1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2014 STMicroelectronics R&D Ltd
4 */
5
6/*
7 * Authors:
8 * Stephen Gallimore <stephen.gallimore@st.com>,
9 * Pankaj Dev <pankaj.dev@st.com>.
10 */
11
12#include <linux/slab.h>
13#include <linux/of_address.h>
14#include <linux/clk.h>
15#include <linux/clk-provider.h>
16
17#include "clkgen.h"
18
19/*
20 * Maximum input clock to the PLL before we divide it down by 2
21 * although in reality in actual systems this has never been seen to
22 * be used.
23 */
24#define QUADFS_NDIV_THRESHOLD 30000000
25
26#define PLL_BW_GOODREF   (0L)
27#define PLL_BW_VBADREF   (1L)
28#define PLL_BW_BADREF    (2L)
29#define PLL_BW_VGOODREF  (3L)
30
31#define QUADFS_MAX_CHAN 4
32
33struct stm_fs {
34	unsigned long ndiv;
35	unsigned long mdiv;
36	unsigned long pe;
37	unsigned long sdiv;
38	unsigned long nsdiv;
39};
40
41struct clkgen_quadfs_data {
42	bool reset_present;
43	bool bwfilter_present;
44	bool lockstatus_present;
45	bool powerup_polarity;
46	bool standby_polarity;
47	bool nsdiv_present;
48	bool nrst_present;
49	struct clkgen_field ndiv;
50	struct clkgen_field ref_bw;
51	struct clkgen_field nreset;
52	struct clkgen_field npda;
53	struct clkgen_field lock_status;
54
55	struct clkgen_field nrst[QUADFS_MAX_CHAN];
56	struct clkgen_field nsb[QUADFS_MAX_CHAN];
57	struct clkgen_field en[QUADFS_MAX_CHAN];
58	struct clkgen_field mdiv[QUADFS_MAX_CHAN];
59	struct clkgen_field pe[QUADFS_MAX_CHAN];
60	struct clkgen_field sdiv[QUADFS_MAX_CHAN];
61	struct clkgen_field nsdiv[QUADFS_MAX_CHAN];
62
63	const struct clk_ops *pll_ops;
64	int  (*get_params)(unsigned long, unsigned long, struct stm_fs *);
65	int  (*get_rate)(unsigned long , const struct stm_fs *,
66			unsigned long *);
67};
68
69struct clkgen_clk_out {
70	const char *name;
71	unsigned long flags;
72};
73
74struct clkgen_quadfs_data_clks {
75	struct clkgen_quadfs_data *data;
76	const struct clkgen_clk_out *outputs;
77};
78
79static const struct clk_ops st_quadfs_pll_c32_ops;
80
81static int clk_fs660c32_dig_get_params(unsigned long input,
82		unsigned long output, struct stm_fs *fs);
83static int clk_fs660c32_dig_get_rate(unsigned long, const struct stm_fs *,
84		unsigned long *);
85
86static const struct clkgen_quadfs_data st_fs660c32_C = {
87	.nrst_present = true,
88	.nrst	= { CLKGEN_FIELD(0x2f0, 0x1, 0),
89		    CLKGEN_FIELD(0x2f0, 0x1, 1),
90		    CLKGEN_FIELD(0x2f0, 0x1, 2),
91		    CLKGEN_FIELD(0x2f0, 0x1, 3) },
92	.npda	= CLKGEN_FIELD(0x2f0, 0x1, 12),
93	.nsb	= { CLKGEN_FIELD(0x2f0, 0x1, 8),
94		    CLKGEN_FIELD(0x2f0, 0x1, 9),
95		    CLKGEN_FIELD(0x2f0, 0x1, 10),
96		    CLKGEN_FIELD(0x2f0, 0x1, 11) },
97	.nsdiv_present = true,
98	.nsdiv	= { CLKGEN_FIELD(0x304, 0x1, 24),
99		    CLKGEN_FIELD(0x308, 0x1, 24),
100		    CLKGEN_FIELD(0x30c, 0x1, 24),
101		    CLKGEN_FIELD(0x310, 0x1, 24) },
102	.mdiv	= { CLKGEN_FIELD(0x304, 0x1f, 15),
103		    CLKGEN_FIELD(0x308, 0x1f, 15),
104		    CLKGEN_FIELD(0x30c, 0x1f, 15),
105		    CLKGEN_FIELD(0x310, 0x1f, 15) },
106	.en	= { CLKGEN_FIELD(0x2fc, 0x1, 0),
107		    CLKGEN_FIELD(0x2fc, 0x1, 1),
108		    CLKGEN_FIELD(0x2fc, 0x1, 2),
109		    CLKGEN_FIELD(0x2fc, 0x1, 3) },
110	.ndiv	= CLKGEN_FIELD(0x2f4, 0x7, 16),
111	.pe	= { CLKGEN_FIELD(0x304, 0x7fff, 0),
112		    CLKGEN_FIELD(0x308, 0x7fff, 0),
113		    CLKGEN_FIELD(0x30c, 0x7fff, 0),
114		    CLKGEN_FIELD(0x310, 0x7fff, 0) },
115	.sdiv	= { CLKGEN_FIELD(0x304, 0xf, 20),
116		    CLKGEN_FIELD(0x308, 0xf, 20),
117		    CLKGEN_FIELD(0x30c, 0xf, 20),
118		    CLKGEN_FIELD(0x310, 0xf, 20) },
119	.lockstatus_present = true,
120	.lock_status = CLKGEN_FIELD(0x2f0, 0x1, 24),
121	.powerup_polarity = 1,
122	.standby_polarity = 1,
123	.pll_ops	= &st_quadfs_pll_c32_ops,
124	.get_params	= clk_fs660c32_dig_get_params,
125	.get_rate	= clk_fs660c32_dig_get_rate,
126};
127
128static const struct clkgen_clk_out st_fs660c32_C_clks[] = {
129	{ .name = "clk-s-c0-fs0-ch0",	},
130	{ .name = "clk-s-c0-fs0-ch1",	},
131	{ .name = "clk-s-c0-fs0-ch2",	},
132	{ .name = "clk-s-c0-fs0-ch3",	},
133};
134
135static const struct clkgen_quadfs_data_clks st_fs660c32_C_data = {
136	.data	= (struct clkgen_quadfs_data *)&st_fs660c32_C,
137	.outputs	= st_fs660c32_C_clks,
138};
139
140static const struct clkgen_quadfs_data st_fs660c32_D = {
141	.nrst_present = true,
142	.nrst	= { CLKGEN_FIELD(0x2a0, 0x1, 0),
143		    CLKGEN_FIELD(0x2a0, 0x1, 1),
144		    CLKGEN_FIELD(0x2a0, 0x1, 2),
145		    CLKGEN_FIELD(0x2a0, 0x1, 3) },
146	.ndiv	= CLKGEN_FIELD(0x2a4, 0x7, 16),
147	.pe	= { CLKGEN_FIELD(0x2b4, 0x7fff, 0),
148		    CLKGEN_FIELD(0x2b8, 0x7fff, 0),
149		    CLKGEN_FIELD(0x2bc, 0x7fff, 0),
150		    CLKGEN_FIELD(0x2c0, 0x7fff, 0) },
151	.sdiv	= { CLKGEN_FIELD(0x2b4, 0xf, 20),
152		    CLKGEN_FIELD(0x2b8, 0xf, 20),
153		    CLKGEN_FIELD(0x2bc, 0xf, 20),
154		    CLKGEN_FIELD(0x2c0, 0xf, 20) },
155	.npda	= CLKGEN_FIELD(0x2a0, 0x1, 12),
156	.nsb	= { CLKGEN_FIELD(0x2a0, 0x1, 8),
157		    CLKGEN_FIELD(0x2a0, 0x1, 9),
158		    CLKGEN_FIELD(0x2a0, 0x1, 10),
159		    CLKGEN_FIELD(0x2a0, 0x1, 11) },
160	.nsdiv_present = true,
161	.nsdiv	= { CLKGEN_FIELD(0x2b4, 0x1, 24),
162		    CLKGEN_FIELD(0x2b8, 0x1, 24),
163		    CLKGEN_FIELD(0x2bc, 0x1, 24),
164		    CLKGEN_FIELD(0x2c0, 0x1, 24) },
165	.mdiv	= { CLKGEN_FIELD(0x2b4, 0x1f, 15),
166		    CLKGEN_FIELD(0x2b8, 0x1f, 15),
167		    CLKGEN_FIELD(0x2bc, 0x1f, 15),
168		    CLKGEN_FIELD(0x2c0, 0x1f, 15) },
169	.en	= { CLKGEN_FIELD(0x2ac, 0x1, 0),
170		    CLKGEN_FIELD(0x2ac, 0x1, 1),
171		    CLKGEN_FIELD(0x2ac, 0x1, 2),
172		    CLKGEN_FIELD(0x2ac, 0x1, 3) },
173	.lockstatus_present = true,
174	.lock_status = CLKGEN_FIELD(0x2A0, 0x1, 24),
175	.powerup_polarity = 1,
176	.standby_polarity = 1,
177	.pll_ops	= &st_quadfs_pll_c32_ops,
178	.get_params	= clk_fs660c32_dig_get_params,
179	.get_rate	= clk_fs660c32_dig_get_rate,};
180
181static const struct clkgen_quadfs_data_clks st_fs660c32_D_data = {
182	.data	= (struct clkgen_quadfs_data *)&st_fs660c32_D,
183};
184
185static const struct clkgen_clk_out st_fs660c32_D0_clks[] = {
186	{ .name = "clk-s-d0-fs0-ch0",	},
187	{ .name = "clk-s-d0-fs0-ch1",	},
188	{ .name = "clk-s-d0-fs0-ch2",	},
189	{ .name = "clk-s-d0-fs0-ch3",	},
190};
191
192static const struct clkgen_quadfs_data_clks st_fs660c32_D0_data = {
193	.data	= (struct clkgen_quadfs_data *)&st_fs660c32_D,
194	.outputs	= st_fs660c32_D0_clks,
195};
196
197static const struct clkgen_clk_out st_fs660c32_D2_clks[] = {
198	{ .name = "clk-s-d2-fs0-ch0",	},
199	{ .name = "clk-s-d2-fs0-ch1",	},
200	{ .name = "clk-s-d2-fs0-ch2",	},
201	{ .name = "clk-s-d2-fs0-ch3",	},
202};
203
204static const struct clkgen_quadfs_data_clks st_fs660c32_D2_data = {
205	.data	= (struct clkgen_quadfs_data *)&st_fs660c32_D,
206	.outputs	= st_fs660c32_D2_clks,
207};
208
209static const struct clkgen_clk_out st_fs660c32_D3_clks[] = {
210	{ .name = "clk-s-d3-fs0-ch0",	},
211	{ .name = "clk-s-d3-fs0-ch1",	},
212	{ .name = "clk-s-d3-fs0-ch2",	},
213	{ .name = "clk-s-d3-fs0-ch3",	},
214};
215
216static const struct clkgen_quadfs_data_clks st_fs660c32_D3_data = {
217	.data	= (struct clkgen_quadfs_data *)&st_fs660c32_D,
218	.outputs	= st_fs660c32_D3_clks,
219};
220
221/**
222 * DOC: A Frequency Synthesizer that multiples its input clock by a fixed factor
223 *
224 * Traits of this clock:
225 * prepare - clk_(un)prepare only ensures parent is (un)prepared
226 * enable - clk_enable and clk_disable are functional & control the Fsyn
227 * rate - inherits rate from parent. set_rate/round_rate/recalc_rate
228 * parent - fixed parent.  No clk_set_parent support
229 */
230
231/**
232 * struct st_clk_quadfs_pll - A pll which outputs a fixed multiplier of
233 *                                  its parent clock, found inside a type of
234 *                                  ST quad channel frequency synthesizer block
235 *
236 * @hw: handle between common and hardware-specific interfaces.
237 * @regs_base: base address of the configuration registers.
238 * @lock: spinlock.
239 * @data: local driver data
240 * @ndiv: regmap field for the ndiv control.
241 */
242struct st_clk_quadfs_pll {
243	struct clk_hw	hw;
244	void __iomem	*regs_base;
245	spinlock_t	*lock;
246	struct clkgen_quadfs_data *data;
247	u32 ndiv;
248};
249
250#define to_quadfs_pll(_hw) container_of(_hw, struct st_clk_quadfs_pll, hw)
251
252static int quadfs_pll_enable(struct clk_hw *hw)
253{
254	struct st_clk_quadfs_pll *pll = to_quadfs_pll(hw);
255	unsigned long flags = 0, timeout = jiffies + msecs_to_jiffies(10);
256
257	if (pll->lock)
258		spin_lock_irqsave(pll->lock, flags);
259
260	/*
261	 * Bring block out of reset if we have reset control.
262	 */
263	if (pll->data->reset_present)
264		CLKGEN_WRITE(pll, nreset, 1);
265
266	/*
267	 * Use a fixed input clock noise bandwidth filter for the moment
268	 */
269	if (pll->data->bwfilter_present)
270		CLKGEN_WRITE(pll, ref_bw, PLL_BW_GOODREF);
271
272
273	CLKGEN_WRITE(pll, ndiv, pll->ndiv);
274
275	/*
276	 * Power up the PLL
277	 */
278	CLKGEN_WRITE(pll, npda, !pll->data->powerup_polarity);
279
280	if (pll->lock)
281		spin_unlock_irqrestore(pll->lock, flags);
282
283	if (pll->data->lockstatus_present)
284		while (!CLKGEN_READ(pll, lock_status)) {
285			if (time_after(jiffies, timeout))
286				return -ETIMEDOUT;
287			cpu_relax();
288		}
289
290	return 0;
291}
292
293static void quadfs_pll_disable(struct clk_hw *hw)
294{
295	struct st_clk_quadfs_pll *pll = to_quadfs_pll(hw);
296	unsigned long flags = 0;
297
298	if (pll->lock)
299		spin_lock_irqsave(pll->lock, flags);
300
301	/*
302	 * Powerdown the PLL and then put block into soft reset if we have
303	 * reset control.
304	 */
305	CLKGEN_WRITE(pll, npda, pll->data->powerup_polarity);
306
307	if (pll->data->reset_present)
308		CLKGEN_WRITE(pll, nreset, 0);
309
310	if (pll->lock)
311		spin_unlock_irqrestore(pll->lock, flags);
312}
313
314static int quadfs_pll_is_enabled(struct clk_hw *hw)
315{
316	struct st_clk_quadfs_pll *pll = to_quadfs_pll(hw);
317	u32 npda = CLKGEN_READ(pll, npda);
318
319	return pll->data->powerup_polarity ? !npda : !!npda;
320}
321
322static int clk_fs660c32_vco_get_rate(unsigned long input, struct stm_fs *fs,
323			   unsigned long *rate)
324{
325	unsigned long nd = fs->ndiv + 16; /* ndiv value */
326
327	*rate = input * nd;
328
329	return 0;
330}
331
332static unsigned long quadfs_pll_fs660c32_recalc_rate(struct clk_hw *hw,
333					unsigned long parent_rate)
334{
335	struct st_clk_quadfs_pll *pll = to_quadfs_pll(hw);
336	unsigned long rate = 0;
337	struct stm_fs params;
338
339	params.ndiv = CLKGEN_READ(pll, ndiv);
340	if (clk_fs660c32_vco_get_rate(parent_rate, &params, &rate))
341		pr_err("%s:%s error calculating rate\n",
342		       clk_hw_get_name(hw), __func__);
343
344	pll->ndiv = params.ndiv;
345
346	return rate;
347}
348
349static int clk_fs660c32_vco_get_params(unsigned long input,
350				unsigned long output, struct stm_fs *fs)
351{
352/* Formula
353   VCO frequency = (fin x ndiv) / pdiv
354   ndiv = VCOfreq * pdiv / fin
355   */
356	unsigned long pdiv = 1, n;
357
358	/* Output clock range: 384Mhz to 660Mhz */
359	if (output < 384000000 || output > 660000000)
360		return -EINVAL;
361
362	if (input > 40000000)
363		/* This means that PDIV would be 2 instead of 1.
364		   Not supported today. */
365		return -EINVAL;
366
367	input /= 1000;
368	output /= 1000;
369
370	n = output * pdiv / input;
371	if (n < 16)
372		n = 16;
373	fs->ndiv = n - 16; /* Converting formula value to reg value */
374
375	return 0;
376}
377
378static long quadfs_pll_fs660c32_round_rate(struct clk_hw *hw,
379					   unsigned long rate,
380					   unsigned long *prate)
381{
382	struct stm_fs params;
383
384	if (clk_fs660c32_vco_get_params(*prate, rate, &params))
385		return rate;
386
387	clk_fs660c32_vco_get_rate(*prate, &params, &rate);
388
389	pr_debug("%s: %s new rate %ld [ndiv=%u]\n",
390		 __func__, clk_hw_get_name(hw),
391		 rate, (unsigned int)params.ndiv);
392
393	return rate;
394}
395
396static int quadfs_pll_fs660c32_set_rate(struct clk_hw *hw, unsigned long rate,
397				unsigned long parent_rate)
398{
399	struct st_clk_quadfs_pll *pll = to_quadfs_pll(hw);
400	struct stm_fs params;
401	long hwrate = 0;
402	unsigned long flags = 0;
403	int ret;
404
405	if (!rate || !parent_rate)
406		return -EINVAL;
407
408	ret = clk_fs660c32_vco_get_params(parent_rate, rate, &params);
409	if (ret)
410		return ret;
411
412	clk_fs660c32_vco_get_rate(parent_rate, &params, &hwrate);
413
414	pr_debug("%s: %s new rate %ld [ndiv=0x%x]\n",
415		 __func__, clk_hw_get_name(hw),
416		 hwrate, (unsigned int)params.ndiv);
417
418	if (!hwrate)
419		return -EINVAL;
420
421	pll->ndiv = params.ndiv;
422
423	if (pll->lock)
424		spin_lock_irqsave(pll->lock, flags);
425
426	CLKGEN_WRITE(pll, ndiv, pll->ndiv);
427
428	if (pll->lock)
429		spin_unlock_irqrestore(pll->lock, flags);
430
431	return 0;
432}
433
434static const struct clk_ops st_quadfs_pll_c32_ops = {
435	.enable		= quadfs_pll_enable,
436	.disable	= quadfs_pll_disable,
437	.is_enabled	= quadfs_pll_is_enabled,
438	.recalc_rate	= quadfs_pll_fs660c32_recalc_rate,
439	.round_rate	= quadfs_pll_fs660c32_round_rate,
440	.set_rate	= quadfs_pll_fs660c32_set_rate,
441};
442
443static struct clk * __init st_clk_register_quadfs_pll(
444		const char *name, const char *parent_name,
445		struct clkgen_quadfs_data *quadfs, void __iomem *reg,
446		spinlock_t *lock)
447{
448	struct st_clk_quadfs_pll *pll;
449	struct clk *clk;
450	struct clk_init_data init;
451
452	/*
453	 * Sanity check required pointers.
454	 */
455	if (WARN_ON(!name || !parent_name))
456		return ERR_PTR(-EINVAL);
457
458	pll = kzalloc(sizeof(*pll), GFP_KERNEL);
459	if (!pll)
460		return ERR_PTR(-ENOMEM);
461
462	init.name = name;
463	init.ops = quadfs->pll_ops;
464	init.flags = CLK_GET_RATE_NOCACHE;
465	init.parent_names = &parent_name;
466	init.num_parents = 1;
467
468	pll->data = quadfs;
469	pll->regs_base = reg;
470	pll->lock = lock;
471	pll->hw.init = &init;
472
473	clk = clk_register(NULL, &pll->hw);
474
475	if (IS_ERR(clk))
476		kfree(pll);
477
478	return clk;
479}
480
481/**
482 * DOC: A digital frequency synthesizer
483 *
484 * Traits of this clock:
485 * prepare - clk_(un)prepare only ensures parent is (un)prepared
486 * enable - clk_enable and clk_disable are functional
487 * rate - set rate is functional
488 * parent - fixed parent.  No clk_set_parent support
489 */
490
491/*
492 * struct st_clk_quadfs_fsynth - One clock output from a four channel digital
493 *                                  frequency synthesizer (fsynth) block.
494 *
495 * @hw: handle between common and hardware-specific interfaces
496 *
497 * @nsb: regmap field in the output control register for the digital
498 *       standby of this fsynth channel. This control is active low so
499 *       the channel is in standby when the control bit is cleared.
500 *
501 * @nsdiv: regmap field in the output control register for
502 *          for the optional divide by 3 of this fsynth channel. This control
503 *          is active low so the divide by 3 is active when the control bit is
504 *          cleared and the divide is bypassed when the bit is set.
505 */
506struct st_clk_quadfs_fsynth {
507	struct clk_hw	hw;
508	void __iomem	*regs_base;
509	spinlock_t	*lock;
510	struct clkgen_quadfs_data *data;
511
512	u32 chan;
513	/*
514	 * Cached hardware values from set_rate so we can program the
515	 * hardware in enable. There are two reasons for this:
516	 *
517	 *  1. The registers may not be writable until the parent has been
518	 *     enabled.
519	 *
520	 *  2. It restores the clock rate when a driver does an enable
521	 *     on PM restore, after a suspend to RAM has lost the hardware
522	 *     setup.
523	 */
524	u32 md;
525	u32 pe;
526	u32 sdiv;
527	u32 nsdiv;
528};
529
530#define to_quadfs_fsynth(_hw) \
531	container_of(_hw, struct st_clk_quadfs_fsynth, hw)
532
533static void quadfs_fsynth_program_enable(struct st_clk_quadfs_fsynth *fs)
534{
535	/*
536	 * Pulse the program enable register lsb to make the hardware take
537	 * notice of the new md/pe values with a glitchless transition.
538	 */
539	CLKGEN_WRITE(fs, en[fs->chan], 1);
540	CLKGEN_WRITE(fs, en[fs->chan], 0);
541}
542
543static void quadfs_fsynth_program_rate(struct st_clk_quadfs_fsynth *fs)
544{
545	unsigned long flags = 0;
546
547	/*
548	 * Ensure the md/pe parameters are ignored while we are
549	 * reprogramming them so we can get a glitchless change
550	 * when fine tuning the speed of a running clock.
551	 */
552	CLKGEN_WRITE(fs, en[fs->chan], 0);
553
554	CLKGEN_WRITE(fs, mdiv[fs->chan], fs->md);
555	CLKGEN_WRITE(fs, pe[fs->chan], fs->pe);
556	CLKGEN_WRITE(fs, sdiv[fs->chan], fs->sdiv);
557
558	if (fs->lock)
559		spin_lock_irqsave(fs->lock, flags);
560
561	if (fs->data->nsdiv_present)
562		CLKGEN_WRITE(fs, nsdiv[fs->chan], fs->nsdiv);
563
564	if (fs->lock)
565		spin_unlock_irqrestore(fs->lock, flags);
566}
567
568static int quadfs_fsynth_enable(struct clk_hw *hw)
569{
570	struct st_clk_quadfs_fsynth *fs = to_quadfs_fsynth(hw);
571	unsigned long flags = 0;
572
573	pr_debug("%s: %s\n", __func__, clk_hw_get_name(hw));
574
575	quadfs_fsynth_program_rate(fs);
576
577	if (fs->lock)
578		spin_lock_irqsave(fs->lock, flags);
579
580	CLKGEN_WRITE(fs, nsb[fs->chan], !fs->data->standby_polarity);
581
582	if (fs->data->nrst_present)
583		CLKGEN_WRITE(fs, nrst[fs->chan], 0);
584
585	if (fs->lock)
586		spin_unlock_irqrestore(fs->lock, flags);
587
588	quadfs_fsynth_program_enable(fs);
589
590	return 0;
591}
592
593static void quadfs_fsynth_disable(struct clk_hw *hw)
594{
595	struct st_clk_quadfs_fsynth *fs = to_quadfs_fsynth(hw);
596	unsigned long flags = 0;
597
598	pr_debug("%s: %s\n", __func__, clk_hw_get_name(hw));
599
600	if (fs->lock)
601		spin_lock_irqsave(fs->lock, flags);
602
603	CLKGEN_WRITE(fs, nsb[fs->chan], fs->data->standby_polarity);
604
605	if (fs->lock)
606		spin_unlock_irqrestore(fs->lock, flags);
607}
608
609static int quadfs_fsynth_is_enabled(struct clk_hw *hw)
610{
611	struct st_clk_quadfs_fsynth *fs = to_quadfs_fsynth(hw);
612	u32 nsb = CLKGEN_READ(fs, nsb[fs->chan]);
613
614	pr_debug("%s: %s enable bit = 0x%x\n",
615		 __func__, clk_hw_get_name(hw), nsb);
616
617	return fs->data->standby_polarity ? !nsb : !!nsb;
618}
619
620#define P20		(uint64_t)(1 << 20)
621
622static int clk_fs660c32_dig_get_rate(unsigned long input,
623				const struct stm_fs *fs, unsigned long *rate)
624{
625	unsigned long s = (1 << fs->sdiv);
626	unsigned long ns;
627	uint64_t res;
628
629	/*
630	 * 'nsdiv' is a register value ('BIN') which is translated
631	 * to a decimal value according to following rules.
632	 *
633	 *     nsdiv      ns.dec
634	 *       0        3
635	 *       1        1
636	 */
637	ns = (fs->nsdiv == 1) ? 1 : 3;
638
639	res = (P20 * (32 + fs->mdiv) + 32 * fs->pe) * s * ns;
640	*rate = (unsigned long)div64_u64(input * P20 * 32, res);
641
642	return 0;
643}
644
645
646static int clk_fs660c32_get_pe(int m, int si, unsigned long *deviation,
647		signed long input, unsigned long output, uint64_t *p,
648		struct stm_fs *fs)
649{
650	unsigned long new_freq, new_deviation;
651	struct stm_fs fs_tmp;
652	uint64_t val;
653
654	val = (uint64_t)output << si;
655
656	*p = (uint64_t)input * P20 - (32LL  + (uint64_t)m) * val * (P20 / 32LL);
657
658	*p = div64_u64(*p, val);
659
660	if (*p > 32767LL)
661		return 1;
662
663	fs_tmp.mdiv = (unsigned long) m;
664	fs_tmp.pe = (unsigned long)*p;
665	fs_tmp.sdiv = si;
666	fs_tmp.nsdiv = 1;
667
668	clk_fs660c32_dig_get_rate(input, &fs_tmp, &new_freq);
669
670	new_deviation = abs(output - new_freq);
671
672	if (new_deviation < *deviation) {
673		fs->mdiv = m;
674		fs->pe = (unsigned long)*p;
675		fs->sdiv = si;
676		fs->nsdiv = 1;
677		*deviation = new_deviation;
678	}
679	return 0;
680}
681
682static int clk_fs660c32_dig_get_params(unsigned long input,
683		unsigned long output, struct stm_fs *fs)
684{
685	int si;	/* sdiv_reg (8 downto 0) */
686	int m; /* md value */
687	unsigned long new_freq, new_deviation;
688	/* initial condition to say: "infinite deviation" */
689	unsigned long deviation = ~0;
690	uint64_t p, p1, p2;	/* pe value */
691	int r1, r2;
692
693	struct stm_fs fs_tmp;
694
695	for (si = 0; (si <= 8) && deviation; si++) {
696
697		/* Boundary test to avoid useless iteration */
698		r1 = clk_fs660c32_get_pe(0, si, &deviation,
699				input, output, &p1, fs);
700		r2 = clk_fs660c32_get_pe(31, si, &deviation,
701				input, output, &p2, fs);
702
703		/* No solution */
704		if (r1 && r2 && (p1 > p2))
705			continue;
706
707		/* Try to find best deviation */
708		for (m = 1; (m < 31) && deviation; m++)
709			clk_fs660c32_get_pe(m, si, &deviation,
710					input, output, &p, fs);
711
712	}
713
714	if (deviation == ~0) /* No solution found */
715		return -1;
716
717	/* pe fine tuning if deviation not 0: +/- 2 around computed pe value */
718	if (deviation) {
719		fs_tmp.mdiv = fs->mdiv;
720		fs_tmp.sdiv = fs->sdiv;
721		fs_tmp.nsdiv = fs->nsdiv;
722
723		if (fs->pe > 2)
724			p2 = fs->pe - 2;
725		else
726			p2 = 0;
727
728		for (; p2 < 32768ll && (p2 <= (fs->pe + 2)); p2++) {
729			fs_tmp.pe = (unsigned long)p2;
730
731			clk_fs660c32_dig_get_rate(input, &fs_tmp, &new_freq);
732
733			new_deviation = abs(output - new_freq);
734
735			/* Check if this is a better solution */
736			if (new_deviation < deviation) {
737				fs->pe = (unsigned long)p2;
738				deviation = new_deviation;
739
740			}
741		}
742	}
743	return 0;
744}
745
746static int quadfs_fsynt_get_hw_value_for_recalc(struct st_clk_quadfs_fsynth *fs,
747		struct stm_fs *params)
748{
749	/*
750	 * Get the initial hardware values for recalc_rate
751	 */
752	params->mdiv	= CLKGEN_READ(fs, mdiv[fs->chan]);
753	params->pe	= CLKGEN_READ(fs, pe[fs->chan]);
754	params->sdiv	= CLKGEN_READ(fs, sdiv[fs->chan]);
755
756	if (fs->data->nsdiv_present)
757		params->nsdiv = CLKGEN_READ(fs, nsdiv[fs->chan]);
758	else
759		params->nsdiv = 1;
760
761	/*
762	 * If All are NULL then assume no clock rate is programmed.
763	 */
764	if (!params->mdiv && !params->pe && !params->sdiv)
765		return 1;
766
767	fs->md = params->mdiv;
768	fs->pe = params->pe;
769	fs->sdiv = params->sdiv;
770	fs->nsdiv = params->nsdiv;
771
772	return 0;
773}
774
775static long quadfs_find_best_rate(struct clk_hw *hw, unsigned long drate,
776				unsigned long prate, struct stm_fs *params)
777{
778	struct st_clk_quadfs_fsynth *fs = to_quadfs_fsynth(hw);
779	int (*clk_fs_get_rate)(unsigned long ,
780				const struct stm_fs *, unsigned long *);
781	int (*clk_fs_get_params)(unsigned long, unsigned long, struct stm_fs *);
782	unsigned long rate = 0;
783
784	clk_fs_get_rate = fs->data->get_rate;
785	clk_fs_get_params = fs->data->get_params;
786
787	if (!clk_fs_get_params(prate, drate, params))
788		clk_fs_get_rate(prate, params, &rate);
789
790	return rate;
791}
792
793static unsigned long quadfs_recalc_rate(struct clk_hw *hw,
794		unsigned long parent_rate)
795{
796	struct st_clk_quadfs_fsynth *fs = to_quadfs_fsynth(hw);
797	unsigned long rate = 0;
798	struct stm_fs params;
799	int (*clk_fs_get_rate)(unsigned long ,
800				const struct stm_fs *, unsigned long *);
801
802	clk_fs_get_rate = fs->data->get_rate;
803
804	if (quadfs_fsynt_get_hw_value_for_recalc(fs, &params))
805		return 0;
806
807	if (clk_fs_get_rate(parent_rate, &params, &rate)) {
808		pr_err("%s:%s error calculating rate\n",
809		       clk_hw_get_name(hw), __func__);
810	}
811
812	pr_debug("%s:%s rate %lu\n", clk_hw_get_name(hw), __func__, rate);
813
814	return rate;
815}
816
817static long quadfs_round_rate(struct clk_hw *hw, unsigned long rate,
818				     unsigned long *prate)
819{
820	struct stm_fs params;
821
822	rate = quadfs_find_best_rate(hw, rate, *prate, &params);
823
824	pr_debug("%s: %s new rate %ld [sdiv=0x%x,md=0x%x,pe=0x%x,nsdiv3=%u]\n",
825		 __func__, clk_hw_get_name(hw),
826		 rate, (unsigned int)params.sdiv, (unsigned int)params.mdiv,
827			 (unsigned int)params.pe, (unsigned int)params.nsdiv);
828
829	return rate;
830}
831
832
833static void quadfs_program_and_enable(struct st_clk_quadfs_fsynth *fs,
834		struct stm_fs *params)
835{
836	fs->md = params->mdiv;
837	fs->pe = params->pe;
838	fs->sdiv = params->sdiv;
839	fs->nsdiv = params->nsdiv;
840
841	/*
842	 * In some integrations you can only change the fsynth programming when
843	 * the parent entity containing it is enabled.
844	 */
845	quadfs_fsynth_program_rate(fs);
846	quadfs_fsynth_program_enable(fs);
847}
848
849static int quadfs_set_rate(struct clk_hw *hw, unsigned long rate,
850				  unsigned long parent_rate)
851{
852	struct st_clk_quadfs_fsynth *fs = to_quadfs_fsynth(hw);
853	struct stm_fs params;
854	long hwrate;
855
856	if (!rate || !parent_rate)
857		return -EINVAL;
858
859	memset(&params, 0, sizeof(struct stm_fs));
860
861	hwrate = quadfs_find_best_rate(hw, rate, parent_rate, &params);
862	if (!hwrate)
863		return -EINVAL;
864
865	quadfs_program_and_enable(fs, &params);
866
867	return 0;
868}
869
870
871
872static const struct clk_ops st_quadfs_ops = {
873	.enable		= quadfs_fsynth_enable,
874	.disable	= quadfs_fsynth_disable,
875	.is_enabled	= quadfs_fsynth_is_enabled,
876	.round_rate	= quadfs_round_rate,
877	.set_rate	= quadfs_set_rate,
878	.recalc_rate	= quadfs_recalc_rate,
879};
880
881static struct clk * __init st_clk_register_quadfs_fsynth(
882		const char *name, const char *parent_name,
883		struct clkgen_quadfs_data *quadfs, void __iomem *reg, u32 chan,
884		unsigned long flags, spinlock_t *lock)
885{
886	struct st_clk_quadfs_fsynth *fs;
887	struct clk *clk;
888	struct clk_init_data init;
889
890	/*
891	 * Sanity check required pointers, note that nsdiv3 is optional.
892	 */
893	if (WARN_ON(!name || !parent_name))
894		return ERR_PTR(-EINVAL);
895
896	fs = kzalloc(sizeof(*fs), GFP_KERNEL);
897	if (!fs)
898		return ERR_PTR(-ENOMEM);
899
900	init.name = name;
901	init.ops = &st_quadfs_ops;
902	init.flags = flags | CLK_GET_RATE_NOCACHE;
903	init.parent_names = &parent_name;
904	init.num_parents = 1;
905
906	fs->data = quadfs;
907	fs->regs_base = reg;
908	fs->chan = chan;
909	fs->lock = lock;
910	fs->hw.init = &init;
911
912	clk = clk_register(NULL, &fs->hw);
913
914	if (IS_ERR(clk))
915		kfree(fs);
916
917	return clk;
918}
919
920static void __init st_of_create_quadfs_fsynths(
921		struct device_node *np, const char *pll_name,
922		struct clkgen_quadfs_data_clks *quadfs, void __iomem *reg,
923		spinlock_t *lock)
924{
925	struct clk_onecell_data *clk_data;
926	int fschan;
927
928	clk_data = kzalloc(sizeof(*clk_data), GFP_KERNEL);
929	if (!clk_data)
930		return;
931
932	clk_data->clk_num = QUADFS_MAX_CHAN;
933	clk_data->clks = kcalloc(QUADFS_MAX_CHAN, sizeof(struct clk *),
934				 GFP_KERNEL);
935
936	if (!clk_data->clks) {
937		kfree(clk_data);
938		return;
939	}
940
941	for (fschan = 0; fschan < QUADFS_MAX_CHAN; fschan++) {
942		struct clk *clk;
943		const char *clk_name;
944		unsigned long flags = 0;
945
946		if (quadfs->outputs) {
947			clk_name = quadfs->outputs[fschan].name;
948			flags = quadfs->outputs[fschan].flags;
949		} else {
950			if (of_property_read_string_index(np,
951							"clock-output-names",
952							fschan, &clk_name))
953				break;
954			of_clk_detect_critical(np, fschan, &flags);
955		}
956
957		/*
958		 * If we read an empty clock name then the channel is unused
959		 */
960		if (*clk_name == '\0')
961			continue;
962
963		clk = st_clk_register_quadfs_fsynth(clk_name, pll_name,
964						    quadfs->data, reg, fschan,
965						    flags, lock);
966
967		/*
968		 * If there was an error registering this clock output, clean
969		 * up and move on to the next one.
970		 */
971		if (!IS_ERR(clk)) {
972			clk_data->clks[fschan] = clk;
973			pr_debug("%s: parent %s rate %u\n",
974				__clk_get_name(clk),
975				__clk_get_name(clk_get_parent(clk)),
976				(unsigned int)clk_get_rate(clk));
977		}
978	}
979
980	of_clk_add_provider(np, of_clk_src_onecell_get, clk_data);
981}
982
983static void __init st_of_quadfs_setup(struct device_node *np,
984		struct clkgen_quadfs_data_clks *datac)
985{
986	struct clk *clk;
987	const char *pll_name, *clk_parent_name;
988	void __iomem *reg;
989	spinlock_t *lock;
990	struct device_node *parent_np;
991
992	/*
993	 * First check for reg property within the node to keep backward
994	 * compatibility, then if reg doesn't exist look at the parent node
995	 */
996	reg = of_iomap(np, 0);
997	if (!reg) {
998		parent_np = of_get_parent(np);
999		reg = of_iomap(parent_np, 0);
1000		of_node_put(parent_np);
1001		if (!reg) {
1002			pr_err("%s: Failed to get base address\n", __func__);
1003			return;
1004		}
1005	}
1006
1007	clk_parent_name = of_clk_get_parent_name(np, 0);
1008	if (!clk_parent_name)
1009		return;
1010
1011	pll_name = kasprintf(GFP_KERNEL, "%pOFn.pll", np);
1012	if (!pll_name)
1013		return;
1014
1015	lock = kzalloc(sizeof(*lock), GFP_KERNEL);
1016	if (!lock)
1017		goto err_exit;
1018
1019	spin_lock_init(lock);
1020
1021	clk = st_clk_register_quadfs_pll(pll_name, clk_parent_name, datac->data,
1022			reg, lock);
1023	if (IS_ERR(clk)) {
1024		kfree(lock);
1025		goto err_exit;
1026	} else
1027		pr_debug("%s: parent %s rate %u\n",
1028			__clk_get_name(clk),
1029			__clk_get_name(clk_get_parent(clk)),
1030			(unsigned int)clk_get_rate(clk));
1031
1032	st_of_create_quadfs_fsynths(np, pll_name, datac, reg, lock);
1033
1034err_exit:
1035	kfree(pll_name); /* No longer need local copy of the PLL name */
1036}
1037
1038static void __init st_of_quadfs660C_setup(struct device_node *np)
1039{
1040	st_of_quadfs_setup(np,
1041		(struct clkgen_quadfs_data_clks *) &st_fs660c32_C_data);
1042}
1043CLK_OF_DECLARE(quadfs660C, "st,quadfs-pll", st_of_quadfs660C_setup);
1044
1045static void __init st_of_quadfs660D_setup(struct device_node *np)
1046{
1047	st_of_quadfs_setup(np,
1048		(struct clkgen_quadfs_data_clks *) &st_fs660c32_D_data);
1049}
1050CLK_OF_DECLARE(quadfs660D, "st,quadfs", st_of_quadfs660D_setup);
1051
1052static void __init st_of_quadfs660D0_setup(struct device_node *np)
1053{
1054	st_of_quadfs_setup(np,
1055		(struct clkgen_quadfs_data_clks *) &st_fs660c32_D0_data);
1056}
1057CLK_OF_DECLARE(quadfs660D0, "st,quadfs-d0", st_of_quadfs660D0_setup);
1058
1059static void __init st_of_quadfs660D2_setup(struct device_node *np)
1060{
1061	st_of_quadfs_setup(np,
1062		(struct clkgen_quadfs_data_clks *) &st_fs660c32_D2_data);
1063}
1064CLK_OF_DECLARE(quadfs660D2, "st,quadfs-d2", st_of_quadfs660D2_setup);
1065
1066static void __init st_of_quadfs660D3_setup(struct device_node *np)
1067{
1068	st_of_quadfs_setup(np,
1069		(struct clkgen_quadfs_data_clks *) &st_fs660c32_D3_data);
1070}
1071CLK_OF_DECLARE(quadfs660D3, "st,quadfs-d3", st_of_quadfs660D3_setup);
1072