_ro(cpuinfo_transition_latency);
963cpufreq_freq_attr_ro(scaling_available_governors);
964cpufreq_freq_attr_ro(scaling_driver);
965cpufreq_freq_attr_ro(scaling_cur_freq);
966cpufreq_freq_attr_ro(bios_limit);
967cpufreq_freq_attr_ro(related_cpus);
968cpufreq_freq_attr_ro(affected_cpus);
969cpufreq_freq_attr_rw(scaling_min_freq);
970cpufreq_freq_attr_rw(scaling_max_freq);
971cpufreq_freq_attr_rw(scaling_governor);
972cpufreq_freq_attr_rw(scaling_setspeed);
973
974static struct attribute *cpufreq_attrs[] = {
975	&cpuinfo_min_freq.attr,
976	&cpuinfo_max_freq.attr,
977	&cpuinfo_transition_latency.attr,
978	&scaling_min_freq.attr,
979	&scaling_max_freq.attr,
980	&affected_cpus.attr,
981	&related_cpus.attr,
982	&scaling_governor.attr,
983	&scaling_driver.attr,
984	&scaling_available_governors.attr,
985	&scaling_setspeed.attr,
986	NULL
987};
988ATTRIBUTE_GROUPS(cpufreq);
989
990#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
991#define to_attr(a) container_of(a, struct freq_attr, attr)
992
993static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
994{
995	struct cpufreq_policy *policy = to_policy(kobj);
996	struct freq_attr *fattr = to_attr(attr);
997	ssize_t ret = -EBUSY;
998
999	if (!fattr->show)
1000		return -EIO;
1001
1002	down_read(&policy->rwsem);
1003	if (likely(!policy_is_inactive(policy)))
1004		ret = fattr->show(policy, buf);
1005	up_read(&policy->rwsem);
1006
1007	return ret;
1008}
1009
1010static ssize_t store(struct kobject *kobj, struct attribute *attr,
1011		     const char *buf, size_t count)
1012{
1013	struct cpufreq_policy *policy = to_policy(kobj);
1014	struct freq_attr *fattr = to_attr(attr);
1015	ssize_t ret = -EBUSY;
1016
1017	if (!fattr->store)
1018		return -EIO;
1019
1020	down_write(&policy->rwsem);
1021	if (likely(!policy_is_inactive(policy)))
1022		ret = fattr->store(policy, buf, count);
1023	up_write(&policy->rwsem);
1024
1025	return ret;
1026}
1027
1028static void cpufreq_sysfs_release(struct kobject *kobj)
1029{
1030	struct cpufreq_policy *policy = to_policy(kobj);
1031	pr_debug("last reference is dropped\n");
1032	complete(&policy->kobj_unregister);
1033}
1034
1035static const struct sysfs_ops sysfs_ops = {
1036	.show	= show,
1037	.store	= store,
1038};
1039
1040static const struct kobj_type ktype_cpufreq = {
1041	.sysfs_ops	= &sysfs_ops,
1042	.default_groups	= cpufreq_groups,
1043	.release	= cpufreq_sysfs_release,
1044};
1045
1046static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1047				struct device *dev)
1048{
1049	if (unlikely(!dev))
1050		return;
1051
1052	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1053		return;
1054
1055	dev_dbg(dev, "%s: Adding symlink\n", __func__);
1056	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1057		dev_err(dev, "cpufreq symlink creation failed\n");
1058}
1059
1060static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu,
1061				   struct device *dev)
1062{
1063	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1064	sysfs_remove_link(&dev->kobj, "cpufreq");
1065	cpumask_clear_cpu(cpu, policy->real_cpus);
1066}
1067
1068static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1069{
1070	struct freq_attr **drv_attr;
1071	int ret = 0;
1072
1073	/* set up files for this cpu device */
1074	drv_attr = cpufreq_driver->attr;
1075	while (drv_attr && *drv_attr) {
1076		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1077		if (ret)
1078			return ret;
1079		drv_attr++;
1080	}
1081	if (cpufreq_driver->get) {
1082		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1083		if (ret)
1084			return ret;
1085	}
1086
1087	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1088	if (ret)
1089		return ret;
1090
1091	if (cpufreq_driver->bios_limit) {
1092		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1093		if (ret)
1094			return ret;
1095	}
1096
1097	if (cpufreq_boost_supported()) {
1098		ret = sysfs_create_file(&policy->kobj, &local_boost.attr);
1099		if (ret)
1100			return ret;
1101	}
1102
1103	return 0;
1104}
1105
1106static int cpufreq_init_policy(struct cpufreq_policy *policy)
1107{
1108	struct cpufreq_governor *gov = NULL;
1109	unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1110	int ret;
1111
1112	if (has_target()) {
1113		/* Update policy governor to the one used before hotplug. */
1114		gov = get_governor(policy->last_governor);
1115		if (gov) {
1116			pr_debug("Restoring governor %s for cpu %d\n",
1117				 gov->name, policy->cpu);
1118		} else {
1119			gov = get_governor(default_governor);
1120		}
1121
1122		if (!gov) {
1123			gov = cpufreq_default_governor();
1124			__module_get(gov->owner);
1125		}
1126
1127	} else {
1128
1129		/* Use the default policy if there is no last_policy. */
1130		if (policy->last_policy) {
1131			pol = policy->last_policy;
1132		} else {
1133			pol = cpufreq_parse_policy(default_governor);
1134			/*
1135			 * In case the default governor is neither "performance"
1136			 * nor "powersave", fall back to the initial policy
1137			 * value set by the driver.
1138			 */
1139			if (pol == CPUFREQ_POLICY_UNKNOWN)
1140				pol = policy->policy;
1141		}
1142		if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1143		    pol != CPUFREQ_POLICY_POWERSAVE)
1144			return -ENODATA;
1145	}
1146
1147	ret = cpufreq_set_policy(policy, gov, pol);
1148	if (gov)
1149		module_put(gov->owner);
1150
1151	return ret;
1152}
1153
1154static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1155{
1156	int ret = 0;
1157
1158	/* Has this CPU been taken care of already? */
1159	if (cpumask_test_cpu(cpu, policy->cpus))
1160		return 0;
1161
1162	down_write(&policy->rwsem);
1163	if (has_target())
1164		cpufreq_stop_governor(policy);
1165
1166	cpumask_set_cpu(cpu, policy->cpus);
1167
1168	if (has_target()) {
1169		ret = cpufreq_start_governor(policy);
1170		if (ret)
1171			pr_err("%s: Failed to start governor\n", __func__);
1172	}
1173	up_write(&policy->rwsem);
1174	return ret;
1175}
1176
1177void refresh_frequency_limits(struct cpufreq_policy *policy)
1178{
1179	if (!policy_is_inactive(policy)) {
1180		pr_debug("updating policy for CPU %u\n", policy->cpu);
1181
1182		cpufreq_set_policy(policy, policy->governor, policy->policy);
1183	}
1184}
1185EXPORT_SYMBOL(refresh_frequency_limits);
1186
1187static void handle_update(struct work_struct *work)
1188{
1189	struct cpufreq_policy *policy =
1190		container_of(work, struct cpufreq_policy, update);
1191
1192	pr_debug("handle_update for cpu %u called\n", policy->cpu);
1193	down_write(&policy->rwsem);
1194	refresh_frequency_limits(policy);
1195	up_write(&policy->rwsem);
1196}
1197
1198static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1199				void *data)
1200{
1201	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1202
1203	schedule_work(&policy->update);
1204	return 0;
1205}
1206
1207static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1208				void *data)
1209{
1210	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1211
1212	schedule_work(&policy->update);
1213	return 0;
1214}
1215
1216static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1217{
1218	struct kobject *kobj;
1219	struct completion *cmp;
1220
1221	down_write(&policy->rwsem);
1222	cpufreq_stats_free_table(policy);
1223	kobj = &policy->kobj;
1224	cmp = &policy->kobj_unregister;
1225	up_write(&policy->rwsem);
1226	kobject_put(kobj);
1227
1228	/*
1229	 * We need to make sure that the underlying kobj is
1230	 * actually not referenced anymore by anybody before we
1231	 * proceed with unloading.
1232	 */
1233	pr_debug("waiting for dropping of refcount\n");
1234	wait_for_completion(cmp);
1235	pr_debug("wait complete\n");
1236}
1237
1238static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1239{
1240	struct cpufreq_policy *policy;
1241	struct device *dev = get_cpu_device(cpu);
1242	int ret;
1243
1244	if (!dev)
1245		return NULL;
1246
1247	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1248	if (!policy)
1249		return NULL;
1250
1251	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1252		goto err_free_policy;
1253
1254	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1255		goto err_free_cpumask;
1256
1257	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1258		goto err_free_rcpumask;
1259
1260	init_completion(&policy->kobj_unregister);
1261	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1262				   cpufreq_global_kobject, "policy%u", cpu);
1263	if (ret) {
1264		dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1265		/*
1266		 * The entire policy object will be freed below, but the extra
1267		 * memory allocated for the kobject name needs to be freed by
1268		 * releasing the kobject.
1269		 */
1270		kobject_put(&policy->kobj);
1271		goto err_free_real_cpus;
1272	}
1273
1274	freq_constraints_init(&policy->constraints);
1275
1276	policy->nb_min.notifier_call = cpufreq_notifier_min;
1277	policy->nb_max.notifier_call = cpufreq_notifier_max;
1278
1279	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1280				    &policy->nb_min);
1281	if (ret) {
1282		dev_err(dev, "Failed to register MIN QoS notifier: %d (CPU%u)\n",
1283			ret, cpu);
1284		goto err_kobj_remove;
1285	}
1286
1287	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1288				    &policy->nb_max);
1289	if (ret) {
1290		dev_err(dev, "Failed to register MAX QoS notifier: %d (CPU%u)\n",
1291			ret, cpu);
1292		goto err_min_qos_notifier;
1293	}
1294
1295	INIT_LIST_HEAD(&policy->policy_list);
1296	init_rwsem(&policy->rwsem);
1297	spin_lock_init(&policy->transition_lock);
1298	init_waitqueue_head(&policy->transition_wait);
1299	INIT_WORK(&policy->update, handle_update);
1300
1301	policy->cpu = cpu;
1302	return policy;
1303
1304err_min_qos_notifier:
1305	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1306				 &policy->nb_min);
1307err_kobj_remove:
1308	cpufreq_policy_put_kobj(policy);
1309err_free_real_cpus:
1310	free_cpumask_var(policy->real_cpus);
1311err_free_rcpumask:
1312	free_cpumask_var(policy->related_cpus);
1313err_free_cpumask:
1314	free_cpumask_var(policy->cpus);
1315err_free_policy:
1316	kfree(policy);
1317
1318	return NULL;
1319}
1320
1321static void cpufreq_policy_free(struct cpufreq_policy *policy)
1322{
1323	unsigned long flags;
1324	int cpu;
1325
1326	/*
1327	 * The callers must ensure the policy is inactive by now, to avoid any
1328	 * races with show()/store() callbacks.
1329	 */
1330	if (unlikely(!policy_is_inactive(policy)))
1331		pr_warn("%s: Freeing active policy\n", __func__);
1332
1333	/* Remove policy from list */
1334	write_lock_irqsave(&cpufreq_driver_lock, flags);
1335	list_del(&policy->policy_list);
1336
1337	for_each_cpu(cpu, policy->related_cpus)
1338		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1339	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1340
1341	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1342				 &policy->nb_max);
1343	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1344				 &policy->nb_min);
1345
1346	/* Cancel any pending policy->update work before freeing the policy. */
1347	cancel_work_sync(&policy->update);
1348
1349	if (policy->max_freq_req) {
1350		/*
1351		 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY
1352		 * notification, since CPUFREQ_CREATE_POLICY notification was
1353		 * sent after adding max_freq_req earlier.
1354		 */
1355		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1356					     CPUFREQ_REMOVE_POLICY, policy);
1357		freq_qos_remove_request(policy->max_freq_req);
1358	}
1359
1360	freq_qos_remove_request(policy->min_freq_req);
1361	kfree(policy->min_freq_req);
1362
1363	cpufreq_policy_put_kobj(policy);
1364	free_cpumask_var(policy->real_cpus);
1365	free_cpumask_var(policy->related_cpus);
1366	free_cpumask_var(policy->cpus);
1367	kfree(policy);
1368}
1369
1370static int cpufreq_online(unsigned int cpu)
1371{
1372	struct cpufreq_policy *policy;
1373	bool new_policy;
1374	unsigned long flags;
1375	unsigned int j;
1376	int ret;
1377
1378	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1379
1380	/* Check if this CPU already has a policy to manage it */
1381	policy = per_cpu(cpufreq_cpu_data, cpu);
1382	if (policy) {
1383		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1384		if (!policy_is_inactive(policy))
1385			return cpufreq_add_policy_cpu(policy, cpu);
1386
1387		/* This is the only online CPU for the policy.  Start over. */
1388		new_policy = false;
1389		down_write(&policy->rwsem);
1390		policy->cpu = cpu;
1391		policy->governor = NULL;
1392	} else {
1393		new_policy = true;
1394		policy = cpufreq_policy_alloc(cpu);
1395		if (!policy)
1396			return -ENOMEM;
1397		down_write(&policy->rwsem);
1398	}
1399
1400	if (!new_policy && cpufreq_driver->online) {
1401		/* Recover policy->cpus using related_cpus */
1402		cpumask_copy(policy->cpus, policy->related_cpus);
1403
1404		ret = cpufreq_driver->online(policy);
1405		if (ret) {
1406			pr_debug("%s: %d: initialization failed\n", __func__,
1407				 __LINE__);
1408			goto out_exit_policy;
1409		}
1410	} else {
1411		cpumask_copy(policy->cpus, cpumask_of(cpu));
1412
1413		/*
1414		 * Call driver. From then on the cpufreq must be able
1415		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1416		 */
1417		ret = cpufreq_driver->init(policy);
1418		if (ret) {
1419			pr_debug("%s: %d: initialization failed\n", __func__,
1420				 __LINE__);
1421			goto out_free_policy;
1422		}
1423
1424		/* Let the per-policy boost flag mirror the cpufreq_driver boost during init */
1425		policy->boost_enabled = cpufreq_boost_enabled() && policy_has_boost_freq(policy);
1426
1427		/*
1428		 * The initialization has succeeded and the policy is online.
1429		 * If there is a problem with its frequency table, take it
1430		 * offline and drop it.
1431		 */
1432		ret = cpufreq_table_validate_and_sort(policy);
1433		if (ret)
1434			goto out_offline_policy;
1435
1436		/* related_cpus should at least include policy->cpus. */
1437		cpumask_copy(policy->related_cpus, policy->cpus);
1438	}
1439
1440	/*
1441	 * affected cpus must always be the one, which are online. We aren't
1442	 * managing offline cpus here.
1443	 */
1444	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1445
1446	if (new_policy) {
1447		for_each_cpu(j, policy->related_cpus) {
1448			per_cpu(cpufreq_cpu_data, j) = policy;
1449			add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1450		}
1451
1452		policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1453					       GFP_KERNEL);
1454		if (!policy->min_freq_req) {
1455			ret = -ENOMEM;
1456			goto out_destroy_policy;
1457		}
1458
1459		ret = freq_qos_add_request(&policy->constraints,
1460					   policy->min_freq_req, FREQ_QOS_MIN,
1461					   FREQ_QOS_MIN_DEFAULT_VALUE);
1462		if (ret < 0) {
1463			/*
1464			 * So we don't call freq_qos_remove_request() for an
1465			 * uninitialized request.
1466			 */
1467			kfree(policy->min_freq_req);
1468			policy->min_freq_req = NULL;
1469			goto out_destroy_policy;
1470		}
1471
1472		/*
1473		 * This must be initialized right here to avoid calling
1474		 * freq_qos_remove_request() on uninitialized request in case
1475		 * of errors.
1476		 */
1477		policy->max_freq_req = policy->min_freq_req + 1;
1478
1479		ret = freq_qos_add_request(&policy->constraints,
1480					   policy->max_freq_req, FREQ_QOS_MAX,
1481					   FREQ_QOS_MAX_DEFAULT_VALUE);
1482		if (ret < 0) {
1483			policy->max_freq_req = NULL;
1484			goto out_destroy_policy;
1485		}
1486
1487		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1488				CPUFREQ_CREATE_POLICY, policy);
1489	}
1490
1491	if (cpufreq_driver->get && has_target()) {
1492		policy->cur = cpufreq_driver->get(policy->cpu);
1493		if (!policy->cur) {
1494			ret = -EIO;
1495			pr_err("%s: ->get() failed\n", __func__);
1496			goto out_destroy_policy;
1497		}
1498	}
1499
1500	/*
1501	 * Sometimes boot loaders set CPU frequency to a value outside of
1502	 * frequency table present with cpufreq core. In such cases CPU might be
1503	 * unstable if it has to run on that frequency for long duration of time
1504	 * and so its better to set it to a frequency which is specified in
1505	 * freq-table. This also makes cpufreq stats inconsistent as
1506	 * cpufreq-stats would fail to register because current frequency of CPU
1507	 * isn't found in freq-table.
1508	 *
1509	 * Because we don't want this change to effect boot process badly, we go
1510	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1511	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1512	 * is initialized to zero).
1513	 *
1514	 * We are passing target-freq as "policy->cur - 1" otherwise
1515	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1516	 * equal to target-freq.
1517	 */
1518	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1519	    && has_target()) {
1520		unsigned int old_freq = policy->cur;
1521
1522		/* Are we running at unknown frequency ? */
1523		ret = cpufreq_frequency_table_get_index(policy, old_freq);
1524		if (ret == -EINVAL) {
1525			ret = __cpufreq_driver_target(policy, old_freq - 1,
1526						      CPUFREQ_RELATION_L);
1527
1528			/*
1529			 * Reaching here after boot in a few seconds may not
1530			 * mean that system will remain stable at "unknown"
1531			 * frequency for longer duration. Hence, a BUG_ON().
1532			 */
1533			BUG_ON(ret);
1534			pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1535				__func__, policy->cpu, old_freq, policy->cur);
1536		}
1537	}
1538
1539	if (new_policy) {
1540		ret = cpufreq_add_dev_interface(policy);
1541		if (ret)
1542			goto out_destroy_policy;
1543
1544		cpufreq_stats_create_table(policy);
1545
1546		write_lock_irqsave(&cpufreq_driver_lock, flags);
1547		list_add(&policy->policy_list, &cpufreq_policy_list);
1548		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1549
1550		/*
1551		 * Register with the energy model before
1552		 * sched_cpufreq_governor_change() is called, which will result
1553		 * in rebuilding of the sched domains, which should only be done
1554		 * once the energy model is properly initialized for the policy
1555		 * first.
1556		 *
1557		 * Also, this should be called before the policy is registered
1558		 * with cooling framework.
1559		 */
1560		if (cpufreq_driver->register_em)
1561			cpufreq_driver->register_em(policy);
1562	}
1563
1564	ret = cpufreq_init_policy(policy);
1565	if (ret) {
1566		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1567		       __func__, cpu, ret);
1568		goto out_destroy_policy;
1569	}
1570
1571	up_write(&policy->rwsem);
1572
1573	kobject_uevent(&policy->kobj, KOBJ_ADD);
1574
1575	/* Callback for handling stuff after policy is ready */
1576	if (cpufreq_driver->ready)
1577		cpufreq_driver->ready(policy);
1578
1579	if (cpufreq_thermal_control_enabled(cpufreq_driver))
1580		policy->cdev = of_cpufreq_cooling_register(policy);
1581
1582	pr_debug("initialization complete\n");
1583
1584	return 0;
1585
1586out_destroy_policy:
1587	for_each_cpu(j, policy->real_cpus)
1588		remove_cpu_dev_symlink(policy, j, get_cpu_device(j));
1589
1590out_offline_policy:
1591	if (cpufreq_driver->offline)
1592		cpufreq_driver->offline(policy);
1593
1594out_exit_policy:
1595	if (cpufreq_driver->exit)
1596		cpufreq_driver->exit(policy);
1597
1598out_free_policy:
1599	cpumask_clear(policy->cpus);
1600	up_write(&policy->rwsem);
1601
1602	cpufreq_policy_free(policy);
1603	return ret;
1604}
1605
1606/**
1607 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1608 * @dev: CPU device.
1609 * @sif: Subsystem interface structure pointer (not used)
1610 */
1611static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1612{
1613	struct cpufreq_policy *policy;
1614	unsigned cpu = dev->id;
1615	int ret;
1616
1617	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1618
1619	if (cpu_online(cpu)) {
1620		ret = cpufreq_online(cpu);
1621		if (ret)
1622			return ret;
1623	}
1624
1625	/* Create sysfs link on CPU registration */
1626	policy = per_cpu(cpufreq_cpu_data, cpu);
1627	if (policy)
1628		add_cpu_dev_symlink(policy, cpu, dev);
1629
1630	return 0;
1631}
1632
1633static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy)
1634{
1635	int ret;
1636
1637	if (has_target())
1638		cpufreq_stop_governor(policy);
1639
1640	cpumask_clear_cpu(cpu, policy->cpus);
1641
1642	if (!policy_is_inactive(policy)) {
1643		/* Nominate a new CPU if necessary. */
1644		if (cpu == policy->cpu)
1645			policy->cpu = cpumask_any(policy->cpus);
1646
1647		/* Start the governor again for the active policy. */
1648		if (has_target()) {
1649			ret = cpufreq_start_governor(policy);
1650			if (ret)
1651				pr_err("%s: Failed to start governor\n", __func__);
1652		}
1653
1654		return;
1655	}
1656
1657	if (has_target())
1658		strncpy(policy->last_governor, policy->governor->name,
1659			CPUFREQ_NAME_LEN);
1660	else
1661		policy->last_policy = policy->policy;
1662
1663	if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1664		cpufreq_cooling_unregister(policy->cdev);
1665		policy->cdev = NULL;
1666	}
1667
1668	if (has_target())
1669		cpufreq_exit_governor(policy);
1670
1671	/*
1672	 * Perform the ->offline() during light-weight tear-down, as
1673	 * that allows fast recovery when the CPU comes back.
1674	 */
1675	if (cpufreq_driver->offline) {
1676		cpufreq_driver->offline(policy);
1677	} else if (cpufreq_driver->exit) {
1678		cpufreq_driver->exit(policy);
1679		policy->freq_table = NULL;
1680	}
1681}
1682
1683static int cpufreq_offline(unsigned int cpu)
1684{
1685	struct cpufreq_policy *policy;
1686
1687	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1688
1689	policy = cpufreq_cpu_get_raw(cpu);
1690	if (!policy) {
1691		pr_debug("%s: No cpu_data found\n", __func__);
1692		return 0;
1693	}
1694
1695	down_write(&policy->rwsem);
1696
1697	__cpufreq_offline(cpu, policy);
1698
1699	up_write(&policy->rwsem);
1700	return 0;
1701}
1702
1703/*
1704 * cpufreq_remove_dev - remove a CPU device
1705 *
1706 * Removes the cpufreq interface for a CPU device.
1707 */
1708static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1709{
1710	unsigned int cpu = dev->id;
1711	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1712
1713	if (!policy)
1714		return;
1715
1716	down_write(&policy->rwsem);
1717
1718	if (cpu_online(cpu))
1719		__cpufreq_offline(cpu, policy);
1720
1721	remove_cpu_dev_symlink(policy, cpu, dev);
1722
1723	if (!cpumask_empty(policy->real_cpus)) {
1724		up_write(&policy->rwsem);
1725		return;
1726	}
1727
1728	/* We did light-weight exit earlier, do full tear down now */
1729	if (cpufreq_driver->offline)
1730		cpufreq_driver->exit(policy);
1731
1732	up_write(&policy->rwsem);
1733
1734	cpufreq_policy_free(policy);
1735}
1736
1737/**
1738 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1739 * @policy: Policy managing CPUs.
1740 * @new_freq: New CPU frequency.
1741 *
1742 * Adjust to the current frequency first and clean up later by either calling
1743 * cpufreq_update_policy(), or scheduling handle_update().
1744 */
1745static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1746				unsigned int new_freq)
1747{
1748	struct cpufreq_freqs freqs;
1749
1750	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1751		 policy->cur, new_freq);
1752
1753	freqs.old = policy->cur;
1754	freqs.new = new_freq;
1755
1756	cpufreq_freq_transition_begin(policy, &freqs);
1757	cpufreq_freq_transition_end(policy, &freqs, 0);
1758}
1759
1760static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1761{
1762	unsigned int new_freq;
1763
1764	new_freq = cpufreq_driver->get(policy->cpu);
1765	if (!new_freq)
1766		return 0;
1767
1768	/*
1769	 * If fast frequency switching is used with the given policy, the check
1770	 * against policy->cur is pointless, so skip it in that case.
1771	 */
1772	if (policy->fast_switch_enabled || !has_target())
1773		return new_freq;
1774
1775	if (policy->cur != new_freq) {
1776		/*
1777		 * For some platforms, the frequency returned by hardware may be
1778		 * slightly different from what is provided in the frequency
1779		 * table, for example hardware may return 499 MHz instead of 500
1780		 * MHz. In such cases it is better to avoid getting into
1781		 * unnecessary frequency updates.
1782		 */
1783		if (abs(policy->cur - new_freq) < KHZ_PER_MHZ)
1784			return policy->cur;
1785
1786		cpufreq_out_of_sync(policy, new_freq);
1787		if (update)
1788			schedule_work(&policy->update);
1789	}
1790
1791	return new_freq;
1792}
1793
1794/**
1795 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1796 * @cpu: CPU number
1797 *
1798 * This is the last known freq, without actually getting it from the driver.
1799 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1800 */
1801unsigned int cpufreq_quick_get(unsigned int cpu)
1802{
1803	struct cpufreq_policy *policy;
1804	unsigned int ret_freq = 0;
1805	unsigned long flags;
1806
1807	read_lock_irqsave(&cpufreq_driver_lock, flags);
1808
1809	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1810		ret_freq = cpufreq_driver->get(cpu);
1811		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1812		return ret_freq;
1813	}
1814
1815	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1816
1817	policy = cpufreq_cpu_get(cpu);
1818	if (policy) {
1819		ret_freq = policy->cur;
1820		cpufreq_cpu_put(policy);
1821	}
1822
1823	return ret_freq;
1824}
1825EXPORT_SYMBOL(cpufreq_quick_get);
1826
1827/**
1828 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1829 * @cpu: CPU number
1830 *
1831 * Just return the max possible frequency for a given CPU.
1832 */
1833unsigned int cpufreq_quick_get_max(unsigned int cpu)
1834{
1835	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1836	unsigned int ret_freq = 0;
1837
1838	if (policy) {
1839		ret_freq = policy->max;
1840		cpufreq_cpu_put(policy);
1841	}
1842
1843	return ret_freq;
1844}
1845EXPORT_SYMBOL(cpufreq_quick_get_max);
1846
1847/**
1848 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1849 * @cpu: CPU number
1850 *
1851 * The default return value is the max_freq field of cpuinfo.
1852 */
1853__weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1854{
1855	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1856	unsigned int ret_freq = 0;
1857
1858	if (policy) {
1859		ret_freq = policy->cpuinfo.max_freq;
1860		cpufreq_cpu_put(policy);
1861	}
1862
1863	return ret_freq;
1864}
1865EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1866
1867static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1868{
1869	if (unlikely(policy_is_inactive(policy)))
1870		return 0;
1871
1872	return cpufreq_verify_current_freq(policy, true);
1873}
1874
1875/**
1876 * cpufreq_get - get the current CPU frequency (in kHz)
1877 * @cpu: CPU number
1878 *
1879 * Get the CPU current (static) CPU frequency
1880 */
1881unsigned int cpufreq_get(unsigned int cpu)
1882{
1883	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1884	unsigned int ret_freq = 0;
1885
1886	if (policy) {
1887		down_read(&policy->rwsem);
1888		if (cpufreq_driver->get)
1889			ret_freq = __cpufreq_get(policy);
1890		up_read(&policy->rwsem);
1891
1892		cpufreq_cpu_put(policy);
1893	}
1894
1895	return ret_freq;
1896}
1897EXPORT_SYMBOL(cpufreq_get);
1898
1899static struct subsys_interface cpufreq_interface = {
1900	.name		= "cpufreq",
1901	.subsys		= &cpu_subsys,
1902	.add_dev	= cpufreq_add_dev,
1903	.remove_dev	= cpufreq_remove_dev,
1904};
1905
1906/*
1907 * In case platform wants some specific frequency to be configured
1908 * during suspend..
1909 */
1910int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1911{
1912	int ret;
1913
1914	if (!policy->suspend_freq) {
1915		pr_debug("%s: suspend_freq not defined\n", __func__);
1916		return 0;
1917	}
1918
1919	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1920			policy->suspend_freq);
1921
1922	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1923			CPUFREQ_RELATION_H);
1924	if (ret)
1925		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1926				__func__, policy->suspend_freq, ret);
1927
1928	return ret;
1929}
1930EXPORT_SYMBOL(cpufreq_generic_suspend);
1931
1932/**
1933 * cpufreq_suspend() - Suspend CPUFreq governors.
1934 *
1935 * Called during system wide Suspend/Hibernate cycles for suspending governors
1936 * as some platforms can't change frequency after this point in suspend cycle.
1937 * Because some of the devices (like: i2c, regulators, etc) they use for
1938 * changing frequency are suspended quickly after this point.
1939 */
1940void cpufreq_suspend(void)
1941{
1942	struct cpufreq_policy *policy;
1943
1944	if (!cpufreq_driver)
1945		return;
1946
1947	if (!has_target() && !cpufreq_driver->suspend)
1948		goto suspend;
1949
1950	pr_debug("%s: Suspending Governors\n", __func__);
1951
1952	for_each_active_policy(policy) {
1953		if (has_target()) {
1954			down_write(&policy->rwsem);
1955			cpufreq_stop_governor(policy);
1956			up_write(&policy->rwsem);
1957		}
1958
1959		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1960			pr_err("%s: Failed to suspend driver: %s\n", __func__,
1961				cpufreq_driver->name);
1962	}
1963
1964suspend:
1965	cpufreq_suspended = true;
1966}
1967
1968/**
1969 * cpufreq_resume() - Resume CPUFreq governors.
1970 *
1971 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1972 * are suspended with cpufreq_suspend().
1973 */
1974void cpufreq_resume(void)
1975{
1976	struct cpufreq_policy *policy;
1977	int ret;
1978
1979	if (!cpufreq_driver)
1980		return;
1981
1982	if (unlikely(!cpufreq_suspended))
1983		return;
1984
1985	cpufreq_suspended = false;
1986
1987	if (!has_target() && !cpufreq_driver->resume)
1988		return;
1989
1990	pr_debug("%s: Resuming Governors\n", __func__);
1991
1992	for_each_active_policy(policy) {
1993		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1994			pr_err("%s: Failed to resume driver: %s\n", __func__,
1995				cpufreq_driver->name);
1996		} else if (has_target()) {
1997			down_write(&policy->rwsem);
1998			ret = cpufreq_start_governor(policy);
1999			up_write(&policy->rwsem);
2000
2001			if (ret)
2002				pr_err("%s: Failed to start governor for CPU%u's policy\n",
2003				       __func__, policy->cpu);
2004		}
2005	}
2006}
2007
2008/**
2009 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
2010 * @flags: Flags to test against the current cpufreq driver's flags.
2011 *
2012 * Assumes that the driver is there, so callers must ensure that this is the
2013 * case.
2014 */
2015bool cpufreq_driver_test_flags(u16 flags)
2016{
2017	return !!(cpufreq_driver->flags & flags);
2018}
2019
2020/**
2021 * cpufreq_get_current_driver - Return the current driver's name.
2022 *
2023 * Return the name string of the currently registered cpufreq driver or NULL if
2024 * none.
2025 */
2026const char *cpufreq_get_current_driver(void)
2027{
2028	if (cpufreq_driver)
2029		return cpufreq_driver->name;
2030
2031	return NULL;
2032}
2033EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
2034
2035/**
2036 * cpufreq_get_driver_data - Return current driver data.
2037 *
2038 * Return the private data of the currently registered cpufreq driver, or NULL
2039 * if no cpufreq driver has been registered.
2040 */
2041void *cpufreq_get_driver_data(void)
2042{
2043	if (cpufreq_driver)
2044		return cpufreq_driver->driver_data;
2045
2046	return NULL;
2047}
2048EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
2049
2050/*********************************************************************
2051 *                     NOTIFIER LISTS INTERFACE                      *
2052 *********************************************************************/
2053
2054/**
2055 * cpufreq_register_notifier - Register a notifier with cpufreq.
2056 * @nb: notifier function to register.
2057 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2058 *
2059 * Add a notifier to one of two lists: either a list of notifiers that run on
2060 * clock rate changes (once before and once after every transition), or a list
2061 * of notifiers that ron on cpufreq policy changes.
2062 *
2063 * This function may sleep and it has the same return values as
2064 * blocking_notifier_chain_register().
2065 */
2066int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
2067{
2068	int ret;
2069
2070	if (cpufreq_disabled())
2071		return -EINVAL;
2072
2073	switch (list) {
2074	case CPUFREQ_TRANSITION_NOTIFIER:
2075		mutex_lock(&cpufreq_fast_switch_lock);
2076
2077		if (cpufreq_fast_switch_count > 0) {
2078			mutex_unlock(&cpufreq_fast_switch_lock);
2079			return -EBUSY;
2080		}
2081		ret = srcu_notifier_chain_register(
2082				&cpufreq_transition_notifier_list, nb);
2083		if (!ret)
2084			cpufreq_fast_switch_count--;
2085
2086		mutex_unlock(&cpufreq_fast_switch_lock);
2087		break;
2088	case CPUFREQ_POLICY_NOTIFIER:
2089		ret = blocking_notifier_chain_register(
2090				&cpufreq_policy_notifier_list, nb);
2091		break;
2092	default:
2093		ret = -EINVAL;
2094	}
2095
2096	return ret;
2097}
2098EXPORT_SYMBOL(cpufreq_register_notifier);
2099
2100/**
2101 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2102 * @nb: notifier block to be unregistered.
2103 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2104 *
2105 * Remove a notifier from one of the cpufreq notifier lists.
2106 *
2107 * This function may sleep and it has the same return values as
2108 * blocking_notifier_chain_unregister().
2109 */
2110int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2111{
2112	int ret;
2113
2114	if (cpufreq_disabled())
2115		return -EINVAL;
2116
2117	switch (list) {
2118	case CPUFREQ_TRANSITION_NOTIFIER:
2119		mutex_lock(&cpufreq_fast_switch_lock);
2120
2121		ret = srcu_notifier_chain_unregister(
2122				&cpufreq_transition_notifier_list, nb);
2123		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2124			cpufreq_fast_switch_count++;
2125
2126		mutex_unlock(&cpufreq_fast_switch_lock);
2127		break;
2128	case CPUFREQ_POLICY_NOTIFIER:
2129		ret = blocking_notifier_chain_unregister(
2130				&cpufreq_policy_notifier_list, nb);
2131		break;
2132	default:
2133		ret = -EINVAL;
2134	}
2135
2136	return ret;
2137}
2138EXPORT_SYMBOL(cpufreq_unregister_notifier);
2139
2140
2141/*********************************************************************
2142 *                              GOVERNORS                            *
2143 *********************************************************************/
2144
2145/**
2146 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2147 * @policy: cpufreq policy to switch the frequency for.
2148 * @target_freq: New frequency to set (may be approximate).
2149 *
2150 * Carry out a fast frequency switch without sleeping.
2151 *
2152 * The driver's ->fast_switch() callback invoked by this function must be
2153 * suitable for being called from within RCU-sched read-side critical sections
2154 * and it is expected to select the minimum available frequency greater than or
2155 * equal to @target_freq (CPUFREQ_RELATION_L).
2156 *
2157 * This function must not be called if policy->fast_switch_enabled is unset.
2158 *
2159 * Governors calling this function must guarantee that it will never be invoked
2160 * twice in parallel for the same policy and that it will never be called in
2161 * parallel with either ->target() or ->target_index() for the same policy.
2162 *
2163 * Returns the actual frequency set for the CPU.
2164 *
2165 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2166 * error condition, the hardware configuration must be preserved.
2167 */
2168unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2169					unsigned int target_freq)
2170{
2171	unsigned int freq;
2172	int cpu;
2173
2174	target_freq = clamp_val(target_freq, policy->min, policy->max);
2175	freq = cpufreq_driver->fast_switch(policy, target_freq);
2176
2177	if (!freq)
2178		return 0;
2179
2180	policy->cur = freq;
2181	arch_set_freq_scale(policy->related_cpus, freq,
2182			    policy->cpuinfo.max_freq);
2183	cpufreq_stats_record_transition(policy, freq);
2184
2185	if (trace_cpu_frequency_enabled()) {
2186		for_each_cpu(cpu, policy->cpus)
2187			trace_cpu_frequency(freq, cpu);
2188	}
2189
2190	return freq;
2191}
2192EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2193
2194/**
2195 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2196 * @cpu: Target CPU.
2197 * @min_perf: Minimum (required) performance level (units of @capacity).
2198 * @target_perf: Target (desired) performance level (units of @capacity).
2199 * @capacity: Capacity of the target CPU.
2200 *
2201 * Carry out a fast performance level switch of @cpu without sleeping.
2202 *
2203 * The driver's ->adjust_perf() callback invoked by this function must be
2204 * suitable for being called from within RCU-sched read-side critical sections
2205 * and it is expected to select a suitable performance level equal to or above
2206 * @min_perf and preferably equal to or below @target_perf.
2207 *
2208 * This function must not be called if policy->fast_switch_enabled is unset.
2209 *
2210 * Governors calling this function must guarantee that it will never be invoked
2211 * twice in parallel for the same CPU and that it will never be called in
2212 * parallel with either ->target() or ->target_index() or ->fast_switch() for
2213 * the same CPU.
2214 */
2215void cpufreq_driver_adjust_perf(unsigned int cpu,
2216				 unsigned long min_perf,
2217				 unsigned long target_perf,
2218				 unsigned long capacity)
2219{
2220	cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2221}
2222
2223/**
2224 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2225 *
2226 * Return 'true' if the ->adjust_perf callback is present for the
2227 * current driver or 'false' otherwise.
2228 */
2229bool cpufreq_driver_has_adjust_perf(void)
2230{
2231	return !!cpufreq_driver->adjust_perf;
2232}
2233
2234/* Must set freqs->new to intermediate frequency */
2235static int __target_intermediate(struct cpufreq_policy *policy,
2236				 struct cpufreq_freqs *freqs, int index)
2237{
2238	int ret;
2239
2240	freqs->new = cpufreq_driver->get_intermediate(policy, index);
2241
2242	/* We don't need to switch to intermediate freq */
2243	if (!freqs->new)
2244		return 0;
2245
2246	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2247		 __func__, policy->cpu, freqs->old, freqs->new);
2248
2249	cpufreq_freq_transition_begin(policy, freqs);
2250	ret = cpufreq_driver->target_intermediate(policy, index);
2251	cpufreq_freq_transition_end(policy, freqs, ret);
2252
2253	if (ret)
2254		pr_err("%s: Failed to change to intermediate frequency: %d\n",
2255		       __func__, ret);
2256
2257	return ret;
2258}
2259
2260static int __target_index(struct cpufreq_policy *policy, int index)
2261{
2262	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2263	unsigned int restore_freq, intermediate_freq = 0;
2264	unsigned int newfreq = policy->freq_table[index].frequency;
2265	int retval = -EINVAL;
2266	bool notify;
2267
2268	if (newfreq == policy->cur)
2269		return 0;
2270
2271	/* Save last value to restore later on errors */
2272	restore_freq = policy->cur;
2273
2274	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2275	if (notify) {
2276		/* Handle switching to intermediate frequency */
2277		if (cpufreq_driver->get_intermediate) {
2278			retval = __target_intermediate(policy, &freqs, index);
2279			if (retval)
2280				return retval;
2281
2282			intermediate_freq = freqs.new;
2283			/* Set old freq to intermediate */
2284			if (intermediate_freq)
2285				freqs.old = freqs.new;
2286		}
2287
2288		freqs.new = newfreq;
2289		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2290			 __func__, policy->cpu, freqs.old, freqs.new);
2291
2292		cpufreq_freq_transition_begin(policy, &freqs);
2293	}
2294
2295	retval = cpufreq_driver->target_index(policy, index);
2296	if (retval)
2297		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2298		       retval);
2299
2300	if (notify) {
2301		cpufreq_freq_transition_end(policy, &freqs, retval);
2302
2303		/*
2304		 * Failed after setting to intermediate freq? Driver should have
2305		 * reverted back to initial frequency and so should we. Check
2306		 * here for intermediate_freq instead of get_intermediate, in
2307		 * case we haven't switched to intermediate freq at all.
2308		 */
2309		if (unlikely(retval && intermediate_freq)) {
2310			freqs.old = intermediate_freq;
2311			freqs.new = restore_freq;
2312			cpufreq_freq_transition_begin(policy, &freqs);
2313			cpufreq_freq_transition_end(policy, &freqs, 0);
2314		}
2315	}
2316
2317	return retval;
2318}
2319
2320int __cpufreq_driver_target(struct cpufreq_policy *policy,
2321			    unsigned int target_freq,
2322			    unsigned int relation)
2323{
2324	unsigned int old_target_freq = target_freq;
2325
2326	if (cpufreq_disabled())
2327		return -ENODEV;
2328
2329	target_freq = __resolve_freq(policy, target_freq, relation);
2330
2331	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2332		 policy->cpu, target_freq, relation, old_target_freq);
2333
2334	/*
2335	 * This might look like a redundant call as we are checking it again
2336	 * after finding index. But it is left intentionally for cases where
2337	 * exactly same freq is called again and so we can save on few function
2338	 * calls.
2339	 */
2340	if (target_freq == policy->cur &&
2341	    !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2342		return 0;
2343
2344	if (cpufreq_driver->target) {
2345		/*
2346		 * If the driver hasn't setup a single inefficient frequency,
2347		 * it's unlikely it knows how to decode CPUFREQ_RELATION_E.
2348		 */
2349		if (!policy->efficiencies_available)
2350			relation &= ~CPUFREQ_RELATION_E;
2351
2352		return cpufreq_driver->target(policy, target_freq, relation);
2353	}
2354
2355	if (!cpufreq_driver->target_index)
2356		return -EINVAL;
2357
2358	return __target_index(policy, policy->cached_resolved_idx);
2359}
2360EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2361
2362int cpufreq_driver_target(struct cpufreq_policy *policy,
2363			  unsigned int target_freq,
2364			  unsigned int relation)
2365{
2366	int ret;
2367
2368	down_write(&policy->rwsem);
2369
2370	ret = __cpufreq_driver_target(policy, target_freq, relation);
2371
2372	up_write(&policy->rwsem);
2373
2374	return ret;
2375}
2376EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2377
2378__weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2379{
2380	return NULL;
2381}
2382
2383static int cpufreq_init_governor(struct cpufreq_policy *policy)
2384{
2385	int ret;
2386
2387	/* Don't start any governor operations if we are entering suspend */
2388	if (cpufreq_suspended)
2389		return 0;
2390	/*
2391	 * Governor might not be initiated here if ACPI _PPC changed
2392	 * notification happened, so check it.
2393	 */
2394	if (!policy->governor)
2395		return -EINVAL;
2396
2397	/* Platform doesn't want dynamic frequency switching ? */
2398	if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2399	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2400		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2401
2402		if (gov) {
2403			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2404				policy->governor->name, gov->name);
2405			policy->governor = gov;
2406		} else {
2407			return -EINVAL;
2408		}
2409	}
2410
2411	if (!try_module_get(policy->governor->owner))
2412		return -EINVAL;
2413
2414	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2415
2416	if (policy->governor->init) {
2417		ret = policy->governor->init(policy);
2418		if (ret) {
2419			module_put(policy->governor->owner);
2420			return ret;
2421		}
2422	}
2423
2424	policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2425
2426	return 0;
2427}
2428
2429static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2430{
2431	if (cpufreq_suspended || !policy->governor)
2432		return;
2433
2434	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2435
2436	if (policy->governor->exit)
2437		policy->governor->exit(policy);
2438
2439	module_put(policy->governor->owner);
2440}
2441
2442int cpufreq_start_governor(struct cpufreq_policy *policy)
2443{
2444	int ret;
2445
2446	if (cpufreq_suspended)
2447		return 0;
2448
2449	if (!policy->governor)
2450		return -EINVAL;
2451
2452	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2453
2454	if (cpufreq_driver->get)
2455		cpufreq_verify_current_freq(policy, false);
2456
2457	if (policy->governor->start) {
2458		ret = policy->governor->start(policy);
2459		if (ret)
2460			return ret;
2461	}
2462
2463	if (policy->governor->limits)
2464		policy->governor->limits(policy);
2465
2466	return 0;
2467}
2468
2469void cpufreq_stop_governor(struct cpufreq_policy *policy)
2470{
2471	if (cpufreq_suspended || !policy->governor)
2472		return;
2473
2474	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2475
2476	if (policy->governor->stop)
2477		policy->governor->stop(policy);
2478}
2479
2480static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2481{
2482	if (cpufreq_suspended || !policy->governor)
2483		return;
2484
2485	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2486
2487	if (policy->governor->limits)
2488		policy->governor->limits(policy);
2489}
2490
2491int cpufreq_register_governor(struct cpufreq_governor *governor)
2492{
2493	int err;
2494
2495	if (!governor)
2496		return -EINVAL;
2497
2498	if (cpufreq_disabled())
2499		return -ENODEV;
2500
2501	mutex_lock(&cpufreq_governor_mutex);
2502
2503	err = -EBUSY;
2504	if (!find_governor(governor->name)) {
2505		err = 0;
2506		list_add(&governor->governor_list, &cpufreq_governor_list);
2507	}
2508
2509	mutex_unlock(&cpufreq_governor_mutex);
2510	return err;
2511}
2512EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2513
2514void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2515{
2516	struct cpufreq_policy *policy;
2517	unsigned long flags;
2518
2519	if (!governor)
2520		return;
2521
2522	if (cpufreq_disabled())
2523		return;
2524
2525	/* clear last_governor for all inactive policies */
2526	read_lock_irqsave(&cpufreq_driver_lock, flags);
2527	for_each_inactive_policy(policy) {
2528		if (!strcmp(policy->last_governor, governor->name)) {
2529			policy->governor = NULL;
2530			strcpy(policy->last_governor, "\0");
2531		}
2532	}
2533	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2534
2535	mutex_lock(&cpufreq_governor_mutex);
2536	list_del(&governor->governor_list);
2537	mutex_unlock(&cpufreq_governor_mutex);
2538}
2539EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2540
2541
2542/*********************************************************************
2543 *                          POLICY INTERFACE                         *
2544 *********************************************************************/
2545
2546/**
2547 * cpufreq_get_policy - get the current cpufreq_policy
2548 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2549 *	is written
2550 * @cpu: CPU to find the policy for
2551 *
2552 * Reads the current cpufreq policy.
2553 */
2554int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2555{
2556	struct cpufreq_policy *cpu_policy;
2557	if (!policy)
2558		return -EINVAL;
2559
2560	cpu_policy = cpufreq_cpu_get(cpu);
2561	if (!cpu_policy)
2562		return -EINVAL;
2563
2564	memcpy(policy, cpu_policy, sizeof(*policy));
2565
2566	cpufreq_cpu_put(cpu_policy);
2567	return 0;
2568}
2569EXPORT_SYMBOL(cpufreq_get_policy);
2570
2571/**
2572 * cpufreq_set_policy - Modify cpufreq policy parameters.
2573 * @policy: Policy object to modify.
2574 * @new_gov: Policy governor pointer.
2575 * @new_pol: Policy value (for drivers with built-in governors).
2576 *
2577 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2578 * limits to be set for the policy, update @policy with the verified limits
2579 * values and either invoke the driver's ->setpolicy() callback (if present) or
2580 * carry out a governor update for @policy.  That is, run the current governor's
2581 * ->limits() callback (if @new_gov points to the same object as the one in
2582 * @policy) or replace the governor for @policy with @new_gov.
2583 *
2584 * The cpuinfo part of @policy is not updated by this function.
2585 */
2586static int cpufreq_set_policy(struct cpufreq_policy *policy,
2587			      struct cpufreq_governor *new_gov,
2588			      unsigned int new_pol)
2589{
2590	struct cpufreq_policy_data new_data;
2591	struct cpufreq_governor *old_gov;
2592	int ret;
2593
2594	memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2595	new_data.freq_table = policy->freq_table;
2596	new_data.cpu = policy->cpu;
2597	/*
2598	 * PM QoS framework collects all the requests from users and provide us
2599	 * the final aggregated value here.
2600	 */
2601	new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2602	new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2603
2604	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2605		 new_data.cpu, new_data.min, new_data.max);
2606
2607	/*
2608	 * Verify that the CPU speed can be set within these limits and make sure
2609	 * that min <= max.
2610	 */
2611	ret = cpufreq_driver->verify(&new_data);
2612	if (ret)
2613		return ret;
2614
2615	/*
2616	 * Resolve policy min/max to available frequencies. It ensures
2617	 * no frequency resolution will neither overshoot the requested maximum
2618	 * nor undershoot the requested minimum.
2619	 */
2620	policy->min = new_data.min;
2621	policy->max = new_data.max;
2622	policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L);
2623	policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H);
2624	trace_cpu_frequency_limits(policy);
2625
2626	policy->cached_target_freq = UINT_MAX;
2627
2628	pr_debug("new min and max freqs are %u - %u kHz\n",
2629		 policy->min, policy->max);
2630
2631	if (cpufreq_driver->setpolicy) {
2632		policy->policy = new_pol;
2633		pr_debug("setting range\n");
2634		return cpufreq_driver->setpolicy(policy);
2635	}
2636
2637	if (new_gov == policy->governor) {
2638		pr_debug("governor limits update\n");
2639		cpufreq_governor_limits(policy);
2640		return 0;
2641	}
2642
2643	pr_debug("governor switch\n");
2644
2645	/* save old, working values */
2646	old_gov = policy->governor;
2647	/* end old governor */
2648	if (old_gov) {
2649		cpufreq_stop_governor(policy);
2650		cpufreq_exit_governor(policy);
2651	}
2652
2653	/* start new governor */
2654	policy->governor = new_gov;
2655	ret = cpufreq_init_governor(policy);
2656	if (!ret) {
2657		ret = cpufreq_start_governor(policy);
2658		if (!ret) {
2659			pr_debug("governor change\n");
2660			sched_cpufreq_governor_change(policy, old_gov);
2661			return 0;
2662		}
2663		cpufreq_exit_governor(policy);
2664	}
2665
2666	/* new governor failed, so re-start old one */
2667	pr_debug("starting governor %s failed\n", policy->governor->name);
2668	if (old_gov) {
2669		policy->governor = old_gov;
2670		if (cpufreq_init_governor(policy))
2671			policy->governor = NULL;
2672		else
2673			cpufreq_start_governor(policy);
2674	}
2675
2676	return ret;
2677}
2678
2679/**
2680 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2681 * @cpu: CPU to re-evaluate the policy for.
2682 *
2683 * Update the current frequency for the cpufreq policy of @cpu and use
2684 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2685 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2686 * for the policy in question, among other things.
2687 */
2688void cpufreq_update_policy(unsigned int cpu)
2689{
2690	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2691
2692	if (!policy)
2693		return;
2694
2695	/*
2696	 * BIOS might change freq behind our back
2697	 * -> ask driver for current freq and notify governors about a change
2698	 */
2699	if (cpufreq_driver->get && has_target() &&
2700	    (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2701		goto unlock;
2702
2703	refresh_frequency_limits(policy);
2704
2705unlock:
2706	cpufreq_cpu_release(policy);
2707}
2708EXPORT_SYMBOL(cpufreq_update_policy);
2709
2710/**
2711 * cpufreq_update_limits - Update policy limits for a given CPU.
2712 * @cpu: CPU to update the policy limits for.
2713 *
2714 * Invoke the driver's ->update_limits callback if present or call
2715 * cpufreq_update_policy() for @cpu.
2716 */
2717void cpufreq_update_limits(unsigned int cpu)
2718{
2719	if (cpufreq_driver->update_limits)
2720		cpufreq_driver->update_limits(cpu);
2721	else
2722		cpufreq_update_policy(cpu);
2723}
2724EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2725
2726/*********************************************************************
2727 *               BOOST						     *
2728 *********************************************************************/
2729static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2730{
2731	int ret;
2732
2733	if (!policy->freq_table)
2734		return -ENXIO;
2735
2736	ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2737	if (ret) {
2738		pr_err("%s: Policy frequency update failed\n", __func__);
2739		return ret;
2740	}
2741
2742	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2743	if (ret < 0)
2744		return ret;
2745
2746	return 0;
2747}
2748
2749int cpufreq_boost_trigger_state(int state)
2750{
2751	struct cpufreq_policy *policy;
2752	unsigned long flags;
2753	int ret = 0;
2754
2755	if (cpufreq_driver->boost_enabled == state)
2756		return 0;
2757
2758	write_lock_irqsave(&cpufreq_driver_lock, flags);
2759	cpufreq_driver->boost_enabled = state;
2760	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2761
2762	cpus_read_lock();
2763	for_each_active_policy(policy) {
2764		policy->boost_enabled = state;
2765		ret = cpufreq_driver->set_boost(policy, state);
2766		if (ret) {
2767			policy->boost_enabled = !policy->boost_enabled;
2768			goto err_reset_state;
2769		}
2770	}
2771	cpus_read_unlock();
2772
2773	return 0;
2774
2775err_reset_state:
2776	cpus_read_unlock();
2777
2778	write_lock_irqsave(&cpufreq_driver_lock, flags);
2779	cpufreq_driver->boost_enabled = !state;
2780	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2781
2782	pr_err("%s: Cannot %s BOOST\n",
2783	       __func__, state ? "enable" : "disable");
2784
2785	return ret;
2786}
2787
2788static bool cpufreq_boost_supported(void)
2789{
2790	return cpufreq_driver->set_boost;
2791}
2792
2793static int create_boost_sysfs_file(void)
2794{
2795	int ret;
2796
2797	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2798	if (ret)
2799		pr_err("%s: cannot register global BOOST sysfs file\n",
2800		       __func__);
2801
2802	return ret;
2803}
2804
2805static void remove_boost_sysfs_file(void)
2806{
2807	if (cpufreq_boost_supported())
2808		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2809}
2810
2811int cpufreq_enable_boost_support(void)
2812{
2813	if (!cpufreq_driver)
2814		return -EINVAL;
2815
2816	if (cpufreq_boost_supported())
2817		return 0;
2818
2819	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2820
2821	/* This will get removed on driver unregister */
2822	return create_boost_sysfs_file();
2823}
2824EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2825
2826int cpufreq_boost_enabled(void)
2827{
2828	return cpufreq_driver->boost_enabled;
2829}
2830EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2831
2832/*********************************************************************
2833 *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2834 *********************************************************************/
2835static enum cpuhp_state hp_online;
2836
2837static int cpuhp_cpufreq_online(unsigned int cpu)
2838{
2839	cpufreq_online(cpu);
2840
2841	return 0;
2842}
2843
2844static int cpuhp_cpufreq_offline(unsigned int cpu)
2845{
2846	cpufreq_offline(cpu);
2847
2848	return 0;
2849}
2850
2851/**
2852 * cpufreq_register_driver - register a CPU Frequency driver
2853 * @driver_data: A struct cpufreq_driver containing the values#
2854 * submitted by the CPU Frequency driver.
2855 *
2856 * Registers a CPU Frequency driver to this core code. This code
2857 * returns zero on success, -EEXIST when another driver got here first
2858 * (and isn't unregistered in the meantime).
2859 *
2860 */
2861int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2862{
2863	unsigned long flags;
2864	int ret;
2865
2866	if (cpufreq_disabled())
2867		return -ENODEV;
2868
2869	/*
2870	 * The cpufreq core depends heavily on the availability of device
2871	 * structure, make sure they are available before proceeding further.
2872	 */
2873	if (!get_cpu_device(0))
2874		return -EPROBE_DEFER;
2875
2876	if (!driver_data || !driver_data->verify || !driver_data->init ||
2877	    !(driver_data->setpolicy || driver_data->target_index ||
2878		    driver_data->target) ||
2879	     (driver_data->setpolicy && (driver_data->target_index ||
2880		    driver_data->target)) ||
2881	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2882	     (!driver_data->online != !driver_data->offline) ||
2883		 (driver_data->adjust_perf && !driver_data->fast_switch))
2884		return -EINVAL;
2885
2886	pr_debug("trying to register driver %s\n", driver_data->name);
2887
2888	/* Protect against concurrent CPU online/offline. */
2889	cpus_read_lock();
2890
2891	write_lock_irqsave(&cpufreq_driver_lock, flags);
2892	if (cpufreq_driver) {
2893		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2894		ret = -EEXIST;
2895		goto out;
2896	}
2897	cpufreq_driver = driver_data;
2898	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2899
2900	/*
2901	 * Mark support for the scheduler's frequency invariance engine for
2902	 * drivers that implement target(), target_index() or fast_switch().
2903	 */
2904	if (!cpufreq_driver->setpolicy) {
2905		static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2906		pr_debug("supports frequency invariance");
2907	}
2908
2909	if (driver_data->setpolicy)
2910		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2911
2912	if (cpufreq_boost_supported()) {
2913		ret = create_boost_sysfs_file();
2914		if (ret)
2915			goto err_null_driver;
2916	}
2917
2918	ret = subsys_interface_register(&cpufreq_interface);
2919	if (ret)
2920		goto err_boost_unreg;
2921
2922	if (unlikely(list_empty(&cpufreq_policy_list))) {
2923		/* if all ->init() calls failed, unregister */
2924		ret = -ENODEV;
2925		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2926			 driver_data->name);
2927		goto err_if_unreg;
2928	}
2929
2930	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2931						   "cpufreq:online",
2932						   cpuhp_cpufreq_online,
2933						   cpuhp_cpufreq_offline);
2934	if (ret < 0)
2935		goto err_if_unreg;
2936	hp_online = ret;
2937	ret = 0;
2938
2939	pr_debug("driver %s up and running\n", driver_data->name);
2940	goto out;
2941
2942err_if_unreg:
2943	subsys_interface_unregister(&cpufreq_interface);
2944err_boost_unreg:
2945	remove_boost_sysfs_file();
2946err_null_driver:
2947	write_lock_irqsave(&cpufreq_driver_lock, flags);
2948	cpufreq_driver = NULL;
2949	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2950out:
2951	cpus_read_unlock();
2952	return ret;
2953}
2954EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2955
2956/*
2957 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2958 *
2959 * Unregister the current CPUFreq driver. Only call this if you have
2960 * the right to do so, i.e. if you have succeeded in initialising before!
2961 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2962 * currently not initialised.
2963 */
2964void cpufreq_unregister_driver(struct cpufreq_driver *driver)
2965{
2966	unsigned long flags;
2967
2968	if (WARN_ON(!cpufreq_driver || (driver != cpufreq_driver)))
2969		return;
2970
2971	pr_debug("unregistering driver %s\n", driver->name);
2972
2973	/* Protect against concurrent cpu hotplug */
2974	cpus_read_lock();
2975	subsys_interface_unregister(&cpufreq_interface);
2976	remove_boost_sysfs_file();
2977	static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
2978	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2979
2980	write_lock_irqsave(&cpufreq_driver_lock, flags);
2981
2982	cpufreq_driver = NULL;
2983
2984	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2985	cpus_read_unlock();
2986}
2987EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2988
2989static int __init cpufreq_core_init(void)
2990{
2991	struct cpufreq_governor *gov = cpufreq_default_governor();
2992	struct device *dev_root;
2993
2994	if (cpufreq_disabled())
2995		return -ENODEV;
2996
2997	dev_root = bus_get_dev_root(&cpu_subsys);
2998	if (dev_root) {
2999		cpufreq_global_kobject = kobject_create_and_add("cpufreq", &dev_root->kobj);
3000		put_device(dev_root);
3001	}
3002	BUG_ON(!cpufreq_global_kobject);
3003
3004	if (!strlen(default_governor))
3005		strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
3006
3007	return 0;
3008}
3009module_param(off, int, 0444);
3010module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
3011core_initcall(cpufreq_core_init);
3012