1// SPDX-License-Identifier: GPL-2.0
2/*
3 * R9A06G032 clock driver
4 *
5 * Copyright (C) 2018 Renesas Electronics Europe Limited
6 *
7 * Michel Pollet <michel.pollet@bp.renesas.com>, <buserror@gmail.com>
8 */
9
10#include <linux/clk.h>
11#include <linux/clk-provider.h>
12#include <linux/delay.h>
13#include <linux/init.h>
14#include <linux/io.h>
15#include <linux/kernel.h>
16#include <linux/math64.h>
17#include <linux/of.h>
18#include <linux/of_address.h>
19#include <linux/of_platform.h>
20#include <linux/platform_device.h>
21#include <linux/pm_clock.h>
22#include <linux/pm_domain.h>
23#include <linux/slab.h>
24#include <linux/soc/renesas/r9a06g032-sysctrl.h>
25#include <linux/spinlock.h>
26#include <dt-bindings/clock/r9a06g032-sysctrl.h>
27
28#define R9A06G032_SYSCTRL_USB    0x00
29#define R9A06G032_SYSCTRL_USB_H2MODE  (1<<1)
30#define R9A06G032_SYSCTRL_DMAMUX 0xA0
31
32/**
33 * struct regbit - describe one bit in a register
34 * @reg: offset of register relative to base address,
35 *          expressed in units of 32-bit words (not bytes),
36 * @bit: which bit (0 to 31) in the register
37 *
38 * This structure is used to compactly encode the location
39 * of a single bit in a register. Five bits are needed to
40 * encode the bit number. With uint16_t data type, this
41 * leaves 11 bits to encode a register offset up to 2047.
42 *
43 * Since registers are aligned on 32-bit boundaries, the
44 * offset will be specified in 32-bit words rather than bytes.
45 * This allows encoding an offset up to 0x1FFC (8188) bytes.
46 *
47 * Helper macro RB() takes care of converting the register
48 * offset from bytes to 32-bit words.
49 */
50struct regbit {
51	u16 bit:5;
52	u16 reg:11;
53};
54
55#define RB(_reg, _bit) ((struct regbit) { \
56	.reg = (_reg) / 4, \
57	.bit = (_bit) \
58})
59
60/**
61 * struct r9a06g032_gate - clock-related control bits
62 * @gate:   clock enable/disable
63 * @reset:  clock module reset (active low)
64 * @ready:  enables NoC forwarding of read/write requests to device,
65 *          (eg. device is ready to handle read/write requests)
66 * @midle:  request to idle the NoC interconnect
67 *
68 * Each of these fields describes a single bit in a register,
69 * which controls some aspect of clock gating. The @gate field
70 * is mandatory, this one enables/disables the clock. The
71 * other fields are optional, with zero indicating "not used".
72 *
73 * In most cases there is a @reset bit which needs to be
74 * de-asserted to bring the module out of reset.
75 *
76 * Modules may also need to signal when they are @ready to
77 * handle requests (read/writes) from the NoC interconnect.
78 *
79 * Similarly, the @midle bit is used to idle the master.
80 */
81struct r9a06g032_gate {
82	struct regbit gate, reset, ready, midle;
83	/* Unused fields omitted to save space */
84	/* struct regbit scon, mirack, mistat */;
85};
86
87enum gate_type {
88	K_GATE = 0,	/* gate which enable/disable */
89	K_FFC,		/* fixed factor clock */
90	K_DIV,		/* divisor */
91	K_BITSEL,	/* special for UARTs */
92	K_DUALGATE	/* special for UARTs */
93};
94
95/**
96 * struct r9a06g032_clkdesc - describe a single clock
97 * @name:      string describing this clock
98 * @managed:   boolean indicating if this clock should be
99 *             started/stopped as part of power management
100 * @type:      see enum @gate_type
101 * @index:     the ID of this clock element
102 * @source:    the ID+1 of the parent clock element.
103 *             Root clock uses ID of ~0 (PARENT_ID);
104 * @gate:      clock enable/disable
105 * @div_min:   smallest permitted clock divider
106 * @div_max:   largest permitted clock divider
107 * @reg:       clock divider register offset, in 32-bit words
108 * @div_table: optional list of fixed clock divider values;
109 *             must be in ascending order, zero for unused
110 * @div:       divisor for fixed-factor clock
111 * @mul:       multiplier for fixed-factor clock
112 * @group:     UART group, 0=UART0/1/2, 1=UART3/4/5/6/7
113 * @sel:       select either g1/r1 or g2/r2 as clock source
114 * @g1:        1st source gate (clock enable/disable)
115 * @r1:        1st source reset (module reset)
116 * @g2:        2nd source gate (clock enable/disable)
117 * @r2:        2nd source reset (module reset)
118 *
119 * Describes a single element in the clock tree hierarchy.
120 * As there are quite a large number of clock elements, this
121 * structure is packed tightly to conserve space.
122 */
123struct r9a06g032_clkdesc {
124	const char *name;
125	uint32_t managed:1;
126	enum gate_type type:3;
127	uint32_t index:8;
128	uint32_t source:8; /* source index + 1 (0 == none) */
129	union {
130		/* type = K_GATE */
131		struct r9a06g032_gate gate;
132		/* type = K_DIV  */
133		struct {
134			unsigned int div_min:10, div_max:10, reg:10;
135			u16 div_table[4];
136		};
137		/* type = K_FFC */
138		struct {
139			u16 div, mul;
140		};
141		/* type = K_DUALGATE */
142		struct {
143			uint16_t group:1;
144			struct regbit sel, g1, r1, g2, r2;
145		} dual;
146	};
147};
148
149/*
150 * The last three arguments are not currently used,
151 * but are kept in the r9a06g032_clocks table below.
152 */
153#define I_GATE(_clk, _rst, _rdy, _midle, _scon, _mirack, _mistat) { \
154	.gate = _clk, \
155	.reset = _rst, \
156	.ready = _rdy, \
157	.midle = _midle, \
158	/* .scon = _scon, */ \
159	/* .mirack = _mirack, */ \
160	/* .mistat = _mistat */ \
161}
162#define D_GATE(_idx, _n, _src, ...) { \
163	.type = K_GATE, \
164	.index = R9A06G032_##_idx, \
165	.source = 1 + R9A06G032_##_src, \
166	.name = _n, \
167	.gate = I_GATE(__VA_ARGS__) \
168}
169#define D_MODULE(_idx, _n, _src, ...) { \
170	.type = K_GATE, \
171	.index = R9A06G032_##_idx, \
172	.source = 1 + R9A06G032_##_src, \
173	.name = _n, \
174	.managed = 1, \
175	.gate = I_GATE(__VA_ARGS__) \
176}
177#define D_ROOT(_idx, _n, _mul, _div) { \
178	.type = K_FFC, \
179	.index = R9A06G032_##_idx, \
180	.name = _n, \
181	.div = _div, \
182	.mul = _mul \
183}
184#define D_FFC(_idx, _n, _src, _div) { \
185	.type = K_FFC, \
186	.index = R9A06G032_##_idx, \
187	.source = 1 + R9A06G032_##_src, \
188	.name = _n, \
189	.div = _div, \
190	.mul = 1 \
191}
192#define D_DIV(_idx, _n, _src, _reg, _min, _max, ...) { \
193	.type = K_DIV, \
194	.index = R9A06G032_##_idx, \
195	.source = 1 + R9A06G032_##_src, \
196	.name = _n, \
197	.reg = _reg, \
198	.div_min = _min, \
199	.div_max = _max, \
200	.div_table = { __VA_ARGS__ } \
201}
202#define D_UGATE(_idx, _n, _src, _g, _g1, _r1, _g2, _r2) { \
203	.type = K_DUALGATE, \
204	.index = R9A06G032_##_idx, \
205	.source = 1 + R9A06G032_##_src, \
206	.name = _n, \
207	.dual = { \
208		.group = _g, \
209		.g1 = _g1, \
210		.r1 = _r1, \
211		.g2 = _g2, \
212		.r2 = _r2 \
213	}, \
214}
215
216/* Internal clock IDs */
217#define R9A06G032_CLKOUT		0
218#define R9A06G032_CLKOUT_D10		2
219#define R9A06G032_CLKOUT_D16		3
220#define R9A06G032_CLKOUT_D160		4
221#define R9A06G032_CLKOUT_D1OR2		5
222#define R9A06G032_CLKOUT_D20		6
223#define R9A06G032_CLKOUT_D40		7
224#define R9A06G032_CLKOUT_D5		8
225#define R9A06G032_CLKOUT_D8		9
226#define R9A06G032_DIV_ADC		10
227#define R9A06G032_DIV_I2C		11
228#define R9A06G032_DIV_NAND		12
229#define R9A06G032_DIV_P1_PG		13
230#define R9A06G032_DIV_P2_PG		14
231#define R9A06G032_DIV_P3_PG		15
232#define R9A06G032_DIV_P4_PG		16
233#define R9A06G032_DIV_P5_PG		17
234#define R9A06G032_DIV_P6_PG		18
235#define R9A06G032_DIV_QSPI0		19
236#define R9A06G032_DIV_QSPI1		20
237#define R9A06G032_DIV_REF_SYNC		21
238#define R9A06G032_DIV_SDIO0		22
239#define R9A06G032_DIV_SDIO1		23
240#define R9A06G032_DIV_SWITCH		24
241#define R9A06G032_DIV_UART		25
242#define R9A06G032_DIV_MOTOR		64
243#define R9A06G032_CLK_DDRPHY_PLLCLK_D4	78
244#define R9A06G032_CLK_ECAT100_D4	79
245#define R9A06G032_CLK_HSR100_D2		80
246#define R9A06G032_CLK_REF_SYNC_D4	81
247#define R9A06G032_CLK_REF_SYNC_D8	82
248#define R9A06G032_CLK_SERCOS100_D2	83
249#define R9A06G032_DIV_CA7		84
250
251#define R9A06G032_UART_GROUP_012	154
252#define R9A06G032_UART_GROUP_34567	155
253
254#define R9A06G032_CLOCK_COUNT		(R9A06G032_UART_GROUP_34567 + 1)
255
256static const struct r9a06g032_clkdesc r9a06g032_clocks[] = {
257	D_ROOT(CLKOUT, "clkout", 25, 1),
258	D_ROOT(CLK_PLL_USB, "clk_pll_usb", 12, 10),
259	D_FFC(CLKOUT_D10, "clkout_d10", CLKOUT, 10),
260	D_FFC(CLKOUT_D16, "clkout_d16", CLKOUT, 16),
261	D_FFC(CLKOUT_D160, "clkout_d160", CLKOUT, 160),
262	D_DIV(CLKOUT_D1OR2, "clkout_d1or2", CLKOUT, 0, 1, 2),
263	D_FFC(CLKOUT_D20, "clkout_d20", CLKOUT, 20),
264	D_FFC(CLKOUT_D40, "clkout_d40", CLKOUT, 40),
265	D_FFC(CLKOUT_D5, "clkout_d5", CLKOUT, 5),
266	D_FFC(CLKOUT_D8, "clkout_d8", CLKOUT, 8),
267	D_DIV(DIV_ADC, "div_adc", CLKOUT, 77, 50, 250),
268	D_DIV(DIV_I2C, "div_i2c", CLKOUT, 78, 12, 16),
269	D_DIV(DIV_NAND, "div_nand", CLKOUT, 82, 12, 32),
270	D_DIV(DIV_P1_PG, "div_p1_pg", CLKOUT, 68, 12, 200),
271	D_DIV(DIV_P2_PG, "div_p2_pg", CLKOUT, 62, 12, 128),
272	D_DIV(DIV_P3_PG, "div_p3_pg", CLKOUT, 64, 8, 128),
273	D_DIV(DIV_P4_PG, "div_p4_pg", CLKOUT, 66, 8, 128),
274	D_DIV(DIV_P5_PG, "div_p5_pg", CLKOUT, 71, 10, 40),
275	D_DIV(DIV_P6_PG, "div_p6_pg", CLKOUT, 18, 12, 64),
276	D_DIV(DIV_QSPI0, "div_qspi0", CLKOUT, 73, 3, 7),
277	D_DIV(DIV_QSPI1, "div_qspi1", CLKOUT, 25, 3, 7),
278	D_DIV(DIV_REF_SYNC, "div_ref_sync", CLKOUT, 56, 2, 16, 2, 4, 8, 16),
279	D_DIV(DIV_SDIO0, "div_sdio0", CLKOUT, 74, 20, 128),
280	D_DIV(DIV_SDIO1, "div_sdio1", CLKOUT, 75, 20, 128),
281	D_DIV(DIV_SWITCH, "div_switch", CLKOUT, 37, 5, 40),
282	D_DIV(DIV_UART, "div_uart", CLKOUT, 79, 12, 128),
283	D_GATE(CLK_25_PG4, "clk_25_pg4", CLKOUT_D40, RB(0xe8, 9),
284	       RB(0xe8, 10), RB(0xe8, 11), RB(0x00, 0),
285	       RB(0x15c, 3), RB(0x00, 0), RB(0x00, 0)),
286	D_GATE(CLK_25_PG5, "clk_25_pg5", CLKOUT_D40, RB(0xe8, 12),
287	       RB(0xe8, 13), RB(0xe8, 14), RB(0x00, 0),
288	       RB(0x15c, 4), RB(0x00, 0), RB(0x00, 0)),
289	D_GATE(CLK_25_PG6, "clk_25_pg6", CLKOUT_D40, RB(0xe8, 15),
290	       RB(0xe8, 16), RB(0xe8, 17), RB(0x00, 0),
291	       RB(0x15c, 5), RB(0x00, 0), RB(0x00, 0)),
292	D_GATE(CLK_25_PG7, "clk_25_pg7", CLKOUT_D40, RB(0xe8, 18),
293	       RB(0xe8, 19), RB(0xe8, 20), RB(0x00, 0),
294	       RB(0x15c, 6), RB(0x00, 0), RB(0x00, 0)),
295	D_GATE(CLK_25_PG8, "clk_25_pg8", CLKOUT_D40, RB(0xe8, 21),
296	       RB(0xe8, 22), RB(0xe8, 23), RB(0x00, 0),
297	       RB(0x15c, 7), RB(0x00, 0), RB(0x00, 0)),
298	D_GATE(CLK_ADC, "clk_adc", DIV_ADC, RB(0x3c, 10),
299	       RB(0x3c, 11), RB(0x00, 0), RB(0x00, 0),
300	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
301	D_GATE(CLK_ECAT100, "clk_ecat100", CLKOUT_D10, RB(0x80, 5),
302	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
303	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
304	D_GATE(CLK_HSR100, "clk_hsr100", CLKOUT_D10, RB(0x90, 3),
305	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
306	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
307	D_GATE(CLK_I2C0, "clk_i2c0", DIV_I2C, RB(0x3c, 6),
308	       RB(0x3c, 7), RB(0x00, 0), RB(0x00, 0),
309	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
310	D_GATE(CLK_I2C1, "clk_i2c1", DIV_I2C, RB(0x3c, 8),
311	       RB(0x3c, 9), RB(0x00, 0), RB(0x00, 0),
312	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
313	D_GATE(CLK_MII_REF, "clk_mii_ref", CLKOUT_D40, RB(0x68, 2),
314	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
315	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
316	D_GATE(CLK_NAND, "clk_nand", DIV_NAND, RB(0x50, 4),
317	       RB(0x50, 5), RB(0x00, 0), RB(0x00, 0),
318	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
319	D_GATE(CLK_NOUSBP2_PG6, "clk_nousbp2_pg6", DIV_P2_PG, RB(0xec, 20),
320	       RB(0xec, 21), RB(0x00, 0), RB(0x00, 0),
321	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
322	D_GATE(CLK_P1_PG2, "clk_p1_pg2", DIV_P1_PG, RB(0x10c, 2),
323	       RB(0x10c, 3), RB(0x00, 0), RB(0x00, 0),
324	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
325	D_GATE(CLK_P1_PG3, "clk_p1_pg3", DIV_P1_PG, RB(0x10c, 4),
326	       RB(0x10c, 5), RB(0x00, 0), RB(0x00, 0),
327	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
328	D_GATE(CLK_P1_PG4, "clk_p1_pg4", DIV_P1_PG, RB(0x10c, 6),
329	       RB(0x10c, 7), RB(0x00, 0), RB(0x00, 0),
330	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
331	D_GATE(CLK_P4_PG3, "clk_p4_pg3", DIV_P4_PG, RB(0x104, 4),
332	       RB(0x104, 5), RB(0x00, 0), RB(0x00, 0),
333	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
334	D_GATE(CLK_P4_PG4, "clk_p4_pg4", DIV_P4_PG, RB(0x104, 6),
335	       RB(0x104, 7), RB(0x00, 0), RB(0x00, 0),
336	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
337	D_GATE(CLK_P6_PG1, "clk_p6_pg1", DIV_P6_PG, RB(0x114, 0),
338	       RB(0x114, 1), RB(0x114, 2), RB(0x00, 0),
339	       RB(0x16c, 0), RB(0x00, 0), RB(0x00, 0)),
340	D_GATE(CLK_P6_PG2, "clk_p6_pg2", DIV_P6_PG, RB(0x114, 3),
341	       RB(0x114, 4), RB(0x114, 5), RB(0x00, 0),
342	       RB(0x16c, 1), RB(0x00, 0), RB(0x00, 0)),
343	D_GATE(CLK_P6_PG3, "clk_p6_pg3", DIV_P6_PG, RB(0x114, 6),
344	       RB(0x114, 7), RB(0x114, 8), RB(0x00, 0),
345	       RB(0x16c, 2), RB(0x00, 0), RB(0x00, 0)),
346	D_GATE(CLK_P6_PG4, "clk_p6_pg4", DIV_P6_PG, RB(0x114, 9),
347	       RB(0x114, 10), RB(0x114, 11), RB(0x00, 0),
348	       RB(0x16c, 3), RB(0x00, 0), RB(0x00, 0)),
349	D_MODULE(CLK_PCI_USB, "clk_pci_usb", CLKOUT_D40, RB(0x1c, 6),
350		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
351		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
352	D_GATE(CLK_QSPI0, "clk_qspi0", DIV_QSPI0, RB(0x54, 4),
353	       RB(0x54, 5), RB(0x00, 0), RB(0x00, 0),
354	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
355	D_GATE(CLK_QSPI1, "clk_qspi1", DIV_QSPI1, RB(0x90, 4),
356	       RB(0x90, 5), RB(0x00, 0), RB(0x00, 0),
357	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
358	D_GATE(CLK_RGMII_REF, "clk_rgmii_ref", CLKOUT_D8, RB(0x68, 0),
359	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
360	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
361	D_GATE(CLK_RMII_REF, "clk_rmii_ref", CLKOUT_D20, RB(0x68, 1),
362	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
363	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
364	D_GATE(CLK_SDIO0, "clk_sdio0", DIV_SDIO0, RB(0x0c, 4),
365	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
366	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
367	D_GATE(CLK_SDIO1, "clk_sdio1", DIV_SDIO1, RB(0xc8, 4),
368	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
369	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
370	D_GATE(CLK_SERCOS100, "clk_sercos100", CLKOUT_D10, RB(0x84, 5),
371	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
372	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
373	D_GATE(CLK_SLCD, "clk_slcd", DIV_P1_PG, RB(0x10c, 0),
374	       RB(0x10c, 1), RB(0x00, 0), RB(0x00, 0),
375	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
376	D_GATE(CLK_SPI0, "clk_spi0", DIV_P3_PG, RB(0xfc, 0),
377	       RB(0xfc, 1), RB(0x00, 0), RB(0x00, 0),
378	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
379	D_GATE(CLK_SPI1, "clk_spi1", DIV_P3_PG, RB(0xfc, 2),
380	       RB(0xfc, 3), RB(0x00, 0), RB(0x00, 0),
381	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
382	D_GATE(CLK_SPI2, "clk_spi2", DIV_P3_PG, RB(0xfc, 4),
383	       RB(0xfc, 5), RB(0x00, 0), RB(0x00, 0),
384	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
385	D_GATE(CLK_SPI3, "clk_spi3", DIV_P3_PG, RB(0xfc, 6),
386	       RB(0xfc, 7), RB(0x00, 0), RB(0x00, 0),
387	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
388	D_GATE(CLK_SPI4, "clk_spi4", DIV_P4_PG, RB(0x104, 0),
389	       RB(0x104, 1), RB(0x00, 0), RB(0x00, 0),
390	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
391	D_GATE(CLK_SPI5, "clk_spi5", DIV_P4_PG, RB(0x104, 2),
392	       RB(0x104, 3), RB(0x00, 0), RB(0x00, 0),
393	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
394	D_GATE(CLK_SWITCH, "clk_switch", DIV_SWITCH, RB(0x130, 2),
395	       RB(0x130, 3), RB(0x00, 0), RB(0x00, 0),
396	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
397	D_DIV(DIV_MOTOR, "div_motor", CLKOUT_D5, 84, 2, 8),
398	D_MODULE(HCLK_ECAT125, "hclk_ecat125", CLKOUT_D8, RB(0x80, 0),
399		 RB(0x80, 1), RB(0x00, 0), RB(0x80, 2),
400		 RB(0x00, 0), RB(0x88, 0), RB(0x88, 1)),
401	D_MODULE(HCLK_PINCONFIG, "hclk_pinconfig", CLKOUT_D40, RB(0xe8, 0),
402		 RB(0xe8, 1), RB(0xe8, 2), RB(0x00, 0),
403		 RB(0x15c, 0), RB(0x00, 0), RB(0x00, 0)),
404	D_MODULE(HCLK_SERCOS, "hclk_sercos", CLKOUT_D10, RB(0x84, 0),
405		 RB(0x84, 2), RB(0x00, 0), RB(0x84, 1),
406		 RB(0x00, 0), RB(0x8c, 0), RB(0x8c, 1)),
407	D_MODULE(HCLK_SGPIO2, "hclk_sgpio2", DIV_P5_PG, RB(0x118, 3),
408		 RB(0x118, 4), RB(0x118, 5), RB(0x00, 0),
409		 RB(0x168, 1), RB(0x00, 0), RB(0x00, 0)),
410	D_MODULE(HCLK_SGPIO3, "hclk_sgpio3", DIV_P5_PG, RB(0x118, 6),
411		 RB(0x118, 7), RB(0x118, 8), RB(0x00, 0),
412		 RB(0x168, 2), RB(0x00, 0), RB(0x00, 0)),
413	D_MODULE(HCLK_SGPIO4, "hclk_sgpio4", DIV_P5_PG, RB(0x118, 9),
414		 RB(0x118, 10), RB(0x118, 11), RB(0x00, 0),
415		 RB(0x168, 3), RB(0x00, 0), RB(0x00, 0)),
416	D_MODULE(HCLK_TIMER0, "hclk_timer0", CLKOUT_D40, RB(0xe8, 3),
417		 RB(0xe8, 4), RB(0xe8, 5), RB(0x00, 0),
418		 RB(0x15c, 1), RB(0x00, 0), RB(0x00, 0)),
419	D_MODULE(HCLK_TIMER1, "hclk_timer1", CLKOUT_D40, RB(0xe8, 6),
420		 RB(0xe8, 7), RB(0xe8, 8), RB(0x00, 0),
421		 RB(0x15c, 2), RB(0x00, 0), RB(0x00, 0)),
422	D_MODULE(HCLK_USBF, "hclk_usbf", CLKOUT_D8, RB(0x1c, 3),
423		 RB(0x00, 0), RB(0x00, 0), RB(0x1c, 4),
424		 RB(0x00, 0), RB(0x20, 2), RB(0x20, 3)),
425	D_MODULE(HCLK_USBH, "hclk_usbh", CLKOUT_D8, RB(0x1c, 0),
426		 RB(0x1c, 1), RB(0x00, 0), RB(0x1c, 2),
427		 RB(0x00, 0), RB(0x20, 0), RB(0x20, 1)),
428	D_MODULE(HCLK_USBPM, "hclk_usbpm", CLKOUT_D8, RB(0x1c, 5),
429		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
430		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
431	D_GATE(CLK_48_PG_F, "clk_48_pg_f", CLK_48, RB(0xf0, 12),
432	       RB(0xf0, 13), RB(0x00, 0), RB(0xf0, 14),
433	       RB(0x00, 0), RB(0x160, 4), RB(0x160, 5)),
434	D_GATE(CLK_48_PG4, "clk_48_pg4", CLK_48, RB(0xf0, 9),
435	       RB(0xf0, 10), RB(0xf0, 11), RB(0x00, 0),
436	       RB(0x160, 3), RB(0x00, 0), RB(0x00, 0)),
437	D_FFC(CLK_DDRPHY_PLLCLK_D4, "clk_ddrphy_pllclk_d4", CLK_DDRPHY_PLLCLK, 4),
438	D_FFC(CLK_ECAT100_D4, "clk_ecat100_d4", CLK_ECAT100, 4),
439	D_FFC(CLK_HSR100_D2, "clk_hsr100_d2", CLK_HSR100, 2),
440	D_FFC(CLK_REF_SYNC_D4, "clk_ref_sync_d4", CLK_REF_SYNC, 4),
441	D_FFC(CLK_REF_SYNC_D8, "clk_ref_sync_d8", CLK_REF_SYNC, 8),
442	D_FFC(CLK_SERCOS100_D2, "clk_sercos100_d2", CLK_SERCOS100, 2),
443	D_DIV(DIV_CA7, "div_ca7", CLK_REF_SYNC, 57, 1, 4, 1, 2, 4),
444	D_MODULE(HCLK_CAN0, "hclk_can0", CLK_48, RB(0xf0, 3),
445		 RB(0xf0, 4), RB(0xf0, 5), RB(0x00, 0),
446		 RB(0x160, 1), RB(0x00, 0), RB(0x00, 0)),
447	D_MODULE(HCLK_CAN1, "hclk_can1", CLK_48, RB(0xf0, 6),
448		 RB(0xf0, 7), RB(0xf0, 8), RB(0x00, 0),
449		 RB(0x160, 2), RB(0x00, 0), RB(0x00, 0)),
450	D_MODULE(HCLK_DELTASIGMA, "hclk_deltasigma", DIV_MOTOR, RB(0x3c, 15),
451		 RB(0x3c, 16), RB(0x3c, 17), RB(0x00, 0),
452		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
453	D_MODULE(HCLK_PWMPTO, "hclk_pwmpto", DIV_MOTOR, RB(0x3c, 12),
454		 RB(0x3c, 13), RB(0x3c, 14), RB(0x00, 0),
455		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
456	D_MODULE(HCLK_RSV, "hclk_rsv", CLK_48, RB(0xf0, 0),
457		 RB(0xf0, 1), RB(0xf0, 2), RB(0x00, 0),
458		 RB(0x160, 0), RB(0x00, 0), RB(0x00, 0)),
459	D_MODULE(HCLK_SGPIO0, "hclk_sgpio0", DIV_MOTOR, RB(0x3c, 0),
460		 RB(0x3c, 1), RB(0x3c, 2), RB(0x00, 0),
461		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
462	D_MODULE(HCLK_SGPIO1, "hclk_sgpio1", DIV_MOTOR, RB(0x3c, 3),
463		 RB(0x3c, 4), RB(0x3c, 5), RB(0x00, 0),
464		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
465	D_DIV(RTOS_MDC, "rtos_mdc", CLK_REF_SYNC, 100, 80, 640, 80, 160, 320, 640),
466	D_GATE(CLK_CM3, "clk_cm3", CLK_REF_SYNC_D4, RB(0x174, 0),
467	       RB(0x174, 1), RB(0x00, 0), RB(0x174, 2),
468	       RB(0x00, 0), RB(0x178, 0), RB(0x178, 1)),
469	D_GATE(CLK_DDRC, "clk_ddrc", CLK_DDRPHY_PLLCLK_D4, RB(0x64, 3),
470	       RB(0x64, 4), RB(0x00, 0), RB(0x00, 0),
471	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
472	D_GATE(CLK_ECAT25, "clk_ecat25", CLK_ECAT100_D4, RB(0x80, 3),
473	       RB(0x80, 4), RB(0x00, 0), RB(0x00, 0),
474	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
475	D_GATE(CLK_HSR50, "clk_hsr50", CLK_HSR100_D2, RB(0x90, 4),
476	       RB(0x90, 5), RB(0x00, 0), RB(0x00, 0),
477	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
478	D_GATE(CLK_HW_RTOS, "clk_hw_rtos", CLK_REF_SYNC_D4, RB(0x18c, 0),
479	       RB(0x18c, 1), RB(0x00, 0), RB(0x00, 0),
480	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
481	D_GATE(CLK_SERCOS50, "clk_sercos50", CLK_SERCOS100_D2, RB(0x84, 4),
482	       RB(0x84, 3), RB(0x00, 0), RB(0x00, 0),
483	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
484	D_MODULE(HCLK_ADC, "hclk_adc", CLK_REF_SYNC_D8, RB(0x34, 15),
485		 RB(0x34, 16), RB(0x34, 17), RB(0x00, 0),
486		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
487	D_MODULE(HCLK_CM3, "hclk_cm3", CLK_REF_SYNC_D4, RB(0x184, 0),
488		 RB(0x184, 1), RB(0x184, 2), RB(0x00, 0),
489		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
490	D_MODULE(HCLK_CRYPTO_EIP150, "hclk_crypto_eip150", CLK_REF_SYNC_D4, RB(0x24, 3),
491		 RB(0x24, 4), RB(0x24, 5), RB(0x00, 0),
492		 RB(0x28, 2), RB(0x00, 0), RB(0x00, 0)),
493	D_MODULE(HCLK_CRYPTO_EIP93, "hclk_crypto_eip93", CLK_REF_SYNC_D4, RB(0x24, 0),
494		 RB(0x24, 1), RB(0x00, 0), RB(0x24, 2),
495		 RB(0x00, 0), RB(0x28, 0), RB(0x28, 1)),
496	D_MODULE(HCLK_DDRC, "hclk_ddrc", CLK_REF_SYNC_D4, RB(0x64, 0),
497		 RB(0x64, 2), RB(0x00, 0), RB(0x64, 1),
498		 RB(0x00, 0), RB(0x74, 0), RB(0x74, 1)),
499	D_MODULE(HCLK_DMA0, "hclk_dma0", CLK_REF_SYNC_D4, RB(0x4c, 0),
500		 RB(0x4c, 1), RB(0x4c, 2), RB(0x4c, 3),
501		 RB(0x58, 0), RB(0x58, 1), RB(0x58, 2)),
502	D_MODULE(HCLK_DMA1, "hclk_dma1", CLK_REF_SYNC_D4, RB(0x4c, 4),
503		 RB(0x4c, 5), RB(0x4c, 6), RB(0x4c, 7),
504		 RB(0x58, 3), RB(0x58, 4), RB(0x58, 5)),
505	D_MODULE(HCLK_GMAC0, "hclk_gmac0", CLK_REF_SYNC_D4, RB(0x6c, 0),
506		 RB(0x6c, 1), RB(0x6c, 2), RB(0x6c, 3),
507		 RB(0x78, 0), RB(0x78, 1), RB(0x78, 2)),
508	D_MODULE(HCLK_GMAC1, "hclk_gmac1", CLK_REF_SYNC_D4, RB(0x70, 0),
509		 RB(0x70, 1), RB(0x70, 2), RB(0x70, 3),
510		 RB(0x7c, 0), RB(0x7c, 1), RB(0x7c, 2)),
511	D_MODULE(HCLK_GPIO0, "hclk_gpio0", CLK_REF_SYNC_D4, RB(0x40, 18),
512		 RB(0x40, 19), RB(0x40, 20), RB(0x00, 0),
513		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
514	D_MODULE(HCLK_GPIO1, "hclk_gpio1", CLK_REF_SYNC_D4, RB(0x40, 21),
515		 RB(0x40, 22), RB(0x40, 23), RB(0x00, 0),
516		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
517	D_MODULE(HCLK_GPIO2, "hclk_gpio2", CLK_REF_SYNC_D4, RB(0x44, 9),
518		 RB(0x44, 10), RB(0x44, 11), RB(0x00, 0),
519		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
520	D_MODULE(HCLK_HSR, "hclk_hsr", CLK_HSR100_D2, RB(0x90, 0),
521		 RB(0x90, 2), RB(0x00, 0), RB(0x90, 1),
522		 RB(0x00, 0), RB(0x98, 0), RB(0x98, 1)),
523	D_MODULE(HCLK_I2C0, "hclk_i2c0", CLK_REF_SYNC_D8, RB(0x34, 9),
524		 RB(0x34, 10), RB(0x34, 11), RB(0x00, 0),
525		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
526	D_MODULE(HCLK_I2C1, "hclk_i2c1", CLK_REF_SYNC_D8, RB(0x34, 12),
527		 RB(0x34, 13), RB(0x34, 14), RB(0x00, 0),
528		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
529	D_MODULE(HCLK_LCD, "hclk_lcd", CLK_REF_SYNC_D4, RB(0xf4, 0),
530		 RB(0xf4, 1), RB(0xf4, 2), RB(0x00, 0),
531		 RB(0x164, 0), RB(0x00, 0), RB(0x00, 0)),
532	D_MODULE(HCLK_MSEBI_M, "hclk_msebi_m", CLK_REF_SYNC_D4, RB(0x2c, 4),
533		 RB(0x2c, 5), RB(0x2c, 6), RB(0x00, 0),
534		 RB(0x30, 3), RB(0x00, 0), RB(0x00, 0)),
535	D_MODULE(HCLK_MSEBI_S, "hclk_msebi_s", CLK_REF_SYNC_D4, RB(0x2c, 0),
536		 RB(0x2c, 1), RB(0x2c, 2), RB(0x2c, 3),
537		 RB(0x30, 0), RB(0x30, 1), RB(0x30, 2)),
538	D_MODULE(HCLK_NAND, "hclk_nand", CLK_REF_SYNC_D4, RB(0x50, 0),
539		 RB(0x50, 1), RB(0x50, 2), RB(0x50, 3),
540		 RB(0x5c, 0), RB(0x5c, 1), RB(0x5c, 2)),
541	D_MODULE(HCLK_PG_I, "hclk_pg_i", CLK_REF_SYNC_D4, RB(0xf4, 12),
542		 RB(0xf4, 13), RB(0x00, 0), RB(0xf4, 14),
543		 RB(0x00, 0), RB(0x164, 4), RB(0x164, 5)),
544	D_MODULE(HCLK_PG19, "hclk_pg19", CLK_REF_SYNC_D4, RB(0x44, 12),
545		 RB(0x44, 13), RB(0x44, 14), RB(0x00, 0),
546		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
547	D_MODULE(HCLK_PG20, "hclk_pg20", CLK_REF_SYNC_D4, RB(0x44, 15),
548		 RB(0x44, 16), RB(0x44, 17), RB(0x00, 0),
549		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
550	D_MODULE(HCLK_PG3, "hclk_pg3", CLK_REF_SYNC_D4, RB(0xf4, 6),
551		 RB(0xf4, 7), RB(0xf4, 8), RB(0x00, 0),
552		 RB(0x164, 2), RB(0x00, 0), RB(0x00, 0)),
553	D_MODULE(HCLK_PG4, "hclk_pg4", CLK_REF_SYNC_D4, RB(0xf4, 9),
554		 RB(0xf4, 10), RB(0xf4, 11), RB(0x00, 0),
555		 RB(0x164, 3), RB(0x00, 0), RB(0x00, 0)),
556	D_MODULE(HCLK_QSPI0, "hclk_qspi0", CLK_REF_SYNC_D4, RB(0x54, 0),
557		 RB(0x54, 1), RB(0x54, 2), RB(0x54, 3),
558		 RB(0x60, 0), RB(0x60, 1), RB(0x60, 2)),
559	D_MODULE(HCLK_QSPI1, "hclk_qspi1", CLK_REF_SYNC_D4, RB(0x90, 0),
560		 RB(0x90, 1), RB(0x90, 2), RB(0x90, 3),
561		 RB(0x98, 0), RB(0x98, 1), RB(0x98, 2)),
562	D_MODULE(HCLK_ROM, "hclk_rom", CLK_REF_SYNC_D4, RB(0x154, 0),
563		 RB(0x154, 1), RB(0x154, 2), RB(0x00, 0),
564		 RB(0x170, 0), RB(0x00, 0), RB(0x00, 0)),
565	D_MODULE(HCLK_RTC, "hclk_rtc", CLK_REF_SYNC_D8, RB(0x140, 0),
566		 RB(0x140, 3), RB(0x00, 0), RB(0x140, 2),
567		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
568	D_MODULE(HCLK_SDIO0, "hclk_sdio0", CLK_REF_SYNC_D4, RB(0x0c, 0),
569		 RB(0x0c, 1), RB(0x0c, 2), RB(0x0c, 3),
570		 RB(0x10, 0), RB(0x10, 1), RB(0x10, 2)),
571	D_MODULE(HCLK_SDIO1, "hclk_sdio1", CLK_REF_SYNC_D4, RB(0xc8, 0),
572		 RB(0xc8, 1), RB(0xc8, 2), RB(0xc8, 3),
573		 RB(0xcc, 0), RB(0xcc, 1), RB(0xcc, 2)),
574	D_MODULE(HCLK_SEMAP, "hclk_semap", CLK_REF_SYNC_D4, RB(0xf4, 3),
575		 RB(0xf4, 4), RB(0xf4, 5), RB(0x00, 0),
576		 RB(0x164, 1), RB(0x00, 0), RB(0x00, 0)),
577	D_MODULE(HCLK_SPI0, "hclk_spi0", CLK_REF_SYNC_D4, RB(0x40, 0),
578		 RB(0x40, 1), RB(0x40, 2), RB(0x00, 0),
579		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
580	D_MODULE(HCLK_SPI1, "hclk_spi1", CLK_REF_SYNC_D4, RB(0x40, 3),
581		 RB(0x40, 4), RB(0x40, 5), RB(0x00, 0),
582		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
583	D_MODULE(HCLK_SPI2, "hclk_spi2", CLK_REF_SYNC_D4, RB(0x40, 6),
584		 RB(0x40, 7), RB(0x40, 8), RB(0x00, 0),
585		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
586	D_MODULE(HCLK_SPI3, "hclk_spi3", CLK_REF_SYNC_D4, RB(0x40, 9),
587		 RB(0x40, 10), RB(0x40, 11), RB(0x00, 0),
588		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
589	D_MODULE(HCLK_SPI4, "hclk_spi4", CLK_REF_SYNC_D4, RB(0x40, 12),
590		 RB(0x40, 13), RB(0x40, 14), RB(0x00, 0),
591		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
592	D_MODULE(HCLK_SPI5, "hclk_spi5", CLK_REF_SYNC_D4, RB(0x40, 15),
593		 RB(0x40, 16), RB(0x40, 17), RB(0x00, 0),
594		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
595	D_MODULE(HCLK_SWITCH, "hclk_switch", CLK_REF_SYNC_D4, RB(0x130, 0),
596		 RB(0x00, 0), RB(0x130, 1), RB(0x00, 0),
597		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
598	D_MODULE(HCLK_SWITCH_RG, "hclk_switch_rg", CLK_REF_SYNC_D4, RB(0x188, 0),
599		 RB(0x188, 1), RB(0x188, 2), RB(0x00, 0),
600		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
601	D_MODULE(HCLK_UART0, "hclk_uart0", CLK_REF_SYNC_D8, RB(0x34, 0),
602		 RB(0x34, 1), RB(0x34, 2), RB(0x00, 0),
603		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
604	D_MODULE(HCLK_UART1, "hclk_uart1", CLK_REF_SYNC_D8, RB(0x34, 3),
605		 RB(0x34, 4), RB(0x34, 5), RB(0x00, 0),
606		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
607	D_MODULE(HCLK_UART2, "hclk_uart2", CLK_REF_SYNC_D8, RB(0x34, 6),
608		 RB(0x34, 7), RB(0x34, 8), RB(0x00, 0),
609		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
610	D_MODULE(HCLK_UART3, "hclk_uart3", CLK_REF_SYNC_D4, RB(0x40, 24),
611		 RB(0x40, 25), RB(0x40, 26), RB(0x00, 0),
612		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
613	D_MODULE(HCLK_UART4, "hclk_uart4", CLK_REF_SYNC_D4, RB(0x40, 27),
614		 RB(0x40, 28), RB(0x40, 29), RB(0x00, 0),
615		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
616	D_MODULE(HCLK_UART5, "hclk_uart5", CLK_REF_SYNC_D4, RB(0x44, 0),
617		 RB(0x44, 1), RB(0x44, 2), RB(0x00, 0),
618		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
619	D_MODULE(HCLK_UART6, "hclk_uart6", CLK_REF_SYNC_D4, RB(0x44, 3),
620		 RB(0x44, 4), RB(0x44, 5), RB(0x00, 0),
621		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
622	D_MODULE(HCLK_UART7, "hclk_uart7", CLK_REF_SYNC_D4, RB(0x44, 6),
623		 RB(0x44, 7), RB(0x44, 8), RB(0x00, 0),
624		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
625	/*
626	 * These are not hardware clocks, but are needed to handle the special
627	 * case where we have a 'selector bit' that doesn't just change the
628	 * parent for a clock, but also the gate it's supposed to use.
629	 */
630	{
631		.index = R9A06G032_UART_GROUP_012,
632		.name = "uart_group_012",
633		.type = K_BITSEL,
634		.source = 1 + R9A06G032_DIV_UART,
635		/* R9A06G032_SYSCTRL_REG_PWRCTRL_PG0_0 */
636		.dual.sel = RB(0x34, 30),
637		.dual.group = 0,
638	},
639	{
640		.index = R9A06G032_UART_GROUP_34567,
641		.name = "uart_group_34567",
642		.type = K_BITSEL,
643		.source = 1 + R9A06G032_DIV_P2_PG,
644		/* R9A06G032_SYSCTRL_REG_PWRCTRL_PG1_PR2 */
645		.dual.sel = RB(0xec, 24),
646		.dual.group = 1,
647	},
648	D_UGATE(CLK_UART0, "clk_uart0", UART_GROUP_012, 0,
649		RB(0x34, 18), RB(0x34, 19), RB(0x34, 20), RB(0x34, 21)),
650	D_UGATE(CLK_UART1, "clk_uart1", UART_GROUP_012, 0,
651		RB(0x34, 22), RB(0x34, 23), RB(0x34, 24), RB(0x34, 25)),
652	D_UGATE(CLK_UART2, "clk_uart2", UART_GROUP_012, 0,
653		RB(0x34, 26), RB(0x34, 27), RB(0x34, 28), RB(0x34, 29)),
654	D_UGATE(CLK_UART3, "clk_uart3", UART_GROUP_34567, 1,
655		RB(0xec, 0), RB(0xec, 1), RB(0xec, 2), RB(0xec, 3)),
656	D_UGATE(CLK_UART4, "clk_uart4", UART_GROUP_34567, 1,
657		RB(0xec, 4), RB(0xec, 5), RB(0xec, 6), RB(0xec, 7)),
658	D_UGATE(CLK_UART5, "clk_uart5", UART_GROUP_34567, 1,
659		RB(0xec, 8), RB(0xec, 9), RB(0xec, 10), RB(0xec, 11)),
660	D_UGATE(CLK_UART6, "clk_uart6", UART_GROUP_34567, 1,
661		RB(0xec, 12), RB(0xec, 13), RB(0xec, 14), RB(0xec, 15)),
662	D_UGATE(CLK_UART7, "clk_uart7", UART_GROUP_34567, 1,
663		RB(0xec, 16), RB(0xec, 17), RB(0xec, 18), RB(0xec, 19)),
664};
665
666struct r9a06g032_priv {
667	struct clk_onecell_data data;
668	spinlock_t lock; /* protects concurrent access to gates */
669	void __iomem *reg;
670};
671
672static struct r9a06g032_priv *sysctrl_priv;
673
674/* Exported helper to access the DMAMUX register */
675int r9a06g032_sysctrl_set_dmamux(u32 mask, u32 val)
676{
677	unsigned long flags;
678	u32 dmamux;
679
680	if (!sysctrl_priv)
681		return -EPROBE_DEFER;
682
683	spin_lock_irqsave(&sysctrl_priv->lock, flags);
684
685	dmamux = readl(sysctrl_priv->reg + R9A06G032_SYSCTRL_DMAMUX);
686	dmamux &= ~mask;
687	dmamux |= val & mask;
688	writel(dmamux, sysctrl_priv->reg + R9A06G032_SYSCTRL_DMAMUX);
689
690	spin_unlock_irqrestore(&sysctrl_priv->lock, flags);
691
692	return 0;
693}
694EXPORT_SYMBOL_GPL(r9a06g032_sysctrl_set_dmamux);
695
696static void clk_rdesc_set(struct r9a06g032_priv *clocks,
697			  struct regbit rb, unsigned int on)
698{
699	u32 __iomem *reg = clocks->reg + (rb.reg * 4);
700	u32 val;
701
702	if (!rb.reg && !rb.bit)
703		return;
704
705	val = readl(reg);
706	val = (val & ~BIT(rb.bit)) | ((!!on) << rb.bit);
707	writel(val, reg);
708}
709
710static int clk_rdesc_get(struct r9a06g032_priv *clocks, struct regbit rb)
711{
712	u32 __iomem *reg = clocks->reg + (rb.reg * 4);
713	u32 val = readl(reg);
714
715	return !!(val & BIT(rb.bit));
716}
717
718/*
719 * This implements the R9A06G032 clock gate 'driver'. We cannot use the system's
720 * clock gate framework as the gates on the R9A06G032 have a special enabling
721 * sequence, therefore we use this little proxy.
722 */
723struct r9a06g032_clk_gate {
724	struct clk_hw hw;
725	struct r9a06g032_priv *clocks;
726	u16 index;
727
728	struct r9a06g032_gate gate;
729};
730
731#define to_r9a06g032_gate(_hw) container_of(_hw, struct r9a06g032_clk_gate, hw)
732
733static int create_add_module_clock(struct of_phandle_args *clkspec,
734				   struct device *dev)
735{
736	struct clk *clk;
737	int error;
738
739	clk = of_clk_get_from_provider(clkspec);
740	if (IS_ERR(clk))
741		return PTR_ERR(clk);
742
743	error = pm_clk_create(dev);
744	if (error) {
745		clk_put(clk);
746		return error;
747	}
748
749	error = pm_clk_add_clk(dev, clk);
750	if (error) {
751		pm_clk_destroy(dev);
752		clk_put(clk);
753	}
754
755	return error;
756}
757
758static int r9a06g032_attach_dev(struct generic_pm_domain *pd,
759				struct device *dev)
760{
761	struct device_node *np = dev->of_node;
762	struct of_phandle_args clkspec;
763	int i = 0;
764	int error;
765	int index;
766
767	while (!of_parse_phandle_with_args(np, "clocks", "#clock-cells", i++,
768					   &clkspec)) {
769		if (clkspec.np != pd->dev.of_node)
770			continue;
771
772		index = clkspec.args[0];
773		if (index < R9A06G032_CLOCK_COUNT &&
774		    r9a06g032_clocks[index].managed) {
775			error = create_add_module_clock(&clkspec, dev);
776			of_node_put(clkspec.np);
777			if (error)
778				return error;
779		}
780	}
781
782	return 0;
783}
784
785static void r9a06g032_detach_dev(struct generic_pm_domain *unused, struct device *dev)
786{
787	if (!pm_clk_no_clocks(dev))
788		pm_clk_destroy(dev);
789}
790
791static int r9a06g032_add_clk_domain(struct device *dev)
792{
793	struct device_node *np = dev->of_node;
794	struct generic_pm_domain *pd;
795
796	pd = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
797	if (!pd)
798		return -ENOMEM;
799
800	pd->name = np->name;
801	pd->flags = GENPD_FLAG_PM_CLK | GENPD_FLAG_ALWAYS_ON |
802		    GENPD_FLAG_ACTIVE_WAKEUP;
803	pd->attach_dev = r9a06g032_attach_dev;
804	pd->detach_dev = r9a06g032_detach_dev;
805	pm_genpd_init(pd, &pm_domain_always_on_gov, false);
806
807	of_genpd_add_provider_simple(np, pd);
808	return 0;
809}
810
811static void
812r9a06g032_clk_gate_set(struct r9a06g032_priv *clocks,
813		       struct r9a06g032_gate *g, int on)
814{
815	unsigned long flags;
816
817	WARN_ON(!g->gate.reg && !g->gate.bit);
818
819	spin_lock_irqsave(&clocks->lock, flags);
820	clk_rdesc_set(clocks, g->gate, on);
821	/* De-assert reset */
822	clk_rdesc_set(clocks, g->reset, 1);
823	spin_unlock_irqrestore(&clocks->lock, flags);
824
825	/* Hardware manual recommends 5us delay after enabling clock & reset */
826	udelay(5);
827
828	/* If the peripheral is memory mapped (i.e. an AXI slave), there is an
829	 * associated SLVRDY bit in the System Controller that needs to be set
830	 * so that the FlexWAY bus fabric passes on the read/write requests.
831	 */
832	spin_lock_irqsave(&clocks->lock, flags);
833	clk_rdesc_set(clocks, g->ready, on);
834	/* Clear 'Master Idle Request' bit */
835	clk_rdesc_set(clocks, g->midle, !on);
836	spin_unlock_irqrestore(&clocks->lock, flags);
837
838	/* Note: We don't wait for FlexWAY Socket Connection signal */
839}
840
841static int r9a06g032_clk_gate_enable(struct clk_hw *hw)
842{
843	struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw);
844
845	r9a06g032_clk_gate_set(g->clocks, &g->gate, 1);
846	return 0;
847}
848
849static void r9a06g032_clk_gate_disable(struct clk_hw *hw)
850{
851	struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw);
852
853	r9a06g032_clk_gate_set(g->clocks, &g->gate, 0);
854}
855
856static int r9a06g032_clk_gate_is_enabled(struct clk_hw *hw)
857{
858	struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw);
859
860	/* if clock is in reset, the gate might be on, and still not 'be' on */
861	if (g->gate.reset.reg && !clk_rdesc_get(g->clocks, g->gate.reset))
862		return 0;
863
864	return clk_rdesc_get(g->clocks, g->gate.gate);
865}
866
867static const struct clk_ops r9a06g032_clk_gate_ops = {
868	.enable = r9a06g032_clk_gate_enable,
869	.disable = r9a06g032_clk_gate_disable,
870	.is_enabled = r9a06g032_clk_gate_is_enabled,
871};
872
873static struct clk *
874r9a06g032_register_gate(struct r9a06g032_priv *clocks,
875			const char *parent_name,
876			const struct r9a06g032_clkdesc *desc)
877{
878	struct clk *clk;
879	struct r9a06g032_clk_gate *g;
880	struct clk_init_data init = {};
881
882	g = kzalloc(sizeof(*g), GFP_KERNEL);
883	if (!g)
884		return NULL;
885
886	init.name = desc->name;
887	init.ops = &r9a06g032_clk_gate_ops;
888	init.flags = CLK_SET_RATE_PARENT;
889	init.parent_names = parent_name ? &parent_name : NULL;
890	init.num_parents = parent_name ? 1 : 0;
891
892	g->clocks = clocks;
893	g->index = desc->index;
894	g->gate = desc->gate;
895	g->hw.init = &init;
896
897	/*
898	 * important here, some clocks are already in use by the CM3, we
899	 * have to assume they are not Linux's to play with and try to disable
900	 * at the end of the boot!
901	 */
902	if (r9a06g032_clk_gate_is_enabled(&g->hw)) {
903		init.flags |= CLK_IS_CRITICAL;
904		pr_debug("%s was enabled, making read-only\n", desc->name);
905	}
906
907	clk = clk_register(NULL, &g->hw);
908	if (IS_ERR(clk)) {
909		kfree(g);
910		return NULL;
911	}
912	return clk;
913}
914
915struct r9a06g032_clk_div {
916	struct clk_hw hw;
917	struct r9a06g032_priv *clocks;
918	u16 index;
919	u16 reg;
920	u16 min, max;
921	u8 table_size;
922	u16 table[8];	/* we know there are no more than 8 */
923};
924
925#define to_r9a06g032_div(_hw) \
926		container_of(_hw, struct r9a06g032_clk_div, hw)
927
928static unsigned long
929r9a06g032_div_recalc_rate(struct clk_hw *hw,
930			  unsigned long parent_rate)
931{
932	struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw);
933	u32 __iomem *reg = clk->clocks->reg + (4 * clk->reg);
934	u32 div = readl(reg);
935
936	if (div < clk->min)
937		div = clk->min;
938	else if (div > clk->max)
939		div = clk->max;
940	return DIV_ROUND_UP(parent_rate, div);
941}
942
943/*
944 * Attempts to find a value that is in range of min,max,
945 * and if a table of set dividers was specified for this
946 * register, try to find the fixed divider that is the closest
947 * to the target frequency
948 */
949static long
950r9a06g032_div_clamp_div(struct r9a06g032_clk_div *clk,
951			unsigned long rate, unsigned long prate)
952{
953	/* + 1 to cope with rates that have the remainder dropped */
954	u32 div = DIV_ROUND_UP(prate, rate + 1);
955	int i;
956
957	if (div <= clk->min)
958		return clk->min;
959	if (div >= clk->max)
960		return clk->max;
961
962	for (i = 0; clk->table_size && i < clk->table_size - 1; i++) {
963		if (div >= clk->table[i] && div <= clk->table[i + 1]) {
964			unsigned long m = rate -
965				DIV_ROUND_UP(prate, clk->table[i]);
966			unsigned long p =
967				DIV_ROUND_UP(prate, clk->table[i + 1]) -
968				rate;
969			/*
970			 * select the divider that generates
971			 * the value closest to the ideal frequency
972			 */
973			div = p >= m ? clk->table[i] : clk->table[i + 1];
974			return div;
975		}
976	}
977	return div;
978}
979
980static int
981r9a06g032_div_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
982{
983	struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw);
984	u32 div = DIV_ROUND_UP(req->best_parent_rate, req->rate);
985
986	pr_devel("%s %pC %ld (prate %ld) (wanted div %u)\n", __func__,
987		 hw->clk, req->rate, req->best_parent_rate, div);
988	pr_devel("   min %d (%ld) max %d (%ld)\n",
989		 clk->min, DIV_ROUND_UP(req->best_parent_rate, clk->min),
990		 clk->max, DIV_ROUND_UP(req->best_parent_rate, clk->max));
991
992	div = r9a06g032_div_clamp_div(clk, req->rate, req->best_parent_rate);
993	/*
994	 * this is a hack. Currently the serial driver asks for a clock rate
995	 * that is 16 times the baud rate -- and that is wildly outside the
996	 * range of the UART divider, somehow there is no provision for that
997	 * case of 'let the divider as is if outside range'.
998	 * The serial driver *shouldn't* play with these clocks anyway, there's
999	 * several uarts attached to this divider, and changing this impacts
1000	 * everyone.
1001	 */
1002	if (clk->index == R9A06G032_DIV_UART ||
1003	    clk->index == R9A06G032_DIV_P2_PG) {
1004		pr_devel("%s div uart hack!\n", __func__);
1005		req->rate = clk_get_rate(hw->clk);
1006		return 0;
1007	}
1008	req->rate = DIV_ROUND_UP(req->best_parent_rate, div);
1009	pr_devel("%s %pC %ld / %u = %ld\n", __func__, hw->clk,
1010		 req->best_parent_rate, div, req->rate);
1011	return 0;
1012}
1013
1014static int
1015r9a06g032_div_set_rate(struct clk_hw *hw,
1016		       unsigned long rate, unsigned long parent_rate)
1017{
1018	struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw);
1019	/* + 1 to cope with rates that have the remainder dropped */
1020	u32 div = DIV_ROUND_UP(parent_rate, rate + 1);
1021	u32 __iomem *reg = clk->clocks->reg + (4 * clk->reg);
1022
1023	pr_devel("%s %pC rate %ld parent %ld div %d\n", __func__, hw->clk,
1024		 rate, parent_rate, div);
1025
1026	/*
1027	 * Need to write the bit 31 with the divider value to
1028	 * latch it. Technically we should wait until it has been
1029	 * cleared too.
1030	 * TODO: Find whether this callback is sleepable, in case
1031	 * the hardware /does/ require some sort of spinloop here.
1032	 */
1033	writel(div | BIT(31), reg);
1034
1035	return 0;
1036}
1037
1038static const struct clk_ops r9a06g032_clk_div_ops = {
1039	.recalc_rate = r9a06g032_div_recalc_rate,
1040	.determine_rate = r9a06g032_div_determine_rate,
1041	.set_rate = r9a06g032_div_set_rate,
1042};
1043
1044static struct clk *
1045r9a06g032_register_div(struct r9a06g032_priv *clocks,
1046		       const char *parent_name,
1047		       const struct r9a06g032_clkdesc *desc)
1048{
1049	struct r9a06g032_clk_div *div;
1050	struct clk *clk;
1051	struct clk_init_data init = {};
1052	unsigned int i;
1053
1054	div = kzalloc(sizeof(*div), GFP_KERNEL);
1055	if (!div)
1056		return NULL;
1057
1058	init.name = desc->name;
1059	init.ops = &r9a06g032_clk_div_ops;
1060	init.flags = CLK_SET_RATE_PARENT;
1061	init.parent_names = parent_name ? &parent_name : NULL;
1062	init.num_parents = parent_name ? 1 : 0;
1063
1064	div->clocks = clocks;
1065	div->index = desc->index;
1066	div->reg = desc->reg;
1067	div->hw.init = &init;
1068	div->min = desc->div_min;
1069	div->max = desc->div_max;
1070	/* populate (optional) divider table fixed values */
1071	for (i = 0; i < ARRAY_SIZE(div->table) &&
1072	     i < ARRAY_SIZE(desc->div_table) && desc->div_table[i]; i++) {
1073		div->table[div->table_size++] = desc->div_table[i];
1074	}
1075
1076	clk = clk_register(NULL, &div->hw);
1077	if (IS_ERR(clk)) {
1078		kfree(div);
1079		return NULL;
1080	}
1081	return clk;
1082}
1083
1084/*
1085 * This clock provider handles the case of the R9A06G032 where you have
1086 * peripherals that have two potential clock source and two gates, one for
1087 * each of the clock source - the used clock source (for all sub clocks)
1088 * is selected by a single bit.
1089 * That single bit affects all sub-clocks, and therefore needs to change the
1090 * active gate (and turn the others off) and force a recalculation of the rates.
1091 *
1092 * This implements two clock providers, one 'bitselect' that
1093 * handles the switch between both parents, and another 'dualgate'
1094 * that knows which gate to poke at, depending on the parent's bit position.
1095 */
1096struct r9a06g032_clk_bitsel {
1097	struct clk_hw	hw;
1098	struct r9a06g032_priv *clocks;
1099	u16 index;
1100	struct regbit selector;		/* selector register + bit */
1101};
1102
1103#define to_clk_bitselect(_hw) \
1104		container_of(_hw, struct r9a06g032_clk_bitsel, hw)
1105
1106static u8 r9a06g032_clk_mux_get_parent(struct clk_hw *hw)
1107{
1108	struct r9a06g032_clk_bitsel *set = to_clk_bitselect(hw);
1109
1110	return clk_rdesc_get(set->clocks, set->selector);
1111}
1112
1113static int r9a06g032_clk_mux_set_parent(struct clk_hw *hw, u8 index)
1114{
1115	struct r9a06g032_clk_bitsel *set = to_clk_bitselect(hw);
1116
1117	/* a single bit in the register selects one of two parent clocks */
1118	clk_rdesc_set(set->clocks, set->selector, !!index);
1119
1120	return 0;
1121}
1122
1123static const struct clk_ops clk_bitselect_ops = {
1124	.determine_rate = clk_hw_determine_rate_no_reparent,
1125	.get_parent = r9a06g032_clk_mux_get_parent,
1126	.set_parent = r9a06g032_clk_mux_set_parent,
1127};
1128
1129static struct clk *
1130r9a06g032_register_bitsel(struct r9a06g032_priv *clocks,
1131			  const char *parent_name,
1132			  const struct r9a06g032_clkdesc *desc)
1133{
1134	struct clk *clk;
1135	struct r9a06g032_clk_bitsel *g;
1136	struct clk_init_data init = {};
1137	const char *names[2];
1138
1139	/* allocate the gate */
1140	g = kzalloc(sizeof(*g), GFP_KERNEL);
1141	if (!g)
1142		return NULL;
1143
1144	names[0] = parent_name;
1145	names[1] = "clk_pll_usb";
1146
1147	init.name = desc->name;
1148	init.ops = &clk_bitselect_ops;
1149	init.flags = CLK_SET_RATE_PARENT;
1150	init.parent_names = names;
1151	init.num_parents = 2;
1152
1153	g->clocks = clocks;
1154	g->index = desc->index;
1155	g->selector = desc->dual.sel;
1156	g->hw.init = &init;
1157
1158	clk = clk_register(NULL, &g->hw);
1159	if (IS_ERR(clk)) {
1160		kfree(g);
1161		return NULL;
1162	}
1163	return clk;
1164}
1165
1166struct r9a06g032_clk_dualgate {
1167	struct clk_hw	hw;
1168	struct r9a06g032_priv *clocks;
1169	u16 index;
1170	struct regbit selector;		/* selector register + bit */
1171	struct r9a06g032_gate gate[2];
1172};
1173
1174#define to_clk_dualgate(_hw) \
1175		container_of(_hw, struct r9a06g032_clk_dualgate, hw)
1176
1177static int
1178r9a06g032_clk_dualgate_setenable(struct r9a06g032_clk_dualgate *g, int enable)
1179{
1180	u8 sel_bit = clk_rdesc_get(g->clocks, g->selector);
1181
1182	/* we always turn off the 'other' gate, regardless */
1183	r9a06g032_clk_gate_set(g->clocks, &g->gate[!sel_bit], 0);
1184	r9a06g032_clk_gate_set(g->clocks, &g->gate[sel_bit], enable);
1185
1186	return 0;
1187}
1188
1189static int r9a06g032_clk_dualgate_enable(struct clk_hw *hw)
1190{
1191	struct r9a06g032_clk_dualgate *gate = to_clk_dualgate(hw);
1192
1193	r9a06g032_clk_dualgate_setenable(gate, 1);
1194
1195	return 0;
1196}
1197
1198static void r9a06g032_clk_dualgate_disable(struct clk_hw *hw)
1199{
1200	struct r9a06g032_clk_dualgate *gate = to_clk_dualgate(hw);
1201
1202	r9a06g032_clk_dualgate_setenable(gate, 0);
1203}
1204
1205static int r9a06g032_clk_dualgate_is_enabled(struct clk_hw *hw)
1206{
1207	struct r9a06g032_clk_dualgate *g = to_clk_dualgate(hw);
1208	u8 sel_bit = clk_rdesc_get(g->clocks, g->selector);
1209
1210	return clk_rdesc_get(g->clocks, g->gate[sel_bit].gate);
1211}
1212
1213static const struct clk_ops r9a06g032_clk_dualgate_ops = {
1214	.enable = r9a06g032_clk_dualgate_enable,
1215	.disable = r9a06g032_clk_dualgate_disable,
1216	.is_enabled = r9a06g032_clk_dualgate_is_enabled,
1217};
1218
1219static struct clk *
1220r9a06g032_register_dualgate(struct r9a06g032_priv *clocks,
1221			    const char *parent_name,
1222			    const struct r9a06g032_clkdesc *desc,
1223			    struct regbit sel)
1224{
1225	struct r9a06g032_clk_dualgate *g;
1226	struct clk *clk;
1227	struct clk_init_data init = {};
1228
1229	/* allocate the gate */
1230	g = kzalloc(sizeof(*g), GFP_KERNEL);
1231	if (!g)
1232		return NULL;
1233	g->clocks = clocks;
1234	g->index = desc->index;
1235	g->selector = sel;
1236	g->gate[0].gate = desc->dual.g1;
1237	g->gate[0].reset = desc->dual.r1;
1238	g->gate[1].gate = desc->dual.g2;
1239	g->gate[1].reset = desc->dual.r2;
1240
1241	init.name = desc->name;
1242	init.ops = &r9a06g032_clk_dualgate_ops;
1243	init.flags = CLK_SET_RATE_PARENT;
1244	init.parent_names = &parent_name;
1245	init.num_parents = 1;
1246	g->hw.init = &init;
1247	/*
1248	 * important here, some clocks are already in use by the CM3, we
1249	 * have to assume they are not Linux's to play with and try to disable
1250	 * at the end of the boot!
1251	 */
1252	if (r9a06g032_clk_dualgate_is_enabled(&g->hw)) {
1253		init.flags |= CLK_IS_CRITICAL;
1254		pr_debug("%s was enabled, making read-only\n", desc->name);
1255	}
1256
1257	clk = clk_register(NULL, &g->hw);
1258	if (IS_ERR(clk)) {
1259		kfree(g);
1260		return NULL;
1261	}
1262	return clk;
1263}
1264
1265static void r9a06g032_clocks_del_clk_provider(void *data)
1266{
1267	of_clk_del_provider(data);
1268}
1269
1270static void __init r9a06g032_init_h2mode(struct r9a06g032_priv *clocks)
1271{
1272	struct device_node *usbf_np = NULL;
1273	u32 usb;
1274
1275	while ((usbf_np = of_find_compatible_node(usbf_np, NULL,
1276						  "renesas,rzn1-usbf"))) {
1277		if (of_device_is_available(usbf_np))
1278			break;
1279	}
1280
1281	usb = readl(clocks->reg + R9A06G032_SYSCTRL_USB);
1282	if (usbf_np) {
1283		/* 1 host and 1 device mode */
1284		usb &= ~R9A06G032_SYSCTRL_USB_H2MODE;
1285		of_node_put(usbf_np);
1286	} else {
1287		/* 2 hosts mode */
1288		usb |= R9A06G032_SYSCTRL_USB_H2MODE;
1289	}
1290	writel(usb, clocks->reg + R9A06G032_SYSCTRL_USB);
1291}
1292
1293static int __init r9a06g032_clocks_probe(struct platform_device *pdev)
1294{
1295	struct device *dev = &pdev->dev;
1296	struct device_node *np = dev->of_node;
1297	struct r9a06g032_priv *clocks;
1298	struct clk **clks;
1299	struct clk *mclk;
1300	unsigned int i;
1301	struct regbit uart_group_sel[2];
1302	int error;
1303
1304	clocks = devm_kzalloc(dev, sizeof(*clocks), GFP_KERNEL);
1305	clks = devm_kcalloc(dev, R9A06G032_CLOCK_COUNT, sizeof(struct clk *),
1306			    GFP_KERNEL);
1307	if (!clocks || !clks)
1308		return -ENOMEM;
1309
1310	spin_lock_init(&clocks->lock);
1311
1312	clocks->data.clks = clks;
1313	clocks->data.clk_num = R9A06G032_CLOCK_COUNT;
1314
1315	mclk = devm_clk_get(dev, "mclk");
1316	if (IS_ERR(mclk))
1317		return PTR_ERR(mclk);
1318
1319	clocks->reg = of_iomap(np, 0);
1320	if (WARN_ON(!clocks->reg))
1321		return -ENOMEM;
1322
1323	r9a06g032_init_h2mode(clocks);
1324
1325	for (i = 0; i < ARRAY_SIZE(r9a06g032_clocks); ++i) {
1326		const struct r9a06g032_clkdesc *d = &r9a06g032_clocks[i];
1327		const char *parent_name = d->source ?
1328			__clk_get_name(clocks->data.clks[d->source - 1]) :
1329			__clk_get_name(mclk);
1330		struct clk *clk = NULL;
1331
1332		switch (d->type) {
1333		case K_FFC:
1334			clk = clk_register_fixed_factor(NULL, d->name,
1335							parent_name, 0,
1336							d->mul, d->div);
1337			break;
1338		case K_GATE:
1339			clk = r9a06g032_register_gate(clocks, parent_name, d);
1340			break;
1341		case K_DIV:
1342			clk = r9a06g032_register_div(clocks, parent_name, d);
1343			break;
1344		case K_BITSEL:
1345			/* keep that selector register around */
1346			uart_group_sel[d->dual.group] = d->dual.sel;
1347			clk = r9a06g032_register_bitsel(clocks, parent_name, d);
1348			break;
1349		case K_DUALGATE:
1350			clk = r9a06g032_register_dualgate(clocks, parent_name,
1351							  d,
1352							  uart_group_sel[d->dual.group]);
1353			break;
1354		}
1355		clocks->data.clks[d->index] = clk;
1356	}
1357	error = of_clk_add_provider(np, of_clk_src_onecell_get, &clocks->data);
1358	if (error)
1359		return error;
1360
1361	error = devm_add_action_or_reset(dev,
1362					r9a06g032_clocks_del_clk_provider, np);
1363	if (error)
1364		return error;
1365
1366	error = r9a06g032_add_clk_domain(dev);
1367	if (error)
1368		return error;
1369
1370	sysctrl_priv = clocks;
1371
1372	error = of_platform_populate(np, NULL, NULL, dev);
1373	if (error)
1374		dev_err(dev, "Failed to populate children (%d)\n", error);
1375
1376	return 0;
1377}
1378
1379static const struct of_device_id r9a06g032_match[] = {
1380	{ .compatible = "renesas,r9a06g032-sysctrl" },
1381	{ }
1382};
1383
1384static struct platform_driver r9a06g032_clock_driver = {
1385	.driver		= {
1386		.name	= "renesas,r9a06g032-sysctrl",
1387		.of_match_table = r9a06g032_match,
1388	},
1389};
1390
1391static int __init r9a06g032_clocks_init(void)
1392{
1393	return platform_driver_probe(&r9a06g032_clock_driver,
1394			r9a06g032_clocks_probe);
1395}
1396
1397subsys_initcall(r9a06g032_clocks_init);
1398