1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * clk-dfll.c - Tegra DFLL clock source common code
4 *
5 * Copyright (C) 2012-2019 NVIDIA Corporation. All rights reserved.
6 *
7 * Aleksandr Frid <afrid@nvidia.com>
8 * Paul Walmsley <pwalmsley@nvidia.com>
9 *
10 * This library is for the DVCO and DFLL IP blocks on the Tegra124
11 * SoC. These IP blocks together are also known at NVIDIA as
12 * "CL-DVFS". To try to avoid confusion, this code refers to them
13 * collectively as the "DFLL."
14 *
15 * The DFLL is a root clocksource which tolerates some amount of
16 * supply voltage noise. Tegra124 uses it to clock the fast CPU
17 * complex when the target CPU speed is above a particular rate. The
18 * DFLL can be operated in either open-loop mode or closed-loop mode.
19 * In open-loop mode, the DFLL generates an output clock appropriate
20 * to the supply voltage. In closed-loop mode, when configured with a
21 * target frequency, the DFLL minimizes supply voltage while
22 * delivering an average frequency equal to the target.
23 *
24 * Devices clocked by the DFLL must be able to tolerate frequency
25 * variation. In the case of the CPU, it's important to note that the
26 * CPU cycle time will vary. This has implications for
27 * performance-measurement code and any code that relies on the CPU
28 * cycle time to delay for a certain length of time.
29 */
30
31#include <linux/clk.h>
32#include <linux/clk-provider.h>
33#include <linux/debugfs.h>
34#include <linux/device.h>
35#include <linux/err.h>
36#include <linux/i2c.h>
37#include <linux/io.h>
38#include <linux/kernel.h>
39#include <linux/module.h>
40#include <linux/of.h>
41#include <linux/pinctrl/consumer.h>
42#include <linux/pm_opp.h>
43#include <linux/pm_runtime.h>
44#include <linux/regmap.h>
45#include <linux/regulator/consumer.h>
46#include <linux/reset.h>
47#include <linux/seq_file.h>
48
49#include "clk-dfll.h"
50#include "cvb.h"
51
52/*
53 * DFLL control registers - access via dfll_{readl,writel}
54 */
55
56/* DFLL_CTRL: DFLL control register */
57#define DFLL_CTRL			0x00
58#define DFLL_CTRL_MODE_MASK		0x03
59
60/* DFLL_CONFIG: DFLL sample rate control */
61#define DFLL_CONFIG			0x04
62#define DFLL_CONFIG_DIV_MASK		0xff
63#define DFLL_CONFIG_DIV_PRESCALE	32
64
65/* DFLL_PARAMS: tuning coefficients for closed loop integrator */
66#define DFLL_PARAMS			0x08
67#define DFLL_PARAMS_CG_SCALE		(0x1 << 24)
68#define DFLL_PARAMS_FORCE_MODE_SHIFT	22
69#define DFLL_PARAMS_FORCE_MODE_MASK	(0x3 << DFLL_PARAMS_FORCE_MODE_SHIFT)
70#define DFLL_PARAMS_CF_PARAM_SHIFT	16
71#define DFLL_PARAMS_CF_PARAM_MASK	(0x3f << DFLL_PARAMS_CF_PARAM_SHIFT)
72#define DFLL_PARAMS_CI_PARAM_SHIFT	8
73#define DFLL_PARAMS_CI_PARAM_MASK	(0x7 << DFLL_PARAMS_CI_PARAM_SHIFT)
74#define DFLL_PARAMS_CG_PARAM_SHIFT	0
75#define DFLL_PARAMS_CG_PARAM_MASK	(0xff << DFLL_PARAMS_CG_PARAM_SHIFT)
76
77/* DFLL_TUNE0: delay line configuration register 0 */
78#define DFLL_TUNE0			0x0c
79
80/* DFLL_TUNE1: delay line configuration register 1 */
81#define DFLL_TUNE1			0x10
82
83/* DFLL_FREQ_REQ: target DFLL frequency control */
84#define DFLL_FREQ_REQ			0x14
85#define DFLL_FREQ_REQ_FORCE_ENABLE	(0x1 << 28)
86#define DFLL_FREQ_REQ_FORCE_SHIFT	16
87#define DFLL_FREQ_REQ_FORCE_MASK	(0xfff << DFLL_FREQ_REQ_FORCE_SHIFT)
88#define FORCE_MAX			2047
89#define FORCE_MIN			-2048
90#define DFLL_FREQ_REQ_SCALE_SHIFT	8
91#define DFLL_FREQ_REQ_SCALE_MASK	(0xff << DFLL_FREQ_REQ_SCALE_SHIFT)
92#define DFLL_FREQ_REQ_SCALE_MAX		256
93#define DFLL_FREQ_REQ_FREQ_VALID	(0x1 << 7)
94#define DFLL_FREQ_REQ_MULT_SHIFT	0
95#define DFLL_FREQ_REG_MULT_MASK		(0x7f << DFLL_FREQ_REQ_MULT_SHIFT)
96#define FREQ_MAX			127
97
98/* DFLL_DROOP_CTRL: droop prevention control */
99#define DFLL_DROOP_CTRL			0x1c
100
101/* DFLL_OUTPUT_CFG: closed loop mode control registers */
102/* NOTE: access via dfll_i2c_{readl,writel} */
103#define DFLL_OUTPUT_CFG			0x20
104#define DFLL_OUTPUT_CFG_I2C_ENABLE	(0x1 << 30)
105#define OUT_MASK			0x3f
106#define DFLL_OUTPUT_CFG_SAFE_SHIFT	24
107#define DFLL_OUTPUT_CFG_SAFE_MASK	\
108		(OUT_MASK << DFLL_OUTPUT_CFG_SAFE_SHIFT)
109#define DFLL_OUTPUT_CFG_MAX_SHIFT	16
110#define DFLL_OUTPUT_CFG_MAX_MASK	\
111		(OUT_MASK << DFLL_OUTPUT_CFG_MAX_SHIFT)
112#define DFLL_OUTPUT_CFG_MIN_SHIFT	8
113#define DFLL_OUTPUT_CFG_MIN_MASK	\
114		(OUT_MASK << DFLL_OUTPUT_CFG_MIN_SHIFT)
115#define DFLL_OUTPUT_CFG_PWM_DELTA	(0x1 << 7)
116#define DFLL_OUTPUT_CFG_PWM_ENABLE	(0x1 << 6)
117#define DFLL_OUTPUT_CFG_PWM_DIV_SHIFT	0
118#define DFLL_OUTPUT_CFG_PWM_DIV_MASK	\
119		(OUT_MASK << DFLL_OUTPUT_CFG_PWM_DIV_SHIFT)
120
121/* DFLL_OUTPUT_FORCE: closed loop mode voltage forcing control */
122#define DFLL_OUTPUT_FORCE		0x24
123#define DFLL_OUTPUT_FORCE_ENABLE	(0x1 << 6)
124#define DFLL_OUTPUT_FORCE_VALUE_SHIFT	0
125#define DFLL_OUTPUT_FORCE_VALUE_MASK	\
126		(OUT_MASK << DFLL_OUTPUT_FORCE_VALUE_SHIFT)
127
128/* DFLL_MONITOR_CTRL: internal monitor data source control */
129#define DFLL_MONITOR_CTRL		0x28
130#define DFLL_MONITOR_CTRL_FREQ		6
131
132/* DFLL_MONITOR_DATA: internal monitor data output */
133#define DFLL_MONITOR_DATA		0x2c
134#define DFLL_MONITOR_DATA_NEW_MASK	(0x1 << 16)
135#define DFLL_MONITOR_DATA_VAL_SHIFT	0
136#define DFLL_MONITOR_DATA_VAL_MASK	(0xFFFF << DFLL_MONITOR_DATA_VAL_SHIFT)
137
138/*
139 * I2C output control registers - access via dfll_i2c_{readl,writel}
140 */
141
142/* DFLL_I2C_CFG: I2C controller configuration register */
143#define DFLL_I2C_CFG			0x40
144#define DFLL_I2C_CFG_ARB_ENABLE		(0x1 << 20)
145#define DFLL_I2C_CFG_HS_CODE_SHIFT	16
146#define DFLL_I2C_CFG_HS_CODE_MASK	(0x7 << DFLL_I2C_CFG_HS_CODE_SHIFT)
147#define DFLL_I2C_CFG_PACKET_ENABLE	(0x1 << 15)
148#define DFLL_I2C_CFG_SIZE_SHIFT		12
149#define DFLL_I2C_CFG_SIZE_MASK		(0x7 << DFLL_I2C_CFG_SIZE_SHIFT)
150#define DFLL_I2C_CFG_SLAVE_ADDR_10	(0x1 << 10)
151#define DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_7BIT	1
152#define DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_10BIT	0
153
154/* DFLL_I2C_VDD_REG_ADDR: PMIC I2C address for closed loop mode */
155#define DFLL_I2C_VDD_REG_ADDR		0x44
156
157/* DFLL_I2C_STS: I2C controller status */
158#define DFLL_I2C_STS			0x48
159#define DFLL_I2C_STS_I2C_LAST_SHIFT	1
160#define DFLL_I2C_STS_I2C_REQ_PENDING	0x1
161
162/* DFLL_INTR_STS: DFLL interrupt status register */
163#define DFLL_INTR_STS			0x5c
164
165/* DFLL_INTR_EN: DFLL interrupt enable register */
166#define DFLL_INTR_EN			0x60
167#define DFLL_INTR_MIN_MASK		0x1
168#define DFLL_INTR_MAX_MASK		0x2
169
170/*
171 * Integrated I2C controller registers - relative to td->i2c_controller_base
172 */
173
174/* DFLL_I2C_CLK_DIVISOR: I2C controller clock divisor */
175#define DFLL_I2C_CLK_DIVISOR		0x6c
176#define DFLL_I2C_CLK_DIVISOR_MASK	0xffff
177#define DFLL_I2C_CLK_DIVISOR_FS_SHIFT	16
178#define DFLL_I2C_CLK_DIVISOR_HS_SHIFT	0
179#define DFLL_I2C_CLK_DIVISOR_PREDIV	8
180#define DFLL_I2C_CLK_DIVISOR_HSMODE_PREDIV	12
181
182/*
183 * Other constants
184 */
185
186/* MAX_DFLL_VOLTAGES: number of LUT entries in the DFLL IP block */
187#define MAX_DFLL_VOLTAGES		33
188
189/*
190 * REF_CLK_CYC_PER_DVCO_SAMPLE: the number of ref_clk cycles that the hardware
191 *    integrates the DVCO counter over - used for debug rate monitoring and
192 *    droop control
193 */
194#define REF_CLK_CYC_PER_DVCO_SAMPLE	4
195
196/*
197 * REF_CLOCK_RATE: the DFLL reference clock rate currently supported by this
198 * driver, in Hz
199 */
200#define REF_CLOCK_RATE			51000000UL
201
202#define DVCO_RATE_TO_MULT(rate, ref_rate)	((rate) / ((ref_rate) / 2))
203#define MULT_TO_DVCO_RATE(mult, ref_rate)	((mult) * ((ref_rate) / 2))
204
205/**
206 * enum dfll_ctrl_mode - DFLL hardware operating mode
207 * @DFLL_UNINITIALIZED: (uninitialized state - not in hardware bitfield)
208 * @DFLL_DISABLED: DFLL not generating an output clock
209 * @DFLL_OPEN_LOOP: DVCO running, but DFLL not adjusting voltage
210 * @DFLL_CLOSED_LOOP: DVCO running, and DFLL adjusting voltage to match
211 *		      the requested rate
212 *
213 * The integer corresponding to the last two states, minus one, is
214 * written to the DFLL hardware to change operating modes.
215 */
216enum dfll_ctrl_mode {
217	DFLL_UNINITIALIZED = 0,
218	DFLL_DISABLED = 1,
219	DFLL_OPEN_LOOP = 2,
220	DFLL_CLOSED_LOOP = 3,
221};
222
223/**
224 * enum dfll_tune_range - voltage range that the driver believes it's in
225 * @DFLL_TUNE_UNINITIALIZED: DFLL tuning not yet programmed
226 * @DFLL_TUNE_LOW: DFLL in the low-voltage range (or open-loop mode)
227 *
228 * Some DFLL tuning parameters may need to change depending on the
229 * DVCO's voltage; these states represent the ranges that the driver
230 * supports. These are software states; these values are never
231 * written into registers.
232 */
233enum dfll_tune_range {
234	DFLL_TUNE_UNINITIALIZED = 0,
235	DFLL_TUNE_LOW = 1,
236};
237
238
239enum tegra_dfll_pmu_if {
240	TEGRA_DFLL_PMU_I2C = 0,
241	TEGRA_DFLL_PMU_PWM = 1,
242};
243
244/**
245 * struct dfll_rate_req - target DFLL rate request data
246 * @rate: target frequency, after the postscaling
247 * @dvco_target_rate: target frequency, after the postscaling
248 * @lut_index: LUT index at which voltage the dvco_target_rate will be reached
249 * @mult_bits: value to program to the MULT bits of the DFLL_FREQ_REQ register
250 * @scale_bits: value to program to the SCALE bits of the DFLL_FREQ_REQ register
251 */
252struct dfll_rate_req {
253	unsigned long rate;
254	unsigned long dvco_target_rate;
255	int lut_index;
256	u8 mult_bits;
257	u8 scale_bits;
258};
259
260struct tegra_dfll {
261	struct device			*dev;
262	struct tegra_dfll_soc_data	*soc;
263
264	void __iomem			*base;
265	void __iomem			*i2c_base;
266	void __iomem			*i2c_controller_base;
267	void __iomem			*lut_base;
268
269	struct regulator		*vdd_reg;
270	struct clk			*soc_clk;
271	struct clk			*ref_clk;
272	struct clk			*i2c_clk;
273	struct clk			*dfll_clk;
274	struct reset_control		*dfll_rst;
275	struct reset_control		*dvco_rst;
276	unsigned long			ref_rate;
277	unsigned long			i2c_clk_rate;
278	unsigned long			dvco_rate_min;
279
280	enum dfll_ctrl_mode		mode;
281	enum dfll_tune_range		tune_range;
282	struct dentry			*debugfs_dir;
283	struct clk_hw			dfll_clk_hw;
284	const char			*output_clock_name;
285	struct dfll_rate_req		last_req;
286	unsigned long			last_unrounded_rate;
287
288	/* Parameters from DT */
289	u32				droop_ctrl;
290	u32				sample_rate;
291	u32				force_mode;
292	u32				cf;
293	u32				ci;
294	u32				cg;
295	bool				cg_scale;
296
297	/* I2C interface parameters */
298	u32				i2c_fs_rate;
299	u32				i2c_reg;
300	u32				i2c_slave_addr;
301
302	/* lut array entries are regulator framework selectors or PWM values*/
303	unsigned			lut[MAX_DFLL_VOLTAGES];
304	unsigned long			lut_uv[MAX_DFLL_VOLTAGES];
305	int				lut_size;
306	u8				lut_bottom, lut_min, lut_max, lut_safe;
307
308	/* PWM interface */
309	enum tegra_dfll_pmu_if		pmu_if;
310	unsigned long			pwm_rate;
311	struct pinctrl			*pwm_pin;
312	struct pinctrl_state		*pwm_enable_state;
313	struct pinctrl_state		*pwm_disable_state;
314	u32				reg_init_uV;
315};
316
317#define clk_hw_to_dfll(_hw) container_of(_hw, struct tegra_dfll, dfll_clk_hw)
318
319/* mode_name: map numeric DFLL modes to names for friendly console messages */
320static const char * const mode_name[] = {
321	[DFLL_UNINITIALIZED] = "uninitialized",
322	[DFLL_DISABLED] = "disabled",
323	[DFLL_OPEN_LOOP] = "open_loop",
324	[DFLL_CLOSED_LOOP] = "closed_loop",
325};
326
327/*
328 * Register accessors
329 */
330
331static inline u32 dfll_readl(struct tegra_dfll *td, u32 offs)
332{
333	return __raw_readl(td->base + offs);
334}
335
336static inline void dfll_writel(struct tegra_dfll *td, u32 val, u32 offs)
337{
338	WARN_ON(offs >= DFLL_I2C_CFG);
339	__raw_writel(val, td->base + offs);
340}
341
342static inline void dfll_wmb(struct tegra_dfll *td)
343{
344	dfll_readl(td, DFLL_CTRL);
345}
346
347/* I2C output control registers - for addresses above DFLL_I2C_CFG */
348
349static inline u32 dfll_i2c_readl(struct tegra_dfll *td, u32 offs)
350{
351	return __raw_readl(td->i2c_base + offs);
352}
353
354static inline void dfll_i2c_writel(struct tegra_dfll *td, u32 val, u32 offs)
355{
356	__raw_writel(val, td->i2c_base + offs);
357}
358
359static inline void dfll_i2c_wmb(struct tegra_dfll *td)
360{
361	dfll_i2c_readl(td, DFLL_I2C_CFG);
362}
363
364/**
365 * dfll_is_running - is the DFLL currently generating a clock?
366 * @td: DFLL instance
367 *
368 * If the DFLL is currently generating an output clock signal, return
369 * true; otherwise return false.
370 */
371static bool dfll_is_running(struct tegra_dfll *td)
372{
373	return td->mode >= DFLL_OPEN_LOOP;
374}
375
376/*
377 * Runtime PM suspend/resume callbacks
378 */
379
380/**
381 * tegra_dfll_runtime_resume - enable all clocks needed by the DFLL
382 * @dev: DFLL device *
383 *
384 * Enable all clocks needed by the DFLL. Assumes that clk_prepare()
385 * has already been called on all the clocks.
386 *
387 * XXX Should also handle context restore when returning from off.
388 */
389int tegra_dfll_runtime_resume(struct device *dev)
390{
391	struct tegra_dfll *td = dev_get_drvdata(dev);
392	int ret;
393
394	ret = clk_enable(td->ref_clk);
395	if (ret) {
396		dev_err(dev, "could not enable ref clock: %d\n", ret);
397		return ret;
398	}
399
400	ret = clk_enable(td->soc_clk);
401	if (ret) {
402		dev_err(dev, "could not enable register clock: %d\n", ret);
403		clk_disable(td->ref_clk);
404		return ret;
405	}
406
407	ret = clk_enable(td->i2c_clk);
408	if (ret) {
409		dev_err(dev, "could not enable i2c clock: %d\n", ret);
410		clk_disable(td->soc_clk);
411		clk_disable(td->ref_clk);
412		return ret;
413	}
414
415	return 0;
416}
417EXPORT_SYMBOL(tegra_dfll_runtime_resume);
418
419/**
420 * tegra_dfll_runtime_suspend - disable all clocks needed by the DFLL
421 * @dev: DFLL device *
422 *
423 * Disable all clocks needed by the DFLL. Assumes that other code
424 * will later call clk_unprepare().
425 */
426int tegra_dfll_runtime_suspend(struct device *dev)
427{
428	struct tegra_dfll *td = dev_get_drvdata(dev);
429
430	clk_disable(td->ref_clk);
431	clk_disable(td->soc_clk);
432	clk_disable(td->i2c_clk);
433
434	return 0;
435}
436EXPORT_SYMBOL(tegra_dfll_runtime_suspend);
437
438/*
439 * DFLL tuning operations (per-voltage-range tuning settings)
440 */
441
442/**
443 * dfll_tune_low - tune to DFLL and CPU settings valid for any voltage
444 * @td: DFLL instance
445 *
446 * Tune the DFLL oscillator parameters and the CPU clock shaper for
447 * the low-voltage range. These settings are valid for any voltage,
448 * but may not be optimal.
449 */
450static void dfll_tune_low(struct tegra_dfll *td)
451{
452	td->tune_range = DFLL_TUNE_LOW;
453
454	dfll_writel(td, td->soc->cvb->cpu_dfll_data.tune0_low, DFLL_TUNE0);
455	dfll_writel(td, td->soc->cvb->cpu_dfll_data.tune1, DFLL_TUNE1);
456	dfll_wmb(td);
457
458	if (td->soc->set_clock_trimmers_low)
459		td->soc->set_clock_trimmers_low();
460}
461
462/*
463 * Output clock scaler helpers
464 */
465
466/**
467 * dfll_scale_dvco_rate - calculate scaled rate from the DVCO rate
468 * @scale_bits: clock scaler value (bits in the DFLL_FREQ_REQ_SCALE field)
469 * @dvco_rate: the DVCO rate
470 *
471 * Apply the same scaling formula that the DFLL hardware uses to scale
472 * the DVCO rate.
473 */
474static unsigned long dfll_scale_dvco_rate(int scale_bits,
475					  unsigned long dvco_rate)
476{
477	return (u64)dvco_rate * (scale_bits + 1) / DFLL_FREQ_REQ_SCALE_MAX;
478}
479
480/*
481 * DFLL mode switching
482 */
483
484/**
485 * dfll_set_mode - change the DFLL control mode
486 * @td: DFLL instance
487 * @mode: DFLL control mode (see enum dfll_ctrl_mode)
488 *
489 * Change the DFLL's operating mode between disabled, open-loop mode,
490 * and closed-loop mode, or vice versa.
491 */
492static void dfll_set_mode(struct tegra_dfll *td,
493			  enum dfll_ctrl_mode mode)
494{
495	td->mode = mode;
496	dfll_writel(td, mode - 1, DFLL_CTRL);
497	dfll_wmb(td);
498}
499
500/*
501 * DVCO rate control
502 */
503
504static unsigned long get_dvco_rate_below(struct tegra_dfll *td, u8 out_min)
505{
506	struct dev_pm_opp *opp;
507	unsigned long rate, prev_rate;
508	unsigned long uv, min_uv;
509
510	min_uv = td->lut_uv[out_min];
511	for (rate = 0, prev_rate = 0; ; rate++) {
512		opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate);
513		if (IS_ERR(opp))
514			break;
515
516		uv = dev_pm_opp_get_voltage(opp);
517		dev_pm_opp_put(opp);
518
519		if (uv && uv > min_uv)
520			return prev_rate;
521
522		prev_rate = rate;
523	}
524
525	return prev_rate;
526}
527
528/*
529 * DFLL-to-I2C controller interface
530 */
531
532/**
533 * dfll_i2c_set_output_enabled - enable/disable I2C PMIC voltage requests
534 * @td: DFLL instance
535 * @enable: whether to enable or disable the I2C voltage requests
536 *
537 * Set the master enable control for I2C control value updates. If disabled,
538 * then I2C control messages are inhibited, regardless of the DFLL mode.
539 */
540static int dfll_i2c_set_output_enabled(struct tegra_dfll *td, bool enable)
541{
542	u32 val;
543
544	val = dfll_i2c_readl(td, DFLL_OUTPUT_CFG);
545
546	if (enable)
547		val |= DFLL_OUTPUT_CFG_I2C_ENABLE;
548	else
549		val &= ~DFLL_OUTPUT_CFG_I2C_ENABLE;
550
551	dfll_i2c_writel(td, val, DFLL_OUTPUT_CFG);
552	dfll_i2c_wmb(td);
553
554	return 0;
555}
556
557
558/*
559 * DFLL-to-PWM controller interface
560 */
561
562/**
563 * dfll_pwm_set_output_enabled - enable/disable PWM voltage requests
564 * @td: DFLL instance
565 * @enable: whether to enable or disable the PWM voltage requests
566 *
567 * Set the master enable control for PWM control value updates. If disabled,
568 * then the PWM signal is not driven. Also configure the PWM output pad
569 * to the appropriate state.
570 */
571static int dfll_pwm_set_output_enabled(struct tegra_dfll *td, bool enable)
572{
573	int ret;
574	u32 val, div;
575
576	if (enable) {
577		ret = pinctrl_select_state(td->pwm_pin, td->pwm_enable_state);
578		if (ret < 0) {
579			dev_err(td->dev, "setting enable state failed\n");
580			return -EINVAL;
581		}
582		val = dfll_readl(td, DFLL_OUTPUT_CFG);
583		val &= ~DFLL_OUTPUT_CFG_PWM_DIV_MASK;
584		div = DIV_ROUND_UP(td->ref_rate, td->pwm_rate);
585		val |= (div << DFLL_OUTPUT_CFG_PWM_DIV_SHIFT)
586				& DFLL_OUTPUT_CFG_PWM_DIV_MASK;
587		dfll_writel(td, val, DFLL_OUTPUT_CFG);
588		dfll_wmb(td);
589
590		val |= DFLL_OUTPUT_CFG_PWM_ENABLE;
591		dfll_writel(td, val, DFLL_OUTPUT_CFG);
592		dfll_wmb(td);
593	} else {
594		ret = pinctrl_select_state(td->pwm_pin, td->pwm_disable_state);
595		if (ret < 0)
596			dev_warn(td->dev, "setting disable state failed\n");
597
598		val = dfll_readl(td, DFLL_OUTPUT_CFG);
599		val &= ~DFLL_OUTPUT_CFG_PWM_ENABLE;
600		dfll_writel(td, val, DFLL_OUTPUT_CFG);
601		dfll_wmb(td);
602	}
603
604	return 0;
605}
606
607/**
608 * dfll_set_force_output_value - set fixed value for force output
609 * @td: DFLL instance
610 * @out_val: value to force output
611 *
612 * Set the fixed value for force output, DFLL will output this value when
613 * force output is enabled.
614 */
615static u32 dfll_set_force_output_value(struct tegra_dfll *td, u8 out_val)
616{
617	u32 val = dfll_readl(td, DFLL_OUTPUT_FORCE);
618
619	val = (val & DFLL_OUTPUT_FORCE_ENABLE) | (out_val & OUT_MASK);
620	dfll_writel(td, val, DFLL_OUTPUT_FORCE);
621	dfll_wmb(td);
622
623	return dfll_readl(td, DFLL_OUTPUT_FORCE);
624}
625
626/**
627 * dfll_set_force_output_enabled - enable/disable force output
628 * @td: DFLL instance
629 * @enable: whether to enable or disable the force output
630 *
631 * Set the enable control for fouce output with fixed value.
632 */
633static void dfll_set_force_output_enabled(struct tegra_dfll *td, bool enable)
634{
635	u32 val = dfll_readl(td, DFLL_OUTPUT_FORCE);
636
637	if (enable)
638		val |= DFLL_OUTPUT_FORCE_ENABLE;
639	else
640		val &= ~DFLL_OUTPUT_FORCE_ENABLE;
641
642	dfll_writel(td, val, DFLL_OUTPUT_FORCE);
643	dfll_wmb(td);
644}
645
646/**
647 * dfll_force_output - force output a fixed value
648 * @td: DFLL instance
649 * @out_sel: value to force output
650 *
651 * Set the fixed value for force output, DFLL will output this value.
652 */
653static int dfll_force_output(struct tegra_dfll *td, unsigned int out_sel)
654{
655	u32 val;
656
657	if (out_sel > OUT_MASK)
658		return -EINVAL;
659
660	val = dfll_set_force_output_value(td, out_sel);
661	if ((td->mode < DFLL_CLOSED_LOOP) &&
662	    !(val & DFLL_OUTPUT_FORCE_ENABLE)) {
663		dfll_set_force_output_enabled(td, true);
664	}
665
666	return 0;
667}
668
669/**
670 * dfll_load_i2c_lut - load the voltage lookup table
671 * @td: struct tegra_dfll *
672 *
673 * Load the voltage-to-PMIC register value lookup table into the DFLL
674 * IP block memory. Look-up tables can be loaded at any time.
675 */
676static void dfll_load_i2c_lut(struct tegra_dfll *td)
677{
678	int i, lut_index;
679	u32 val;
680
681	for (i = 0; i < MAX_DFLL_VOLTAGES; i++) {
682		if (i < td->lut_min)
683			lut_index = td->lut_min;
684		else if (i > td->lut_max)
685			lut_index = td->lut_max;
686		else
687			lut_index = i;
688
689		val = regulator_list_hardware_vsel(td->vdd_reg,
690						     td->lut[lut_index]);
691		__raw_writel(val, td->lut_base + i * 4);
692	}
693
694	dfll_i2c_wmb(td);
695}
696
697/**
698 * dfll_init_i2c_if - set up the DFLL's DFLL-I2C interface
699 * @td: DFLL instance
700 *
701 * During DFLL driver initialization, program the DFLL-I2C interface
702 * with the PMU slave address, vdd register offset, and transfer mode.
703 * This data is used by the DFLL to automatically construct I2C
704 * voltage-set commands, which are then passed to the DFLL's internal
705 * I2C controller.
706 */
707static void dfll_init_i2c_if(struct tegra_dfll *td)
708{
709	u32 val;
710
711	if (td->i2c_slave_addr > 0x7f) {
712		val = td->i2c_slave_addr << DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_10BIT;
713		val |= DFLL_I2C_CFG_SLAVE_ADDR_10;
714	} else {
715		val = td->i2c_slave_addr << DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_7BIT;
716	}
717	val |= DFLL_I2C_CFG_SIZE_MASK;
718	val |= DFLL_I2C_CFG_ARB_ENABLE;
719	dfll_i2c_writel(td, val, DFLL_I2C_CFG);
720
721	dfll_i2c_writel(td, td->i2c_reg, DFLL_I2C_VDD_REG_ADDR);
722
723	val = DIV_ROUND_UP(td->i2c_clk_rate, td->i2c_fs_rate * 8);
724	BUG_ON(!val || (val > DFLL_I2C_CLK_DIVISOR_MASK));
725	val = (val - 1) << DFLL_I2C_CLK_DIVISOR_FS_SHIFT;
726
727	/* default hs divisor just in case */
728	val |= 1 << DFLL_I2C_CLK_DIVISOR_HS_SHIFT;
729	__raw_writel(val, td->i2c_controller_base + DFLL_I2C_CLK_DIVISOR);
730	dfll_i2c_wmb(td);
731}
732
733/**
734 * dfll_init_out_if - prepare DFLL-to-PMIC interface
735 * @td: DFLL instance
736 *
737 * During DFLL driver initialization or resume from context loss,
738 * disable the I2C command output to the PMIC, set safe voltage and
739 * output limits, and disable and clear limit interrupts.
740 */
741static void dfll_init_out_if(struct tegra_dfll *td)
742{
743	u32 val;
744
745	td->lut_min = td->lut_bottom;
746	td->lut_max = td->lut_size - 1;
747	td->lut_safe = td->lut_min + (td->lut_min < td->lut_max ? 1 : 0);
748
749	/* clear DFLL_OUTPUT_CFG before setting new value */
750	dfll_writel(td, 0, DFLL_OUTPUT_CFG);
751	dfll_wmb(td);
752
753	val = (td->lut_safe << DFLL_OUTPUT_CFG_SAFE_SHIFT) |
754	      (td->lut_max << DFLL_OUTPUT_CFG_MAX_SHIFT) |
755	      (td->lut_min << DFLL_OUTPUT_CFG_MIN_SHIFT);
756	dfll_writel(td, val, DFLL_OUTPUT_CFG);
757	dfll_wmb(td);
758
759	dfll_writel(td, 0, DFLL_OUTPUT_FORCE);
760	dfll_i2c_writel(td, 0, DFLL_INTR_EN);
761	dfll_i2c_writel(td, DFLL_INTR_MAX_MASK | DFLL_INTR_MIN_MASK,
762			DFLL_INTR_STS);
763
764	if (td->pmu_if == TEGRA_DFLL_PMU_PWM) {
765		u32 vinit = td->reg_init_uV;
766		int vstep = td->soc->alignment.step_uv;
767		unsigned long vmin = td->lut_uv[0];
768
769		/* set initial voltage */
770		if ((vinit >= vmin) && vstep) {
771			unsigned int vsel;
772
773			vsel = DIV_ROUND_UP((vinit - vmin), vstep);
774			dfll_force_output(td, vsel);
775		}
776	} else {
777		dfll_load_i2c_lut(td);
778		dfll_init_i2c_if(td);
779	}
780}
781
782/*
783 * Set/get the DFLL's targeted output clock rate
784 */
785
786/**
787 * find_lut_index_for_rate - determine I2C LUT index for given DFLL rate
788 * @td: DFLL instance
789 * @rate: clock rate
790 *
791 * Determines the index of a I2C LUT entry for a voltage that approximately
792 * produces the given DFLL clock rate. This is used when forcing a value
793 * to the integrator during rate changes. Returns -ENOENT if a suitable
794 * LUT index is not found.
795 */
796static int find_lut_index_for_rate(struct tegra_dfll *td, unsigned long rate)
797{
798	struct dev_pm_opp *opp;
799	int i, align_step;
800
801	opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate);
802	if (IS_ERR(opp))
803		return PTR_ERR(opp);
804
805	align_step = dev_pm_opp_get_voltage(opp) / td->soc->alignment.step_uv;
806	dev_pm_opp_put(opp);
807
808	for (i = td->lut_bottom; i < td->lut_size; i++) {
809		if ((td->lut_uv[i] / td->soc->alignment.step_uv) >= align_step)
810			return i;
811	}
812
813	return -ENOENT;
814}
815
816/**
817 * dfll_calculate_rate_request - calculate DFLL parameters for a given rate
818 * @td: DFLL instance
819 * @req: DFLL-rate-request structure
820 * @rate: the desired DFLL rate
821 *
822 * Populate the DFLL-rate-request record @req fields with the scale_bits
823 * and mult_bits fields, based on the target input rate. Returns 0 upon
824 * success, or -EINVAL if the requested rate in req->rate is too high
825 * or low for the DFLL to generate.
826 */
827static int dfll_calculate_rate_request(struct tegra_dfll *td,
828				       struct dfll_rate_req *req,
829				       unsigned long rate)
830{
831	u32 val;
832
833	/*
834	 * If requested rate is below the minimum DVCO rate, active the scaler.
835	 * In the future the DVCO minimum voltage should be selected based on
836	 * chip temperature and the actual minimum rate should be calibrated
837	 * at runtime.
838	 */
839	req->scale_bits = DFLL_FREQ_REQ_SCALE_MAX - 1;
840	if (rate < td->dvco_rate_min) {
841		int scale;
842
843		scale = DIV_ROUND_CLOSEST(rate / 1000 * DFLL_FREQ_REQ_SCALE_MAX,
844					  td->dvco_rate_min / 1000);
845		if (!scale) {
846			dev_err(td->dev, "%s: Rate %lu is too low\n",
847				__func__, rate);
848			return -EINVAL;
849		}
850		req->scale_bits = scale - 1;
851		rate = td->dvco_rate_min;
852	}
853
854	/* Convert requested rate into frequency request and scale settings */
855	val = DVCO_RATE_TO_MULT(rate, td->ref_rate);
856	if (val > FREQ_MAX) {
857		dev_err(td->dev, "%s: Rate %lu is above dfll range\n",
858			__func__, rate);
859		return -EINVAL;
860	}
861	req->mult_bits = val;
862	req->dvco_target_rate = MULT_TO_DVCO_RATE(req->mult_bits, td->ref_rate);
863	req->rate = dfll_scale_dvco_rate(req->scale_bits,
864					 req->dvco_target_rate);
865	req->lut_index = find_lut_index_for_rate(td, req->dvco_target_rate);
866	if (req->lut_index < 0)
867		return req->lut_index;
868
869	return 0;
870}
871
872/**
873 * dfll_set_frequency_request - start the frequency change operation
874 * @td: DFLL instance
875 * @req: rate request structure
876 *
877 * Tell the DFLL to try to change its output frequency to the
878 * frequency represented by @req. DFLL must be in closed-loop mode.
879 */
880static void dfll_set_frequency_request(struct tegra_dfll *td,
881				       struct dfll_rate_req *req)
882{
883	u32 val = 0;
884	int force_val;
885	int coef = 128; /* FIXME: td->cg_scale? */;
886
887	force_val = (req->lut_index - td->lut_safe) * coef / td->cg;
888	force_val = clamp(force_val, FORCE_MIN, FORCE_MAX);
889
890	val |= req->mult_bits << DFLL_FREQ_REQ_MULT_SHIFT;
891	val |= req->scale_bits << DFLL_FREQ_REQ_SCALE_SHIFT;
892	val |= ((u32)force_val << DFLL_FREQ_REQ_FORCE_SHIFT) &
893		DFLL_FREQ_REQ_FORCE_MASK;
894	val |= DFLL_FREQ_REQ_FREQ_VALID | DFLL_FREQ_REQ_FORCE_ENABLE;
895
896	dfll_writel(td, val, DFLL_FREQ_REQ);
897	dfll_wmb(td);
898}
899
900/**
901 * dfll_request_rate - set the next rate for the DFLL to tune to
902 * @td: DFLL instance
903 * @rate: clock rate to target
904 *
905 * Convert the requested clock rate @rate into the DFLL control logic
906 * settings. In closed-loop mode, update new settings immediately to
907 * adjust DFLL output rate accordingly. Otherwise, just save them
908 * until the next switch to closed loop. Returns 0 upon success,
909 * -EPERM if the DFLL driver has not yet been initialized, or -EINVAL
910 * if @rate is outside the DFLL's tunable range.
911 */
912static int dfll_request_rate(struct tegra_dfll *td, unsigned long rate)
913{
914	int ret;
915	struct dfll_rate_req req;
916
917	if (td->mode == DFLL_UNINITIALIZED) {
918		dev_err(td->dev, "%s: Cannot set DFLL rate in %s mode\n",
919			__func__, mode_name[td->mode]);
920		return -EPERM;
921	}
922
923	ret = dfll_calculate_rate_request(td, &req, rate);
924	if (ret)
925		return ret;
926
927	td->last_unrounded_rate = rate;
928	td->last_req = req;
929
930	if (td->mode == DFLL_CLOSED_LOOP)
931		dfll_set_frequency_request(td, &td->last_req);
932
933	return 0;
934}
935
936/*
937 * DFLL enable/disable & open-loop <-> closed-loop transitions
938 */
939
940/**
941 * dfll_disable - switch from open-loop mode to disabled mode
942 * @td: DFLL instance
943 *
944 * Switch from OPEN_LOOP state to DISABLED state. Returns 0 upon success
945 * or -EPERM if the DFLL is not currently in open-loop mode.
946 */
947static int dfll_disable(struct tegra_dfll *td)
948{
949	if (td->mode != DFLL_OPEN_LOOP) {
950		dev_err(td->dev, "cannot disable DFLL in %s mode\n",
951			mode_name[td->mode]);
952		return -EINVAL;
953	}
954
955	dfll_set_mode(td, DFLL_DISABLED);
956	pm_runtime_put_sync(td->dev);
957
958	return 0;
959}
960
961/**
962 * dfll_enable - switch a disabled DFLL to open-loop mode
963 * @td: DFLL instance
964 *
965 * Switch from DISABLED state to OPEN_LOOP state. Returns 0 upon success
966 * or -EPERM if the DFLL is not currently disabled.
967 */
968static int dfll_enable(struct tegra_dfll *td)
969{
970	if (td->mode != DFLL_DISABLED) {
971		dev_err(td->dev, "cannot enable DFLL in %s mode\n",
972			mode_name[td->mode]);
973		return -EPERM;
974	}
975
976	pm_runtime_get_sync(td->dev);
977	dfll_set_mode(td, DFLL_OPEN_LOOP);
978
979	return 0;
980}
981
982/**
983 * dfll_set_open_loop_config - prepare to switch to open-loop mode
984 * @td: DFLL instance
985 *
986 * Prepare to switch the DFLL to open-loop mode. This switches the
987 * DFLL to the low-voltage tuning range, ensures that I2C output
988 * forcing is disabled, and disables the output clock rate scaler.
989 * The DFLL's low-voltage tuning range parameters must be
990 * characterized to keep the downstream device stable at any DVCO
991 * input voltage. No return value.
992 */
993static void dfll_set_open_loop_config(struct tegra_dfll *td)
994{
995	u32 val;
996
997	/* always tune low (safe) in open loop */
998	if (td->tune_range != DFLL_TUNE_LOW)
999		dfll_tune_low(td);
1000
1001	val = dfll_readl(td, DFLL_FREQ_REQ);
1002	val |= DFLL_FREQ_REQ_SCALE_MASK;
1003	val &= ~DFLL_FREQ_REQ_FORCE_ENABLE;
1004	dfll_writel(td, val, DFLL_FREQ_REQ);
1005	dfll_wmb(td);
1006}
1007
1008/**
1009 * dfll_lock - switch from open-loop to closed-loop mode
1010 * @td: DFLL instance
1011 *
1012 * Switch from OPEN_LOOP state to CLOSED_LOOP state. Returns 0 upon success,
1013 * -EINVAL if the DFLL's target rate hasn't been set yet, or -EPERM if the
1014 * DFLL is not currently in open-loop mode.
1015 */
1016static int dfll_lock(struct tegra_dfll *td)
1017{
1018	struct dfll_rate_req *req = &td->last_req;
1019
1020	switch (td->mode) {
1021	case DFLL_CLOSED_LOOP:
1022		return 0;
1023
1024	case DFLL_OPEN_LOOP:
1025		if (req->rate == 0) {
1026			dev_err(td->dev, "%s: Cannot lock DFLL at rate 0\n",
1027				__func__);
1028			return -EINVAL;
1029		}
1030
1031		if (td->pmu_if == TEGRA_DFLL_PMU_PWM)
1032			dfll_pwm_set_output_enabled(td, true);
1033		else
1034			dfll_i2c_set_output_enabled(td, true);
1035
1036		dfll_set_mode(td, DFLL_CLOSED_LOOP);
1037		dfll_set_frequency_request(td, req);
1038		dfll_set_force_output_enabled(td, false);
1039		return 0;
1040
1041	default:
1042		BUG_ON(td->mode > DFLL_CLOSED_LOOP);
1043		dev_err(td->dev, "%s: Cannot lock DFLL in %s mode\n",
1044			__func__, mode_name[td->mode]);
1045		return -EPERM;
1046	}
1047}
1048
1049/**
1050 * dfll_unlock - switch from closed-loop to open-loop mode
1051 * @td: DFLL instance
1052 *
1053 * Switch from CLOSED_LOOP state to OPEN_LOOP state. Returns 0 upon success,
1054 * or -EPERM if the DFLL is not currently in open-loop mode.
1055 */
1056static int dfll_unlock(struct tegra_dfll *td)
1057{
1058	switch (td->mode) {
1059	case DFLL_CLOSED_LOOP:
1060		dfll_set_open_loop_config(td);
1061		dfll_set_mode(td, DFLL_OPEN_LOOP);
1062		if (td->pmu_if == TEGRA_DFLL_PMU_PWM)
1063			dfll_pwm_set_output_enabled(td, false);
1064		else
1065			dfll_i2c_set_output_enabled(td, false);
1066		return 0;
1067
1068	case DFLL_OPEN_LOOP:
1069		return 0;
1070
1071	default:
1072		BUG_ON(td->mode > DFLL_CLOSED_LOOP);
1073		dev_err(td->dev, "%s: Cannot unlock DFLL in %s mode\n",
1074			__func__, mode_name[td->mode]);
1075		return -EPERM;
1076	}
1077}
1078
1079/*
1080 * Clock framework integration
1081 *
1082 * When the DFLL is being controlled by the CCF, always enter closed loop
1083 * mode when the clk is enabled. This requires that a DFLL rate request
1084 * has been set beforehand, which implies that a clk_set_rate() call is
1085 * always required before a clk_enable().
1086 */
1087
1088static int dfll_clk_is_enabled(struct clk_hw *hw)
1089{
1090	struct tegra_dfll *td = clk_hw_to_dfll(hw);
1091
1092	return dfll_is_running(td);
1093}
1094
1095static int dfll_clk_enable(struct clk_hw *hw)
1096{
1097	struct tegra_dfll *td = clk_hw_to_dfll(hw);
1098	int ret;
1099
1100	ret = dfll_enable(td);
1101	if (ret)
1102		return ret;
1103
1104	ret = dfll_lock(td);
1105	if (ret)
1106		dfll_disable(td);
1107
1108	return ret;
1109}
1110
1111static void dfll_clk_disable(struct clk_hw *hw)
1112{
1113	struct tegra_dfll *td = clk_hw_to_dfll(hw);
1114	int ret;
1115
1116	ret = dfll_unlock(td);
1117	if (!ret)
1118		dfll_disable(td);
1119}
1120
1121static unsigned long dfll_clk_recalc_rate(struct clk_hw *hw,
1122					  unsigned long parent_rate)
1123{
1124	struct tegra_dfll *td = clk_hw_to_dfll(hw);
1125
1126	return td->last_unrounded_rate;
1127}
1128
1129/* Must use determine_rate since it allows for rates exceeding 2^31-1 */
1130static int dfll_clk_determine_rate(struct clk_hw *hw,
1131				   struct clk_rate_request *clk_req)
1132{
1133	struct tegra_dfll *td = clk_hw_to_dfll(hw);
1134	struct dfll_rate_req req;
1135	int ret;
1136
1137	ret = dfll_calculate_rate_request(td, &req, clk_req->rate);
1138	if (ret)
1139		return ret;
1140
1141	/*
1142	 * Don't set the rounded rate, since it doesn't really matter as
1143	 * the output rate will be voltage controlled anyway, and cpufreq
1144	 * freaks out if any rounding happens.
1145	 */
1146
1147	return 0;
1148}
1149
1150static int dfll_clk_set_rate(struct clk_hw *hw, unsigned long rate,
1151			     unsigned long parent_rate)
1152{
1153	struct tegra_dfll *td = clk_hw_to_dfll(hw);
1154
1155	return dfll_request_rate(td, rate);
1156}
1157
1158static const struct clk_ops dfll_clk_ops = {
1159	.is_enabled	= dfll_clk_is_enabled,
1160	.enable		= dfll_clk_enable,
1161	.disable	= dfll_clk_disable,
1162	.recalc_rate	= dfll_clk_recalc_rate,
1163	.determine_rate	= dfll_clk_determine_rate,
1164	.set_rate	= dfll_clk_set_rate,
1165};
1166
1167static struct clk_init_data dfll_clk_init_data = {
1168	.ops		= &dfll_clk_ops,
1169	.num_parents	= 0,
1170};
1171
1172/**
1173 * dfll_register_clk - register the DFLL output clock with the clock framework
1174 * @td: DFLL instance
1175 *
1176 * Register the DFLL's output clock with the Linux clock framework and register
1177 * the DFLL driver as an OF clock provider. Returns 0 upon success or -EINVAL
1178 * or -ENOMEM upon failure.
1179 */
1180static int dfll_register_clk(struct tegra_dfll *td)
1181{
1182	int ret;
1183
1184	dfll_clk_init_data.name = td->output_clock_name;
1185	td->dfll_clk_hw.init = &dfll_clk_init_data;
1186
1187	td->dfll_clk = clk_register(td->dev, &td->dfll_clk_hw);
1188	if (IS_ERR(td->dfll_clk)) {
1189		dev_err(td->dev, "DFLL clock registration error\n");
1190		return -EINVAL;
1191	}
1192
1193	ret = of_clk_add_provider(td->dev->of_node, of_clk_src_simple_get,
1194				  td->dfll_clk);
1195	if (ret) {
1196		dev_err(td->dev, "of_clk_add_provider() failed\n");
1197
1198		clk_unregister(td->dfll_clk);
1199		return ret;
1200	}
1201
1202	return 0;
1203}
1204
1205/**
1206 * dfll_unregister_clk - unregister the DFLL output clock
1207 * @td: DFLL instance
1208 *
1209 * Unregister the DFLL's output clock from the Linux clock framework
1210 * and from clkdev. No return value.
1211 */
1212static void dfll_unregister_clk(struct tegra_dfll *td)
1213{
1214	of_clk_del_provider(td->dev->of_node);
1215	clk_unregister(td->dfll_clk);
1216	td->dfll_clk = NULL;
1217}
1218
1219/*
1220 * Debugfs interface
1221 */
1222
1223#ifdef CONFIG_DEBUG_FS
1224/*
1225 * Monitor control
1226 */
1227
1228/**
1229 * dfll_calc_monitored_rate - convert DFLL_MONITOR_DATA_VAL rate into real freq
1230 * @monitor_data: value read from the DFLL_MONITOR_DATA_VAL bitfield
1231 * @ref_rate: DFLL reference clock rate
1232 *
1233 * Convert @monitor_data from DFLL_MONITOR_DATA_VAL units into cycles
1234 * per second. Returns the converted value.
1235 */
1236static u64 dfll_calc_monitored_rate(u32 monitor_data,
1237				    unsigned long ref_rate)
1238{
1239	return monitor_data * (ref_rate / REF_CLK_CYC_PER_DVCO_SAMPLE);
1240}
1241
1242/**
1243 * dfll_read_monitor_rate - return the DFLL's output rate from internal monitor
1244 * @td: DFLL instance
1245 *
1246 * If the DFLL is enabled, return the last rate reported by the DFLL's
1247 * internal monitoring hardware. This works in both open-loop and
1248 * closed-loop mode, and takes the output scaler setting into account.
1249 * Assumes that the monitor was programmed to monitor frequency before
1250 * the sample period started. If the driver believes that the DFLL is
1251 * currently uninitialized or disabled, it will return 0, since
1252 * otherwise the DFLL monitor data register will return the last
1253 * measured rate from when the DFLL was active.
1254 */
1255static u64 dfll_read_monitor_rate(struct tegra_dfll *td)
1256{
1257	u32 v, s;
1258	u64 pre_scaler_rate, post_scaler_rate;
1259
1260	if (!dfll_is_running(td))
1261		return 0;
1262
1263	v = dfll_readl(td, DFLL_MONITOR_DATA);
1264	v = (v & DFLL_MONITOR_DATA_VAL_MASK) >> DFLL_MONITOR_DATA_VAL_SHIFT;
1265	pre_scaler_rate = dfll_calc_monitored_rate(v, td->ref_rate);
1266
1267	s = dfll_readl(td, DFLL_FREQ_REQ);
1268	s = (s & DFLL_FREQ_REQ_SCALE_MASK) >> DFLL_FREQ_REQ_SCALE_SHIFT;
1269	post_scaler_rate = dfll_scale_dvco_rate(s, pre_scaler_rate);
1270
1271	return post_scaler_rate;
1272}
1273
1274static int attr_enable_get(void *data, u64 *val)
1275{
1276	struct tegra_dfll *td = data;
1277
1278	*val = dfll_is_running(td);
1279
1280	return 0;
1281}
1282static int attr_enable_set(void *data, u64 val)
1283{
1284	struct tegra_dfll *td = data;
1285
1286	return val ? dfll_enable(td) : dfll_disable(td);
1287}
1288DEFINE_DEBUGFS_ATTRIBUTE(enable_fops, attr_enable_get, attr_enable_set,
1289			 "%llu\n");
1290
1291static int attr_lock_get(void *data, u64 *val)
1292{
1293	struct tegra_dfll *td = data;
1294
1295	*val = (td->mode == DFLL_CLOSED_LOOP);
1296
1297	return 0;
1298}
1299static int attr_lock_set(void *data, u64 val)
1300{
1301	struct tegra_dfll *td = data;
1302
1303	return val ? dfll_lock(td) :  dfll_unlock(td);
1304}
1305DEFINE_DEBUGFS_ATTRIBUTE(lock_fops, attr_lock_get, attr_lock_set, "%llu\n");
1306
1307static int attr_rate_get(void *data, u64 *val)
1308{
1309	struct tegra_dfll *td = data;
1310
1311	*val = dfll_read_monitor_rate(td);
1312
1313	return 0;
1314}
1315
1316static int attr_rate_set(void *data, u64 val)
1317{
1318	struct tegra_dfll *td = data;
1319
1320	return dfll_request_rate(td, val);
1321}
1322DEFINE_DEBUGFS_ATTRIBUTE(rate_fops, attr_rate_get, attr_rate_set, "%llu\n");
1323
1324static int attr_registers_show(struct seq_file *s, void *data)
1325{
1326	u32 val, offs;
1327	struct tegra_dfll *td = s->private;
1328
1329	seq_puts(s, "CONTROL REGISTERS:\n");
1330	for (offs = 0; offs <= DFLL_MONITOR_DATA; offs += 4) {
1331		if (offs == DFLL_OUTPUT_CFG)
1332			val = dfll_i2c_readl(td, offs);
1333		else
1334			val = dfll_readl(td, offs);
1335		seq_printf(s, "[0x%02x] = 0x%08x\n", offs, val);
1336	}
1337
1338	seq_puts(s, "\nI2C and INTR REGISTERS:\n");
1339	for (offs = DFLL_I2C_CFG; offs <= DFLL_I2C_STS; offs += 4)
1340		seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
1341			   dfll_i2c_readl(td, offs));
1342	for (offs = DFLL_INTR_STS; offs <= DFLL_INTR_EN; offs += 4)
1343		seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
1344			   dfll_i2c_readl(td, offs));
1345
1346	if (td->pmu_if == TEGRA_DFLL_PMU_I2C) {
1347		seq_puts(s, "\nINTEGRATED I2C CONTROLLER REGISTERS:\n");
1348		offs = DFLL_I2C_CLK_DIVISOR;
1349		seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
1350			   __raw_readl(td->i2c_controller_base + offs));
1351
1352		seq_puts(s, "\nLUT:\n");
1353		for (offs = 0; offs <  4 * MAX_DFLL_VOLTAGES; offs += 4)
1354			seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
1355				   __raw_readl(td->lut_base + offs));
1356	}
1357
1358	return 0;
1359}
1360
1361DEFINE_SHOW_ATTRIBUTE(attr_registers);
1362
1363static void dfll_debug_init(struct tegra_dfll *td)
1364{
1365	struct dentry *root;
1366
1367	if (!td || (td->mode == DFLL_UNINITIALIZED))
1368		return;
1369
1370	root = debugfs_create_dir("tegra_dfll_fcpu", NULL);
1371	td->debugfs_dir = root;
1372
1373	debugfs_create_file_unsafe("enable", 0644, root, td,
1374				   &enable_fops);
1375	debugfs_create_file_unsafe("lock", 0444, root, td, &lock_fops);
1376	debugfs_create_file_unsafe("rate", 0444, root, td, &rate_fops);
1377	debugfs_create_file("registers", 0444, root, td, &attr_registers_fops);
1378}
1379
1380#else
1381static inline void dfll_debug_init(struct tegra_dfll *td) { }
1382#endif /* CONFIG_DEBUG_FS */
1383
1384/*
1385 * DFLL initialization
1386 */
1387
1388/**
1389 * dfll_set_default_params - program non-output related DFLL parameters
1390 * @td: DFLL instance
1391 *
1392 * During DFLL driver initialization or resume from context loss,
1393 * program parameters for the closed loop integrator, DVCO tuning,
1394 * voltage droop control and monitor control.
1395 */
1396static void dfll_set_default_params(struct tegra_dfll *td)
1397{
1398	u32 val;
1399
1400	val = DIV_ROUND_UP(td->ref_rate, td->sample_rate * 32);
1401	BUG_ON(val > DFLL_CONFIG_DIV_MASK);
1402	dfll_writel(td, val, DFLL_CONFIG);
1403
1404	val = (td->force_mode << DFLL_PARAMS_FORCE_MODE_SHIFT) |
1405		(td->cf << DFLL_PARAMS_CF_PARAM_SHIFT) |
1406		(td->ci << DFLL_PARAMS_CI_PARAM_SHIFT) |
1407		(td->cg << DFLL_PARAMS_CG_PARAM_SHIFT) |
1408		(td->cg_scale ? DFLL_PARAMS_CG_SCALE : 0);
1409	dfll_writel(td, val, DFLL_PARAMS);
1410
1411	dfll_tune_low(td);
1412	dfll_writel(td, td->droop_ctrl, DFLL_DROOP_CTRL);
1413	dfll_writel(td, DFLL_MONITOR_CTRL_FREQ, DFLL_MONITOR_CTRL);
1414}
1415
1416/**
1417 * dfll_init_clks - clk_get() the DFLL source clocks
1418 * @td: DFLL instance
1419 *
1420 * Call clk_get() on the DFLL source clocks and save the pointers for later
1421 * use. Returns 0 upon success or error (see devm_clk_get) if one or more
1422 * of the clocks couldn't be looked up.
1423 */
1424static int dfll_init_clks(struct tegra_dfll *td)
1425{
1426	td->ref_clk = devm_clk_get(td->dev, "ref");
1427	if (IS_ERR(td->ref_clk)) {
1428		dev_err(td->dev, "missing ref clock\n");
1429		return PTR_ERR(td->ref_clk);
1430	}
1431
1432	td->soc_clk = devm_clk_get(td->dev, "soc");
1433	if (IS_ERR(td->soc_clk)) {
1434		dev_err(td->dev, "missing soc clock\n");
1435		return PTR_ERR(td->soc_clk);
1436	}
1437
1438	td->i2c_clk = devm_clk_get(td->dev, "i2c");
1439	if (IS_ERR(td->i2c_clk)) {
1440		dev_err(td->dev, "missing i2c clock\n");
1441		return PTR_ERR(td->i2c_clk);
1442	}
1443	td->i2c_clk_rate = clk_get_rate(td->i2c_clk);
1444
1445	return 0;
1446}
1447
1448/**
1449 * dfll_init - Prepare the DFLL IP block for use
1450 * @td: DFLL instance
1451 *
1452 * Do everything necessary to prepare the DFLL IP block for use. The
1453 * DFLL will be left in DISABLED state. Called by dfll_probe().
1454 * Returns 0 upon success, or passes along the error from whatever
1455 * function returned it.
1456 */
1457static int dfll_init(struct tegra_dfll *td)
1458{
1459	int ret;
1460
1461	td->ref_rate = clk_get_rate(td->ref_clk);
1462	if (td->ref_rate != REF_CLOCK_RATE) {
1463		dev_err(td->dev, "unexpected ref clk rate %lu, expecting %lu",
1464			td->ref_rate, REF_CLOCK_RATE);
1465		return -EINVAL;
1466	}
1467
1468	reset_control_deassert(td->dfll_rst);
1469	reset_control_deassert(td->dvco_rst);
1470
1471	ret = clk_prepare(td->ref_clk);
1472	if (ret) {
1473		dev_err(td->dev, "failed to prepare ref_clk\n");
1474		return ret;
1475	}
1476
1477	ret = clk_prepare(td->soc_clk);
1478	if (ret) {
1479		dev_err(td->dev, "failed to prepare soc_clk\n");
1480		goto di_err1;
1481	}
1482
1483	ret = clk_prepare(td->i2c_clk);
1484	if (ret) {
1485		dev_err(td->dev, "failed to prepare i2c_clk\n");
1486		goto di_err2;
1487	}
1488
1489	td->last_unrounded_rate = 0;
1490
1491	pm_runtime_enable(td->dev);
1492	pm_runtime_get_sync(td->dev);
1493
1494	dfll_set_mode(td, DFLL_DISABLED);
1495	dfll_set_default_params(td);
1496
1497	if (td->soc->init_clock_trimmers)
1498		td->soc->init_clock_trimmers();
1499
1500	dfll_set_open_loop_config(td);
1501
1502	dfll_init_out_if(td);
1503
1504	pm_runtime_put_sync(td->dev);
1505
1506	return 0;
1507
1508di_err2:
1509	clk_unprepare(td->soc_clk);
1510di_err1:
1511	clk_unprepare(td->ref_clk);
1512
1513	reset_control_assert(td->dvco_rst);
1514	reset_control_assert(td->dfll_rst);
1515
1516	return ret;
1517}
1518
1519/**
1520 * tegra_dfll_suspend - check DFLL is disabled
1521 * @dev: DFLL instance
1522 *
1523 * DFLL clock should be disabled by the CPUFreq driver. So, make
1524 * sure it is disabled and disable all clocks needed by the DFLL.
1525 */
1526int tegra_dfll_suspend(struct device *dev)
1527{
1528	struct tegra_dfll *td = dev_get_drvdata(dev);
1529
1530	if (dfll_is_running(td)) {
1531		dev_err(td->dev, "DFLL still enabled while suspending\n");
1532		return -EBUSY;
1533	}
1534
1535	reset_control_assert(td->dvco_rst);
1536	reset_control_assert(td->dfll_rst);
1537
1538	return 0;
1539}
1540EXPORT_SYMBOL(tegra_dfll_suspend);
1541
1542/**
1543 * tegra_dfll_resume - reinitialize DFLL on resume
1544 * @dev: DFLL instance
1545 *
1546 * DFLL is disabled and reset during suspend and resume.
1547 * So, reinitialize the DFLL IP block back for use.
1548 * DFLL clock is enabled later in closed loop mode by CPUFreq
1549 * driver before switching its clock source to DFLL output.
1550 */
1551int tegra_dfll_resume(struct device *dev)
1552{
1553	struct tegra_dfll *td = dev_get_drvdata(dev);
1554
1555	reset_control_deassert(td->dfll_rst);
1556	reset_control_deassert(td->dvco_rst);
1557
1558	pm_runtime_get_sync(td->dev);
1559
1560	dfll_set_mode(td, DFLL_DISABLED);
1561	dfll_set_default_params(td);
1562
1563	if (td->soc->init_clock_trimmers)
1564		td->soc->init_clock_trimmers();
1565
1566	dfll_set_open_loop_config(td);
1567
1568	dfll_init_out_if(td);
1569
1570	pm_runtime_put_sync(td->dev);
1571
1572	return 0;
1573}
1574EXPORT_SYMBOL(tegra_dfll_resume);
1575
1576/*
1577 * DT data fetch
1578 */
1579
1580/*
1581 * Find a PMIC voltage register-to-voltage mapping for the given voltage.
1582 * An exact voltage match is required.
1583 */
1584static int find_vdd_map_entry_exact(struct tegra_dfll *td, int uV)
1585{
1586	int i, n_voltages, reg_uV,reg_volt_id, align_step;
1587
1588	if (WARN_ON(td->pmu_if == TEGRA_DFLL_PMU_PWM))
1589		return -EINVAL;
1590
1591	align_step = uV / td->soc->alignment.step_uv;
1592	n_voltages = regulator_count_voltages(td->vdd_reg);
1593	for (i = 0; i < n_voltages; i++) {
1594		reg_uV = regulator_list_voltage(td->vdd_reg, i);
1595		if (reg_uV < 0)
1596			break;
1597
1598		reg_volt_id = reg_uV / td->soc->alignment.step_uv;
1599
1600		if (align_step == reg_volt_id)
1601			return i;
1602	}
1603
1604	dev_err(td->dev, "no voltage map entry for %d uV\n", uV);
1605	return -EINVAL;
1606}
1607
1608/*
1609 * Find a PMIC voltage register-to-voltage mapping for the given voltage,
1610 * rounding up to the closest supported voltage.
1611 * */
1612static int find_vdd_map_entry_min(struct tegra_dfll *td, int uV)
1613{
1614	int i, n_voltages, reg_uV, reg_volt_id, align_step;
1615
1616	if (WARN_ON(td->pmu_if == TEGRA_DFLL_PMU_PWM))
1617		return -EINVAL;
1618
1619	align_step = uV / td->soc->alignment.step_uv;
1620	n_voltages = regulator_count_voltages(td->vdd_reg);
1621	for (i = 0; i < n_voltages; i++) {
1622		reg_uV = regulator_list_voltage(td->vdd_reg, i);
1623		if (reg_uV < 0)
1624			break;
1625
1626		reg_volt_id = reg_uV / td->soc->alignment.step_uv;
1627
1628		if (align_step <= reg_volt_id)
1629			return i;
1630	}
1631
1632	dev_err(td->dev, "no voltage map entry rounding to %d uV\n", uV);
1633	return -EINVAL;
1634}
1635
1636/*
1637 * dfll_build_pwm_lut - build the PWM regulator lookup table
1638 * @td: DFLL instance
1639 * @v_max: Vmax from OPP table
1640 *
1641 * Look-up table in h/w is ignored when PWM is used as DFLL interface to PMIC.
1642 * In this case closed loop output is controlling duty cycle directly. The s/w
1643 * look-up that maps PWM duty cycle to voltage is still built by this function.
1644 */
1645static int dfll_build_pwm_lut(struct tegra_dfll *td, unsigned long v_max)
1646{
1647	int i;
1648	unsigned long rate, reg_volt;
1649	u8 lut_bottom = MAX_DFLL_VOLTAGES;
1650	int v_min = td->soc->cvb->min_millivolts * 1000;
1651
1652	for (i = 0; i < MAX_DFLL_VOLTAGES; i++) {
1653		reg_volt = td->lut_uv[i];
1654
1655		/* since opp voltage is exact mv */
1656		reg_volt = (reg_volt / 1000) * 1000;
1657		if (reg_volt > v_max)
1658			break;
1659
1660		td->lut[i] = i;
1661		if ((lut_bottom == MAX_DFLL_VOLTAGES) && (reg_volt >= v_min))
1662			lut_bottom = i;
1663	}
1664
1665	/* determine voltage boundaries */
1666	td->lut_size = i;
1667	if ((lut_bottom == MAX_DFLL_VOLTAGES) ||
1668	    (lut_bottom + 1 >= td->lut_size)) {
1669		dev_err(td->dev, "no voltage above DFLL minimum %d mV\n",
1670			td->soc->cvb->min_millivolts);
1671		return -EINVAL;
1672	}
1673	td->lut_bottom = lut_bottom;
1674
1675	/* determine rate boundaries */
1676	rate = get_dvco_rate_below(td, td->lut_bottom);
1677	if (!rate) {
1678		dev_err(td->dev, "no opp below DFLL minimum voltage %d mV\n",
1679			td->soc->cvb->min_millivolts);
1680		return -EINVAL;
1681	}
1682	td->dvco_rate_min = rate;
1683
1684	return 0;
1685}
1686
1687/**
1688 * dfll_build_i2c_lut - build the I2C voltage register lookup table
1689 * @td: DFLL instance
1690 * @v_max: Vmax from OPP table
1691 *
1692 * The DFLL hardware has 33 bytes of look-up table RAM that must be filled with
1693 * PMIC voltage register values that span the entire DFLL operating range.
1694 * This function builds the look-up table based on the OPP table provided by
1695 * the soc-specific platform driver (td->soc->opp_dev) and the PMIC
1696 * register-to-voltage mapping queried from the regulator framework.
1697 *
1698 * On success, fills in td->lut and returns 0, or -err on failure.
1699 */
1700static int dfll_build_i2c_lut(struct tegra_dfll *td, unsigned long v_max)
1701{
1702	unsigned long rate, v, v_opp;
1703	int ret = -EINVAL;
1704	int j, selector, lut;
1705
1706	v = td->soc->cvb->min_millivolts * 1000;
1707	lut = find_vdd_map_entry_exact(td, v);
1708	if (lut < 0)
1709		goto out;
1710	td->lut[0] = lut;
1711	td->lut_bottom = 0;
1712
1713	for (j = 1, rate = 0; ; rate++) {
1714		struct dev_pm_opp *opp;
1715
1716		opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate);
1717		if (IS_ERR(opp))
1718			break;
1719		v_opp = dev_pm_opp_get_voltage(opp);
1720
1721		if (v_opp <= td->soc->cvb->min_millivolts * 1000)
1722			td->dvco_rate_min = dev_pm_opp_get_freq(opp);
1723
1724		dev_pm_opp_put(opp);
1725
1726		for (;;) {
1727			v += max(1UL, (v_max - v) / (MAX_DFLL_VOLTAGES - j));
1728			if (v >= v_opp)
1729				break;
1730
1731			selector = find_vdd_map_entry_min(td, v);
1732			if (selector < 0)
1733				goto out;
1734			if (selector != td->lut[j - 1])
1735				td->lut[j++] = selector;
1736		}
1737
1738		v = (j == MAX_DFLL_VOLTAGES - 1) ? v_max : v_opp;
1739		selector = find_vdd_map_entry_exact(td, v);
1740		if (selector < 0)
1741			goto out;
1742		if (selector != td->lut[j - 1])
1743			td->lut[j++] = selector;
1744
1745		if (v >= v_max)
1746			break;
1747	}
1748	td->lut_size = j;
1749
1750	if (!td->dvco_rate_min)
1751		dev_err(td->dev, "no opp above DFLL minimum voltage %d mV\n",
1752			td->soc->cvb->min_millivolts);
1753	else {
1754		ret = 0;
1755		for (j = 0; j < td->lut_size; j++)
1756			td->lut_uv[j] =
1757				regulator_list_voltage(td->vdd_reg,
1758						       td->lut[j]);
1759	}
1760
1761out:
1762	return ret;
1763}
1764
1765static int dfll_build_lut(struct tegra_dfll *td)
1766{
1767	unsigned long rate, v_max;
1768	struct dev_pm_opp *opp;
1769
1770	rate = ULONG_MAX;
1771	opp = dev_pm_opp_find_freq_floor(td->soc->dev, &rate);
1772	if (IS_ERR(opp)) {
1773		dev_err(td->dev, "couldn't get vmax opp, empty opp table?\n");
1774		return -EINVAL;
1775	}
1776	v_max = dev_pm_opp_get_voltage(opp);
1777	dev_pm_opp_put(opp);
1778
1779	if (td->pmu_if == TEGRA_DFLL_PMU_PWM)
1780		return dfll_build_pwm_lut(td, v_max);
1781	else
1782		return dfll_build_i2c_lut(td, v_max);
1783}
1784
1785/**
1786 * read_dt_param - helper function for reading required parameters from the DT
1787 * @td: DFLL instance
1788 * @param: DT property name
1789 * @dest: output pointer for the value read
1790 *
1791 * Read a required numeric parameter from the DFLL device node, or complain
1792 * if the property doesn't exist. Returns a boolean indicating success for
1793 * easy chaining of multiple calls to this function.
1794 */
1795static bool read_dt_param(struct tegra_dfll *td, const char *param, u32 *dest)
1796{
1797	int err = of_property_read_u32(td->dev->of_node, param, dest);
1798
1799	if (err < 0) {
1800		dev_err(td->dev, "failed to read DT parameter %s: %d\n",
1801			param, err);
1802		return false;
1803	}
1804
1805	return true;
1806}
1807
1808/**
1809 * dfll_fetch_i2c_params - query PMIC I2C params from DT & regulator subsystem
1810 * @td: DFLL instance
1811 *
1812 * Read all the parameters required for operation in I2C mode. The parameters
1813 * can originate from the device tree or the regulator subsystem.
1814 * Returns 0 on success or -err on failure.
1815 */
1816static int dfll_fetch_i2c_params(struct tegra_dfll *td)
1817{
1818	struct regmap *regmap;
1819	struct device *i2c_dev;
1820	struct i2c_client *i2c_client;
1821	int vsel_reg, vsel_mask;
1822	int ret;
1823
1824	if (!read_dt_param(td, "nvidia,i2c-fs-rate", &td->i2c_fs_rate))
1825		return -EINVAL;
1826
1827	regmap = regulator_get_regmap(td->vdd_reg);
1828	i2c_dev = regmap_get_device(regmap);
1829	i2c_client = to_i2c_client(i2c_dev);
1830
1831	td->i2c_slave_addr = i2c_client->addr;
1832
1833	ret = regulator_get_hardware_vsel_register(td->vdd_reg,
1834						   &vsel_reg,
1835						   &vsel_mask);
1836	if (ret < 0) {
1837		dev_err(td->dev,
1838			"regulator unsuitable for DFLL I2C operation\n");
1839		return -EINVAL;
1840	}
1841	td->i2c_reg = vsel_reg;
1842
1843	return 0;
1844}
1845
1846static int dfll_fetch_pwm_params(struct tegra_dfll *td)
1847{
1848	int ret, i;
1849	u32 pwm_period;
1850
1851	if (!td->soc->alignment.step_uv || !td->soc->alignment.offset_uv) {
1852		dev_err(td->dev,
1853			"Missing step or alignment info for PWM regulator");
1854		return -EINVAL;
1855	}
1856	for (i = 0; i < MAX_DFLL_VOLTAGES; i++)
1857		td->lut_uv[i] = td->soc->alignment.offset_uv +
1858				i * td->soc->alignment.step_uv;
1859
1860	ret = read_dt_param(td, "nvidia,pwm-tristate-microvolts",
1861			    &td->reg_init_uV);
1862	if (!ret) {
1863		dev_err(td->dev, "couldn't get initialized voltage\n");
1864		return -EINVAL;
1865	}
1866
1867	ret = read_dt_param(td, "nvidia,pwm-period-nanoseconds", &pwm_period);
1868	if (!ret) {
1869		dev_err(td->dev, "couldn't get PWM period\n");
1870		return -EINVAL;
1871	}
1872	td->pwm_rate = (NSEC_PER_SEC / pwm_period) * (MAX_DFLL_VOLTAGES - 1);
1873
1874	td->pwm_pin = devm_pinctrl_get(td->dev);
1875	if (IS_ERR(td->pwm_pin)) {
1876		dev_err(td->dev, "DT: missing pinctrl device\n");
1877		return PTR_ERR(td->pwm_pin);
1878	}
1879
1880	td->pwm_enable_state = pinctrl_lookup_state(td->pwm_pin,
1881						    "dvfs_pwm_enable");
1882	if (IS_ERR(td->pwm_enable_state)) {
1883		dev_err(td->dev, "DT: missing pwm enabled state\n");
1884		return PTR_ERR(td->pwm_enable_state);
1885	}
1886
1887	td->pwm_disable_state = pinctrl_lookup_state(td->pwm_pin,
1888						     "dvfs_pwm_disable");
1889	if (IS_ERR(td->pwm_disable_state)) {
1890		dev_err(td->dev, "DT: missing pwm disabled state\n");
1891		return PTR_ERR(td->pwm_disable_state);
1892	}
1893
1894	return 0;
1895}
1896
1897/**
1898 * dfll_fetch_common_params - read DFLL parameters from the device tree
1899 * @td: DFLL instance
1900 *
1901 * Read all the DT parameters that are common to both I2C and PWM operation.
1902 * Returns 0 on success or -EINVAL on any failure.
1903 */
1904static int dfll_fetch_common_params(struct tegra_dfll *td)
1905{
1906	bool ok = true;
1907
1908	ok &= read_dt_param(td, "nvidia,droop-ctrl", &td->droop_ctrl);
1909	ok &= read_dt_param(td, "nvidia,sample-rate", &td->sample_rate);
1910	ok &= read_dt_param(td, "nvidia,force-mode", &td->force_mode);
1911	ok &= read_dt_param(td, "nvidia,cf", &td->cf);
1912	ok &= read_dt_param(td, "nvidia,ci", &td->ci);
1913	ok &= read_dt_param(td, "nvidia,cg", &td->cg);
1914	td->cg_scale = of_property_read_bool(td->dev->of_node,
1915					     "nvidia,cg-scale");
1916
1917	if (of_property_read_string(td->dev->of_node, "clock-output-names",
1918				    &td->output_clock_name)) {
1919		dev_err(td->dev, "missing clock-output-names property\n");
1920		ok = false;
1921	}
1922
1923	return ok ? 0 : -EINVAL;
1924}
1925
1926/*
1927 * API exported to per-SoC platform drivers
1928 */
1929
1930/**
1931 * tegra_dfll_register - probe a Tegra DFLL device
1932 * @pdev: DFLL platform_device *
1933 * @soc: Per-SoC integration and characterization data for this DFLL instance
1934 *
1935 * Probe and initialize a DFLL device instance. Intended to be called
1936 * by a SoC-specific shim driver that passes in per-SoC integration
1937 * and configuration data via @soc. Returns 0 on success or -err on failure.
1938 */
1939int tegra_dfll_register(struct platform_device *pdev,
1940			struct tegra_dfll_soc_data *soc)
1941{
1942	struct resource *mem;
1943	struct tegra_dfll *td;
1944	int ret;
1945
1946	if (!soc) {
1947		dev_err(&pdev->dev, "no tegra_dfll_soc_data provided\n");
1948		return -EINVAL;
1949	}
1950
1951	td = devm_kzalloc(&pdev->dev, sizeof(*td), GFP_KERNEL);
1952	if (!td)
1953		return -ENOMEM;
1954	td->dev = &pdev->dev;
1955	platform_set_drvdata(pdev, td);
1956
1957	td->soc = soc;
1958
1959	td->dfll_rst = devm_reset_control_get_optional(td->dev, "dfll");
1960	if (IS_ERR(td->dfll_rst)) {
1961		dev_err(td->dev, "couldn't get dfll reset\n");
1962		return PTR_ERR(td->dfll_rst);
1963	}
1964
1965	td->dvco_rst = devm_reset_control_get(td->dev, "dvco");
1966	if (IS_ERR(td->dvco_rst)) {
1967		dev_err(td->dev, "couldn't get dvco reset\n");
1968		return PTR_ERR(td->dvco_rst);
1969	}
1970
1971	ret = dfll_fetch_common_params(td);
1972	if (ret) {
1973		dev_err(td->dev, "couldn't parse device tree parameters\n");
1974		return ret;
1975	}
1976
1977	if (of_property_read_bool(td->dev->of_node, "nvidia,pwm-to-pmic")) {
1978		td->pmu_if = TEGRA_DFLL_PMU_PWM;
1979		ret = dfll_fetch_pwm_params(td);
1980	} else  {
1981		td->vdd_reg = devm_regulator_get(td->dev, "vdd-cpu");
1982		if (IS_ERR(td->vdd_reg)) {
1983			dev_err(td->dev, "couldn't get vdd_cpu regulator\n");
1984			return PTR_ERR(td->vdd_reg);
1985		}
1986		td->pmu_if = TEGRA_DFLL_PMU_I2C;
1987		ret = dfll_fetch_i2c_params(td);
1988	}
1989	if (ret)
1990		return ret;
1991
1992	ret = dfll_build_lut(td);
1993	if (ret) {
1994		dev_err(td->dev, "couldn't build LUT\n");
1995		return ret;
1996	}
1997
1998	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1999	if (!mem) {
2000		dev_err(td->dev, "no control register resource\n");
2001		return -ENODEV;
2002	}
2003
2004	td->base = devm_ioremap(td->dev, mem->start, resource_size(mem));
2005	if (!td->base) {
2006		dev_err(td->dev, "couldn't ioremap DFLL control registers\n");
2007		return -ENODEV;
2008	}
2009
2010	mem = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2011	if (!mem) {
2012		dev_err(td->dev, "no i2c_base resource\n");
2013		return -ENODEV;
2014	}
2015
2016	td->i2c_base = devm_ioremap(td->dev, mem->start, resource_size(mem));
2017	if (!td->i2c_base) {
2018		dev_err(td->dev, "couldn't ioremap i2c_base resource\n");
2019		return -ENODEV;
2020	}
2021
2022	mem = platform_get_resource(pdev, IORESOURCE_MEM, 2);
2023	if (!mem) {
2024		dev_err(td->dev, "no i2c_controller_base resource\n");
2025		return -ENODEV;
2026	}
2027
2028	td->i2c_controller_base = devm_ioremap(td->dev, mem->start,
2029					       resource_size(mem));
2030	if (!td->i2c_controller_base) {
2031		dev_err(td->dev,
2032			"couldn't ioremap i2c_controller_base resource\n");
2033		return -ENODEV;
2034	}
2035
2036	mem = platform_get_resource(pdev, IORESOURCE_MEM, 3);
2037	if (!mem) {
2038		dev_err(td->dev, "no lut_base resource\n");
2039		return -ENODEV;
2040	}
2041
2042	td->lut_base = devm_ioremap(td->dev, mem->start, resource_size(mem));
2043	if (!td->lut_base) {
2044		dev_err(td->dev,
2045			"couldn't ioremap lut_base resource\n");
2046		return -ENODEV;
2047	}
2048
2049	ret = dfll_init_clks(td);
2050	if (ret) {
2051		dev_err(&pdev->dev, "DFLL clock init error\n");
2052		return ret;
2053	}
2054
2055	/* Enable the clocks and set the device up */
2056	ret = dfll_init(td);
2057	if (ret)
2058		return ret;
2059
2060	ret = dfll_register_clk(td);
2061	if (ret) {
2062		dev_err(&pdev->dev, "DFLL clk registration failed\n");
2063		return ret;
2064	}
2065
2066	dfll_debug_init(td);
2067
2068	return 0;
2069}
2070EXPORT_SYMBOL(tegra_dfll_register);
2071
2072/**
2073 * tegra_dfll_unregister - release all of the DFLL driver resources for a device
2074 * @pdev: DFLL platform_device *
2075 *
2076 * Unbind this driver from the DFLL hardware device represented by
2077 * @pdev. The DFLL must be disabled for this to succeed. Returns a
2078 * soc pointer upon success or -EBUSY if the DFLL is still active.
2079 */
2080struct tegra_dfll_soc_data *tegra_dfll_unregister(struct platform_device *pdev)
2081{
2082	struct tegra_dfll *td = platform_get_drvdata(pdev);
2083
2084	/*
2085	 * Note that exiting early here doesn't prevent unbinding the driver.
2086	 * Exiting early here only leaks some resources.
2087	 */
2088	if (td->mode != DFLL_DISABLED) {
2089		dev_err(&pdev->dev,
2090			"must disable DFLL before removing driver\n");
2091		return ERR_PTR(-EBUSY);
2092	}
2093
2094	debugfs_remove_recursive(td->debugfs_dir);
2095
2096	dfll_unregister_clk(td);
2097	pm_runtime_disable(&pdev->dev);
2098
2099	clk_unprepare(td->ref_clk);
2100	clk_unprepare(td->soc_clk);
2101	clk_unprepare(td->i2c_clk);
2102
2103	reset_control_assert(td->dvco_rst);
2104	reset_control_assert(td->dfll_rst);
2105
2106	return td->soc;
2107}
2108EXPORT_SYMBOL(tegra_dfll_unregister);
2109