1// SPDX-License-Identifier: GPL-2.0
2/*
3 * R-Car Gen4 Clock Pulse Generator
4 *
5 * Copyright (C) 2021 Renesas Electronics Corp.
6 *
7 * Based on rcar-gen3-cpg.c
8 *
9 * Copyright (C) 2015-2018 Glider bvba
10 * Copyright (C) 2019 Renesas Electronics Corp.
11 */
12
13#include <linux/bitfield.h>
14#include <linux/clk.h>
15#include <linux/clk-provider.h>
16#include <linux/device.h>
17#include <linux/err.h>
18#include <linux/init.h>
19#include <linux/io.h>
20#include <linux/iopoll.h>
21#include <linux/slab.h>
22
23#include "renesas-cpg-mssr.h"
24#include "rcar-gen4-cpg.h"
25#include "rcar-cpg-lib.h"
26
27static const struct rcar_gen4_cpg_pll_config *cpg_pll_config __initdata;
28static unsigned int cpg_clk_extalr __initdata;
29static u32 cpg_mode __initdata;
30
31#define CPG_PLLECR		0x0820	/* PLL Enable Control Register */
32
33#define CPG_PLLECR_PLLST(n)	BIT(8 + ((n) < 3 ? (n) - 1 : \
34					 (n) > 3 ? (n) + 1 : n)) /* PLLn Circuit Status */
35
36#define CPG_PLL1CR0		0x830	/* PLLn Control Registers */
37#define CPG_PLL1CR1		0x8b0
38#define CPG_PLL2CR0		0x834
39#define CPG_PLL2CR1		0x8b8
40#define CPG_PLL3CR0		0x83c
41#define CPG_PLL3CR1		0x8c0
42#define CPG_PLL4CR0		0x844
43#define CPG_PLL4CR1		0x8c8
44#define CPG_PLL6CR0		0x84c
45#define CPG_PLL6CR1		0x8d8
46
47#define CPG_PLLxCR0_KICK	BIT(31)
48#define CPG_PLLxCR0_NI		GENMASK(27, 20)	/* Integer mult. factor */
49#define CPG_PLLxCR0_SSMODE	GENMASK(18, 16)	/* PLL mode */
50#define CPG_PLLxCR0_SSMODE_FM	BIT(18)	/* Fractional Multiplication */
51#define CPG_PLLxCR0_SSMODE_DITH	BIT(17) /* Frequency Dithering */
52#define CPG_PLLxCR0_SSMODE_CENT	BIT(16)	/* Center (vs. Down) Spread Dithering */
53#define CPG_PLLxCR0_SSFREQ	GENMASK(14, 8)	/* SSCG Modulation Frequency */
54#define CPG_PLLxCR0_SSDEPT	GENMASK(6, 0)	/* SSCG Modulation Depth */
55
56#define SSMODE_FM		BIT(2)	/* Fractional Multiplication */
57#define SSMODE_DITHER		BIT(1)	/* Frequency Dithering */
58#define SSMODE_CENTER		BIT(0)	/* Center (vs. Down) Spread Dithering */
59
60/* PLL Clocks */
61struct cpg_pll_clk {
62	struct clk_hw hw;
63	void __iomem *pllcr0_reg;
64	void __iomem *pllecr_reg;
65	u32 pllecr_pllst_mask;
66};
67
68#define to_pll_clk(_hw)   container_of(_hw, struct cpg_pll_clk, hw)
69
70static unsigned long cpg_pll_clk_recalc_rate(struct clk_hw *hw,
71					     unsigned long parent_rate)
72{
73	struct cpg_pll_clk *pll_clk = to_pll_clk(hw);
74	unsigned int mult;
75
76	mult = FIELD_GET(CPG_PLLxCR0_NI, readl(pll_clk->pllcr0_reg)) + 1;
77
78	return parent_rate * mult * 2;
79}
80
81static int cpg_pll_clk_determine_rate(struct clk_hw *hw,
82				      struct clk_rate_request *req)
83{
84	unsigned int min_mult, max_mult, mult;
85	unsigned long prate;
86
87	prate = req->best_parent_rate * 2;
88	min_mult = max(div64_ul(req->min_rate, prate), 1ULL);
89	max_mult = min(div64_ul(req->max_rate, prate), 256ULL);
90	if (max_mult < min_mult)
91		return -EINVAL;
92
93	mult = DIV_ROUND_CLOSEST_ULL(req->rate, prate);
94	mult = clamp(mult, min_mult, max_mult);
95
96	req->rate = prate * mult;
97	return 0;
98}
99
100static int cpg_pll_clk_set_rate(struct clk_hw *hw, unsigned long rate,
101				unsigned long parent_rate)
102{
103	struct cpg_pll_clk *pll_clk = to_pll_clk(hw);
104	unsigned int mult;
105	u32 val;
106
107	mult = DIV_ROUND_CLOSEST_ULL(rate, parent_rate * 2);
108	mult = clamp(mult, 1U, 256U);
109
110	if (readl(pll_clk->pllcr0_reg) & CPG_PLLxCR0_KICK)
111		return -EBUSY;
112
113	cpg_reg_modify(pll_clk->pllcr0_reg, CPG_PLLxCR0_NI,
114		       FIELD_PREP(CPG_PLLxCR0_NI, mult - 1));
115
116	/*
117	 * Set KICK bit in PLLxCR0 to update hardware setting and wait for
118	 * clock change completion.
119	 */
120	cpg_reg_modify(pll_clk->pllcr0_reg, 0, CPG_PLLxCR0_KICK);
121
122	/*
123	 * Note: There is no HW information about the worst case latency.
124	 *
125	 * Using experimental measurements, it seems that no more than
126	 * ~45 µs are needed, independently of the CPU rate.
127	 * Since this value might be dependent on external xtal rate, pll
128	 * rate or even the other emulation clocks rate, use 1000 as a
129	 * "super" safe value.
130	 */
131	return readl_poll_timeout(pll_clk->pllecr_reg, val,
132				  val & pll_clk->pllecr_pllst_mask, 0, 1000);
133}
134
135static const struct clk_ops cpg_pll_clk_ops = {
136	.recalc_rate = cpg_pll_clk_recalc_rate,
137	.determine_rate = cpg_pll_clk_determine_rate,
138	.set_rate = cpg_pll_clk_set_rate,
139};
140
141static struct clk * __init cpg_pll_clk_register(const char *name,
142						const char *parent_name,
143						void __iomem *base,
144						unsigned int cr0_offset,
145						unsigned int cr1_offset,
146						unsigned int index)
147
148{
149	struct cpg_pll_clk *pll_clk;
150	struct clk_init_data init = {};
151	struct clk *clk;
152
153	pll_clk = kzalloc(sizeof(*pll_clk), GFP_KERNEL);
154	if (!pll_clk)
155		return ERR_PTR(-ENOMEM);
156
157	init.name = name;
158	init.ops = &cpg_pll_clk_ops;
159	init.parent_names = &parent_name;
160	init.num_parents = 1;
161
162	pll_clk->hw.init = &init;
163	pll_clk->pllcr0_reg = base + cr0_offset;
164	pll_clk->pllecr_reg = base + CPG_PLLECR;
165	pll_clk->pllecr_pllst_mask = CPG_PLLECR_PLLST(index);
166
167	/* Disable Fractional Multiplication and Frequency Dithering */
168	writel(0, base + cr1_offset);
169	cpg_reg_modify(pll_clk->pllcr0_reg, CPG_PLLxCR0_SSMODE, 0);
170
171	clk = clk_register(NULL, &pll_clk->hw);
172	if (IS_ERR(clk))
173		kfree(pll_clk);
174
175	return clk;
176}
177/*
178 * Z0 Clock & Z1 Clock
179 */
180#define CPG_FRQCRB			0x00000804
181#define CPG_FRQCRB_KICK			BIT(31)
182#define CPG_FRQCRC			0x00000808
183
184struct cpg_z_clk {
185	struct clk_hw hw;
186	void __iomem *reg;
187	void __iomem *kick_reg;
188	unsigned long max_rate;		/* Maximum rate for normal mode */
189	unsigned int fixed_div;
190	u32 mask;
191};
192
193#define to_z_clk(_hw)	container_of(_hw, struct cpg_z_clk, hw)
194
195static unsigned long cpg_z_clk_recalc_rate(struct clk_hw *hw,
196					   unsigned long parent_rate)
197{
198	struct cpg_z_clk *zclk = to_z_clk(hw);
199	unsigned int mult;
200	u32 val;
201
202	val = readl(zclk->reg) & zclk->mask;
203	mult = 32 - (val >> __ffs(zclk->mask));
204
205	return DIV_ROUND_CLOSEST_ULL((u64)parent_rate * mult,
206				     32 * zclk->fixed_div);
207}
208
209static int cpg_z_clk_determine_rate(struct clk_hw *hw,
210				    struct clk_rate_request *req)
211{
212	struct cpg_z_clk *zclk = to_z_clk(hw);
213	unsigned int min_mult, max_mult, mult;
214	unsigned long rate, prate;
215
216	rate = min(req->rate, req->max_rate);
217	if (rate <= zclk->max_rate) {
218		/* Set parent rate to initial value for normal modes */
219		prate = zclk->max_rate;
220	} else {
221		/* Set increased parent rate for boost modes */
222		prate = rate;
223	}
224	req->best_parent_rate = clk_hw_round_rate(clk_hw_get_parent(hw),
225						  prate * zclk->fixed_div);
226
227	prate = req->best_parent_rate / zclk->fixed_div;
228	min_mult = max(div64_ul(req->min_rate * 32ULL, prate), 1ULL);
229	max_mult = min(div64_ul(req->max_rate * 32ULL, prate), 32ULL);
230	if (max_mult < min_mult)
231		return -EINVAL;
232
233	mult = DIV_ROUND_CLOSEST_ULL(rate * 32ULL, prate);
234	mult = clamp(mult, min_mult, max_mult);
235
236	req->rate = DIV_ROUND_CLOSEST_ULL((u64)prate * mult, 32);
237	return 0;
238}
239
240static int cpg_z_clk_set_rate(struct clk_hw *hw, unsigned long rate,
241			      unsigned long parent_rate)
242{
243	struct cpg_z_clk *zclk = to_z_clk(hw);
244	unsigned int mult;
245	unsigned int i;
246
247	mult = DIV64_U64_ROUND_CLOSEST(rate * 32ULL * zclk->fixed_div,
248				       parent_rate);
249	mult = clamp(mult, 1U, 32U);
250
251	if (readl(zclk->kick_reg) & CPG_FRQCRB_KICK)
252		return -EBUSY;
253
254	cpg_reg_modify(zclk->reg, zclk->mask, (32 - mult) << __ffs(zclk->mask));
255
256	/*
257	 * Set KICK bit in FRQCRB to update hardware setting and wait for
258	 * clock change completion.
259	 */
260	cpg_reg_modify(zclk->kick_reg, 0, CPG_FRQCRB_KICK);
261
262	/*
263	 * Note: There is no HW information about the worst case latency.
264	 *
265	 * Using experimental measurements, it seems that no more than
266	 * ~10 iterations are needed, independently of the CPU rate.
267	 * Since this value might be dependent on external xtal rate, pll1
268	 * rate or even the other emulation clocks rate, use 1000 as a
269	 * "super" safe value.
270	 */
271	for (i = 1000; i; i--) {
272		if (!(readl(zclk->kick_reg) & CPG_FRQCRB_KICK))
273			return 0;
274
275		cpu_relax();
276	}
277
278	return -ETIMEDOUT;
279}
280
281static const struct clk_ops cpg_z_clk_ops = {
282	.recalc_rate = cpg_z_clk_recalc_rate,
283	.determine_rate = cpg_z_clk_determine_rate,
284	.set_rate = cpg_z_clk_set_rate,
285};
286
287static struct clk * __init cpg_z_clk_register(const char *name,
288					      const char *parent_name,
289					      void __iomem *reg,
290					      unsigned int div,
291					      unsigned int offset)
292{
293	struct clk_init_data init = {};
294	struct cpg_z_clk *zclk;
295	struct clk *clk;
296
297	zclk = kzalloc(sizeof(*zclk), GFP_KERNEL);
298	if (!zclk)
299		return ERR_PTR(-ENOMEM);
300
301	init.name = name;
302	init.ops = &cpg_z_clk_ops;
303	init.flags = CLK_SET_RATE_PARENT;
304	init.parent_names = &parent_name;
305	init.num_parents = 1;
306
307	zclk->reg = reg + CPG_FRQCRC;
308	zclk->kick_reg = reg + CPG_FRQCRB;
309	zclk->hw.init = &init;
310	zclk->mask = GENMASK(offset + 4, offset);
311	zclk->fixed_div = div; /* PLLVCO x 1/div x SYS-CPU divider */
312
313	clk = clk_register(NULL, &zclk->hw);
314	if (IS_ERR(clk)) {
315		kfree(zclk);
316		return clk;
317	}
318
319	zclk->max_rate = clk_hw_get_rate(clk_hw_get_parent(&zclk->hw)) /
320			 zclk->fixed_div;
321	return clk;
322}
323
324/*
325 * RPC Clocks
326 */
327static const struct clk_div_table cpg_rpcsrc_div_table[] = {
328	{ 0, 4 }, { 1, 6 }, { 2, 5 }, { 3, 6 }, { 0, 0 },
329};
330
331struct clk * __init rcar_gen4_cpg_clk_register(struct device *dev,
332	const struct cpg_core_clk *core, const struct cpg_mssr_info *info,
333	struct clk **clks, void __iomem *base,
334	struct raw_notifier_head *notifiers)
335{
336	const struct clk *parent;
337	unsigned int mult = 1;
338	unsigned int div = 1;
339	u32 value;
340
341	parent = clks[core->parent & 0xffff];	/* some types use high bits */
342	if (IS_ERR(parent))
343		return ERR_CAST(parent);
344
345	switch (core->type) {
346	case CLK_TYPE_GEN4_MAIN:
347		div = cpg_pll_config->extal_div;
348		break;
349
350	case CLK_TYPE_GEN4_PLL1:
351		mult = cpg_pll_config->pll1_mult;
352		div = cpg_pll_config->pll1_div;
353		break;
354
355	case CLK_TYPE_GEN4_PLL2_VAR:
356		/*
357		 * PLL2 is implemented as a custom clock, to change the
358		 * multiplier when cpufreq changes between normal and boost
359		 * modes.
360		 */
361		return cpg_pll_clk_register(core->name, __clk_get_name(parent),
362					    base, CPG_PLL2CR0, CPG_PLL2CR1, 2);
363
364	case CLK_TYPE_GEN4_PLL2:
365		mult = cpg_pll_config->pll2_mult;
366		div = cpg_pll_config->pll2_div;
367		break;
368
369	case CLK_TYPE_GEN4_PLL3:
370		mult = cpg_pll_config->pll3_mult;
371		div = cpg_pll_config->pll3_div;
372		break;
373
374	case CLK_TYPE_GEN4_PLL4:
375		mult = cpg_pll_config->pll4_mult;
376		div = cpg_pll_config->pll4_div;
377		break;
378
379	case CLK_TYPE_GEN4_PLL5:
380		mult = cpg_pll_config->pll5_mult;
381		div = cpg_pll_config->pll5_div;
382		break;
383
384	case CLK_TYPE_GEN4_PLL6:
385		mult = cpg_pll_config->pll6_mult;
386		div = cpg_pll_config->pll6_div;
387		break;
388
389	case CLK_TYPE_GEN4_PLL2X_3X:
390		value = readl(base + core->offset);
391		mult = (((value >> 24) & 0x7f) + 1) * 2;
392		break;
393
394	case CLK_TYPE_GEN4_Z:
395		return cpg_z_clk_register(core->name, __clk_get_name(parent),
396					  base, core->div, core->offset);
397
398	case CLK_TYPE_GEN4_SDSRC:
399		div = ((readl(base + SD0CKCR1) >> 29) & 0x03) + 4;
400		break;
401
402	case CLK_TYPE_GEN4_SDH:
403		return cpg_sdh_clk_register(core->name, base + core->offset,
404					   __clk_get_name(parent), notifiers);
405
406	case CLK_TYPE_GEN4_SD:
407		return cpg_sd_clk_register(core->name, base + core->offset,
408					   __clk_get_name(parent));
409
410	case CLK_TYPE_GEN4_MDSEL:
411		/*
412		 * Clock selectable between two parents and two fixed dividers
413		 * using a mode pin
414		 */
415		if (cpg_mode & BIT(core->offset)) {
416			div = core->div & 0xffff;
417		} else {
418			parent = clks[core->parent >> 16];
419			if (IS_ERR(parent))
420				return ERR_CAST(parent);
421			div = core->div >> 16;
422		}
423		mult = 1;
424		break;
425
426	case CLK_TYPE_GEN4_OSC:
427		/*
428		 * Clock combining OSC EXTAL predivider and a fixed divider
429		 */
430		div = cpg_pll_config->osc_prediv * core->div;
431		break;
432
433	case CLK_TYPE_GEN4_RPCSRC:
434		return clk_register_divider_table(NULL, core->name,
435						  __clk_get_name(parent), 0,
436						  base + CPG_RPCCKCR, 3, 2, 0,
437						  cpg_rpcsrc_div_table,
438						  &cpg_lock);
439
440	case CLK_TYPE_GEN4_RPC:
441		return cpg_rpc_clk_register(core->name, base + CPG_RPCCKCR,
442					    __clk_get_name(parent), notifiers);
443
444	case CLK_TYPE_GEN4_RPCD2:
445		return cpg_rpcd2_clk_register(core->name, base + CPG_RPCCKCR,
446					      __clk_get_name(parent));
447
448	default:
449		return ERR_PTR(-EINVAL);
450	}
451
452	return clk_register_fixed_factor(NULL, core->name,
453					 __clk_get_name(parent), 0, mult, div);
454}
455
456int __init rcar_gen4_cpg_init(const struct rcar_gen4_cpg_pll_config *config,
457			      unsigned int clk_extalr, u32 mode)
458{
459	cpg_pll_config = config;
460	cpg_clk_extalr = clk_extalr;
461	cpg_mode = mode;
462
463	spin_lock_init(&cpg_lock);
464
465	return 0;
466}
467