1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * This file contains driver for the Cadence Triple Timer Counter Rev 06
4 *
5 *  Copyright (C) 2011-2013 Xilinx
6 *
7 * based on arch/mips/kernel/time.c timer driver
8 */
9
10#include <linux/clk.h>
11#include <linux/interrupt.h>
12#include <linux/clockchips.h>
13#include <linux/clocksource.h>
14#include <linux/of_address.h>
15#include <linux/of_irq.h>
16#include <linux/platform_device.h>
17#include <linux/slab.h>
18#include <linux/sched_clock.h>
19#include <linux/module.h>
20#include <linux/of_platform.h>
21
22/*
23 * This driver configures the 2 16/32-bit count-up timers as follows:
24 *
25 * T1: Timer 1, clocksource for generic timekeeping
26 * T2: Timer 2, clockevent source for hrtimers
27 * T3: Timer 3, <unused>
28 *
29 * The input frequency to the timer module for emulation is 2.5MHz which is
30 * common to all the timer channels (T1, T2, and T3). With a pre-scaler of 32,
31 * the timers are clocked at 78.125KHz (12.8 us resolution).
32
33 * The input frequency to the timer module in silicon is configurable and
34 * obtained from device tree. The pre-scaler of 32 is used.
35 */
36
37/*
38 * Timer Register Offset Definitions of Timer 1, Increment base address by 4
39 * and use same offsets for Timer 2
40 */
41#define TTC_CLK_CNTRL_OFFSET		0x00 /* Clock Control Reg, RW */
42#define TTC_CNT_CNTRL_OFFSET		0x0C /* Counter Control Reg, RW */
43#define TTC_COUNT_VAL_OFFSET		0x18 /* Counter Value Reg, RO */
44#define TTC_INTR_VAL_OFFSET		0x24 /* Interval Count Reg, RW */
45#define TTC_ISR_OFFSET		0x54 /* Interrupt Status Reg, RO */
46#define TTC_IER_OFFSET		0x60 /* Interrupt Enable Reg, RW */
47
48#define TTC_CNT_CNTRL_DISABLE_MASK	0x1
49
50#define TTC_CLK_CNTRL_CSRC_MASK		(1 << 5)	/* clock source */
51#define TTC_CLK_CNTRL_PSV_MASK		0x1e
52#define TTC_CLK_CNTRL_PSV_SHIFT		1
53
54/*
55 * Setup the timers to use pre-scaling, using a fixed value for now that will
56 * work across most input frequency, but it may need to be more dynamic
57 */
58#define PRESCALE_EXPONENT	11	/* 2 ^ PRESCALE_EXPONENT = PRESCALE */
59#define PRESCALE		2048	/* The exponent must match this */
60#define CLK_CNTRL_PRESCALE	((PRESCALE_EXPONENT - 1) << 1)
61#define CLK_CNTRL_PRESCALE_EN	1
62#define CNT_CNTRL_RESET		(1 << 4)
63
64#define MAX_F_ERR 50
65
66/**
67 * struct ttc_timer - This definition defines local timer structure
68 *
69 * @base_addr:	Base address of timer
70 * @freq:	Timer input clock frequency
71 * @clk:	Associated clock source
72 * @clk_rate_change_nb	Notifier block for clock rate changes
73 */
74struct ttc_timer {
75	void __iomem *base_addr;
76	unsigned long freq;
77	struct clk *clk;
78	struct notifier_block clk_rate_change_nb;
79};
80
81#define to_ttc_timer(x) \
82		container_of(x, struct ttc_timer, clk_rate_change_nb)
83
84struct ttc_timer_clocksource {
85	u32			scale_clk_ctrl_reg_old;
86	u32			scale_clk_ctrl_reg_new;
87	struct ttc_timer	ttc;
88	struct clocksource	cs;
89};
90
91#define to_ttc_timer_clksrc(x) \
92		container_of(x, struct ttc_timer_clocksource, cs)
93
94struct ttc_timer_clockevent {
95	struct ttc_timer		ttc;
96	struct clock_event_device	ce;
97};
98
99#define to_ttc_timer_clkevent(x) \
100		container_of(x, struct ttc_timer_clockevent, ce)
101
102static void __iomem *ttc_sched_clock_val_reg;
103
104/**
105 * ttc_set_interval - Set the timer interval value
106 *
107 * @timer:	Pointer to the timer instance
108 * @cycles:	Timer interval ticks
109 **/
110static void ttc_set_interval(struct ttc_timer *timer,
111					unsigned long cycles)
112{
113	u32 ctrl_reg;
114
115	/* Disable the counter, set the counter value  and re-enable counter */
116	ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
117	ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
118	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
119
120	writel_relaxed(cycles, timer->base_addr + TTC_INTR_VAL_OFFSET);
121
122	/*
123	 * Reset the counter (0x10) so that it starts from 0, one-shot
124	 * mode makes this needed for timing to be right.
125	 */
126	ctrl_reg |= CNT_CNTRL_RESET;
127	ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
128	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
129}
130
131/**
132 * ttc_clock_event_interrupt - Clock event timer interrupt handler
133 *
134 * @irq:	IRQ number of the Timer
135 * @dev_id:	void pointer to the ttc_timer instance
136 *
137 * returns: Always IRQ_HANDLED - success
138 **/
139static irqreturn_t ttc_clock_event_interrupt(int irq, void *dev_id)
140{
141	struct ttc_timer_clockevent *ttce = dev_id;
142	struct ttc_timer *timer = &ttce->ttc;
143
144	/* Acknowledge the interrupt and call event handler */
145	readl_relaxed(timer->base_addr + TTC_ISR_OFFSET);
146
147	ttce->ce.event_handler(&ttce->ce);
148
149	return IRQ_HANDLED;
150}
151
152/**
153 * __ttc_clocksource_read - Reads the timer counter register
154 *
155 * returns: Current timer counter register value
156 **/
157static u64 __ttc_clocksource_read(struct clocksource *cs)
158{
159	struct ttc_timer *timer = &to_ttc_timer_clksrc(cs)->ttc;
160
161	return (u64)readl_relaxed(timer->base_addr +
162				TTC_COUNT_VAL_OFFSET);
163}
164
165static u64 notrace ttc_sched_clock_read(void)
166{
167	return readl_relaxed(ttc_sched_clock_val_reg);
168}
169
170/**
171 * ttc_set_next_event - Sets the time interval for next event
172 *
173 * @cycles:	Timer interval ticks
174 * @evt:	Address of clock event instance
175 *
176 * returns: Always 0 - success
177 **/
178static int ttc_set_next_event(unsigned long cycles,
179					struct clock_event_device *evt)
180{
181	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
182	struct ttc_timer *timer = &ttce->ttc;
183
184	ttc_set_interval(timer, cycles);
185	return 0;
186}
187
188/**
189 * ttc_set_{shutdown|oneshot|periodic} - Sets the state of timer
190 *
191 * @evt:	Address of clock event instance
192 **/
193static int ttc_shutdown(struct clock_event_device *evt)
194{
195	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
196	struct ttc_timer *timer = &ttce->ttc;
197	u32 ctrl_reg;
198
199	ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
200	ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
201	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
202	return 0;
203}
204
205static int ttc_set_periodic(struct clock_event_device *evt)
206{
207	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
208	struct ttc_timer *timer = &ttce->ttc;
209
210	ttc_set_interval(timer,
211			 DIV_ROUND_CLOSEST(ttce->ttc.freq, PRESCALE * HZ));
212	return 0;
213}
214
215static int ttc_resume(struct clock_event_device *evt)
216{
217	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
218	struct ttc_timer *timer = &ttce->ttc;
219	u32 ctrl_reg;
220
221	ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
222	ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
223	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
224	return 0;
225}
226
227static int ttc_rate_change_clocksource_cb(struct notifier_block *nb,
228		unsigned long event, void *data)
229{
230	struct clk_notifier_data *ndata = data;
231	struct ttc_timer *ttc = to_ttc_timer(nb);
232	struct ttc_timer_clocksource *ttccs = container_of(ttc,
233			struct ttc_timer_clocksource, ttc);
234
235	switch (event) {
236	case PRE_RATE_CHANGE:
237	{
238		u32 psv;
239		unsigned long factor, rate_low, rate_high;
240
241		if (ndata->new_rate > ndata->old_rate) {
242			factor = DIV_ROUND_CLOSEST(ndata->new_rate,
243					ndata->old_rate);
244			rate_low = ndata->old_rate;
245			rate_high = ndata->new_rate;
246		} else {
247			factor = DIV_ROUND_CLOSEST(ndata->old_rate,
248					ndata->new_rate);
249			rate_low = ndata->new_rate;
250			rate_high = ndata->old_rate;
251		}
252
253		if (!is_power_of_2(factor))
254				return NOTIFY_BAD;
255
256		if (abs(rate_high - (factor * rate_low)) > MAX_F_ERR)
257			return NOTIFY_BAD;
258
259		factor = __ilog2_u32(factor);
260
261		/*
262		 * store timer clock ctrl register so we can restore it in case
263		 * of an abort.
264		 */
265		ttccs->scale_clk_ctrl_reg_old =
266			readl_relaxed(ttccs->ttc.base_addr +
267			TTC_CLK_CNTRL_OFFSET);
268
269		psv = (ttccs->scale_clk_ctrl_reg_old &
270				TTC_CLK_CNTRL_PSV_MASK) >>
271				TTC_CLK_CNTRL_PSV_SHIFT;
272		if (ndata->new_rate < ndata->old_rate)
273			psv -= factor;
274		else
275			psv += factor;
276
277		/* prescaler within legal range? */
278		if (psv & ~(TTC_CLK_CNTRL_PSV_MASK >> TTC_CLK_CNTRL_PSV_SHIFT))
279			return NOTIFY_BAD;
280
281		ttccs->scale_clk_ctrl_reg_new = ttccs->scale_clk_ctrl_reg_old &
282			~TTC_CLK_CNTRL_PSV_MASK;
283		ttccs->scale_clk_ctrl_reg_new |= psv << TTC_CLK_CNTRL_PSV_SHIFT;
284
285
286		/* scale down: adjust divider in post-change notification */
287		if (ndata->new_rate < ndata->old_rate)
288			return NOTIFY_DONE;
289
290		/* scale up: adjust divider now - before frequency change */
291		writel_relaxed(ttccs->scale_clk_ctrl_reg_new,
292			       ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
293		break;
294	}
295	case POST_RATE_CHANGE:
296		/* scale up: pre-change notification did the adjustment */
297		if (ndata->new_rate > ndata->old_rate)
298			return NOTIFY_OK;
299
300		/* scale down: adjust divider now - after frequency change */
301		writel_relaxed(ttccs->scale_clk_ctrl_reg_new,
302			       ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
303		break;
304
305	case ABORT_RATE_CHANGE:
306		/* we have to undo the adjustment in case we scale up */
307		if (ndata->new_rate < ndata->old_rate)
308			return NOTIFY_OK;
309
310		/* restore original register value */
311		writel_relaxed(ttccs->scale_clk_ctrl_reg_old,
312			       ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
313		fallthrough;
314	default:
315		return NOTIFY_DONE;
316	}
317
318	return NOTIFY_DONE;
319}
320
321static int __init ttc_setup_clocksource(struct clk *clk, void __iomem *base,
322					 u32 timer_width)
323{
324	struct ttc_timer_clocksource *ttccs;
325	int err;
326
327	ttccs = kzalloc(sizeof(*ttccs), GFP_KERNEL);
328	if (!ttccs)
329		return -ENOMEM;
330
331	ttccs->ttc.clk = clk;
332
333	err = clk_prepare_enable(ttccs->ttc.clk);
334	if (err) {
335		kfree(ttccs);
336		return err;
337	}
338
339	ttccs->ttc.freq = clk_get_rate(ttccs->ttc.clk);
340
341	ttccs->ttc.clk_rate_change_nb.notifier_call =
342		ttc_rate_change_clocksource_cb;
343	ttccs->ttc.clk_rate_change_nb.next = NULL;
344
345	err = clk_notifier_register(ttccs->ttc.clk,
346				    &ttccs->ttc.clk_rate_change_nb);
347	if (err)
348		pr_warn("Unable to register clock notifier.\n");
349
350	ttccs->ttc.base_addr = base;
351	ttccs->cs.name = "ttc_clocksource";
352	ttccs->cs.rating = 200;
353	ttccs->cs.read = __ttc_clocksource_read;
354	ttccs->cs.mask = CLOCKSOURCE_MASK(timer_width);
355	ttccs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
356
357	/*
358	 * Setup the clock source counter to be an incrementing counter
359	 * with no interrupt and it rolls over at 0xFFFF. Pre-scale
360	 * it by 32 also. Let it start running now.
361	 */
362	writel_relaxed(0x0,  ttccs->ttc.base_addr + TTC_IER_OFFSET);
363	writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
364		     ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
365	writel_relaxed(CNT_CNTRL_RESET,
366		     ttccs->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
367
368	err = clocksource_register_hz(&ttccs->cs, ttccs->ttc.freq / PRESCALE);
369	if (err) {
370		kfree(ttccs);
371		return err;
372	}
373
374	ttc_sched_clock_val_reg = base + TTC_COUNT_VAL_OFFSET;
375	sched_clock_register(ttc_sched_clock_read, timer_width,
376			     ttccs->ttc.freq / PRESCALE);
377
378	return 0;
379}
380
381static int ttc_rate_change_clockevent_cb(struct notifier_block *nb,
382		unsigned long event, void *data)
383{
384	struct clk_notifier_data *ndata = data;
385	struct ttc_timer *ttc = to_ttc_timer(nb);
386	struct ttc_timer_clockevent *ttcce = container_of(ttc,
387			struct ttc_timer_clockevent, ttc);
388
389	switch (event) {
390	case POST_RATE_CHANGE:
391		/* update cached frequency */
392		ttc->freq = ndata->new_rate;
393
394		clockevents_update_freq(&ttcce->ce, ndata->new_rate / PRESCALE);
395
396		fallthrough;
397	case PRE_RATE_CHANGE:
398	case ABORT_RATE_CHANGE:
399	default:
400		return NOTIFY_DONE;
401	}
402}
403
404static int __init ttc_setup_clockevent(struct clk *clk,
405				       void __iomem *base, u32 irq)
406{
407	struct ttc_timer_clockevent *ttcce;
408	int err;
409
410	ttcce = kzalloc(sizeof(*ttcce), GFP_KERNEL);
411	if (!ttcce)
412		return -ENOMEM;
413
414	ttcce->ttc.clk = clk;
415
416	err = clk_prepare_enable(ttcce->ttc.clk);
417	if (err)
418		goto out_kfree;
419
420	ttcce->ttc.clk_rate_change_nb.notifier_call =
421		ttc_rate_change_clockevent_cb;
422	ttcce->ttc.clk_rate_change_nb.next = NULL;
423
424	err = clk_notifier_register(ttcce->ttc.clk,
425				    &ttcce->ttc.clk_rate_change_nb);
426	if (err) {
427		pr_warn("Unable to register clock notifier.\n");
428		goto out_kfree;
429	}
430
431	ttcce->ttc.freq = clk_get_rate(ttcce->ttc.clk);
432
433	ttcce->ttc.base_addr = base;
434	ttcce->ce.name = "ttc_clockevent";
435	ttcce->ce.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
436	ttcce->ce.set_next_event = ttc_set_next_event;
437	ttcce->ce.set_state_shutdown = ttc_shutdown;
438	ttcce->ce.set_state_periodic = ttc_set_periodic;
439	ttcce->ce.set_state_oneshot = ttc_shutdown;
440	ttcce->ce.tick_resume = ttc_resume;
441	ttcce->ce.rating = 200;
442	ttcce->ce.irq = irq;
443	ttcce->ce.cpumask = cpu_possible_mask;
444
445	/*
446	 * Setup the clock event timer to be an interval timer which
447	 * is prescaled by 32 using the interval interrupt. Leave it
448	 * disabled for now.
449	 */
450	writel_relaxed(0x23, ttcce->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
451	writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
452		     ttcce->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
453	writel_relaxed(0x1,  ttcce->ttc.base_addr + TTC_IER_OFFSET);
454
455	err = request_irq(irq, ttc_clock_event_interrupt,
456			  IRQF_TIMER, ttcce->ce.name, ttcce);
457	if (err)
458		goto out_kfree;
459
460	clockevents_config_and_register(&ttcce->ce,
461			ttcce->ttc.freq / PRESCALE, 1, 0xfffe);
462
463	return 0;
464
465out_kfree:
466	kfree(ttcce);
467	return err;
468}
469
470static int __init ttc_timer_probe(struct platform_device *pdev)
471{
472	unsigned int irq;
473	void __iomem *timer_baseaddr;
474	struct clk *clk_cs, *clk_ce;
475	static int initialized;
476	int clksel, ret;
477	u32 timer_width = 16;
478	struct device_node *timer = pdev->dev.of_node;
479
480	if (initialized)
481		return 0;
482
483	initialized = 1;
484
485	/*
486	 * Get the 1st Triple Timer Counter (TTC) block from the device tree
487	 * and use it. Note that the event timer uses the interrupt and it's the
488	 * 2nd TTC hence the irq_of_parse_and_map(,1)
489	 */
490	timer_baseaddr = devm_of_iomap(&pdev->dev, timer, 0, NULL);
491	if (IS_ERR(timer_baseaddr)) {
492		pr_err("ERROR: invalid timer base address\n");
493		return PTR_ERR(timer_baseaddr);
494	}
495
496	irq = irq_of_parse_and_map(timer, 1);
497	if (irq <= 0) {
498		pr_err("ERROR: invalid interrupt number\n");
499		return -EINVAL;
500	}
501
502	of_property_read_u32(timer, "timer-width", &timer_width);
503
504	clksel = readl_relaxed(timer_baseaddr + TTC_CLK_CNTRL_OFFSET);
505	clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
506	clk_cs = of_clk_get(timer, clksel);
507	if (IS_ERR(clk_cs)) {
508		pr_err("ERROR: timer input clock not found\n");
509		return PTR_ERR(clk_cs);
510	}
511
512	clksel = readl_relaxed(timer_baseaddr + 4 + TTC_CLK_CNTRL_OFFSET);
513	clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
514	clk_ce = of_clk_get(timer, clksel);
515	if (IS_ERR(clk_ce)) {
516		pr_err("ERROR: timer input clock not found\n");
517		ret = PTR_ERR(clk_ce);
518		goto put_clk_cs;
519	}
520
521	ret = ttc_setup_clocksource(clk_cs, timer_baseaddr, timer_width);
522	if (ret)
523		goto put_clk_ce;
524
525	ret = ttc_setup_clockevent(clk_ce, timer_baseaddr + 4, irq);
526	if (ret)
527		goto put_clk_ce;
528
529	pr_info("%pOFn #0 at %p, irq=%d\n", timer, timer_baseaddr, irq);
530
531	return 0;
532
533put_clk_ce:
534	clk_put(clk_ce);
535put_clk_cs:
536	clk_put(clk_cs);
537	return ret;
538}
539
540static const struct of_device_id ttc_timer_of_match[] = {
541	{.compatible = "cdns,ttc"},
542	{},
543};
544
545MODULE_DEVICE_TABLE(of, ttc_timer_of_match);
546
547static struct platform_driver ttc_timer_driver = {
548	.driver = {
549		.name	= "cdns_ttc_timer",
550		.of_match_table = ttc_timer_of_match,
551	},
552};
553builtin_platform_driver_probe(ttc_timer_driver, ttc_timer_probe);
554