1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Xilinx 'Clocking Wizard' driver
4 *
5 *  Copyright (C) 2013 - 2021 Xilinx
6 *
7 *  Sören Brinkmann <soren.brinkmann@xilinx.com>
8 *
9 */
10
11#include <linux/bitfield.h>
12#include <linux/platform_device.h>
13#include <linux/clk.h>
14#include <linux/clk-provider.h>
15#include <linux/slab.h>
16#include <linux/io.h>
17#include <linux/of.h>
18#include <linux/math64.h>
19#include <linux/module.h>
20#include <linux/err.h>
21#include <linux/iopoll.h>
22
23#define WZRD_NUM_OUTPUTS	7
24#define WZRD_ACLK_MAX_FREQ	250000000UL
25
26#define WZRD_CLK_CFG_REG(n)	(0x200 + 4 * (n))
27
28#define WZRD_CLKOUT0_FRAC_EN	BIT(18)
29#define WZRD_CLKFBOUT_FRAC_EN	BIT(26)
30
31#define WZRD_CLKFBOUT_MULT_SHIFT	8
32#define WZRD_CLKFBOUT_MULT_MASK		(0xff << WZRD_CLKFBOUT_MULT_SHIFT)
33#define WZRD_CLKFBOUT_FRAC_SHIFT	16
34#define WZRD_CLKFBOUT_FRAC_MASK		(0x3ff << WZRD_CLKFBOUT_FRAC_SHIFT)
35#define WZRD_DIVCLK_DIVIDE_SHIFT	0
36#define WZRD_DIVCLK_DIVIDE_MASK		(0xff << WZRD_DIVCLK_DIVIDE_SHIFT)
37#define WZRD_CLKOUT_DIVIDE_SHIFT	0
38#define WZRD_CLKOUT_DIVIDE_WIDTH	8
39#define WZRD_CLKOUT_DIVIDE_MASK		(0xff << WZRD_DIVCLK_DIVIDE_SHIFT)
40#define WZRD_CLKOUT_FRAC_SHIFT		8
41#define WZRD_CLKOUT_FRAC_MASK		0x3ff
42#define WZRD_CLKOUT0_FRAC_MASK		GENMASK(17, 8)
43
44#define WZRD_DR_MAX_INT_DIV_VALUE	255
45#define WZRD_DR_STATUS_REG_OFFSET	0x04
46#define WZRD_DR_LOCK_BIT_MASK		0x00000001
47#define WZRD_DR_INIT_REG_OFFSET		0x25C
48#define WZRD_DR_DIV_TO_PHASE_OFFSET	4
49#define WZRD_DR_BEGIN_DYNA_RECONF	0x03
50#define WZRD_DR_BEGIN_DYNA_RECONF_5_2	0x07
51#define WZRD_DR_BEGIN_DYNA_RECONF1_5_2	0x02
52
53#define WZRD_USEC_POLL		10
54#define WZRD_TIMEOUT_POLL		1000
55
56/* Divider limits, from UG572 Table 3-4 for Ultrascale+ */
57#define DIV_O				0x01
58#define DIV_ALL				0x03
59
60#define WZRD_M_MIN			2
61#define WZRD_M_MAX			128
62#define WZRD_D_MIN			1
63#define WZRD_D_MAX			106
64#define WZRD_VCO_MIN			800000000
65#define WZRD_VCO_MAX			1600000000
66#define WZRD_O_MIN			1
67#define WZRD_O_MAX			128
68#define WZRD_MIN_ERR			20000
69#define WZRD_FRAC_POINTS		1000
70
71/* Get the mask from width */
72#define div_mask(width)			((1 << (width)) - 1)
73
74/* Extract divider instance from clock hardware instance */
75#define to_clk_wzrd_divider(_hw) container_of(_hw, struct clk_wzrd_divider, hw)
76
77enum clk_wzrd_int_clks {
78	wzrd_clk_mul,
79	wzrd_clk_mul_div,
80	wzrd_clk_mul_frac,
81	wzrd_clk_int_max
82};
83
84/**
85 * struct clk_wzrd - Clock wizard private data structure
86 *
87 * @clk_data:		Clock data
88 * @nb:			Notifier block
89 * @base:		Memory base
90 * @clk_in1:		Handle to input clock 'clk_in1'
91 * @axi_clk:		Handle to input clock 's_axi_aclk'
92 * @clks_internal:	Internal clocks
93 * @clkout:		Output clocks
94 * @speed_grade:	Speed grade of the device
95 * @suspended:		Flag indicating power state of the device
96 */
97struct clk_wzrd {
98	struct clk_onecell_data clk_data;
99	struct notifier_block nb;
100	void __iomem *base;
101	struct clk *clk_in1;
102	struct clk *axi_clk;
103	struct clk *clks_internal[wzrd_clk_int_max];
104	struct clk *clkout[WZRD_NUM_OUTPUTS];
105	unsigned int speed_grade;
106	bool suspended;
107};
108
109/**
110 * struct clk_wzrd_divider - clock divider specific to clk_wzrd
111 *
112 * @hw:		handle between common and hardware-specific interfaces
113 * @base:	base address of register containing the divider
114 * @offset:	offset address of register containing the divider
115 * @shift:	shift to the divider bit field
116 * @width:	width of the divider bit field
117 * @flags:	clk_wzrd divider flags
118 * @table:	array of value/divider pairs, last entry should have div = 0
119 * @m:	value of the multiplier
120 * @d:	value of the common divider
121 * @o:	value of the leaf divider
122 * @lock:	register lock
123 */
124struct clk_wzrd_divider {
125	struct clk_hw hw;
126	void __iomem *base;
127	u16 offset;
128	u8 shift;
129	u8 width;
130	u8 flags;
131	const struct clk_div_table *table;
132	u32 m;
133	u32 d;
134	u32 o;
135	spinlock_t *lock;  /* divider lock */
136};
137
138#define to_clk_wzrd(_nb) container_of(_nb, struct clk_wzrd, nb)
139
140/* maximum frequencies for input/output clocks per speed grade */
141static const unsigned long clk_wzrd_max_freq[] = {
142	800000000UL,
143	933000000UL,
144	1066000000UL
145};
146
147/* spin lock variable for clk_wzrd */
148static DEFINE_SPINLOCK(clkwzrd_lock);
149
150static unsigned long clk_wzrd_recalc_rate(struct clk_hw *hw,
151					  unsigned long parent_rate)
152{
153	struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
154	void __iomem *div_addr = divider->base + divider->offset;
155	unsigned int val;
156
157	val = readl(div_addr) >> divider->shift;
158	val &= div_mask(divider->width);
159
160	return divider_recalc_rate(hw, parent_rate, val, divider->table,
161			divider->flags, divider->width);
162}
163
164static int clk_wzrd_dynamic_reconfig(struct clk_hw *hw, unsigned long rate,
165				     unsigned long parent_rate)
166{
167	int err;
168	u32 value;
169	unsigned long flags = 0;
170	struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
171	void __iomem *div_addr = divider->base + divider->offset;
172
173	if (divider->lock)
174		spin_lock_irqsave(divider->lock, flags);
175	else
176		__acquire(divider->lock);
177
178	value = DIV_ROUND_CLOSEST(parent_rate, rate);
179
180	/* Cap the value to max */
181	min_t(u32, value, WZRD_DR_MAX_INT_DIV_VALUE);
182
183	/* Set divisor and clear phase offset */
184	writel(value, div_addr);
185	writel(0x00, div_addr + WZRD_DR_DIV_TO_PHASE_OFFSET);
186
187	/* Check status register */
188	err = readl_poll_timeout(divider->base + WZRD_DR_STATUS_REG_OFFSET,
189				 value, value & WZRD_DR_LOCK_BIT_MASK,
190				 WZRD_USEC_POLL, WZRD_TIMEOUT_POLL);
191	if (err)
192		goto err_reconfig;
193
194	/* Initiate reconfiguration */
195	writel(WZRD_DR_BEGIN_DYNA_RECONF_5_2,
196	       divider->base + WZRD_DR_INIT_REG_OFFSET);
197	writel(WZRD_DR_BEGIN_DYNA_RECONF1_5_2,
198	       divider->base + WZRD_DR_INIT_REG_OFFSET);
199
200	/* Check status register */
201	err = readl_poll_timeout(divider->base + WZRD_DR_STATUS_REG_OFFSET,
202				 value, value & WZRD_DR_LOCK_BIT_MASK,
203				 WZRD_USEC_POLL, WZRD_TIMEOUT_POLL);
204err_reconfig:
205	if (divider->lock)
206		spin_unlock_irqrestore(divider->lock, flags);
207	else
208		__release(divider->lock);
209	return err;
210}
211
212static long clk_wzrd_round_rate(struct clk_hw *hw, unsigned long rate,
213				unsigned long *prate)
214{
215	u8 div;
216
217	/*
218	 * since we don't change parent rate we just round rate to closest
219	 * achievable
220	 */
221	div = DIV_ROUND_CLOSEST(*prate, rate);
222
223	return *prate / div;
224}
225
226static int clk_wzrd_get_divisors(struct clk_hw *hw, unsigned long rate,
227				 unsigned long parent_rate)
228{
229	struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
230	unsigned long vco_freq, freq, diff;
231	u32 m, d, o;
232
233	for (m = WZRD_M_MIN; m <= WZRD_M_MAX; m++) {
234		for (d = WZRD_D_MIN; d <= WZRD_D_MAX; d++) {
235			vco_freq = DIV_ROUND_CLOSEST((parent_rate * m), d);
236			if (vco_freq >= WZRD_VCO_MIN && vco_freq <= WZRD_VCO_MAX) {
237				for (o = WZRD_O_MIN; o <= WZRD_O_MAX; o++) {
238					freq = DIV_ROUND_CLOSEST_ULL(vco_freq, o);
239					diff = abs(freq - rate);
240
241					if (diff < WZRD_MIN_ERR) {
242						divider->m = m;
243						divider->d = d;
244						divider->o = o;
245						return 0;
246					}
247				}
248			}
249		}
250	}
251	return -EBUSY;
252}
253
254static int clk_wzrd_dynamic_all_nolock(struct clk_hw *hw, unsigned long rate,
255				       unsigned long parent_rate)
256{
257	struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
258	unsigned long vco_freq, rate_div, clockout0_div;
259	u32 reg, pre, value, f;
260	int err;
261
262	err = clk_wzrd_get_divisors(hw, rate, parent_rate);
263	if (err)
264		return err;
265
266	vco_freq = DIV_ROUND_CLOSEST(parent_rate * divider->m, divider->d);
267	rate_div = DIV_ROUND_CLOSEST_ULL((vco_freq * WZRD_FRAC_POINTS), rate);
268
269	clockout0_div = div_u64(rate_div,  WZRD_FRAC_POINTS);
270
271	pre = DIV_ROUND_CLOSEST_ULL(vco_freq * WZRD_FRAC_POINTS, rate);
272	f = (pre - (clockout0_div * WZRD_FRAC_POINTS));
273	f &= WZRD_CLKOUT_FRAC_MASK;
274
275	reg = FIELD_PREP(WZRD_CLKOUT_DIVIDE_MASK, clockout0_div) |
276	      FIELD_PREP(WZRD_CLKOUT0_FRAC_MASK, f);
277
278	writel(reg, divider->base + WZRD_CLK_CFG_REG(2));
279	/* Set divisor and clear phase offset */
280	reg = FIELD_PREP(WZRD_CLKFBOUT_MULT_MASK, divider->m) |
281	      FIELD_PREP(WZRD_DIVCLK_DIVIDE_MASK, divider->d);
282	writel(reg, divider->base + WZRD_CLK_CFG_REG(0));
283	writel(divider->o, divider->base + WZRD_CLK_CFG_REG(2));
284	writel(0, divider->base + WZRD_CLK_CFG_REG(3));
285	/* Check status register */
286	err = readl_poll_timeout(divider->base + WZRD_DR_STATUS_REG_OFFSET, value,
287				 value & WZRD_DR_LOCK_BIT_MASK,
288				 WZRD_USEC_POLL, WZRD_TIMEOUT_POLL);
289	if (err)
290		return -ETIMEDOUT;
291
292	/* Initiate reconfiguration */
293	writel(WZRD_DR_BEGIN_DYNA_RECONF,
294	       divider->base + WZRD_DR_INIT_REG_OFFSET);
295
296	/* Check status register */
297	return readl_poll_timeout(divider->base + WZRD_DR_STATUS_REG_OFFSET, value,
298				 value & WZRD_DR_LOCK_BIT_MASK,
299				 WZRD_USEC_POLL, WZRD_TIMEOUT_POLL);
300}
301
302static int clk_wzrd_dynamic_all(struct clk_hw *hw, unsigned long rate,
303				unsigned long parent_rate)
304{
305	struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
306	unsigned long flags = 0;
307	int ret;
308
309	spin_lock_irqsave(divider->lock, flags);
310
311	ret = clk_wzrd_dynamic_all_nolock(hw, rate, parent_rate);
312
313	spin_unlock_irqrestore(divider->lock, flags);
314
315	return ret;
316}
317
318static unsigned long clk_wzrd_recalc_rate_all(struct clk_hw *hw,
319					      unsigned long parent_rate)
320{
321	struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
322	u32 m, d, o, div, reg, f;
323
324	reg = readl(divider->base + WZRD_CLK_CFG_REG(0));
325	d = FIELD_GET(WZRD_DIVCLK_DIVIDE_MASK, reg);
326	m = FIELD_GET(WZRD_CLKFBOUT_MULT_MASK, reg);
327	reg = readl(divider->base + WZRD_CLK_CFG_REG(2));
328	o = FIELD_GET(WZRD_DIVCLK_DIVIDE_MASK, reg);
329	f = FIELD_GET(WZRD_CLKOUT0_FRAC_MASK, reg);
330
331	div = DIV_ROUND_CLOSEST(d * (WZRD_FRAC_POINTS * o + f), WZRD_FRAC_POINTS);
332	return divider_recalc_rate(hw, parent_rate * m, div, divider->table,
333			divider->flags, divider->width);
334}
335
336static long clk_wzrd_round_rate_all(struct clk_hw *hw, unsigned long rate,
337				    unsigned long *prate)
338{
339	struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
340	unsigned long int_freq;
341	u32 m, d, o, div, f;
342	int err;
343
344	err = clk_wzrd_get_divisors(hw, rate, *prate);
345	if (err)
346		return err;
347
348	m = divider->m;
349	d = divider->d;
350	o = divider->o;
351
352	div = d * o;
353	int_freq =  divider_recalc_rate(hw, *prate * m, div, divider->table,
354					divider->flags, divider->width);
355
356	if (rate > int_freq) {
357		f = DIV_ROUND_CLOSEST_ULL(rate * WZRD_FRAC_POINTS, int_freq);
358		rate = DIV_ROUND_CLOSEST(int_freq * f, WZRD_FRAC_POINTS);
359	}
360	return rate;
361}
362
363static const struct clk_ops clk_wzrd_clk_divider_ops = {
364	.round_rate = clk_wzrd_round_rate,
365	.set_rate = clk_wzrd_dynamic_reconfig,
366	.recalc_rate = clk_wzrd_recalc_rate,
367};
368
369static const struct clk_ops clk_wzrd_clk_div_all_ops = {
370	.round_rate = clk_wzrd_round_rate_all,
371	.set_rate = clk_wzrd_dynamic_all,
372	.recalc_rate = clk_wzrd_recalc_rate_all,
373};
374
375static unsigned long clk_wzrd_recalc_ratef(struct clk_hw *hw,
376					   unsigned long parent_rate)
377{
378	unsigned int val;
379	u32 div, frac;
380	struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
381	void __iomem *div_addr = divider->base + divider->offset;
382
383	val = readl(div_addr);
384	div = val & div_mask(divider->width);
385	frac = (val >> WZRD_CLKOUT_FRAC_SHIFT) & WZRD_CLKOUT_FRAC_MASK;
386
387	return mult_frac(parent_rate, 1000, (div * 1000) + frac);
388}
389
390static int clk_wzrd_dynamic_reconfig_f(struct clk_hw *hw, unsigned long rate,
391				       unsigned long parent_rate)
392{
393	int err;
394	u32 value, pre;
395	unsigned long rate_div, f, clockout0_div;
396	struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
397	void __iomem *div_addr = divider->base + divider->offset;
398
399	rate_div = DIV_ROUND_DOWN_ULL(parent_rate * 1000, rate);
400	clockout0_div = rate_div / 1000;
401
402	pre = DIV_ROUND_CLOSEST((parent_rate * 1000), rate);
403	f = (u32)(pre - (clockout0_div * 1000));
404	f = f & WZRD_CLKOUT_FRAC_MASK;
405	f = f << WZRD_CLKOUT_DIVIDE_WIDTH;
406
407	value = (f  | (clockout0_div & WZRD_CLKOUT_DIVIDE_MASK));
408
409	/* Set divisor and clear phase offset */
410	writel(value, div_addr);
411	writel(0x0, div_addr + WZRD_DR_DIV_TO_PHASE_OFFSET);
412
413	/* Check status register */
414	err = readl_poll_timeout(divider->base + WZRD_DR_STATUS_REG_OFFSET, value,
415				 value & WZRD_DR_LOCK_BIT_MASK,
416				 WZRD_USEC_POLL, WZRD_TIMEOUT_POLL);
417	if (err)
418		return err;
419
420	/* Initiate reconfiguration */
421	writel(WZRD_DR_BEGIN_DYNA_RECONF_5_2,
422	       divider->base + WZRD_DR_INIT_REG_OFFSET);
423	writel(WZRD_DR_BEGIN_DYNA_RECONF1_5_2,
424	       divider->base + WZRD_DR_INIT_REG_OFFSET);
425
426	/* Check status register */
427	return readl_poll_timeout(divider->base + WZRD_DR_STATUS_REG_OFFSET, value,
428				value & WZRD_DR_LOCK_BIT_MASK,
429				WZRD_USEC_POLL, WZRD_TIMEOUT_POLL);
430}
431
432static long clk_wzrd_round_rate_f(struct clk_hw *hw, unsigned long rate,
433				  unsigned long *prate)
434{
435	return rate;
436}
437
438static const struct clk_ops clk_wzrd_clk_divider_ops_f = {
439	.round_rate = clk_wzrd_round_rate_f,
440	.set_rate = clk_wzrd_dynamic_reconfig_f,
441	.recalc_rate = clk_wzrd_recalc_ratef,
442};
443
444static struct clk *clk_wzrd_register_divf(struct device *dev,
445					  const char *name,
446					  const char *parent_name,
447					  unsigned long flags,
448					  void __iomem *base, u16 offset,
449					  u8 shift, u8 width,
450					  u8 clk_divider_flags,
451					  u32 div_type,
452					  spinlock_t *lock)
453{
454	struct clk_wzrd_divider *div;
455	struct clk_hw *hw;
456	struct clk_init_data init;
457	int ret;
458
459	div = devm_kzalloc(dev, sizeof(*div), GFP_KERNEL);
460	if (!div)
461		return ERR_PTR(-ENOMEM);
462
463	init.name = name;
464
465	init.ops = &clk_wzrd_clk_divider_ops_f;
466
467	init.flags = flags;
468	init.parent_names = &parent_name;
469	init.num_parents = 1;
470
471	div->base = base;
472	div->offset = offset;
473	div->shift = shift;
474	div->width = width;
475	div->flags = clk_divider_flags;
476	div->lock = lock;
477	div->hw.init = &init;
478
479	hw = &div->hw;
480	ret =  devm_clk_hw_register(dev, hw);
481	if (ret)
482		return ERR_PTR(ret);
483
484	return hw->clk;
485}
486
487static struct clk *clk_wzrd_register_divider(struct device *dev,
488					     const char *name,
489					     const char *parent_name,
490					     unsigned long flags,
491					     void __iomem *base, u16 offset,
492					     u8 shift, u8 width,
493					     u8 clk_divider_flags,
494					     u32 div_type,
495					     spinlock_t *lock)
496{
497	struct clk_wzrd_divider *div;
498	struct clk_hw *hw;
499	struct clk_init_data init;
500	int ret;
501
502	div = devm_kzalloc(dev, sizeof(*div), GFP_KERNEL);
503	if (!div)
504		return ERR_PTR(-ENOMEM);
505
506	init.name = name;
507	if (clk_divider_flags & CLK_DIVIDER_READ_ONLY)
508		init.ops = &clk_divider_ro_ops;
509	else if (div_type == DIV_O)
510		init.ops = &clk_wzrd_clk_divider_ops;
511	else
512		init.ops = &clk_wzrd_clk_div_all_ops;
513	init.flags = flags;
514	init.parent_names =  &parent_name;
515	init.num_parents =  1;
516
517	div->base = base;
518	div->offset = offset;
519	div->shift = shift;
520	div->width = width;
521	div->flags = clk_divider_flags;
522	div->lock = lock;
523	div->hw.init = &init;
524
525	hw = &div->hw;
526	ret = devm_clk_hw_register(dev, hw);
527	if (ret)
528		return ERR_PTR(ret);
529
530	return hw->clk;
531}
532
533static int clk_wzrd_clk_notifier(struct notifier_block *nb, unsigned long event,
534				 void *data)
535{
536	unsigned long max;
537	struct clk_notifier_data *ndata = data;
538	struct clk_wzrd *clk_wzrd = to_clk_wzrd(nb);
539
540	if (clk_wzrd->suspended)
541		return NOTIFY_OK;
542
543	if (ndata->clk == clk_wzrd->clk_in1)
544		max = clk_wzrd_max_freq[clk_wzrd->speed_grade - 1];
545	else if (ndata->clk == clk_wzrd->axi_clk)
546		max = WZRD_ACLK_MAX_FREQ;
547	else
548		return NOTIFY_DONE;	/* should never happen */
549
550	switch (event) {
551	case PRE_RATE_CHANGE:
552		if (ndata->new_rate > max)
553			return NOTIFY_BAD;
554		return NOTIFY_OK;
555	case POST_RATE_CHANGE:
556	case ABORT_RATE_CHANGE:
557	default:
558		return NOTIFY_DONE;
559	}
560}
561
562static int __maybe_unused clk_wzrd_suspend(struct device *dev)
563{
564	struct clk_wzrd *clk_wzrd = dev_get_drvdata(dev);
565
566	clk_disable_unprepare(clk_wzrd->axi_clk);
567	clk_wzrd->suspended = true;
568
569	return 0;
570}
571
572static int __maybe_unused clk_wzrd_resume(struct device *dev)
573{
574	int ret;
575	struct clk_wzrd *clk_wzrd = dev_get_drvdata(dev);
576
577	ret = clk_prepare_enable(clk_wzrd->axi_clk);
578	if (ret) {
579		dev_err(dev, "unable to enable s_axi_aclk\n");
580		return ret;
581	}
582
583	clk_wzrd->suspended = false;
584
585	return 0;
586}
587
588static SIMPLE_DEV_PM_OPS(clk_wzrd_dev_pm_ops, clk_wzrd_suspend,
589			 clk_wzrd_resume);
590
591static int clk_wzrd_probe(struct platform_device *pdev)
592{
593	int i, ret;
594	u32 reg, reg_f, mult;
595	unsigned long rate;
596	const char *clk_name;
597	void __iomem *ctrl_reg;
598	struct clk_wzrd *clk_wzrd;
599	const char *clkout_name;
600	struct device_node *np = pdev->dev.of_node;
601	int nr_outputs;
602	unsigned long flags = 0;
603
604	clk_wzrd = devm_kzalloc(&pdev->dev, sizeof(*clk_wzrd), GFP_KERNEL);
605	if (!clk_wzrd)
606		return -ENOMEM;
607	platform_set_drvdata(pdev, clk_wzrd);
608
609	clk_wzrd->base = devm_platform_ioremap_resource(pdev, 0);
610	if (IS_ERR(clk_wzrd->base))
611		return PTR_ERR(clk_wzrd->base);
612
613	ret = of_property_read_u32(np, "xlnx,speed-grade", &clk_wzrd->speed_grade);
614	if (!ret) {
615		if (clk_wzrd->speed_grade < 1 || clk_wzrd->speed_grade > 3) {
616			dev_warn(&pdev->dev, "invalid speed grade '%d'\n",
617				 clk_wzrd->speed_grade);
618			clk_wzrd->speed_grade = 0;
619		}
620	}
621
622	clk_wzrd->clk_in1 = devm_clk_get(&pdev->dev, "clk_in1");
623	if (IS_ERR(clk_wzrd->clk_in1))
624		return dev_err_probe(&pdev->dev, PTR_ERR(clk_wzrd->clk_in1),
625				     "clk_in1 not found\n");
626
627	clk_wzrd->axi_clk = devm_clk_get(&pdev->dev, "s_axi_aclk");
628	if (IS_ERR(clk_wzrd->axi_clk))
629		return dev_err_probe(&pdev->dev, PTR_ERR(clk_wzrd->axi_clk),
630				     "s_axi_aclk not found\n");
631	ret = clk_prepare_enable(clk_wzrd->axi_clk);
632	if (ret) {
633		dev_err(&pdev->dev, "enabling s_axi_aclk failed\n");
634		return ret;
635	}
636	rate = clk_get_rate(clk_wzrd->axi_clk);
637	if (rate > WZRD_ACLK_MAX_FREQ) {
638		dev_err(&pdev->dev, "s_axi_aclk frequency (%lu) too high\n",
639			rate);
640		ret = -EINVAL;
641		goto err_disable_clk;
642	}
643
644	ret = of_property_read_u32(np, "xlnx,nr-outputs", &nr_outputs);
645	if (ret || nr_outputs > WZRD_NUM_OUTPUTS) {
646		ret = -EINVAL;
647		goto err_disable_clk;
648	}
649
650	clkout_name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "%s_out0", dev_name(&pdev->dev));
651	if (!clkout_name) {
652		ret = -ENOMEM;
653		goto err_disable_clk;
654	}
655
656	if (nr_outputs == 1) {
657		clk_wzrd->clkout[0] = clk_wzrd_register_divider
658				(&pdev->dev, clkout_name,
659				__clk_get_name(clk_wzrd->clk_in1), 0,
660				clk_wzrd->base, WZRD_CLK_CFG_REG(3),
661				WZRD_CLKOUT_DIVIDE_SHIFT,
662				WZRD_CLKOUT_DIVIDE_WIDTH,
663				CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
664				DIV_ALL, &clkwzrd_lock);
665
666		goto out;
667	}
668
669	reg = readl(clk_wzrd->base + WZRD_CLK_CFG_REG(0));
670	reg_f = reg & WZRD_CLKFBOUT_FRAC_MASK;
671	reg_f =  reg_f >> WZRD_CLKFBOUT_FRAC_SHIFT;
672
673	reg = reg & WZRD_CLKFBOUT_MULT_MASK;
674	reg =  reg >> WZRD_CLKFBOUT_MULT_SHIFT;
675	mult = (reg * 1000) + reg_f;
676	clk_name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "%s_mul", dev_name(&pdev->dev));
677	if (!clk_name) {
678		ret = -ENOMEM;
679		goto err_disable_clk;
680	}
681	clk_wzrd->clks_internal[wzrd_clk_mul] = clk_register_fixed_factor
682			(&pdev->dev, clk_name,
683			 __clk_get_name(clk_wzrd->clk_in1),
684			0, mult, 1000);
685	if (IS_ERR(clk_wzrd->clks_internal[wzrd_clk_mul])) {
686		dev_err(&pdev->dev, "unable to register fixed-factor clock\n");
687		ret = PTR_ERR(clk_wzrd->clks_internal[wzrd_clk_mul]);
688		goto err_disable_clk;
689	}
690
691	clk_name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "%s_mul_div", dev_name(&pdev->dev));
692	if (!clk_name) {
693		ret = -ENOMEM;
694		goto err_rm_int_clk;
695	}
696
697	ctrl_reg = clk_wzrd->base + WZRD_CLK_CFG_REG(0);
698	/* register div */
699	clk_wzrd->clks_internal[wzrd_clk_mul_div] = clk_register_divider
700			(&pdev->dev, clk_name,
701			 __clk_get_name(clk_wzrd->clks_internal[wzrd_clk_mul]),
702			flags, ctrl_reg, 0, 8, CLK_DIVIDER_ONE_BASED |
703			CLK_DIVIDER_ALLOW_ZERO, &clkwzrd_lock);
704	if (IS_ERR(clk_wzrd->clks_internal[wzrd_clk_mul_div])) {
705		dev_err(&pdev->dev, "unable to register divider clock\n");
706		ret = PTR_ERR(clk_wzrd->clks_internal[wzrd_clk_mul_div]);
707		goto err_rm_int_clk;
708	}
709
710	/* register div per output */
711	for (i = nr_outputs - 1; i >= 0 ; i--) {
712		clkout_name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
713					     "%s_out%d", dev_name(&pdev->dev), i);
714		if (!clkout_name) {
715			ret = -ENOMEM;
716			goto err_rm_int_clk;
717		}
718
719		if (!i)
720			clk_wzrd->clkout[i] = clk_wzrd_register_divf
721				(&pdev->dev, clkout_name,
722				clk_name, flags,
723				clk_wzrd->base, (WZRD_CLK_CFG_REG(2) + i * 12),
724				WZRD_CLKOUT_DIVIDE_SHIFT,
725				WZRD_CLKOUT_DIVIDE_WIDTH,
726				CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
727				DIV_O, &clkwzrd_lock);
728		else
729			clk_wzrd->clkout[i] = clk_wzrd_register_divider
730				(&pdev->dev, clkout_name,
731				clk_name, 0,
732				clk_wzrd->base, (WZRD_CLK_CFG_REG(2) + i * 12),
733				WZRD_CLKOUT_DIVIDE_SHIFT,
734				WZRD_CLKOUT_DIVIDE_WIDTH,
735				CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
736				DIV_O, &clkwzrd_lock);
737		if (IS_ERR(clk_wzrd->clkout[i])) {
738			int j;
739
740			for (j = i + 1; j < nr_outputs; j++)
741				clk_unregister(clk_wzrd->clkout[j]);
742			dev_err(&pdev->dev,
743				"unable to register divider clock\n");
744			ret = PTR_ERR(clk_wzrd->clkout[i]);
745			goto err_rm_int_clks;
746		}
747	}
748
749out:
750	clk_wzrd->clk_data.clks = clk_wzrd->clkout;
751	clk_wzrd->clk_data.clk_num = ARRAY_SIZE(clk_wzrd->clkout);
752	of_clk_add_provider(np, of_clk_src_onecell_get, &clk_wzrd->clk_data);
753
754	if (clk_wzrd->speed_grade) {
755		clk_wzrd->nb.notifier_call = clk_wzrd_clk_notifier;
756
757		ret = clk_notifier_register(clk_wzrd->clk_in1,
758					    &clk_wzrd->nb);
759		if (ret)
760			dev_warn(&pdev->dev,
761				 "unable to register clock notifier\n");
762
763		ret = clk_notifier_register(clk_wzrd->axi_clk, &clk_wzrd->nb);
764		if (ret)
765			dev_warn(&pdev->dev,
766				 "unable to register clock notifier\n");
767	}
768
769	return 0;
770
771err_rm_int_clks:
772	clk_unregister(clk_wzrd->clks_internal[1]);
773err_rm_int_clk:
774	clk_unregister(clk_wzrd->clks_internal[0]);
775err_disable_clk:
776	clk_disable_unprepare(clk_wzrd->axi_clk);
777
778	return ret;
779}
780
781static void clk_wzrd_remove(struct platform_device *pdev)
782{
783	int i;
784	struct clk_wzrd *clk_wzrd = platform_get_drvdata(pdev);
785
786	of_clk_del_provider(pdev->dev.of_node);
787
788	for (i = 0; i < WZRD_NUM_OUTPUTS; i++)
789		clk_unregister(clk_wzrd->clkout[i]);
790	for (i = 0; i < wzrd_clk_int_max; i++)
791		clk_unregister(clk_wzrd->clks_internal[i]);
792
793	if (clk_wzrd->speed_grade) {
794		clk_notifier_unregister(clk_wzrd->axi_clk, &clk_wzrd->nb);
795		clk_notifier_unregister(clk_wzrd->clk_in1, &clk_wzrd->nb);
796	}
797
798	clk_disable_unprepare(clk_wzrd->axi_clk);
799}
800
801static const struct of_device_id clk_wzrd_ids[] = {
802	{ .compatible = "xlnx,clocking-wizard" },
803	{ .compatible = "xlnx,clocking-wizard-v5.2" },
804	{ .compatible = "xlnx,clocking-wizard-v6.0" },
805	{ },
806};
807MODULE_DEVICE_TABLE(of, clk_wzrd_ids);
808
809static struct platform_driver clk_wzrd_driver = {
810	.driver = {
811		.name = "clk-wizard",
812		.of_match_table = clk_wzrd_ids,
813		.pm = &clk_wzrd_dev_pm_ops,
814	},
815	.probe = clk_wzrd_probe,
816	.remove_new = clk_wzrd_remove,
817};
818module_platform_driver(clk_wzrd_driver);
819
820MODULE_LICENSE("GPL");
821MODULE_AUTHOR("Soeren Brinkmann <soren.brinkmann@xilinx.com");
822MODULE_DESCRIPTION("Driver for the Xilinx Clocking Wizard IP core");
823