162306a36Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-only
262306a36Sopenharmony_ci/*
362306a36Sopenharmony_ci * Copyright (C) Maxime Coquelin 2015
462306a36Sopenharmony_ci * Author:  Maxime Coquelin <mcoquelin.stm32@gmail.com>
562306a36Sopenharmony_ci *
662306a36Sopenharmony_ci * Inspired by time-efm32.c from Uwe Kleine-Koenig
762306a36Sopenharmony_ci */
862306a36Sopenharmony_ci
962306a36Sopenharmony_ci#include <linux/kernel.h>
1062306a36Sopenharmony_ci#include <linux/clocksource.h>
1162306a36Sopenharmony_ci#include <linux/clockchips.h>
1262306a36Sopenharmony_ci#include <linux/delay.h>
1362306a36Sopenharmony_ci#include <linux/irq.h>
1462306a36Sopenharmony_ci#include <linux/interrupt.h>
1562306a36Sopenharmony_ci#include <linux/of.h>
1662306a36Sopenharmony_ci#include <linux/of_address.h>
1762306a36Sopenharmony_ci#include <linux/of_irq.h>
1862306a36Sopenharmony_ci#include <linux/clk.h>
1962306a36Sopenharmony_ci#include <linux/reset.h>
2062306a36Sopenharmony_ci#include <linux/sched_clock.h>
2162306a36Sopenharmony_ci#include <linux/slab.h>
2262306a36Sopenharmony_ci
2362306a36Sopenharmony_ci#include "timer-of.h"
2462306a36Sopenharmony_ci
2562306a36Sopenharmony_ci#define TIM_CR1		0x00
2662306a36Sopenharmony_ci#define TIM_DIER	0x0c
2762306a36Sopenharmony_ci#define TIM_SR		0x10
2862306a36Sopenharmony_ci#define TIM_EGR		0x14
2962306a36Sopenharmony_ci#define TIM_CNT		0x24
3062306a36Sopenharmony_ci#define TIM_PSC		0x28
3162306a36Sopenharmony_ci#define TIM_ARR		0x2c
3262306a36Sopenharmony_ci#define TIM_CCR1	0x34
3362306a36Sopenharmony_ci
3462306a36Sopenharmony_ci#define TIM_CR1_CEN	BIT(0)
3562306a36Sopenharmony_ci#define TIM_CR1_UDIS	BIT(1)
3662306a36Sopenharmony_ci#define TIM_CR1_OPM	BIT(3)
3762306a36Sopenharmony_ci#define TIM_CR1_ARPE	BIT(7)
3862306a36Sopenharmony_ci
3962306a36Sopenharmony_ci#define TIM_DIER_UIE	BIT(0)
4062306a36Sopenharmony_ci#define TIM_DIER_CC1IE	BIT(1)
4162306a36Sopenharmony_ci
4262306a36Sopenharmony_ci#define TIM_SR_UIF	BIT(0)
4362306a36Sopenharmony_ci
4462306a36Sopenharmony_ci#define TIM_EGR_UG	BIT(0)
4562306a36Sopenharmony_ci
4662306a36Sopenharmony_ci#define TIM_PSC_MAX	USHRT_MAX
4762306a36Sopenharmony_ci#define TIM_PSC_CLKRATE	10000
4862306a36Sopenharmony_ci
4962306a36Sopenharmony_cistruct stm32_timer_private {
5062306a36Sopenharmony_ci	int bits;
5162306a36Sopenharmony_ci};
5262306a36Sopenharmony_ci
5362306a36Sopenharmony_ci/**
5462306a36Sopenharmony_ci * stm32_timer_of_bits_set - set accessor helper
5562306a36Sopenharmony_ci * @to: a timer_of structure pointer
5662306a36Sopenharmony_ci * @bits: the number of bits (16 or 32)
5762306a36Sopenharmony_ci *
5862306a36Sopenharmony_ci * Accessor helper to set the number of bits in the timer-of private
5962306a36Sopenharmony_ci * structure.
6062306a36Sopenharmony_ci *
6162306a36Sopenharmony_ci */
6262306a36Sopenharmony_cistatic void stm32_timer_of_bits_set(struct timer_of *to, int bits)
6362306a36Sopenharmony_ci{
6462306a36Sopenharmony_ci	struct stm32_timer_private *pd = to->private_data;
6562306a36Sopenharmony_ci
6662306a36Sopenharmony_ci	pd->bits = bits;
6762306a36Sopenharmony_ci}
6862306a36Sopenharmony_ci
6962306a36Sopenharmony_ci/**
7062306a36Sopenharmony_ci * stm32_timer_of_bits_get - get accessor helper
7162306a36Sopenharmony_ci * @to: a timer_of structure pointer
7262306a36Sopenharmony_ci *
7362306a36Sopenharmony_ci * Accessor helper to get the number of bits in the timer-of private
7462306a36Sopenharmony_ci * structure.
7562306a36Sopenharmony_ci *
7662306a36Sopenharmony_ci * Returns an integer corresponding to the number of bits.
7762306a36Sopenharmony_ci */
7862306a36Sopenharmony_cistatic int stm32_timer_of_bits_get(struct timer_of *to)
7962306a36Sopenharmony_ci{
8062306a36Sopenharmony_ci	struct stm32_timer_private *pd = to->private_data;
8162306a36Sopenharmony_ci
8262306a36Sopenharmony_ci	return pd->bits;
8362306a36Sopenharmony_ci}
8462306a36Sopenharmony_ci
8562306a36Sopenharmony_cistatic void __iomem *stm32_timer_cnt __read_mostly;
8662306a36Sopenharmony_ci
8762306a36Sopenharmony_cistatic u64 notrace stm32_read_sched_clock(void)
8862306a36Sopenharmony_ci{
8962306a36Sopenharmony_ci	return readl_relaxed(stm32_timer_cnt);
9062306a36Sopenharmony_ci}
9162306a36Sopenharmony_ci
9262306a36Sopenharmony_cistatic struct delay_timer stm32_timer_delay;
9362306a36Sopenharmony_ci
9462306a36Sopenharmony_cistatic unsigned long stm32_read_delay(void)
9562306a36Sopenharmony_ci{
9662306a36Sopenharmony_ci	return readl_relaxed(stm32_timer_cnt);
9762306a36Sopenharmony_ci}
9862306a36Sopenharmony_ci
9962306a36Sopenharmony_cistatic void stm32_clock_event_disable(struct timer_of *to)
10062306a36Sopenharmony_ci{
10162306a36Sopenharmony_ci	writel_relaxed(0, timer_of_base(to) + TIM_DIER);
10262306a36Sopenharmony_ci}
10362306a36Sopenharmony_ci
10462306a36Sopenharmony_ci/**
10562306a36Sopenharmony_ci * stm32_timer_start - Start the counter without event
10662306a36Sopenharmony_ci * @to: a timer_of structure pointer
10762306a36Sopenharmony_ci *
10862306a36Sopenharmony_ci * Start the timer in order to have the counter reset and start
10962306a36Sopenharmony_ci * incrementing but disable interrupt event when there is a counter
11062306a36Sopenharmony_ci * overflow. By default, the counter direction is used as upcounter.
11162306a36Sopenharmony_ci */
11262306a36Sopenharmony_cistatic void stm32_timer_start(struct timer_of *to)
11362306a36Sopenharmony_ci{
11462306a36Sopenharmony_ci	writel_relaxed(TIM_CR1_UDIS | TIM_CR1_CEN, timer_of_base(to) + TIM_CR1);
11562306a36Sopenharmony_ci}
11662306a36Sopenharmony_ci
11762306a36Sopenharmony_cistatic int stm32_clock_event_shutdown(struct clock_event_device *clkevt)
11862306a36Sopenharmony_ci{
11962306a36Sopenharmony_ci	struct timer_of *to = to_timer_of(clkevt);
12062306a36Sopenharmony_ci
12162306a36Sopenharmony_ci	stm32_clock_event_disable(to);
12262306a36Sopenharmony_ci
12362306a36Sopenharmony_ci	return 0;
12462306a36Sopenharmony_ci}
12562306a36Sopenharmony_ci
12662306a36Sopenharmony_cistatic int stm32_clock_event_set_next_event(unsigned long evt,
12762306a36Sopenharmony_ci					    struct clock_event_device *clkevt)
12862306a36Sopenharmony_ci{
12962306a36Sopenharmony_ci	struct timer_of *to = to_timer_of(clkevt);
13062306a36Sopenharmony_ci	unsigned long now, next;
13162306a36Sopenharmony_ci
13262306a36Sopenharmony_ci	next = readl_relaxed(timer_of_base(to) + TIM_CNT) + evt;
13362306a36Sopenharmony_ci	writel_relaxed(next, timer_of_base(to) + TIM_CCR1);
13462306a36Sopenharmony_ci	now = readl_relaxed(timer_of_base(to) + TIM_CNT);
13562306a36Sopenharmony_ci
13662306a36Sopenharmony_ci	if ((next - now) > evt)
13762306a36Sopenharmony_ci		return -ETIME;
13862306a36Sopenharmony_ci
13962306a36Sopenharmony_ci	writel_relaxed(TIM_DIER_CC1IE, timer_of_base(to) + TIM_DIER);
14062306a36Sopenharmony_ci
14162306a36Sopenharmony_ci	return 0;
14262306a36Sopenharmony_ci}
14362306a36Sopenharmony_ci
14462306a36Sopenharmony_cistatic int stm32_clock_event_set_periodic(struct clock_event_device *clkevt)
14562306a36Sopenharmony_ci{
14662306a36Sopenharmony_ci	struct timer_of *to = to_timer_of(clkevt);
14762306a36Sopenharmony_ci
14862306a36Sopenharmony_ci	stm32_timer_start(to);
14962306a36Sopenharmony_ci
15062306a36Sopenharmony_ci	return stm32_clock_event_set_next_event(timer_of_period(to), clkevt);
15162306a36Sopenharmony_ci}
15262306a36Sopenharmony_ci
15362306a36Sopenharmony_cistatic int stm32_clock_event_set_oneshot(struct clock_event_device *clkevt)
15462306a36Sopenharmony_ci{
15562306a36Sopenharmony_ci	struct timer_of *to = to_timer_of(clkevt);
15662306a36Sopenharmony_ci
15762306a36Sopenharmony_ci	stm32_timer_start(to);
15862306a36Sopenharmony_ci
15962306a36Sopenharmony_ci	return 0;
16062306a36Sopenharmony_ci}
16162306a36Sopenharmony_ci
16262306a36Sopenharmony_cistatic irqreturn_t stm32_clock_event_handler(int irq, void *dev_id)
16362306a36Sopenharmony_ci{
16462306a36Sopenharmony_ci	struct clock_event_device *clkevt = (struct clock_event_device *)dev_id;
16562306a36Sopenharmony_ci	struct timer_of *to = to_timer_of(clkevt);
16662306a36Sopenharmony_ci
16762306a36Sopenharmony_ci	writel_relaxed(0, timer_of_base(to) + TIM_SR);
16862306a36Sopenharmony_ci
16962306a36Sopenharmony_ci	if (clockevent_state_periodic(clkevt))
17062306a36Sopenharmony_ci		stm32_clock_event_set_periodic(clkevt);
17162306a36Sopenharmony_ci	else
17262306a36Sopenharmony_ci		stm32_clock_event_shutdown(clkevt);
17362306a36Sopenharmony_ci
17462306a36Sopenharmony_ci	clkevt->event_handler(clkevt);
17562306a36Sopenharmony_ci
17662306a36Sopenharmony_ci	return IRQ_HANDLED;
17762306a36Sopenharmony_ci}
17862306a36Sopenharmony_ci
17962306a36Sopenharmony_ci/**
18062306a36Sopenharmony_ci * stm32_timer_width - Sort out the timer width (32/16)
18162306a36Sopenharmony_ci * @to: a pointer to a timer-of structure
18262306a36Sopenharmony_ci *
18362306a36Sopenharmony_ci * Write the 32-bit max value and read/return the result. If the timer
18462306a36Sopenharmony_ci * is 32 bits wide, the result will be UINT_MAX, otherwise it will
18562306a36Sopenharmony_ci * be truncated by the 16-bit register to USHRT_MAX.
18662306a36Sopenharmony_ci *
18762306a36Sopenharmony_ci */
18862306a36Sopenharmony_cistatic void __init stm32_timer_set_width(struct timer_of *to)
18962306a36Sopenharmony_ci{
19062306a36Sopenharmony_ci	u32 width;
19162306a36Sopenharmony_ci
19262306a36Sopenharmony_ci	writel_relaxed(UINT_MAX, timer_of_base(to) + TIM_ARR);
19362306a36Sopenharmony_ci
19462306a36Sopenharmony_ci	width = readl_relaxed(timer_of_base(to) + TIM_ARR);
19562306a36Sopenharmony_ci
19662306a36Sopenharmony_ci	stm32_timer_of_bits_set(to, width == UINT_MAX ? 32 : 16);
19762306a36Sopenharmony_ci}
19862306a36Sopenharmony_ci
19962306a36Sopenharmony_ci/**
20062306a36Sopenharmony_ci * stm32_timer_set_prescaler - Compute and set the prescaler register
20162306a36Sopenharmony_ci * @to: a pointer to a timer-of structure
20262306a36Sopenharmony_ci *
20362306a36Sopenharmony_ci * Depending on the timer width, compute the prescaler to always
20462306a36Sopenharmony_ci * target a 10MHz timer rate for 16 bits. 32-bit timers are
20562306a36Sopenharmony_ci * considered precise and long enough to not use the prescaler.
20662306a36Sopenharmony_ci */
20762306a36Sopenharmony_cistatic void __init stm32_timer_set_prescaler(struct timer_of *to)
20862306a36Sopenharmony_ci{
20962306a36Sopenharmony_ci	int prescaler = 1;
21062306a36Sopenharmony_ci
21162306a36Sopenharmony_ci	if (stm32_timer_of_bits_get(to) != 32) {
21262306a36Sopenharmony_ci		prescaler = DIV_ROUND_CLOSEST(timer_of_rate(to),
21362306a36Sopenharmony_ci					      TIM_PSC_CLKRATE);
21462306a36Sopenharmony_ci		/*
21562306a36Sopenharmony_ci		 * The prescaler register is an u16, the variable
21662306a36Sopenharmony_ci		 * can't be greater than TIM_PSC_MAX, let's cap it in
21762306a36Sopenharmony_ci		 * this case.
21862306a36Sopenharmony_ci		 */
21962306a36Sopenharmony_ci		prescaler = prescaler < TIM_PSC_MAX ? prescaler : TIM_PSC_MAX;
22062306a36Sopenharmony_ci	}
22162306a36Sopenharmony_ci
22262306a36Sopenharmony_ci	writel_relaxed(prescaler - 1, timer_of_base(to) + TIM_PSC);
22362306a36Sopenharmony_ci	writel_relaxed(TIM_EGR_UG, timer_of_base(to) + TIM_EGR);
22462306a36Sopenharmony_ci	writel_relaxed(0, timer_of_base(to) + TIM_SR);
22562306a36Sopenharmony_ci
22662306a36Sopenharmony_ci	/* Adjust rate and period given the prescaler value */
22762306a36Sopenharmony_ci	to->of_clk.rate = DIV_ROUND_CLOSEST(to->of_clk.rate, prescaler);
22862306a36Sopenharmony_ci	to->of_clk.period = DIV_ROUND_UP(to->of_clk.rate, HZ);
22962306a36Sopenharmony_ci}
23062306a36Sopenharmony_ci
23162306a36Sopenharmony_cistatic int __init stm32_clocksource_init(struct timer_of *to)
23262306a36Sopenharmony_ci{
23362306a36Sopenharmony_ci        u32 bits = stm32_timer_of_bits_get(to);
23462306a36Sopenharmony_ci	const char *name = to->np->full_name;
23562306a36Sopenharmony_ci
23662306a36Sopenharmony_ci	/*
23762306a36Sopenharmony_ci	 * This driver allows to register several timers and relies on
23862306a36Sopenharmony_ci	 * the generic time framework to select the right one.
23962306a36Sopenharmony_ci	 * However, nothing allows to do the same for the
24062306a36Sopenharmony_ci	 * sched_clock. We are not interested in a sched_clock for the
24162306a36Sopenharmony_ci	 * 16-bit timers but only for the 32-bit one, so if no 32-bit
24262306a36Sopenharmony_ci	 * timer is registered yet, we select this 32-bit timer as a
24362306a36Sopenharmony_ci	 * sched_clock.
24462306a36Sopenharmony_ci	 */
24562306a36Sopenharmony_ci	if (bits == 32 && !stm32_timer_cnt) {
24662306a36Sopenharmony_ci
24762306a36Sopenharmony_ci		/*
24862306a36Sopenharmony_ci		 * Start immediately the counter as we will be using
24962306a36Sopenharmony_ci		 * it right after.
25062306a36Sopenharmony_ci		 */
25162306a36Sopenharmony_ci		stm32_timer_start(to);
25262306a36Sopenharmony_ci
25362306a36Sopenharmony_ci		stm32_timer_cnt = timer_of_base(to) + TIM_CNT;
25462306a36Sopenharmony_ci		sched_clock_register(stm32_read_sched_clock, bits, timer_of_rate(to));
25562306a36Sopenharmony_ci		pr_info("%s: STM32 sched_clock registered\n", name);
25662306a36Sopenharmony_ci
25762306a36Sopenharmony_ci		stm32_timer_delay.read_current_timer = stm32_read_delay;
25862306a36Sopenharmony_ci		stm32_timer_delay.freq = timer_of_rate(to);
25962306a36Sopenharmony_ci		register_current_timer_delay(&stm32_timer_delay);
26062306a36Sopenharmony_ci		pr_info("%s: STM32 delay timer registered\n", name);
26162306a36Sopenharmony_ci	}
26262306a36Sopenharmony_ci
26362306a36Sopenharmony_ci	return clocksource_mmio_init(timer_of_base(to) + TIM_CNT, name,
26462306a36Sopenharmony_ci				     timer_of_rate(to), bits == 32 ? 250 : 100,
26562306a36Sopenharmony_ci				     bits, clocksource_mmio_readl_up);
26662306a36Sopenharmony_ci}
26762306a36Sopenharmony_ci
26862306a36Sopenharmony_cistatic void __init stm32_clockevent_init(struct timer_of *to)
26962306a36Sopenharmony_ci{
27062306a36Sopenharmony_ci	u32 bits = stm32_timer_of_bits_get(to);
27162306a36Sopenharmony_ci
27262306a36Sopenharmony_ci	to->clkevt.name = to->np->full_name;
27362306a36Sopenharmony_ci	to->clkevt.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
27462306a36Sopenharmony_ci	to->clkevt.set_state_shutdown = stm32_clock_event_shutdown;
27562306a36Sopenharmony_ci	to->clkevt.set_state_periodic = stm32_clock_event_set_periodic;
27662306a36Sopenharmony_ci	to->clkevt.set_state_oneshot = stm32_clock_event_set_oneshot;
27762306a36Sopenharmony_ci	to->clkevt.tick_resume = stm32_clock_event_shutdown;
27862306a36Sopenharmony_ci	to->clkevt.set_next_event = stm32_clock_event_set_next_event;
27962306a36Sopenharmony_ci	to->clkevt.rating = bits == 32 ? 250 : 100;
28062306a36Sopenharmony_ci
28162306a36Sopenharmony_ci	clockevents_config_and_register(&to->clkevt, timer_of_rate(to), 0x1,
28262306a36Sopenharmony_ci					(1 <<  bits) - 1);
28362306a36Sopenharmony_ci
28462306a36Sopenharmony_ci	pr_info("%pOF: STM32 clockevent driver initialized (%d bits)\n",
28562306a36Sopenharmony_ci		to->np, bits);
28662306a36Sopenharmony_ci}
28762306a36Sopenharmony_ci
28862306a36Sopenharmony_cistatic int __init stm32_timer_init(struct device_node *node)
28962306a36Sopenharmony_ci{
29062306a36Sopenharmony_ci	struct reset_control *rstc;
29162306a36Sopenharmony_ci	struct timer_of *to;
29262306a36Sopenharmony_ci	int ret;
29362306a36Sopenharmony_ci
29462306a36Sopenharmony_ci	to = kzalloc(sizeof(*to), GFP_KERNEL);
29562306a36Sopenharmony_ci	if (!to)
29662306a36Sopenharmony_ci		return -ENOMEM;
29762306a36Sopenharmony_ci
29862306a36Sopenharmony_ci	to->flags = TIMER_OF_IRQ | TIMER_OF_CLOCK | TIMER_OF_BASE;
29962306a36Sopenharmony_ci	to->of_irq.handler = stm32_clock_event_handler;
30062306a36Sopenharmony_ci
30162306a36Sopenharmony_ci	ret = timer_of_init(node, to);
30262306a36Sopenharmony_ci	if (ret)
30362306a36Sopenharmony_ci		goto err;
30462306a36Sopenharmony_ci
30562306a36Sopenharmony_ci	to->private_data = kzalloc(sizeof(struct stm32_timer_private),
30662306a36Sopenharmony_ci				   GFP_KERNEL);
30762306a36Sopenharmony_ci	if (!to->private_data) {
30862306a36Sopenharmony_ci		ret = -ENOMEM;
30962306a36Sopenharmony_ci		goto deinit;
31062306a36Sopenharmony_ci	}
31162306a36Sopenharmony_ci
31262306a36Sopenharmony_ci	rstc = of_reset_control_get(node, NULL);
31362306a36Sopenharmony_ci	if (!IS_ERR(rstc)) {
31462306a36Sopenharmony_ci		reset_control_assert(rstc);
31562306a36Sopenharmony_ci		reset_control_deassert(rstc);
31662306a36Sopenharmony_ci	}
31762306a36Sopenharmony_ci
31862306a36Sopenharmony_ci	stm32_timer_set_width(to);
31962306a36Sopenharmony_ci
32062306a36Sopenharmony_ci	stm32_timer_set_prescaler(to);
32162306a36Sopenharmony_ci
32262306a36Sopenharmony_ci	ret = stm32_clocksource_init(to);
32362306a36Sopenharmony_ci	if (ret)
32462306a36Sopenharmony_ci		goto deinit;
32562306a36Sopenharmony_ci
32662306a36Sopenharmony_ci	stm32_clockevent_init(to);
32762306a36Sopenharmony_ci	return 0;
32862306a36Sopenharmony_ci
32962306a36Sopenharmony_cideinit:
33062306a36Sopenharmony_ci	timer_of_cleanup(to);
33162306a36Sopenharmony_cierr:
33262306a36Sopenharmony_ci	kfree(to);
33362306a36Sopenharmony_ci	return ret;
33462306a36Sopenharmony_ci}
33562306a36Sopenharmony_ci
33662306a36Sopenharmony_ciTIMER_OF_DECLARE(stm32, "st,stm32-timer", stm32_timer_init);
337