162306a36Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-only
262306a36Sopenharmony_ci/*
362306a36Sopenharmony_ci * CPPC (Collaborative Processor Performance Control) driver for
462306a36Sopenharmony_ci * interfacing with the CPUfreq layer and governors. See
562306a36Sopenharmony_ci * cppc_acpi.c for CPPC specific methods.
662306a36Sopenharmony_ci *
762306a36Sopenharmony_ci * (C) Copyright 2014, 2015 Linaro Ltd.
862306a36Sopenharmony_ci * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
962306a36Sopenharmony_ci */
1062306a36Sopenharmony_ci
1162306a36Sopenharmony_ci#define pr_fmt(fmt)	"CPPC Cpufreq:"	fmt
1262306a36Sopenharmony_ci
1362306a36Sopenharmony_ci#include <linux/arch_topology.h>
1462306a36Sopenharmony_ci#include <linux/kernel.h>
1562306a36Sopenharmony_ci#include <linux/module.h>
1662306a36Sopenharmony_ci#include <linux/delay.h>
1762306a36Sopenharmony_ci#include <linux/cpu.h>
1862306a36Sopenharmony_ci#include <linux/cpufreq.h>
1962306a36Sopenharmony_ci#include <linux/dmi.h>
2062306a36Sopenharmony_ci#include <linux/irq_work.h>
2162306a36Sopenharmony_ci#include <linux/kthread.h>
2262306a36Sopenharmony_ci#include <linux/time.h>
2362306a36Sopenharmony_ci#include <linux/vmalloc.h>
2462306a36Sopenharmony_ci#include <uapi/linux/sched/types.h>
2562306a36Sopenharmony_ci
2662306a36Sopenharmony_ci#include <asm/unaligned.h>
2762306a36Sopenharmony_ci
2862306a36Sopenharmony_ci#include <acpi/cppc_acpi.h>
2962306a36Sopenharmony_ci
3062306a36Sopenharmony_ci/* Minimum struct length needed for the DMI processor entry we want */
3162306a36Sopenharmony_ci#define DMI_ENTRY_PROCESSOR_MIN_LENGTH	48
3262306a36Sopenharmony_ci
3362306a36Sopenharmony_ci/* Offset in the DMI processor structure for the max frequency */
3462306a36Sopenharmony_ci#define DMI_PROCESSOR_MAX_SPEED		0x14
3562306a36Sopenharmony_ci
3662306a36Sopenharmony_ci/*
3762306a36Sopenharmony_ci * This list contains information parsed from per CPU ACPI _CPC and _PSD
3862306a36Sopenharmony_ci * structures: e.g. the highest and lowest supported performance, capabilities,
3962306a36Sopenharmony_ci * desired performance, level requested etc. Depending on the share_type, not
4062306a36Sopenharmony_ci * all CPUs will have an entry in the list.
4162306a36Sopenharmony_ci */
4262306a36Sopenharmony_cistatic LIST_HEAD(cpu_data_list);
4362306a36Sopenharmony_ci
4462306a36Sopenharmony_cistatic bool boost_supported;
4562306a36Sopenharmony_ci
4662306a36Sopenharmony_cistruct cppc_workaround_oem_info {
4762306a36Sopenharmony_ci	char oem_id[ACPI_OEM_ID_SIZE + 1];
4862306a36Sopenharmony_ci	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
4962306a36Sopenharmony_ci	u32 oem_revision;
5062306a36Sopenharmony_ci};
5162306a36Sopenharmony_ci
5262306a36Sopenharmony_cistatic struct cppc_workaround_oem_info wa_info[] = {
5362306a36Sopenharmony_ci	{
5462306a36Sopenharmony_ci		.oem_id		= "HISI  ",
5562306a36Sopenharmony_ci		.oem_table_id	= "HIP07   ",
5662306a36Sopenharmony_ci		.oem_revision	= 0,
5762306a36Sopenharmony_ci	}, {
5862306a36Sopenharmony_ci		.oem_id		= "HISI  ",
5962306a36Sopenharmony_ci		.oem_table_id	= "HIP08   ",
6062306a36Sopenharmony_ci		.oem_revision	= 0,
6162306a36Sopenharmony_ci	}
6262306a36Sopenharmony_ci};
6362306a36Sopenharmony_ci
6462306a36Sopenharmony_cistatic struct cpufreq_driver cppc_cpufreq_driver;
6562306a36Sopenharmony_ci
6662306a36Sopenharmony_cistatic enum {
6762306a36Sopenharmony_ci	FIE_UNSET = -1,
6862306a36Sopenharmony_ci	FIE_ENABLED,
6962306a36Sopenharmony_ci	FIE_DISABLED
7062306a36Sopenharmony_ci} fie_disabled = FIE_UNSET;
7162306a36Sopenharmony_ci
7262306a36Sopenharmony_ci#ifdef CONFIG_ACPI_CPPC_CPUFREQ_FIE
7362306a36Sopenharmony_cimodule_param(fie_disabled, int, 0444);
7462306a36Sopenharmony_ciMODULE_PARM_DESC(fie_disabled, "Disable Frequency Invariance Engine (FIE)");
7562306a36Sopenharmony_ci
7662306a36Sopenharmony_ci/* Frequency invariance support */
7762306a36Sopenharmony_cistruct cppc_freq_invariance {
7862306a36Sopenharmony_ci	int cpu;
7962306a36Sopenharmony_ci	struct irq_work irq_work;
8062306a36Sopenharmony_ci	struct kthread_work work;
8162306a36Sopenharmony_ci	struct cppc_perf_fb_ctrs prev_perf_fb_ctrs;
8262306a36Sopenharmony_ci	struct cppc_cpudata *cpu_data;
8362306a36Sopenharmony_ci};
8462306a36Sopenharmony_ci
8562306a36Sopenharmony_cistatic DEFINE_PER_CPU(struct cppc_freq_invariance, cppc_freq_inv);
8662306a36Sopenharmony_cistatic struct kthread_worker *kworker_fie;
8762306a36Sopenharmony_ci
8862306a36Sopenharmony_cistatic unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpu);
8962306a36Sopenharmony_cistatic int cppc_perf_from_fbctrs(struct cppc_cpudata *cpu_data,
9062306a36Sopenharmony_ci				 struct cppc_perf_fb_ctrs *fb_ctrs_t0,
9162306a36Sopenharmony_ci				 struct cppc_perf_fb_ctrs *fb_ctrs_t1);
9262306a36Sopenharmony_ci
9362306a36Sopenharmony_ci/**
9462306a36Sopenharmony_ci * cppc_scale_freq_workfn - CPPC arch_freq_scale updater for frequency invariance
9562306a36Sopenharmony_ci * @work: The work item.
9662306a36Sopenharmony_ci *
9762306a36Sopenharmony_ci * The CPPC driver register itself with the topology core to provide its own
9862306a36Sopenharmony_ci * implementation (cppc_scale_freq_tick()) of topology_scale_freq_tick() which
9962306a36Sopenharmony_ci * gets called by the scheduler on every tick.
10062306a36Sopenharmony_ci *
10162306a36Sopenharmony_ci * Note that the arch specific counters have higher priority than CPPC counters,
10262306a36Sopenharmony_ci * if available, though the CPPC driver doesn't need to have any special
10362306a36Sopenharmony_ci * handling for that.
10462306a36Sopenharmony_ci *
10562306a36Sopenharmony_ci * On an invocation of cppc_scale_freq_tick(), we schedule an irq work (since we
10662306a36Sopenharmony_ci * reach here from hard-irq context), which then schedules a normal work item
10762306a36Sopenharmony_ci * and cppc_scale_freq_workfn() updates the per_cpu arch_freq_scale variable
10862306a36Sopenharmony_ci * based on the counter updates since the last tick.
10962306a36Sopenharmony_ci */
11062306a36Sopenharmony_cistatic void cppc_scale_freq_workfn(struct kthread_work *work)
11162306a36Sopenharmony_ci{
11262306a36Sopenharmony_ci	struct cppc_freq_invariance *cppc_fi;
11362306a36Sopenharmony_ci	struct cppc_perf_fb_ctrs fb_ctrs = {0};
11462306a36Sopenharmony_ci	struct cppc_cpudata *cpu_data;
11562306a36Sopenharmony_ci	unsigned long local_freq_scale;
11662306a36Sopenharmony_ci	u64 perf;
11762306a36Sopenharmony_ci
11862306a36Sopenharmony_ci	cppc_fi = container_of(work, struct cppc_freq_invariance, work);
11962306a36Sopenharmony_ci	cpu_data = cppc_fi->cpu_data;
12062306a36Sopenharmony_ci
12162306a36Sopenharmony_ci	if (cppc_get_perf_ctrs(cppc_fi->cpu, &fb_ctrs)) {
12262306a36Sopenharmony_ci		pr_warn("%s: failed to read perf counters\n", __func__);
12362306a36Sopenharmony_ci		return;
12462306a36Sopenharmony_ci	}
12562306a36Sopenharmony_ci
12662306a36Sopenharmony_ci	perf = cppc_perf_from_fbctrs(cpu_data, &cppc_fi->prev_perf_fb_ctrs,
12762306a36Sopenharmony_ci				     &fb_ctrs);
12862306a36Sopenharmony_ci	cppc_fi->prev_perf_fb_ctrs = fb_ctrs;
12962306a36Sopenharmony_ci
13062306a36Sopenharmony_ci	perf <<= SCHED_CAPACITY_SHIFT;
13162306a36Sopenharmony_ci	local_freq_scale = div64_u64(perf, cpu_data->perf_caps.highest_perf);
13262306a36Sopenharmony_ci
13362306a36Sopenharmony_ci	/* This can happen due to counter's overflow */
13462306a36Sopenharmony_ci	if (unlikely(local_freq_scale > 1024))
13562306a36Sopenharmony_ci		local_freq_scale = 1024;
13662306a36Sopenharmony_ci
13762306a36Sopenharmony_ci	per_cpu(arch_freq_scale, cppc_fi->cpu) = local_freq_scale;
13862306a36Sopenharmony_ci}
13962306a36Sopenharmony_ci
14062306a36Sopenharmony_cistatic void cppc_irq_work(struct irq_work *irq_work)
14162306a36Sopenharmony_ci{
14262306a36Sopenharmony_ci	struct cppc_freq_invariance *cppc_fi;
14362306a36Sopenharmony_ci
14462306a36Sopenharmony_ci	cppc_fi = container_of(irq_work, struct cppc_freq_invariance, irq_work);
14562306a36Sopenharmony_ci	kthread_queue_work(kworker_fie, &cppc_fi->work);
14662306a36Sopenharmony_ci}
14762306a36Sopenharmony_ci
14862306a36Sopenharmony_cistatic void cppc_scale_freq_tick(void)
14962306a36Sopenharmony_ci{
15062306a36Sopenharmony_ci	struct cppc_freq_invariance *cppc_fi = &per_cpu(cppc_freq_inv, smp_processor_id());
15162306a36Sopenharmony_ci
15262306a36Sopenharmony_ci	/*
15362306a36Sopenharmony_ci	 * cppc_get_perf_ctrs() can potentially sleep, call that from the right
15462306a36Sopenharmony_ci	 * context.
15562306a36Sopenharmony_ci	 */
15662306a36Sopenharmony_ci	irq_work_queue(&cppc_fi->irq_work);
15762306a36Sopenharmony_ci}
15862306a36Sopenharmony_ci
15962306a36Sopenharmony_cistatic struct scale_freq_data cppc_sftd = {
16062306a36Sopenharmony_ci	.source = SCALE_FREQ_SOURCE_CPPC,
16162306a36Sopenharmony_ci	.set_freq_scale = cppc_scale_freq_tick,
16262306a36Sopenharmony_ci};
16362306a36Sopenharmony_ci
16462306a36Sopenharmony_cistatic void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy)
16562306a36Sopenharmony_ci{
16662306a36Sopenharmony_ci	struct cppc_freq_invariance *cppc_fi;
16762306a36Sopenharmony_ci	int cpu, ret;
16862306a36Sopenharmony_ci
16962306a36Sopenharmony_ci	if (fie_disabled)
17062306a36Sopenharmony_ci		return;
17162306a36Sopenharmony_ci
17262306a36Sopenharmony_ci	for_each_cpu(cpu, policy->cpus) {
17362306a36Sopenharmony_ci		cppc_fi = &per_cpu(cppc_freq_inv, cpu);
17462306a36Sopenharmony_ci		cppc_fi->cpu = cpu;
17562306a36Sopenharmony_ci		cppc_fi->cpu_data = policy->driver_data;
17662306a36Sopenharmony_ci		kthread_init_work(&cppc_fi->work, cppc_scale_freq_workfn);
17762306a36Sopenharmony_ci		init_irq_work(&cppc_fi->irq_work, cppc_irq_work);
17862306a36Sopenharmony_ci
17962306a36Sopenharmony_ci		ret = cppc_get_perf_ctrs(cpu, &cppc_fi->prev_perf_fb_ctrs);
18062306a36Sopenharmony_ci		if (ret) {
18162306a36Sopenharmony_ci			pr_warn("%s: failed to read perf counters for cpu:%d: %d\n",
18262306a36Sopenharmony_ci				__func__, cpu, ret);
18362306a36Sopenharmony_ci
18462306a36Sopenharmony_ci			/*
18562306a36Sopenharmony_ci			 * Don't abort if the CPU was offline while the driver
18662306a36Sopenharmony_ci			 * was getting registered.
18762306a36Sopenharmony_ci			 */
18862306a36Sopenharmony_ci			if (cpu_online(cpu))
18962306a36Sopenharmony_ci				return;
19062306a36Sopenharmony_ci		}
19162306a36Sopenharmony_ci	}
19262306a36Sopenharmony_ci
19362306a36Sopenharmony_ci	/* Register for freq-invariance */
19462306a36Sopenharmony_ci	topology_set_scale_freq_source(&cppc_sftd, policy->cpus);
19562306a36Sopenharmony_ci}
19662306a36Sopenharmony_ci
19762306a36Sopenharmony_ci/*
19862306a36Sopenharmony_ci * We free all the resources on policy's removal and not on CPU removal as the
19962306a36Sopenharmony_ci * irq-work are per-cpu and the hotplug core takes care of flushing the pending
20062306a36Sopenharmony_ci * irq-works (hint: smpcfd_dying_cpu()) on CPU hotplug. Even if the kthread-work
20162306a36Sopenharmony_ci * fires on another CPU after the concerned CPU is removed, it won't harm.
20262306a36Sopenharmony_ci *
20362306a36Sopenharmony_ci * We just need to make sure to remove them all on policy->exit().
20462306a36Sopenharmony_ci */
20562306a36Sopenharmony_cistatic void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy)
20662306a36Sopenharmony_ci{
20762306a36Sopenharmony_ci	struct cppc_freq_invariance *cppc_fi;
20862306a36Sopenharmony_ci	int cpu;
20962306a36Sopenharmony_ci
21062306a36Sopenharmony_ci	if (fie_disabled)
21162306a36Sopenharmony_ci		return;
21262306a36Sopenharmony_ci
21362306a36Sopenharmony_ci	/* policy->cpus will be empty here, use related_cpus instead */
21462306a36Sopenharmony_ci	topology_clear_scale_freq_source(SCALE_FREQ_SOURCE_CPPC, policy->related_cpus);
21562306a36Sopenharmony_ci
21662306a36Sopenharmony_ci	for_each_cpu(cpu, policy->related_cpus) {
21762306a36Sopenharmony_ci		cppc_fi = &per_cpu(cppc_freq_inv, cpu);
21862306a36Sopenharmony_ci		irq_work_sync(&cppc_fi->irq_work);
21962306a36Sopenharmony_ci		kthread_cancel_work_sync(&cppc_fi->work);
22062306a36Sopenharmony_ci	}
22162306a36Sopenharmony_ci}
22262306a36Sopenharmony_ci
22362306a36Sopenharmony_cistatic void __init cppc_freq_invariance_init(void)
22462306a36Sopenharmony_ci{
22562306a36Sopenharmony_ci	struct sched_attr attr = {
22662306a36Sopenharmony_ci		.size		= sizeof(struct sched_attr),
22762306a36Sopenharmony_ci		.sched_policy	= SCHED_DEADLINE,
22862306a36Sopenharmony_ci		.sched_nice	= 0,
22962306a36Sopenharmony_ci		.sched_priority	= 0,
23062306a36Sopenharmony_ci		/*
23162306a36Sopenharmony_ci		 * Fake (unused) bandwidth; workaround to "fix"
23262306a36Sopenharmony_ci		 * priority inheritance.
23362306a36Sopenharmony_ci		 */
23462306a36Sopenharmony_ci		.sched_runtime	= 1000000,
23562306a36Sopenharmony_ci		.sched_deadline = 10000000,
23662306a36Sopenharmony_ci		.sched_period	= 10000000,
23762306a36Sopenharmony_ci	};
23862306a36Sopenharmony_ci	int ret;
23962306a36Sopenharmony_ci
24062306a36Sopenharmony_ci	if (fie_disabled != FIE_ENABLED && fie_disabled != FIE_DISABLED) {
24162306a36Sopenharmony_ci		fie_disabled = FIE_ENABLED;
24262306a36Sopenharmony_ci		if (cppc_perf_ctrs_in_pcc()) {
24362306a36Sopenharmony_ci			pr_info("FIE not enabled on systems with registers in PCC\n");
24462306a36Sopenharmony_ci			fie_disabled = FIE_DISABLED;
24562306a36Sopenharmony_ci		}
24662306a36Sopenharmony_ci	}
24762306a36Sopenharmony_ci
24862306a36Sopenharmony_ci	if (fie_disabled)
24962306a36Sopenharmony_ci		return;
25062306a36Sopenharmony_ci
25162306a36Sopenharmony_ci	kworker_fie = kthread_create_worker(0, "cppc_fie");
25262306a36Sopenharmony_ci	if (IS_ERR(kworker_fie)) {
25362306a36Sopenharmony_ci		pr_warn("%s: failed to create kworker_fie: %ld\n", __func__,
25462306a36Sopenharmony_ci			PTR_ERR(kworker_fie));
25562306a36Sopenharmony_ci		fie_disabled = FIE_DISABLED;
25662306a36Sopenharmony_ci		return;
25762306a36Sopenharmony_ci	}
25862306a36Sopenharmony_ci
25962306a36Sopenharmony_ci	ret = sched_setattr_nocheck(kworker_fie->task, &attr);
26062306a36Sopenharmony_ci	if (ret) {
26162306a36Sopenharmony_ci		pr_warn("%s: failed to set SCHED_DEADLINE: %d\n", __func__,
26262306a36Sopenharmony_ci			ret);
26362306a36Sopenharmony_ci		kthread_destroy_worker(kworker_fie);
26462306a36Sopenharmony_ci		fie_disabled = FIE_DISABLED;
26562306a36Sopenharmony_ci	}
26662306a36Sopenharmony_ci}
26762306a36Sopenharmony_ci
26862306a36Sopenharmony_cistatic void cppc_freq_invariance_exit(void)
26962306a36Sopenharmony_ci{
27062306a36Sopenharmony_ci	if (fie_disabled)
27162306a36Sopenharmony_ci		return;
27262306a36Sopenharmony_ci
27362306a36Sopenharmony_ci	kthread_destroy_worker(kworker_fie);
27462306a36Sopenharmony_ci}
27562306a36Sopenharmony_ci
27662306a36Sopenharmony_ci#else
27762306a36Sopenharmony_cistatic inline void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy)
27862306a36Sopenharmony_ci{
27962306a36Sopenharmony_ci}
28062306a36Sopenharmony_ci
28162306a36Sopenharmony_cistatic inline void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy)
28262306a36Sopenharmony_ci{
28362306a36Sopenharmony_ci}
28462306a36Sopenharmony_ci
28562306a36Sopenharmony_cistatic inline void cppc_freq_invariance_init(void)
28662306a36Sopenharmony_ci{
28762306a36Sopenharmony_ci}
28862306a36Sopenharmony_ci
28962306a36Sopenharmony_cistatic inline void cppc_freq_invariance_exit(void)
29062306a36Sopenharmony_ci{
29162306a36Sopenharmony_ci}
29262306a36Sopenharmony_ci#endif /* CONFIG_ACPI_CPPC_CPUFREQ_FIE */
29362306a36Sopenharmony_ci
29462306a36Sopenharmony_ci/* Callback function used to retrieve the max frequency from DMI */
29562306a36Sopenharmony_cistatic void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private)
29662306a36Sopenharmony_ci{
29762306a36Sopenharmony_ci	const u8 *dmi_data = (const u8 *)dm;
29862306a36Sopenharmony_ci	u16 *mhz = (u16 *)private;
29962306a36Sopenharmony_ci
30062306a36Sopenharmony_ci	if (dm->type == DMI_ENTRY_PROCESSOR &&
30162306a36Sopenharmony_ci	    dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) {
30262306a36Sopenharmony_ci		u16 val = (u16)get_unaligned((const u16 *)
30362306a36Sopenharmony_ci				(dmi_data + DMI_PROCESSOR_MAX_SPEED));
30462306a36Sopenharmony_ci		*mhz = val > *mhz ? val : *mhz;
30562306a36Sopenharmony_ci	}
30662306a36Sopenharmony_ci}
30762306a36Sopenharmony_ci
30862306a36Sopenharmony_ci/* Look up the max frequency in DMI */
30962306a36Sopenharmony_cistatic u64 cppc_get_dmi_max_khz(void)
31062306a36Sopenharmony_ci{
31162306a36Sopenharmony_ci	u16 mhz = 0;
31262306a36Sopenharmony_ci
31362306a36Sopenharmony_ci	dmi_walk(cppc_find_dmi_mhz, &mhz);
31462306a36Sopenharmony_ci
31562306a36Sopenharmony_ci	/*
31662306a36Sopenharmony_ci	 * Real stupid fallback value, just in case there is no
31762306a36Sopenharmony_ci	 * actual value set.
31862306a36Sopenharmony_ci	 */
31962306a36Sopenharmony_ci	mhz = mhz ? mhz : 1;
32062306a36Sopenharmony_ci
32162306a36Sopenharmony_ci	return (1000 * mhz);
32262306a36Sopenharmony_ci}
32362306a36Sopenharmony_ci
32462306a36Sopenharmony_ci/*
32562306a36Sopenharmony_ci * If CPPC lowest_freq and nominal_freq registers are exposed then we can
32662306a36Sopenharmony_ci * use them to convert perf to freq and vice versa. The conversion is
32762306a36Sopenharmony_ci * extrapolated as an affine function passing by the 2 points:
32862306a36Sopenharmony_ci *  - (Low perf, Low freq)
32962306a36Sopenharmony_ci *  - (Nominal perf, Nominal perf)
33062306a36Sopenharmony_ci */
33162306a36Sopenharmony_cistatic unsigned int cppc_cpufreq_perf_to_khz(struct cppc_cpudata *cpu_data,
33262306a36Sopenharmony_ci					     unsigned int perf)
33362306a36Sopenharmony_ci{
33462306a36Sopenharmony_ci	struct cppc_perf_caps *caps = &cpu_data->perf_caps;
33562306a36Sopenharmony_ci	s64 retval, offset = 0;
33662306a36Sopenharmony_ci	static u64 max_khz;
33762306a36Sopenharmony_ci	u64 mul, div;
33862306a36Sopenharmony_ci
33962306a36Sopenharmony_ci	if (caps->lowest_freq && caps->nominal_freq) {
34062306a36Sopenharmony_ci		mul = caps->nominal_freq - caps->lowest_freq;
34162306a36Sopenharmony_ci		div = caps->nominal_perf - caps->lowest_perf;
34262306a36Sopenharmony_ci		offset = caps->nominal_freq - div64_u64(caps->nominal_perf * mul, div);
34362306a36Sopenharmony_ci	} else {
34462306a36Sopenharmony_ci		if (!max_khz)
34562306a36Sopenharmony_ci			max_khz = cppc_get_dmi_max_khz();
34662306a36Sopenharmony_ci		mul = max_khz;
34762306a36Sopenharmony_ci		div = caps->highest_perf;
34862306a36Sopenharmony_ci	}
34962306a36Sopenharmony_ci
35062306a36Sopenharmony_ci	retval = offset + div64_u64(perf * mul, div);
35162306a36Sopenharmony_ci	if (retval >= 0)
35262306a36Sopenharmony_ci		return retval;
35362306a36Sopenharmony_ci	return 0;
35462306a36Sopenharmony_ci}
35562306a36Sopenharmony_ci
35662306a36Sopenharmony_cistatic unsigned int cppc_cpufreq_khz_to_perf(struct cppc_cpudata *cpu_data,
35762306a36Sopenharmony_ci					     unsigned int freq)
35862306a36Sopenharmony_ci{
35962306a36Sopenharmony_ci	struct cppc_perf_caps *caps = &cpu_data->perf_caps;
36062306a36Sopenharmony_ci	s64 retval, offset = 0;
36162306a36Sopenharmony_ci	static u64 max_khz;
36262306a36Sopenharmony_ci	u64  mul, div;
36362306a36Sopenharmony_ci
36462306a36Sopenharmony_ci	if (caps->lowest_freq && caps->nominal_freq) {
36562306a36Sopenharmony_ci		mul = caps->nominal_perf - caps->lowest_perf;
36662306a36Sopenharmony_ci		div = caps->nominal_freq - caps->lowest_freq;
36762306a36Sopenharmony_ci		offset = caps->nominal_perf - div64_u64(caps->nominal_freq * mul, div);
36862306a36Sopenharmony_ci	} else {
36962306a36Sopenharmony_ci		if (!max_khz)
37062306a36Sopenharmony_ci			max_khz = cppc_get_dmi_max_khz();
37162306a36Sopenharmony_ci		mul = caps->highest_perf;
37262306a36Sopenharmony_ci		div = max_khz;
37362306a36Sopenharmony_ci	}
37462306a36Sopenharmony_ci
37562306a36Sopenharmony_ci	retval = offset + div64_u64(freq * mul, div);
37662306a36Sopenharmony_ci	if (retval >= 0)
37762306a36Sopenharmony_ci		return retval;
37862306a36Sopenharmony_ci	return 0;
37962306a36Sopenharmony_ci}
38062306a36Sopenharmony_ci
38162306a36Sopenharmony_cistatic int cppc_cpufreq_set_target(struct cpufreq_policy *policy,
38262306a36Sopenharmony_ci				   unsigned int target_freq,
38362306a36Sopenharmony_ci				   unsigned int relation)
38462306a36Sopenharmony_ci
38562306a36Sopenharmony_ci{
38662306a36Sopenharmony_ci	struct cppc_cpudata *cpu_data = policy->driver_data;
38762306a36Sopenharmony_ci	unsigned int cpu = policy->cpu;
38862306a36Sopenharmony_ci	struct cpufreq_freqs freqs;
38962306a36Sopenharmony_ci	u32 desired_perf;
39062306a36Sopenharmony_ci	int ret = 0;
39162306a36Sopenharmony_ci
39262306a36Sopenharmony_ci	desired_perf = cppc_cpufreq_khz_to_perf(cpu_data, target_freq);
39362306a36Sopenharmony_ci	/* Return if it is exactly the same perf */
39462306a36Sopenharmony_ci	if (desired_perf == cpu_data->perf_ctrls.desired_perf)
39562306a36Sopenharmony_ci		return ret;
39662306a36Sopenharmony_ci
39762306a36Sopenharmony_ci	cpu_data->perf_ctrls.desired_perf = desired_perf;
39862306a36Sopenharmony_ci	freqs.old = policy->cur;
39962306a36Sopenharmony_ci	freqs.new = target_freq;
40062306a36Sopenharmony_ci
40162306a36Sopenharmony_ci	cpufreq_freq_transition_begin(policy, &freqs);
40262306a36Sopenharmony_ci	ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
40362306a36Sopenharmony_ci	cpufreq_freq_transition_end(policy, &freqs, ret != 0);
40462306a36Sopenharmony_ci
40562306a36Sopenharmony_ci	if (ret)
40662306a36Sopenharmony_ci		pr_debug("Failed to set target on CPU:%d. ret:%d\n",
40762306a36Sopenharmony_ci			 cpu, ret);
40862306a36Sopenharmony_ci
40962306a36Sopenharmony_ci	return ret;
41062306a36Sopenharmony_ci}
41162306a36Sopenharmony_ci
41262306a36Sopenharmony_cistatic unsigned int cppc_cpufreq_fast_switch(struct cpufreq_policy *policy,
41362306a36Sopenharmony_ci					      unsigned int target_freq)
41462306a36Sopenharmony_ci{
41562306a36Sopenharmony_ci	struct cppc_cpudata *cpu_data = policy->driver_data;
41662306a36Sopenharmony_ci	unsigned int cpu = policy->cpu;
41762306a36Sopenharmony_ci	u32 desired_perf;
41862306a36Sopenharmony_ci	int ret;
41962306a36Sopenharmony_ci
42062306a36Sopenharmony_ci	desired_perf = cppc_cpufreq_khz_to_perf(cpu_data, target_freq);
42162306a36Sopenharmony_ci	cpu_data->perf_ctrls.desired_perf = desired_perf;
42262306a36Sopenharmony_ci	ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
42362306a36Sopenharmony_ci
42462306a36Sopenharmony_ci	if (ret) {
42562306a36Sopenharmony_ci		pr_debug("Failed to set target on CPU:%d. ret:%d\n",
42662306a36Sopenharmony_ci			 cpu, ret);
42762306a36Sopenharmony_ci		return 0;
42862306a36Sopenharmony_ci	}
42962306a36Sopenharmony_ci
43062306a36Sopenharmony_ci	return target_freq;
43162306a36Sopenharmony_ci}
43262306a36Sopenharmony_ci
43362306a36Sopenharmony_cistatic int cppc_verify_policy(struct cpufreq_policy_data *policy)
43462306a36Sopenharmony_ci{
43562306a36Sopenharmony_ci	cpufreq_verify_within_cpu_limits(policy);
43662306a36Sopenharmony_ci	return 0;
43762306a36Sopenharmony_ci}
43862306a36Sopenharmony_ci
43962306a36Sopenharmony_ci/*
44062306a36Sopenharmony_ci * The PCC subspace describes the rate at which platform can accept commands
44162306a36Sopenharmony_ci * on the shared PCC channel (including READs which do not count towards freq
44262306a36Sopenharmony_ci * transition requests), so ideally we need to use the PCC values as a fallback
44362306a36Sopenharmony_ci * if we don't have a platform specific transition_delay_us
44462306a36Sopenharmony_ci */
44562306a36Sopenharmony_ci#ifdef CONFIG_ARM64
44662306a36Sopenharmony_ci#include <asm/cputype.h>
44762306a36Sopenharmony_ci
44862306a36Sopenharmony_cistatic unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
44962306a36Sopenharmony_ci{
45062306a36Sopenharmony_ci	unsigned long implementor = read_cpuid_implementor();
45162306a36Sopenharmony_ci	unsigned long part_num = read_cpuid_part_number();
45262306a36Sopenharmony_ci
45362306a36Sopenharmony_ci	switch (implementor) {
45462306a36Sopenharmony_ci	case ARM_CPU_IMP_QCOM:
45562306a36Sopenharmony_ci		switch (part_num) {
45662306a36Sopenharmony_ci		case QCOM_CPU_PART_FALKOR_V1:
45762306a36Sopenharmony_ci		case QCOM_CPU_PART_FALKOR:
45862306a36Sopenharmony_ci			return 10000;
45962306a36Sopenharmony_ci		}
46062306a36Sopenharmony_ci	}
46162306a36Sopenharmony_ci	return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
46262306a36Sopenharmony_ci}
46362306a36Sopenharmony_ci#else
46462306a36Sopenharmony_cistatic unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
46562306a36Sopenharmony_ci{
46662306a36Sopenharmony_ci	return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
46762306a36Sopenharmony_ci}
46862306a36Sopenharmony_ci#endif
46962306a36Sopenharmony_ci
47062306a36Sopenharmony_ci#if defined(CONFIG_ARM64) && defined(CONFIG_ENERGY_MODEL)
47162306a36Sopenharmony_ci
47262306a36Sopenharmony_cistatic DEFINE_PER_CPU(unsigned int, efficiency_class);
47362306a36Sopenharmony_cistatic void cppc_cpufreq_register_em(struct cpufreq_policy *policy);
47462306a36Sopenharmony_ci
47562306a36Sopenharmony_ci/* Create an artificial performance state every CPPC_EM_CAP_STEP capacity unit. */
47662306a36Sopenharmony_ci#define CPPC_EM_CAP_STEP	(20)
47762306a36Sopenharmony_ci/* Increase the cost value by CPPC_EM_COST_STEP every performance state. */
47862306a36Sopenharmony_ci#define CPPC_EM_COST_STEP	(1)
47962306a36Sopenharmony_ci/* Add a cost gap correspnding to the energy of 4 CPUs. */
48062306a36Sopenharmony_ci#define CPPC_EM_COST_GAP	(4 * SCHED_CAPACITY_SCALE * CPPC_EM_COST_STEP \
48162306a36Sopenharmony_ci				/ CPPC_EM_CAP_STEP)
48262306a36Sopenharmony_ci
48362306a36Sopenharmony_cistatic unsigned int get_perf_level_count(struct cpufreq_policy *policy)
48462306a36Sopenharmony_ci{
48562306a36Sopenharmony_ci	struct cppc_perf_caps *perf_caps;
48662306a36Sopenharmony_ci	unsigned int min_cap, max_cap;
48762306a36Sopenharmony_ci	struct cppc_cpudata *cpu_data;
48862306a36Sopenharmony_ci	int cpu = policy->cpu;
48962306a36Sopenharmony_ci
49062306a36Sopenharmony_ci	cpu_data = policy->driver_data;
49162306a36Sopenharmony_ci	perf_caps = &cpu_data->perf_caps;
49262306a36Sopenharmony_ci	max_cap = arch_scale_cpu_capacity(cpu);
49362306a36Sopenharmony_ci	min_cap = div_u64((u64)max_cap * perf_caps->lowest_perf,
49462306a36Sopenharmony_ci			  perf_caps->highest_perf);
49562306a36Sopenharmony_ci	if ((min_cap == 0) || (max_cap < min_cap))
49662306a36Sopenharmony_ci		return 0;
49762306a36Sopenharmony_ci	return 1 + max_cap / CPPC_EM_CAP_STEP - min_cap / CPPC_EM_CAP_STEP;
49862306a36Sopenharmony_ci}
49962306a36Sopenharmony_ci
50062306a36Sopenharmony_ci/*
50162306a36Sopenharmony_ci * The cost is defined as:
50262306a36Sopenharmony_ci *   cost = power * max_frequency / frequency
50362306a36Sopenharmony_ci */
50462306a36Sopenharmony_cistatic inline unsigned long compute_cost(int cpu, int step)
50562306a36Sopenharmony_ci{
50662306a36Sopenharmony_ci	return CPPC_EM_COST_GAP * per_cpu(efficiency_class, cpu) +
50762306a36Sopenharmony_ci			step * CPPC_EM_COST_STEP;
50862306a36Sopenharmony_ci}
50962306a36Sopenharmony_ci
51062306a36Sopenharmony_cistatic int cppc_get_cpu_power(struct device *cpu_dev,
51162306a36Sopenharmony_ci		unsigned long *power, unsigned long *KHz)
51262306a36Sopenharmony_ci{
51362306a36Sopenharmony_ci	unsigned long perf_step, perf_prev, perf, perf_check;
51462306a36Sopenharmony_ci	unsigned int min_step, max_step, step, step_check;
51562306a36Sopenharmony_ci	unsigned long prev_freq = *KHz;
51662306a36Sopenharmony_ci	unsigned int min_cap, max_cap;
51762306a36Sopenharmony_ci	struct cpufreq_policy *policy;
51862306a36Sopenharmony_ci
51962306a36Sopenharmony_ci	struct cppc_perf_caps *perf_caps;
52062306a36Sopenharmony_ci	struct cppc_cpudata *cpu_data;
52162306a36Sopenharmony_ci
52262306a36Sopenharmony_ci	policy = cpufreq_cpu_get_raw(cpu_dev->id);
52362306a36Sopenharmony_ci	cpu_data = policy->driver_data;
52462306a36Sopenharmony_ci	perf_caps = &cpu_data->perf_caps;
52562306a36Sopenharmony_ci	max_cap = arch_scale_cpu_capacity(cpu_dev->id);
52662306a36Sopenharmony_ci	min_cap = div_u64((u64)max_cap * perf_caps->lowest_perf,
52762306a36Sopenharmony_ci			  perf_caps->highest_perf);
52862306a36Sopenharmony_ci	perf_step = div_u64((u64)CPPC_EM_CAP_STEP * perf_caps->highest_perf,
52962306a36Sopenharmony_ci			    max_cap);
53062306a36Sopenharmony_ci	min_step = min_cap / CPPC_EM_CAP_STEP;
53162306a36Sopenharmony_ci	max_step = max_cap / CPPC_EM_CAP_STEP;
53262306a36Sopenharmony_ci
53362306a36Sopenharmony_ci	perf_prev = cppc_cpufreq_khz_to_perf(cpu_data, *KHz);
53462306a36Sopenharmony_ci	step = perf_prev / perf_step;
53562306a36Sopenharmony_ci
53662306a36Sopenharmony_ci	if (step > max_step)
53762306a36Sopenharmony_ci		return -EINVAL;
53862306a36Sopenharmony_ci
53962306a36Sopenharmony_ci	if (min_step == max_step) {
54062306a36Sopenharmony_ci		step = max_step;
54162306a36Sopenharmony_ci		perf = perf_caps->highest_perf;
54262306a36Sopenharmony_ci	} else if (step < min_step) {
54362306a36Sopenharmony_ci		step = min_step;
54462306a36Sopenharmony_ci		perf = perf_caps->lowest_perf;
54562306a36Sopenharmony_ci	} else {
54662306a36Sopenharmony_ci		step++;
54762306a36Sopenharmony_ci		if (step == max_step)
54862306a36Sopenharmony_ci			perf = perf_caps->highest_perf;
54962306a36Sopenharmony_ci		else
55062306a36Sopenharmony_ci			perf = step * perf_step;
55162306a36Sopenharmony_ci	}
55262306a36Sopenharmony_ci
55362306a36Sopenharmony_ci	*KHz = cppc_cpufreq_perf_to_khz(cpu_data, perf);
55462306a36Sopenharmony_ci	perf_check = cppc_cpufreq_khz_to_perf(cpu_data, *KHz);
55562306a36Sopenharmony_ci	step_check = perf_check / perf_step;
55662306a36Sopenharmony_ci
55762306a36Sopenharmony_ci	/*
55862306a36Sopenharmony_ci	 * To avoid bad integer approximation, check that new frequency value
55962306a36Sopenharmony_ci	 * increased and that the new frequency will be converted to the
56062306a36Sopenharmony_ci	 * desired step value.
56162306a36Sopenharmony_ci	 */
56262306a36Sopenharmony_ci	while ((*KHz == prev_freq) || (step_check != step)) {
56362306a36Sopenharmony_ci		perf++;
56462306a36Sopenharmony_ci		*KHz = cppc_cpufreq_perf_to_khz(cpu_data, perf);
56562306a36Sopenharmony_ci		perf_check = cppc_cpufreq_khz_to_perf(cpu_data, *KHz);
56662306a36Sopenharmony_ci		step_check = perf_check / perf_step;
56762306a36Sopenharmony_ci	}
56862306a36Sopenharmony_ci
56962306a36Sopenharmony_ci	/*
57062306a36Sopenharmony_ci	 * With an artificial EM, only the cost value is used. Still the power
57162306a36Sopenharmony_ci	 * is populated such as 0 < power < EM_MAX_POWER. This allows to add
57262306a36Sopenharmony_ci	 * more sense to the artificial performance states.
57362306a36Sopenharmony_ci	 */
57462306a36Sopenharmony_ci	*power = compute_cost(cpu_dev->id, step);
57562306a36Sopenharmony_ci
57662306a36Sopenharmony_ci	return 0;
57762306a36Sopenharmony_ci}
57862306a36Sopenharmony_ci
57962306a36Sopenharmony_cistatic int cppc_get_cpu_cost(struct device *cpu_dev, unsigned long KHz,
58062306a36Sopenharmony_ci		unsigned long *cost)
58162306a36Sopenharmony_ci{
58262306a36Sopenharmony_ci	unsigned long perf_step, perf_prev;
58362306a36Sopenharmony_ci	struct cppc_perf_caps *perf_caps;
58462306a36Sopenharmony_ci	struct cpufreq_policy *policy;
58562306a36Sopenharmony_ci	struct cppc_cpudata *cpu_data;
58662306a36Sopenharmony_ci	unsigned int max_cap;
58762306a36Sopenharmony_ci	int step;
58862306a36Sopenharmony_ci
58962306a36Sopenharmony_ci	policy = cpufreq_cpu_get_raw(cpu_dev->id);
59062306a36Sopenharmony_ci	cpu_data = policy->driver_data;
59162306a36Sopenharmony_ci	perf_caps = &cpu_data->perf_caps;
59262306a36Sopenharmony_ci	max_cap = arch_scale_cpu_capacity(cpu_dev->id);
59362306a36Sopenharmony_ci
59462306a36Sopenharmony_ci	perf_prev = cppc_cpufreq_khz_to_perf(cpu_data, KHz);
59562306a36Sopenharmony_ci	perf_step = CPPC_EM_CAP_STEP * perf_caps->highest_perf / max_cap;
59662306a36Sopenharmony_ci	step = perf_prev / perf_step;
59762306a36Sopenharmony_ci
59862306a36Sopenharmony_ci	*cost = compute_cost(cpu_dev->id, step);
59962306a36Sopenharmony_ci
60062306a36Sopenharmony_ci	return 0;
60162306a36Sopenharmony_ci}
60262306a36Sopenharmony_ci
60362306a36Sopenharmony_cistatic int populate_efficiency_class(void)
60462306a36Sopenharmony_ci{
60562306a36Sopenharmony_ci	struct acpi_madt_generic_interrupt *gicc;
60662306a36Sopenharmony_ci	DECLARE_BITMAP(used_classes, 256) = {};
60762306a36Sopenharmony_ci	int class, cpu, index;
60862306a36Sopenharmony_ci
60962306a36Sopenharmony_ci	for_each_possible_cpu(cpu) {
61062306a36Sopenharmony_ci		gicc = acpi_cpu_get_madt_gicc(cpu);
61162306a36Sopenharmony_ci		class = gicc->efficiency_class;
61262306a36Sopenharmony_ci		bitmap_set(used_classes, class, 1);
61362306a36Sopenharmony_ci	}
61462306a36Sopenharmony_ci
61562306a36Sopenharmony_ci	if (bitmap_weight(used_classes, 256) <= 1) {
61662306a36Sopenharmony_ci		pr_debug("Efficiency classes are all equal (=%d). "
61762306a36Sopenharmony_ci			"No EM registered", class);
61862306a36Sopenharmony_ci		return -EINVAL;
61962306a36Sopenharmony_ci	}
62062306a36Sopenharmony_ci
62162306a36Sopenharmony_ci	/*
62262306a36Sopenharmony_ci	 * Squeeze efficiency class values on [0:#efficiency_class-1].
62362306a36Sopenharmony_ci	 * Values are per spec in [0:255].
62462306a36Sopenharmony_ci	 */
62562306a36Sopenharmony_ci	index = 0;
62662306a36Sopenharmony_ci	for_each_set_bit(class, used_classes, 256) {
62762306a36Sopenharmony_ci		for_each_possible_cpu(cpu) {
62862306a36Sopenharmony_ci			gicc = acpi_cpu_get_madt_gicc(cpu);
62962306a36Sopenharmony_ci			if (gicc->efficiency_class == class)
63062306a36Sopenharmony_ci				per_cpu(efficiency_class, cpu) = index;
63162306a36Sopenharmony_ci		}
63262306a36Sopenharmony_ci		index++;
63362306a36Sopenharmony_ci	}
63462306a36Sopenharmony_ci	cppc_cpufreq_driver.register_em = cppc_cpufreq_register_em;
63562306a36Sopenharmony_ci
63662306a36Sopenharmony_ci	return 0;
63762306a36Sopenharmony_ci}
63862306a36Sopenharmony_ci
63962306a36Sopenharmony_cistatic void cppc_cpufreq_register_em(struct cpufreq_policy *policy)
64062306a36Sopenharmony_ci{
64162306a36Sopenharmony_ci	struct cppc_cpudata *cpu_data;
64262306a36Sopenharmony_ci	struct em_data_callback em_cb =
64362306a36Sopenharmony_ci		EM_ADV_DATA_CB(cppc_get_cpu_power, cppc_get_cpu_cost);
64462306a36Sopenharmony_ci
64562306a36Sopenharmony_ci	cpu_data = policy->driver_data;
64662306a36Sopenharmony_ci	em_dev_register_perf_domain(get_cpu_device(policy->cpu),
64762306a36Sopenharmony_ci			get_perf_level_count(policy), &em_cb,
64862306a36Sopenharmony_ci			cpu_data->shared_cpu_map, 0);
64962306a36Sopenharmony_ci}
65062306a36Sopenharmony_ci
65162306a36Sopenharmony_ci#else
65262306a36Sopenharmony_cistatic int populate_efficiency_class(void)
65362306a36Sopenharmony_ci{
65462306a36Sopenharmony_ci	return 0;
65562306a36Sopenharmony_ci}
65662306a36Sopenharmony_ci#endif
65762306a36Sopenharmony_ci
65862306a36Sopenharmony_cistatic struct cppc_cpudata *cppc_cpufreq_get_cpu_data(unsigned int cpu)
65962306a36Sopenharmony_ci{
66062306a36Sopenharmony_ci	struct cppc_cpudata *cpu_data;
66162306a36Sopenharmony_ci	int ret;
66262306a36Sopenharmony_ci
66362306a36Sopenharmony_ci	cpu_data = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL);
66462306a36Sopenharmony_ci	if (!cpu_data)
66562306a36Sopenharmony_ci		goto out;
66662306a36Sopenharmony_ci
66762306a36Sopenharmony_ci	if (!zalloc_cpumask_var(&cpu_data->shared_cpu_map, GFP_KERNEL))
66862306a36Sopenharmony_ci		goto free_cpu;
66962306a36Sopenharmony_ci
67062306a36Sopenharmony_ci	ret = acpi_get_psd_map(cpu, cpu_data);
67162306a36Sopenharmony_ci	if (ret) {
67262306a36Sopenharmony_ci		pr_debug("Err parsing CPU%d PSD data: ret:%d\n", cpu, ret);
67362306a36Sopenharmony_ci		goto free_mask;
67462306a36Sopenharmony_ci	}
67562306a36Sopenharmony_ci
67662306a36Sopenharmony_ci	ret = cppc_get_perf_caps(cpu, &cpu_data->perf_caps);
67762306a36Sopenharmony_ci	if (ret) {
67862306a36Sopenharmony_ci		pr_debug("Err reading CPU%d perf caps: ret:%d\n", cpu, ret);
67962306a36Sopenharmony_ci		goto free_mask;
68062306a36Sopenharmony_ci	}
68162306a36Sopenharmony_ci
68262306a36Sopenharmony_ci	/* Convert the lowest and nominal freq from MHz to KHz */
68362306a36Sopenharmony_ci	cpu_data->perf_caps.lowest_freq *= 1000;
68462306a36Sopenharmony_ci	cpu_data->perf_caps.nominal_freq *= 1000;
68562306a36Sopenharmony_ci
68662306a36Sopenharmony_ci	list_add(&cpu_data->node, &cpu_data_list);
68762306a36Sopenharmony_ci
68862306a36Sopenharmony_ci	return cpu_data;
68962306a36Sopenharmony_ci
69062306a36Sopenharmony_cifree_mask:
69162306a36Sopenharmony_ci	free_cpumask_var(cpu_data->shared_cpu_map);
69262306a36Sopenharmony_cifree_cpu:
69362306a36Sopenharmony_ci	kfree(cpu_data);
69462306a36Sopenharmony_ciout:
69562306a36Sopenharmony_ci	return NULL;
69662306a36Sopenharmony_ci}
69762306a36Sopenharmony_ci
69862306a36Sopenharmony_cistatic void cppc_cpufreq_put_cpu_data(struct cpufreq_policy *policy)
69962306a36Sopenharmony_ci{
70062306a36Sopenharmony_ci	struct cppc_cpudata *cpu_data = policy->driver_data;
70162306a36Sopenharmony_ci
70262306a36Sopenharmony_ci	list_del(&cpu_data->node);
70362306a36Sopenharmony_ci	free_cpumask_var(cpu_data->shared_cpu_map);
70462306a36Sopenharmony_ci	kfree(cpu_data);
70562306a36Sopenharmony_ci	policy->driver_data = NULL;
70662306a36Sopenharmony_ci}
70762306a36Sopenharmony_ci
70862306a36Sopenharmony_cistatic int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
70962306a36Sopenharmony_ci{
71062306a36Sopenharmony_ci	unsigned int cpu = policy->cpu;
71162306a36Sopenharmony_ci	struct cppc_cpudata *cpu_data;
71262306a36Sopenharmony_ci	struct cppc_perf_caps *caps;
71362306a36Sopenharmony_ci	int ret;
71462306a36Sopenharmony_ci
71562306a36Sopenharmony_ci	cpu_data = cppc_cpufreq_get_cpu_data(cpu);
71662306a36Sopenharmony_ci	if (!cpu_data) {
71762306a36Sopenharmony_ci		pr_err("Error in acquiring _CPC/_PSD data for CPU%d.\n", cpu);
71862306a36Sopenharmony_ci		return -ENODEV;
71962306a36Sopenharmony_ci	}
72062306a36Sopenharmony_ci	caps = &cpu_data->perf_caps;
72162306a36Sopenharmony_ci	policy->driver_data = cpu_data;
72262306a36Sopenharmony_ci
72362306a36Sopenharmony_ci	/*
72462306a36Sopenharmony_ci	 * Set min to lowest nonlinear perf to avoid any efficiency penalty (see
72562306a36Sopenharmony_ci	 * Section 8.4.7.1.1.5 of ACPI 6.1 spec)
72662306a36Sopenharmony_ci	 */
72762306a36Sopenharmony_ci	policy->min = cppc_cpufreq_perf_to_khz(cpu_data,
72862306a36Sopenharmony_ci					       caps->lowest_nonlinear_perf);
72962306a36Sopenharmony_ci	policy->max = cppc_cpufreq_perf_to_khz(cpu_data,
73062306a36Sopenharmony_ci					       caps->nominal_perf);
73162306a36Sopenharmony_ci
73262306a36Sopenharmony_ci	/*
73362306a36Sopenharmony_ci	 * Set cpuinfo.min_freq to Lowest to make the full range of performance
73462306a36Sopenharmony_ci	 * available if userspace wants to use any perf between lowest & lowest
73562306a36Sopenharmony_ci	 * nonlinear perf
73662306a36Sopenharmony_ci	 */
73762306a36Sopenharmony_ci	policy->cpuinfo.min_freq = cppc_cpufreq_perf_to_khz(cpu_data,
73862306a36Sopenharmony_ci							    caps->lowest_perf);
73962306a36Sopenharmony_ci	policy->cpuinfo.max_freq = cppc_cpufreq_perf_to_khz(cpu_data,
74062306a36Sopenharmony_ci							    caps->nominal_perf);
74162306a36Sopenharmony_ci
74262306a36Sopenharmony_ci	policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu);
74362306a36Sopenharmony_ci	policy->shared_type = cpu_data->shared_type;
74462306a36Sopenharmony_ci
74562306a36Sopenharmony_ci	switch (policy->shared_type) {
74662306a36Sopenharmony_ci	case CPUFREQ_SHARED_TYPE_HW:
74762306a36Sopenharmony_ci	case CPUFREQ_SHARED_TYPE_NONE:
74862306a36Sopenharmony_ci		/* Nothing to be done - we'll have a policy for each CPU */
74962306a36Sopenharmony_ci		break;
75062306a36Sopenharmony_ci	case CPUFREQ_SHARED_TYPE_ANY:
75162306a36Sopenharmony_ci		/*
75262306a36Sopenharmony_ci		 * All CPUs in the domain will share a policy and all cpufreq
75362306a36Sopenharmony_ci		 * operations will use a single cppc_cpudata structure stored
75462306a36Sopenharmony_ci		 * in policy->driver_data.
75562306a36Sopenharmony_ci		 */
75662306a36Sopenharmony_ci		cpumask_copy(policy->cpus, cpu_data->shared_cpu_map);
75762306a36Sopenharmony_ci		break;
75862306a36Sopenharmony_ci	default:
75962306a36Sopenharmony_ci		pr_debug("Unsupported CPU co-ord type: %d\n",
76062306a36Sopenharmony_ci			 policy->shared_type);
76162306a36Sopenharmony_ci		ret = -EFAULT;
76262306a36Sopenharmony_ci		goto out;
76362306a36Sopenharmony_ci	}
76462306a36Sopenharmony_ci
76562306a36Sopenharmony_ci	policy->fast_switch_possible = cppc_allow_fast_switch();
76662306a36Sopenharmony_ci	policy->dvfs_possible_from_any_cpu = true;
76762306a36Sopenharmony_ci
76862306a36Sopenharmony_ci	/*
76962306a36Sopenharmony_ci	 * If 'highest_perf' is greater than 'nominal_perf', we assume CPU Boost
77062306a36Sopenharmony_ci	 * is supported.
77162306a36Sopenharmony_ci	 */
77262306a36Sopenharmony_ci	if (caps->highest_perf > caps->nominal_perf)
77362306a36Sopenharmony_ci		boost_supported = true;
77462306a36Sopenharmony_ci
77562306a36Sopenharmony_ci	/* Set policy->cur to max now. The governors will adjust later. */
77662306a36Sopenharmony_ci	policy->cur = cppc_cpufreq_perf_to_khz(cpu_data, caps->highest_perf);
77762306a36Sopenharmony_ci	cpu_data->perf_ctrls.desired_perf =  caps->highest_perf;
77862306a36Sopenharmony_ci
77962306a36Sopenharmony_ci	ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
78062306a36Sopenharmony_ci	if (ret) {
78162306a36Sopenharmony_ci		pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
78262306a36Sopenharmony_ci			 caps->highest_perf, cpu, ret);
78362306a36Sopenharmony_ci		goto out;
78462306a36Sopenharmony_ci	}
78562306a36Sopenharmony_ci
78662306a36Sopenharmony_ci	cppc_cpufreq_cpu_fie_init(policy);
78762306a36Sopenharmony_ci	return 0;
78862306a36Sopenharmony_ci
78962306a36Sopenharmony_ciout:
79062306a36Sopenharmony_ci	cppc_cpufreq_put_cpu_data(policy);
79162306a36Sopenharmony_ci	return ret;
79262306a36Sopenharmony_ci}
79362306a36Sopenharmony_ci
79462306a36Sopenharmony_cistatic int cppc_cpufreq_cpu_exit(struct cpufreq_policy *policy)
79562306a36Sopenharmony_ci{
79662306a36Sopenharmony_ci	struct cppc_cpudata *cpu_data = policy->driver_data;
79762306a36Sopenharmony_ci	struct cppc_perf_caps *caps = &cpu_data->perf_caps;
79862306a36Sopenharmony_ci	unsigned int cpu = policy->cpu;
79962306a36Sopenharmony_ci	int ret;
80062306a36Sopenharmony_ci
80162306a36Sopenharmony_ci	cppc_cpufreq_cpu_fie_exit(policy);
80262306a36Sopenharmony_ci
80362306a36Sopenharmony_ci	cpu_data->perf_ctrls.desired_perf = caps->lowest_perf;
80462306a36Sopenharmony_ci
80562306a36Sopenharmony_ci	ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
80662306a36Sopenharmony_ci	if (ret)
80762306a36Sopenharmony_ci		pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
80862306a36Sopenharmony_ci			 caps->lowest_perf, cpu, ret);
80962306a36Sopenharmony_ci
81062306a36Sopenharmony_ci	cppc_cpufreq_put_cpu_data(policy);
81162306a36Sopenharmony_ci	return 0;
81262306a36Sopenharmony_ci}
81362306a36Sopenharmony_ci
81462306a36Sopenharmony_cistatic inline u64 get_delta(u64 t1, u64 t0)
81562306a36Sopenharmony_ci{
81662306a36Sopenharmony_ci	if (t1 > t0 || t0 > ~(u32)0)
81762306a36Sopenharmony_ci		return t1 - t0;
81862306a36Sopenharmony_ci
81962306a36Sopenharmony_ci	return (u32)t1 - (u32)t0;
82062306a36Sopenharmony_ci}
82162306a36Sopenharmony_ci
82262306a36Sopenharmony_cistatic int cppc_perf_from_fbctrs(struct cppc_cpudata *cpu_data,
82362306a36Sopenharmony_ci				 struct cppc_perf_fb_ctrs *fb_ctrs_t0,
82462306a36Sopenharmony_ci				 struct cppc_perf_fb_ctrs *fb_ctrs_t1)
82562306a36Sopenharmony_ci{
82662306a36Sopenharmony_ci	u64 delta_reference, delta_delivered;
82762306a36Sopenharmony_ci	u64 reference_perf;
82862306a36Sopenharmony_ci
82962306a36Sopenharmony_ci	reference_perf = fb_ctrs_t0->reference_perf;
83062306a36Sopenharmony_ci
83162306a36Sopenharmony_ci	delta_reference = get_delta(fb_ctrs_t1->reference,
83262306a36Sopenharmony_ci				    fb_ctrs_t0->reference);
83362306a36Sopenharmony_ci	delta_delivered = get_delta(fb_ctrs_t1->delivered,
83462306a36Sopenharmony_ci				    fb_ctrs_t0->delivered);
83562306a36Sopenharmony_ci
83662306a36Sopenharmony_ci	/* Check to avoid divide-by zero and invalid delivered_perf */
83762306a36Sopenharmony_ci	if (!delta_reference || !delta_delivered)
83862306a36Sopenharmony_ci		return cpu_data->perf_ctrls.desired_perf;
83962306a36Sopenharmony_ci
84062306a36Sopenharmony_ci	return (reference_perf * delta_delivered) / delta_reference;
84162306a36Sopenharmony_ci}
84262306a36Sopenharmony_ci
84362306a36Sopenharmony_cistatic unsigned int cppc_cpufreq_get_rate(unsigned int cpu)
84462306a36Sopenharmony_ci{
84562306a36Sopenharmony_ci	struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0};
84662306a36Sopenharmony_ci	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
84762306a36Sopenharmony_ci	struct cppc_cpudata *cpu_data = policy->driver_data;
84862306a36Sopenharmony_ci	u64 delivered_perf;
84962306a36Sopenharmony_ci	int ret;
85062306a36Sopenharmony_ci
85162306a36Sopenharmony_ci	cpufreq_cpu_put(policy);
85262306a36Sopenharmony_ci
85362306a36Sopenharmony_ci	ret = cppc_get_perf_ctrs(cpu, &fb_ctrs_t0);
85462306a36Sopenharmony_ci	if (ret)
85562306a36Sopenharmony_ci		return 0;
85662306a36Sopenharmony_ci
85762306a36Sopenharmony_ci	udelay(2); /* 2usec delay between sampling */
85862306a36Sopenharmony_ci
85962306a36Sopenharmony_ci	ret = cppc_get_perf_ctrs(cpu, &fb_ctrs_t1);
86062306a36Sopenharmony_ci	if (ret)
86162306a36Sopenharmony_ci		return 0;
86262306a36Sopenharmony_ci
86362306a36Sopenharmony_ci	delivered_perf = cppc_perf_from_fbctrs(cpu_data, &fb_ctrs_t0,
86462306a36Sopenharmony_ci					       &fb_ctrs_t1);
86562306a36Sopenharmony_ci
86662306a36Sopenharmony_ci	return cppc_cpufreq_perf_to_khz(cpu_data, delivered_perf);
86762306a36Sopenharmony_ci}
86862306a36Sopenharmony_ci
86962306a36Sopenharmony_cistatic int cppc_cpufreq_set_boost(struct cpufreq_policy *policy, int state)
87062306a36Sopenharmony_ci{
87162306a36Sopenharmony_ci	struct cppc_cpudata *cpu_data = policy->driver_data;
87262306a36Sopenharmony_ci	struct cppc_perf_caps *caps = &cpu_data->perf_caps;
87362306a36Sopenharmony_ci	int ret;
87462306a36Sopenharmony_ci
87562306a36Sopenharmony_ci	if (!boost_supported) {
87662306a36Sopenharmony_ci		pr_err("BOOST not supported by CPU or firmware\n");
87762306a36Sopenharmony_ci		return -EINVAL;
87862306a36Sopenharmony_ci	}
87962306a36Sopenharmony_ci
88062306a36Sopenharmony_ci	if (state)
88162306a36Sopenharmony_ci		policy->max = cppc_cpufreq_perf_to_khz(cpu_data,
88262306a36Sopenharmony_ci						       caps->highest_perf);
88362306a36Sopenharmony_ci	else
88462306a36Sopenharmony_ci		policy->max = cppc_cpufreq_perf_to_khz(cpu_data,
88562306a36Sopenharmony_ci						       caps->nominal_perf);
88662306a36Sopenharmony_ci	policy->cpuinfo.max_freq = policy->max;
88762306a36Sopenharmony_ci
88862306a36Sopenharmony_ci	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
88962306a36Sopenharmony_ci	if (ret < 0)
89062306a36Sopenharmony_ci		return ret;
89162306a36Sopenharmony_ci
89262306a36Sopenharmony_ci	return 0;
89362306a36Sopenharmony_ci}
89462306a36Sopenharmony_ci
89562306a36Sopenharmony_cistatic ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
89662306a36Sopenharmony_ci{
89762306a36Sopenharmony_ci	struct cppc_cpudata *cpu_data = policy->driver_data;
89862306a36Sopenharmony_ci
89962306a36Sopenharmony_ci	return cpufreq_show_cpus(cpu_data->shared_cpu_map, buf);
90062306a36Sopenharmony_ci}
90162306a36Sopenharmony_cicpufreq_freq_attr_ro(freqdomain_cpus);
90262306a36Sopenharmony_ci
90362306a36Sopenharmony_cistatic struct freq_attr *cppc_cpufreq_attr[] = {
90462306a36Sopenharmony_ci	&freqdomain_cpus,
90562306a36Sopenharmony_ci	NULL,
90662306a36Sopenharmony_ci};
90762306a36Sopenharmony_ci
90862306a36Sopenharmony_cistatic struct cpufreq_driver cppc_cpufreq_driver = {
90962306a36Sopenharmony_ci	.flags = CPUFREQ_CONST_LOOPS,
91062306a36Sopenharmony_ci	.verify = cppc_verify_policy,
91162306a36Sopenharmony_ci	.target = cppc_cpufreq_set_target,
91262306a36Sopenharmony_ci	.get = cppc_cpufreq_get_rate,
91362306a36Sopenharmony_ci	.fast_switch = cppc_cpufreq_fast_switch,
91462306a36Sopenharmony_ci	.init = cppc_cpufreq_cpu_init,
91562306a36Sopenharmony_ci	.exit = cppc_cpufreq_cpu_exit,
91662306a36Sopenharmony_ci	.set_boost = cppc_cpufreq_set_boost,
91762306a36Sopenharmony_ci	.attr = cppc_cpufreq_attr,
91862306a36Sopenharmony_ci	.name = "cppc_cpufreq",
91962306a36Sopenharmony_ci};
92062306a36Sopenharmony_ci
92162306a36Sopenharmony_ci/*
92262306a36Sopenharmony_ci * HISI platform does not support delivered performance counter and
92362306a36Sopenharmony_ci * reference performance counter. It can calculate the performance using the
92462306a36Sopenharmony_ci * platform specific mechanism. We reuse the desired performance register to
92562306a36Sopenharmony_ci * store the real performance calculated by the platform.
92662306a36Sopenharmony_ci */
92762306a36Sopenharmony_cistatic unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpu)
92862306a36Sopenharmony_ci{
92962306a36Sopenharmony_ci	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
93062306a36Sopenharmony_ci	struct cppc_cpudata *cpu_data = policy->driver_data;
93162306a36Sopenharmony_ci	u64 desired_perf;
93262306a36Sopenharmony_ci	int ret;
93362306a36Sopenharmony_ci
93462306a36Sopenharmony_ci	cpufreq_cpu_put(policy);
93562306a36Sopenharmony_ci
93662306a36Sopenharmony_ci	ret = cppc_get_desired_perf(cpu, &desired_perf);
93762306a36Sopenharmony_ci	if (ret < 0)
93862306a36Sopenharmony_ci		return -EIO;
93962306a36Sopenharmony_ci
94062306a36Sopenharmony_ci	return cppc_cpufreq_perf_to_khz(cpu_data, desired_perf);
94162306a36Sopenharmony_ci}
94262306a36Sopenharmony_ci
94362306a36Sopenharmony_cistatic void cppc_check_hisi_workaround(void)
94462306a36Sopenharmony_ci{
94562306a36Sopenharmony_ci	struct acpi_table_header *tbl;
94662306a36Sopenharmony_ci	acpi_status status = AE_OK;
94762306a36Sopenharmony_ci	int i;
94862306a36Sopenharmony_ci
94962306a36Sopenharmony_ci	status = acpi_get_table(ACPI_SIG_PCCT, 0, &tbl);
95062306a36Sopenharmony_ci	if (ACPI_FAILURE(status) || !tbl)
95162306a36Sopenharmony_ci		return;
95262306a36Sopenharmony_ci
95362306a36Sopenharmony_ci	for (i = 0; i < ARRAY_SIZE(wa_info); i++) {
95462306a36Sopenharmony_ci		if (!memcmp(wa_info[i].oem_id, tbl->oem_id, ACPI_OEM_ID_SIZE) &&
95562306a36Sopenharmony_ci		    !memcmp(wa_info[i].oem_table_id, tbl->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
95662306a36Sopenharmony_ci		    wa_info[i].oem_revision == tbl->oem_revision) {
95762306a36Sopenharmony_ci			/* Overwrite the get() callback */
95862306a36Sopenharmony_ci			cppc_cpufreq_driver.get = hisi_cppc_cpufreq_get_rate;
95962306a36Sopenharmony_ci			fie_disabled = FIE_DISABLED;
96062306a36Sopenharmony_ci			break;
96162306a36Sopenharmony_ci		}
96262306a36Sopenharmony_ci	}
96362306a36Sopenharmony_ci
96462306a36Sopenharmony_ci	acpi_put_table(tbl);
96562306a36Sopenharmony_ci}
96662306a36Sopenharmony_ci
96762306a36Sopenharmony_cistatic int __init cppc_cpufreq_init(void)
96862306a36Sopenharmony_ci{
96962306a36Sopenharmony_ci	int ret;
97062306a36Sopenharmony_ci
97162306a36Sopenharmony_ci	if (!acpi_cpc_valid())
97262306a36Sopenharmony_ci		return -ENODEV;
97362306a36Sopenharmony_ci
97462306a36Sopenharmony_ci	cppc_check_hisi_workaround();
97562306a36Sopenharmony_ci	cppc_freq_invariance_init();
97662306a36Sopenharmony_ci	populate_efficiency_class();
97762306a36Sopenharmony_ci
97862306a36Sopenharmony_ci	ret = cpufreq_register_driver(&cppc_cpufreq_driver);
97962306a36Sopenharmony_ci	if (ret)
98062306a36Sopenharmony_ci		cppc_freq_invariance_exit();
98162306a36Sopenharmony_ci
98262306a36Sopenharmony_ci	return ret;
98362306a36Sopenharmony_ci}
98462306a36Sopenharmony_ci
98562306a36Sopenharmony_cistatic inline void free_cpu_data(void)
98662306a36Sopenharmony_ci{
98762306a36Sopenharmony_ci	struct cppc_cpudata *iter, *tmp;
98862306a36Sopenharmony_ci
98962306a36Sopenharmony_ci	list_for_each_entry_safe(iter, tmp, &cpu_data_list, node) {
99062306a36Sopenharmony_ci		free_cpumask_var(iter->shared_cpu_map);
99162306a36Sopenharmony_ci		list_del(&iter->node);
99262306a36Sopenharmony_ci		kfree(iter);
99362306a36Sopenharmony_ci	}
99462306a36Sopenharmony_ci
99562306a36Sopenharmony_ci}
99662306a36Sopenharmony_ci
99762306a36Sopenharmony_cistatic void __exit cppc_cpufreq_exit(void)
99862306a36Sopenharmony_ci{
99962306a36Sopenharmony_ci	cpufreq_unregister_driver(&cppc_cpufreq_driver);
100062306a36Sopenharmony_ci	cppc_freq_invariance_exit();
100162306a36Sopenharmony_ci
100262306a36Sopenharmony_ci	free_cpu_data();
100362306a36Sopenharmony_ci}
100462306a36Sopenharmony_ci
100562306a36Sopenharmony_cimodule_exit(cppc_cpufreq_exit);
100662306a36Sopenharmony_ciMODULE_AUTHOR("Ashwin Chaugule");
100762306a36Sopenharmony_ciMODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec");
100862306a36Sopenharmony_ciMODULE_LICENSE("GPL");
100962306a36Sopenharmony_ci
101062306a36Sopenharmony_cilate_initcall(cppc_cpufreq_init);
101162306a36Sopenharmony_ci
101262306a36Sopenharmony_cistatic const struct acpi_device_id cppc_acpi_ids[] __used = {
101362306a36Sopenharmony_ci	{ACPI_PROCESSOR_DEVICE_HID, },
101462306a36Sopenharmony_ci	{}
101562306a36Sopenharmony_ci};
101662306a36Sopenharmony_ci
101762306a36Sopenharmony_ciMODULE_DEVICE_TABLE(acpi, cppc_acpi_ids);
1018