xref: /kernel/linux/linux-6.6/drivers/clk/ti/fapll.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-only
2
3#include <linux/clk.h>
4#include <linux/clk-provider.h>
5#include <linux/delay.h>
6#include <linux/err.h>
7#include <linux/io.h>
8#include <linux/math64.h>
9#include <linux/of.h>
10#include <linux/of_address.h>
11#include <linux/clk/ti.h>
12
13#include "clock.h"
14
15/* FAPLL Control Register PLL_CTRL */
16#define FAPLL_MAIN_MULT_N_SHIFT	16
17#define FAPLL_MAIN_DIV_P_SHIFT	8
18#define FAPLL_MAIN_LOCK		BIT(7)
19#define FAPLL_MAIN_PLLEN	BIT(3)
20#define FAPLL_MAIN_BP		BIT(2)
21#define FAPLL_MAIN_LOC_CTL	BIT(0)
22
23#define FAPLL_MAIN_MAX_MULT_N	0xffff
24#define FAPLL_MAIN_MAX_DIV_P	0xff
25#define FAPLL_MAIN_CLEAR_MASK	\
26	((FAPLL_MAIN_MAX_MULT_N << FAPLL_MAIN_MULT_N_SHIFT) | \
27	 (FAPLL_MAIN_DIV_P_SHIFT << FAPLL_MAIN_DIV_P_SHIFT) | \
28	 FAPLL_MAIN_LOC_CTL)
29
30/* FAPLL powerdown register PWD */
31#define FAPLL_PWD_OFFSET	4
32
33#define MAX_FAPLL_OUTPUTS	7
34#define FAPLL_MAX_RETRIES	1000
35
36#define to_fapll(_hw)		container_of(_hw, struct fapll_data, hw)
37#define to_synth(_hw)		container_of(_hw, struct fapll_synth, hw)
38
39/* The bypass bit is inverted on the ddr_pll.. */
40#define fapll_is_ddr_pll(va)	(((u32)(va) & 0xffff) == 0x0440)
41
42/*
43 * The audio_pll_clk1 input is hard wired to the 27MHz bypass clock,
44 * and the audio_pll_clk1 synthesizer is hardwared to 32KiHz output.
45 */
46#define is_ddr_pll_clk1(va)	(((u32)(va) & 0xffff) == 0x044c)
47#define is_audio_pll_clk1(va)	(((u32)(va) & 0xffff) == 0x04a8)
48
49/* Synthesizer divider register */
50#define SYNTH_LDMDIV1		BIT(8)
51
52/* Synthesizer frequency register */
53#define SYNTH_LDFREQ		BIT(31)
54
55#define SYNTH_PHASE_K		8
56#define SYNTH_MAX_INT_DIV	0xf
57#define SYNTH_MAX_DIV_M		0xff
58
59struct fapll_data {
60	struct clk_hw hw;
61	void __iomem *base;
62	const char *name;
63	struct clk *clk_ref;
64	struct clk *clk_bypass;
65	struct clk_onecell_data outputs;
66	bool bypass_bit_inverted;
67};
68
69struct fapll_synth {
70	struct clk_hw hw;
71	struct fapll_data *fd;
72	int index;
73	void __iomem *freq;
74	void __iomem *div;
75	const char *name;
76	struct clk *clk_pll;
77};
78
79static bool ti_fapll_clock_is_bypass(struct fapll_data *fd)
80{
81	u32 v = readl_relaxed(fd->base);
82
83	if (fd->bypass_bit_inverted)
84		return !(v & FAPLL_MAIN_BP);
85	else
86		return !!(v & FAPLL_MAIN_BP);
87}
88
89static void ti_fapll_set_bypass(struct fapll_data *fd)
90{
91	u32 v = readl_relaxed(fd->base);
92
93	if (fd->bypass_bit_inverted)
94		v &= ~FAPLL_MAIN_BP;
95	else
96		v |= FAPLL_MAIN_BP;
97	writel_relaxed(v, fd->base);
98}
99
100static void ti_fapll_clear_bypass(struct fapll_data *fd)
101{
102	u32 v = readl_relaxed(fd->base);
103
104	if (fd->bypass_bit_inverted)
105		v |= FAPLL_MAIN_BP;
106	else
107		v &= ~FAPLL_MAIN_BP;
108	writel_relaxed(v, fd->base);
109}
110
111static int ti_fapll_wait_lock(struct fapll_data *fd)
112{
113	int retries = FAPLL_MAX_RETRIES;
114	u32 v;
115
116	while ((v = readl_relaxed(fd->base))) {
117		if (v & FAPLL_MAIN_LOCK)
118			return 0;
119
120		if (retries-- <= 0)
121			break;
122
123		udelay(1);
124	}
125
126	pr_err("%s failed to lock\n", fd->name);
127
128	return -ETIMEDOUT;
129}
130
131static int ti_fapll_enable(struct clk_hw *hw)
132{
133	struct fapll_data *fd = to_fapll(hw);
134	u32 v = readl_relaxed(fd->base);
135
136	v |= FAPLL_MAIN_PLLEN;
137	writel_relaxed(v, fd->base);
138	ti_fapll_wait_lock(fd);
139
140	return 0;
141}
142
143static void ti_fapll_disable(struct clk_hw *hw)
144{
145	struct fapll_data *fd = to_fapll(hw);
146	u32 v = readl_relaxed(fd->base);
147
148	v &= ~FAPLL_MAIN_PLLEN;
149	writel_relaxed(v, fd->base);
150}
151
152static int ti_fapll_is_enabled(struct clk_hw *hw)
153{
154	struct fapll_data *fd = to_fapll(hw);
155	u32 v = readl_relaxed(fd->base);
156
157	return v & FAPLL_MAIN_PLLEN;
158}
159
160static unsigned long ti_fapll_recalc_rate(struct clk_hw *hw,
161					  unsigned long parent_rate)
162{
163	struct fapll_data *fd = to_fapll(hw);
164	u32 fapll_n, fapll_p, v;
165	u64 rate;
166
167	if (ti_fapll_clock_is_bypass(fd))
168		return parent_rate;
169
170	rate = parent_rate;
171
172	/* PLL pre-divider is P and multiplier is N */
173	v = readl_relaxed(fd->base);
174	fapll_p = (v >> 8) & 0xff;
175	if (fapll_p)
176		do_div(rate, fapll_p);
177	fapll_n = v >> 16;
178	if (fapll_n)
179		rate *= fapll_n;
180
181	return rate;
182}
183
184static u8 ti_fapll_get_parent(struct clk_hw *hw)
185{
186	struct fapll_data *fd = to_fapll(hw);
187
188	if (ti_fapll_clock_is_bypass(fd))
189		return 1;
190
191	return 0;
192}
193
194static int ti_fapll_set_div_mult(unsigned long rate,
195				 unsigned long parent_rate,
196				 u32 *pre_div_p, u32 *mult_n)
197{
198	/*
199	 * So far no luck getting decent clock with PLL divider,
200	 * PLL does not seem to lock and the signal does not look
201	 * right. It seems the divider can only be used together
202	 * with the multiplier?
203	 */
204	if (rate < parent_rate) {
205		pr_warn("FAPLL main divider rates unsupported\n");
206		return -EINVAL;
207	}
208
209	*mult_n = rate / parent_rate;
210	if (*mult_n > FAPLL_MAIN_MAX_MULT_N)
211		return -EINVAL;
212	*pre_div_p = 1;
213
214	return 0;
215}
216
217static long ti_fapll_round_rate(struct clk_hw *hw, unsigned long rate,
218				unsigned long *parent_rate)
219{
220	u32 pre_div_p, mult_n;
221	int error;
222
223	if (!rate)
224		return -EINVAL;
225
226	error = ti_fapll_set_div_mult(rate, *parent_rate,
227				      &pre_div_p, &mult_n);
228	if (error)
229		return error;
230
231	rate = *parent_rate / pre_div_p;
232	rate *= mult_n;
233
234	return rate;
235}
236
237static int ti_fapll_set_rate(struct clk_hw *hw, unsigned long rate,
238			     unsigned long parent_rate)
239{
240	struct fapll_data *fd = to_fapll(hw);
241	u32 pre_div_p, mult_n, v;
242	int error;
243
244	if (!rate)
245		return -EINVAL;
246
247	error = ti_fapll_set_div_mult(rate, parent_rate,
248				      &pre_div_p, &mult_n);
249	if (error)
250		return error;
251
252	ti_fapll_set_bypass(fd);
253	v = readl_relaxed(fd->base);
254	v &= ~FAPLL_MAIN_CLEAR_MASK;
255	v |= pre_div_p << FAPLL_MAIN_DIV_P_SHIFT;
256	v |= mult_n << FAPLL_MAIN_MULT_N_SHIFT;
257	writel_relaxed(v, fd->base);
258	if (ti_fapll_is_enabled(hw))
259		ti_fapll_wait_lock(fd);
260	ti_fapll_clear_bypass(fd);
261
262	return 0;
263}
264
265static const struct clk_ops ti_fapll_ops = {
266	.enable = ti_fapll_enable,
267	.disable = ti_fapll_disable,
268	.is_enabled = ti_fapll_is_enabled,
269	.recalc_rate = ti_fapll_recalc_rate,
270	.get_parent = ti_fapll_get_parent,
271	.round_rate = ti_fapll_round_rate,
272	.set_rate = ti_fapll_set_rate,
273};
274
275static int ti_fapll_synth_enable(struct clk_hw *hw)
276{
277	struct fapll_synth *synth = to_synth(hw);
278	u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
279
280	v &= ~(1 << synth->index);
281	writel_relaxed(v, synth->fd->base + FAPLL_PWD_OFFSET);
282
283	return 0;
284}
285
286static void ti_fapll_synth_disable(struct clk_hw *hw)
287{
288	struct fapll_synth *synth = to_synth(hw);
289	u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
290
291	v |= 1 << synth->index;
292	writel_relaxed(v, synth->fd->base + FAPLL_PWD_OFFSET);
293}
294
295static int ti_fapll_synth_is_enabled(struct clk_hw *hw)
296{
297	struct fapll_synth *synth = to_synth(hw);
298	u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
299
300	return !(v & (1 << synth->index));
301}
302
303/*
304 * See dm816x TRM chapter 1.10.3 Flying Adder PLL fore more info
305 */
306static unsigned long ti_fapll_synth_recalc_rate(struct clk_hw *hw,
307						unsigned long parent_rate)
308{
309	struct fapll_synth *synth = to_synth(hw);
310	u32 synth_div_m;
311	u64 rate;
312
313	/* The audio_pll_clk1 is hardwired to produce 32.768KiHz clock */
314	if (!synth->div)
315		return 32768;
316
317	/*
318	 * PLL in bypass sets the synths in bypass mode too. The PLL rate
319	 * can be also be set to 27MHz, so we can't use parent_rate to
320	 * check for bypass mode.
321	 */
322	if (ti_fapll_clock_is_bypass(synth->fd))
323		return parent_rate;
324
325	rate = parent_rate;
326
327	/*
328	 * Synth frequency integer and fractional divider.
329	 * Note that the phase output K is 8, so the result needs
330	 * to be multiplied by SYNTH_PHASE_K.
331	 */
332	if (synth->freq) {
333		u32 v, synth_int_div, synth_frac_div, synth_div_freq;
334
335		v = readl_relaxed(synth->freq);
336		synth_int_div = (v >> 24) & 0xf;
337		synth_frac_div = v & 0xffffff;
338		synth_div_freq = (synth_int_div * 10000000) + synth_frac_div;
339		rate *= 10000000;
340		do_div(rate, synth_div_freq);
341		rate *= SYNTH_PHASE_K;
342	}
343
344	/* Synth post-divider M */
345	synth_div_m = readl_relaxed(synth->div) & SYNTH_MAX_DIV_M;
346
347	return DIV_ROUND_UP_ULL(rate, synth_div_m);
348}
349
350static unsigned long ti_fapll_synth_get_frac_rate(struct clk_hw *hw,
351						  unsigned long parent_rate)
352{
353	struct fapll_synth *synth = to_synth(hw);
354	unsigned long current_rate, frac_rate;
355	u32 post_div_m;
356
357	current_rate = ti_fapll_synth_recalc_rate(hw, parent_rate);
358	post_div_m = readl_relaxed(synth->div) & SYNTH_MAX_DIV_M;
359	frac_rate = current_rate * post_div_m;
360
361	return frac_rate;
362}
363
364static u32 ti_fapll_synth_set_frac_rate(struct fapll_synth *synth,
365					unsigned long rate,
366					unsigned long parent_rate)
367{
368	u32 post_div_m, synth_int_div = 0, synth_frac_div = 0, v;
369
370	post_div_m = DIV_ROUND_UP_ULL((u64)parent_rate * SYNTH_PHASE_K, rate);
371	post_div_m = post_div_m / SYNTH_MAX_INT_DIV;
372	if (post_div_m > SYNTH_MAX_DIV_M)
373		return -EINVAL;
374	if (!post_div_m)
375		post_div_m = 1;
376
377	for (; post_div_m < SYNTH_MAX_DIV_M; post_div_m++) {
378		synth_int_div = DIV_ROUND_UP_ULL((u64)parent_rate *
379						 SYNTH_PHASE_K *
380						 10000000,
381						 rate * post_div_m);
382		synth_frac_div = synth_int_div % 10000000;
383		synth_int_div /= 10000000;
384
385		if (synth_int_div <= SYNTH_MAX_INT_DIV)
386			break;
387	}
388
389	if (synth_int_div > SYNTH_MAX_INT_DIV)
390		return -EINVAL;
391
392	v = readl_relaxed(synth->freq);
393	v &= ~0x1fffffff;
394	v |= (synth_int_div & SYNTH_MAX_INT_DIV) << 24;
395	v |= (synth_frac_div & 0xffffff);
396	v |= SYNTH_LDFREQ;
397	writel_relaxed(v, synth->freq);
398
399	return post_div_m;
400}
401
402static long ti_fapll_synth_round_rate(struct clk_hw *hw, unsigned long rate,
403				      unsigned long *parent_rate)
404{
405	struct fapll_synth *synth = to_synth(hw);
406	struct fapll_data *fd = synth->fd;
407	unsigned long r;
408
409	if (ti_fapll_clock_is_bypass(fd) || !synth->div || !rate)
410		return -EINVAL;
411
412	/* Only post divider m available with no fractional divider? */
413	if (!synth->freq) {
414		unsigned long frac_rate;
415		u32 synth_post_div_m;
416
417		frac_rate = ti_fapll_synth_get_frac_rate(hw, *parent_rate);
418		synth_post_div_m = DIV_ROUND_UP(frac_rate, rate);
419		r = DIV_ROUND_UP(frac_rate, synth_post_div_m);
420		goto out;
421	}
422
423	r = *parent_rate * SYNTH_PHASE_K;
424	if (rate > r)
425		goto out;
426
427	r = DIV_ROUND_UP_ULL(r, SYNTH_MAX_INT_DIV * SYNTH_MAX_DIV_M);
428	if (rate < r)
429		goto out;
430
431	r = rate;
432out:
433	return r;
434}
435
436static int ti_fapll_synth_set_rate(struct clk_hw *hw, unsigned long rate,
437				   unsigned long parent_rate)
438{
439	struct fapll_synth *synth = to_synth(hw);
440	struct fapll_data *fd = synth->fd;
441	unsigned long frac_rate, post_rate = 0;
442	u32 post_div_m = 0, v;
443
444	if (ti_fapll_clock_is_bypass(fd) || !synth->div || !rate)
445		return -EINVAL;
446
447	/* Produce the rate with just post divider M? */
448	frac_rate = ti_fapll_synth_get_frac_rate(hw, parent_rate);
449	if (frac_rate < rate) {
450		if (!synth->freq)
451			return -EINVAL;
452	} else {
453		post_div_m = DIV_ROUND_UP(frac_rate, rate);
454		if (post_div_m && (post_div_m <= SYNTH_MAX_DIV_M))
455			post_rate = DIV_ROUND_UP(frac_rate, post_div_m);
456		if (!synth->freq && !post_rate)
457			return -EINVAL;
458	}
459
460	/* Need to recalculate the fractional divider? */
461	if ((post_rate != rate) && synth->freq)
462		post_div_m = ti_fapll_synth_set_frac_rate(synth,
463							  rate,
464							  parent_rate);
465
466	v = readl_relaxed(synth->div);
467	v &= ~SYNTH_MAX_DIV_M;
468	v |= post_div_m;
469	v |= SYNTH_LDMDIV1;
470	writel_relaxed(v, synth->div);
471
472	return 0;
473}
474
475static const struct clk_ops ti_fapll_synt_ops = {
476	.enable = ti_fapll_synth_enable,
477	.disable = ti_fapll_synth_disable,
478	.is_enabled = ti_fapll_synth_is_enabled,
479	.recalc_rate = ti_fapll_synth_recalc_rate,
480	.round_rate = ti_fapll_synth_round_rate,
481	.set_rate = ti_fapll_synth_set_rate,
482};
483
484static struct clk * __init ti_fapll_synth_setup(struct fapll_data *fd,
485						void __iomem *freq,
486						void __iomem *div,
487						int index,
488						const char *name,
489						const char *parent,
490						struct clk *pll_clk)
491{
492	struct clk_init_data *init;
493	struct fapll_synth *synth;
494	struct clk *clk = ERR_PTR(-ENOMEM);
495
496	init = kzalloc(sizeof(*init), GFP_KERNEL);
497	if (!init)
498		return ERR_PTR(-ENOMEM);
499
500	init->ops = &ti_fapll_synt_ops;
501	init->name = name;
502	init->parent_names = &parent;
503	init->num_parents = 1;
504
505	synth = kzalloc(sizeof(*synth), GFP_KERNEL);
506	if (!synth)
507		goto free;
508
509	synth->fd = fd;
510	synth->index = index;
511	synth->freq = freq;
512	synth->div = div;
513	synth->name = name;
514	synth->hw.init = init;
515	synth->clk_pll = pll_clk;
516
517	clk = clk_register(NULL, &synth->hw);
518	if (IS_ERR(clk)) {
519		pr_err("failed to register clock\n");
520		goto free;
521	}
522
523	return clk;
524
525free:
526	kfree(synth);
527	kfree(init);
528
529	return clk;
530}
531
532static void __init ti_fapll_setup(struct device_node *node)
533{
534	struct fapll_data *fd;
535	struct clk_init_data *init = NULL;
536	const char *parent_name[2];
537	struct clk *pll_clk;
538	const char *name;
539	int i;
540
541	fd = kzalloc(sizeof(*fd), GFP_KERNEL);
542	if (!fd)
543		return;
544
545	fd->outputs.clks = kzalloc(sizeof(struct clk *) *
546				   MAX_FAPLL_OUTPUTS + 1,
547				   GFP_KERNEL);
548	if (!fd->outputs.clks)
549		goto free;
550
551	init = kzalloc(sizeof(*init), GFP_KERNEL);
552	if (!init)
553		goto free;
554
555	init->ops = &ti_fapll_ops;
556	name = ti_dt_clk_name(node);
557	init->name = name;
558
559	init->num_parents = of_clk_get_parent_count(node);
560	if (init->num_parents != 2) {
561		pr_err("%pOFn must have two parents\n", node);
562		goto free;
563	}
564
565	of_clk_parent_fill(node, parent_name, 2);
566	init->parent_names = parent_name;
567
568	fd->clk_ref = of_clk_get(node, 0);
569	if (IS_ERR(fd->clk_ref)) {
570		pr_err("%pOFn could not get clk_ref\n", node);
571		goto free;
572	}
573
574	fd->clk_bypass = of_clk_get(node, 1);
575	if (IS_ERR(fd->clk_bypass)) {
576		pr_err("%pOFn could not get clk_bypass\n", node);
577		goto free;
578	}
579
580	fd->base = of_iomap(node, 0);
581	if (!fd->base) {
582		pr_err("%pOFn could not get IO base\n", node);
583		goto free;
584	}
585
586	if (fapll_is_ddr_pll(fd->base))
587		fd->bypass_bit_inverted = true;
588
589	fd->name = name;
590	fd->hw.init = init;
591
592	/* Register the parent PLL */
593	pll_clk = clk_register(NULL, &fd->hw);
594	if (IS_ERR(pll_clk))
595		goto unmap;
596
597	fd->outputs.clks[0] = pll_clk;
598	fd->outputs.clk_num++;
599
600	/*
601	 * Set up the child synthesizers starting at index 1 as the
602	 * PLL output is at index 0. We need to check the clock-indices
603	 * for numbering in case there are holes in the synth mapping,
604	 * and then probe the synth register to see if it has a FREQ
605	 * register available.
606	 */
607	for (i = 0; i < MAX_FAPLL_OUTPUTS; i++) {
608		const char *output_name;
609		void __iomem *freq, *div;
610		struct clk *synth_clk;
611		int output_instance;
612		u32 v;
613
614		if (of_property_read_string_index(node, "clock-output-names",
615						  i, &output_name))
616			continue;
617
618		if (of_property_read_u32_index(node, "clock-indices", i,
619					       &output_instance))
620			output_instance = i;
621
622		freq = fd->base + (output_instance * 8);
623		div = freq + 4;
624
625		/* Check for hardwired audio_pll_clk1 */
626		if (is_audio_pll_clk1(freq)) {
627			freq = NULL;
628			div = NULL;
629		} else {
630			/* Does the synthesizer have a FREQ register? */
631			v = readl_relaxed(freq);
632			if (!v)
633				freq = NULL;
634		}
635		synth_clk = ti_fapll_synth_setup(fd, freq, div, output_instance,
636						 output_name, name, pll_clk);
637		if (IS_ERR(synth_clk))
638			continue;
639
640		fd->outputs.clks[output_instance] = synth_clk;
641		fd->outputs.clk_num++;
642
643		clk_register_clkdev(synth_clk, output_name, NULL);
644	}
645
646	/* Register the child synthesizers as the FAPLL outputs */
647	of_clk_add_provider(node, of_clk_src_onecell_get, &fd->outputs);
648	/* Add clock alias for the outputs */
649
650	kfree(init);
651
652	return;
653
654unmap:
655	iounmap(fd->base);
656free:
657	if (fd->clk_bypass)
658		clk_put(fd->clk_bypass);
659	if (fd->clk_ref)
660		clk_put(fd->clk_ref);
661	kfree(fd->outputs.clks);
662	kfree(fd);
663	kfree(init);
664}
665
666CLK_OF_DECLARE(ti_fapll_clock, "ti,dm816-fapll-clock", ti_fapll_setup);
667