1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Common clock framework driver for the Versaclock7 family of timing devices.
4 *
5 * Copyright (c) 2022 Renesas Electronics Corporation
6 */
7
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10#include <linux/bitfield.h>
11#include <linux/clk.h>
12#include <linux/clk-provider.h>
13#include <linux/i2c.h>
14#include <linux/math64.h>
15#include <linux/module.h>
16#include <linux/of.h>
17#include <linux/property.h>
18#include <linux/regmap.h>
19#include <linux/swab.h>
20
21/*
22 * 16-bit register address: the lower 8 bits of the register address come
23 * from the offset addr byte and the upper 8 bits come from the page register.
24 */
25#define VC7_PAGE_ADDR			0xFD
26#define VC7_PAGE_WINDOW			256
27#define VC7_MAX_REG			0x364
28
29/* Maximum number of banks supported by VC7 */
30#define VC7_NUM_BANKS			7
31
32/* Maximum number of FODs supported by VC7 */
33#define VC7_NUM_FOD			3
34
35/* Maximum number of IODs supported by VC7 */
36#define VC7_NUM_IOD			4
37
38/* Maximum number of outputs supported by VC7 */
39#define VC7_NUM_OUT			12
40
41/* VCO valid range is 9.5 GHz to 10.7 GHz */
42#define VC7_APLL_VCO_MIN		9500000000UL
43#define VC7_APLL_VCO_MAX		10700000000UL
44
45/* APLL denominator is fixed at 2^27 */
46#define VC7_APLL_DENOMINATOR_BITS	27
47
48/* FOD 1st stage denominator is fixed 2^34 */
49#define VC7_FOD_DENOMINATOR_BITS	34
50
51/* IOD can operate between 1kHz and 650MHz */
52#define VC7_IOD_RATE_MIN		1000UL
53#define VC7_IOD_RATE_MAX		650000000UL
54#define VC7_IOD_MIN_DIVISOR		14
55#define VC7_IOD_MAX_DIVISOR		0x1ffffff /* 25-bit */
56
57#define VC7_FOD_RATE_MIN		1000UL
58#define VC7_FOD_RATE_MAX		650000000UL
59#define VC7_FOD_1ST_STAGE_RATE_MIN	33000000UL /* 33 MHz */
60#define VC7_FOD_1ST_STAGE_RATE_MAX	650000000UL /* 650 MHz */
61#define VC7_FOD_1ST_INT_MAX		324
62#define VC7_FOD_2ND_INT_MIN		2
63#define VC7_FOD_2ND_INT_MAX		0x1ffff /* 17-bit */
64
65/* VC7 Registers */
66
67#define VC7_REG_XO_CNFG			0x2C
68#define VC7_REG_XO_CNFG_COUNT		4
69#define VC7_REG_XO_IB_H_DIV_SHIFT	24
70#define VC7_REG_XO_IB_H_DIV_MASK	GENMASK(28, VC7_REG_XO_IB_H_DIV_SHIFT)
71
72#define VC7_REG_APLL_FB_DIV_FRAC	0x120
73#define VC7_REG_APLL_FB_DIV_FRAC_COUNT	4
74#define VC7_REG_APLL_FB_DIV_FRAC_MASK	GENMASK(26, 0)
75
76#define VC7_REG_APLL_FB_DIV_INT		0x124
77#define VC7_REG_APLL_FB_DIV_INT_COUNT	2
78#define VC7_REG_APLL_FB_DIV_INT_MASK	GENMASK(9, 0)
79
80#define VC7_REG_APLL_CNFG		0x127
81#define VC7_REG_APLL_EN_DOUBLER		BIT(0)
82
83#define VC7_REG_OUT_BANK_CNFG(idx)	(0x280 + (0x4 * (idx)))
84#define VC7_REG_OUTPUT_BANK_SRC_MASK	GENMASK(2, 0)
85
86#define VC7_REG_FOD_INT_CNFG(idx)	(0x1E0 + (0x10 * (idx)))
87#define VC7_REG_FOD_INT_CNFG_COUNT	8
88#define VC7_REG_FOD_1ST_INT_MASK	GENMASK(8, 0)
89#define VC7_REG_FOD_2ND_INT_SHIFT	9
90#define VC7_REG_FOD_2ND_INT_MASK	GENMASK(25, VC7_REG_FOD_2ND_INT_SHIFT)
91#define VC7_REG_FOD_FRAC_SHIFT		26
92#define VC7_REG_FOD_FRAC_MASK		GENMASK_ULL(59, VC7_REG_FOD_FRAC_SHIFT)
93
94#define VC7_REG_IOD_INT_CNFG(idx)	(0x1C0 + (0x8 * (idx)))
95#define VC7_REG_IOD_INT_CNFG_COUNT	4
96#define VC7_REG_IOD_INT_MASK		GENMASK(24, 0)
97
98#define VC7_REG_ODRV_EN(idx)		(0x240 + (0x4 * (idx)))
99#define VC7_REG_OUT_DIS			BIT(0)
100
101struct vc7_driver_data;
102static const struct regmap_config vc7_regmap_config;
103
104/* Supported Renesas VC7 models */
105enum vc7_model {
106	VC7_RC21008A,
107};
108
109struct vc7_chip_info {
110	const enum vc7_model model;
111	const unsigned int banks[VC7_NUM_BANKS];
112	const unsigned int num_banks;
113	const unsigned int outputs[VC7_NUM_OUT];
114	const unsigned int num_outputs;
115};
116
117/*
118 * Changing the APLL frequency is currently not supported.
119 * The APLL will consist of an opaque block between the XO and FOD/IODs and
120 * its frequency will be computed based on the current state of the device.
121 */
122struct vc7_apll_data {
123	struct clk *clk;
124	struct vc7_driver_data *vc7;
125	u8 xo_ib_h_div;
126	u8 en_doubler;
127	u16 apll_fb_div_int;
128	u32 apll_fb_div_frac;
129};
130
131struct vc7_fod_data {
132	struct clk_hw hw;
133	struct vc7_driver_data *vc7;
134	unsigned int num;
135	u32 fod_1st_int;
136	u32 fod_2nd_int;
137	u64 fod_frac;
138};
139
140struct vc7_iod_data {
141	struct clk_hw hw;
142	struct vc7_driver_data *vc7;
143	unsigned int num;
144	u32 iod_int;
145};
146
147struct vc7_out_data {
148	struct clk_hw hw;
149	struct vc7_driver_data *vc7;
150	unsigned int num;
151	unsigned int out_dis;
152};
153
154struct vc7_driver_data {
155	struct i2c_client *client;
156	struct regmap *regmap;
157	const struct vc7_chip_info *chip_info;
158
159	struct clk *pin_xin;
160	struct vc7_apll_data clk_apll;
161	struct vc7_fod_data clk_fod[VC7_NUM_FOD];
162	struct vc7_iod_data clk_iod[VC7_NUM_IOD];
163	struct vc7_out_data clk_out[VC7_NUM_OUT];
164};
165
166struct vc7_bank_src_map {
167	enum vc7_bank_src_type {
168		VC7_FOD,
169		VC7_IOD,
170	} type;
171	union _divider {
172		struct vc7_iod_data *iod;
173		struct vc7_fod_data *fod;
174	} src;
175};
176
177static struct clk_hw *vc7_of_clk_get(struct of_phandle_args *clkspec,
178				     void *data)
179{
180	struct vc7_driver_data *vc7 = data;
181	unsigned int idx = clkspec->args[0];
182
183	if (idx >= vc7->chip_info->num_outputs)
184		return ERR_PTR(-EINVAL);
185
186	return &vc7->clk_out[idx].hw;
187}
188
189static const unsigned int RC21008A_index_to_output_mapping[] = {
190	1, 2, 3, 6, 7, 8, 10, 11
191};
192
193static int vc7_map_index_to_output(const enum vc7_model model, const unsigned int i)
194{
195	switch (model) {
196	case VC7_RC21008A:
197		return RC21008A_index_to_output_mapping[i];
198	default:
199		return i;
200	}
201}
202
203/* bank to output mapping, same across all variants */
204static const unsigned int output_bank_mapping[] = {
205	0, /* Output 0 */
206	1, /* Output 1 */
207	2, /* Output 2 */
208	2, /* Output 3 */
209	3, /* Output 4 */
210	3, /* Output 5 */
211	3, /* Output 6 */
212	3, /* Output 7 */
213	4, /* Output 8 */
214	4, /* Output 9 */
215	5, /* Output 10 */
216	6  /* Output 11 */
217};
218
219/**
220 * vc7_64_mul_64_to_128() - Multiply two u64 and return an unsigned 128-bit integer
221 * as an upper and lower part.
222 *
223 * @left: The left argument.
224 * @right: The right argument.
225 * @hi: The upper 64-bits of the 128-bit product.
226 * @lo: The lower 64-bits of the 128-bit product.
227 *
228 * From mul_64_64 in crypto/ecc.c:350 in the linux kernel, accessed in v5.17.2.
229 */
230static void vc7_64_mul_64_to_128(u64 left, u64 right, u64 *hi, u64 *lo)
231{
232	u64 a0 = left & 0xffffffffull;
233	u64 a1 = left >> 32;
234	u64 b0 = right & 0xffffffffull;
235	u64 b1 = right >> 32;
236	u64 m0 = a0 * b0;
237	u64 m1 = a0 * b1;
238	u64 m2 = a1 * b0;
239	u64 m3 = a1 * b1;
240
241	m2 += (m0 >> 32);
242	m2 += m1;
243
244	/* Overflow */
245	if (m2 < m1)
246		m3 += 0x100000000ull;
247
248	*lo = (m0 & 0xffffffffull) | (m2 << 32);
249	*hi = m3 + (m2 >> 32);
250}
251
252/**
253 * vc7_128_div_64_to_64() - Divides a 128-bit uint by a 64-bit divisor, return a 64-bit quotient.
254 *
255 * @numhi: The uppper 64-bits of the dividend.
256 * @numlo: The lower 64-bits of the dividend.
257 * @den: The denominator (divisor).
258 * @r: The remainder, pass NULL if the remainder is not needed.
259 *
260 * Originally from libdivide, modified to use kernel u64/u32 types.
261 *
262 * See https://github.com/ridiculousfish/libdivide/blob/master/libdivide.h#L471.
263 *
264 * Return: The 64-bit quotient of the division.
265 *
266 * In case of overflow of division by zero, max(u64) is returned.
267 */
268static u64 vc7_128_div_64_to_64(u64 numhi, u64 numlo, u64 den, u64 *r)
269{
270	/*
271	 * We work in base 2**32.
272	 * A uint32 holds a single digit. A uint64 holds two digits.
273	 * Our numerator is conceptually [num3, num2, num1, num0].
274	 * Our denominator is [den1, den0].
275	 */
276	const u64 b = ((u64)1 << 32);
277
278	/* The high and low digits of our computed quotient. */
279	u32 q1, q0;
280
281	/* The normalization shift factor */
282	int shift;
283
284	/*
285	 * The high and low digits of our denominator (after normalizing).
286	 * Also the low 2 digits of our numerator (after normalizing).
287	 */
288	u32 den1, den0, num1, num0;
289
290	/* A partial remainder; */
291	u64 rem;
292
293	/*
294	 * The estimated quotient, and its corresponding remainder (unrelated
295	 * to true remainder).
296	 */
297	u64 qhat, rhat;
298
299	/* Variables used to correct the estimated quotient. */
300	u64 c1, c2;
301
302	/* Check for overflow and divide by 0. */
303	if (numhi >= den) {
304		if (r)
305			*r = ~0ull;
306		return ~0ull;
307	}
308
309	/*
310	 * Determine the normalization factor. We multiply den by this, so that
311	 * its leading digit is at least half b. In binary this means just
312	 * shifting left by the number of leading zeros, so that there's a 1 in
313	 * the MSB.
314	 *
315	 * We also shift numer by the same amount. This cannot overflow because
316	 * numhi < den.  The expression (-shift & 63) is the same as (64 -
317	 * shift), except it avoids the UB of shifting by 64. The funny bitwise
318	 * 'and' ensures that numlo does not get shifted into numhi if shift is
319	 * 0. clang 11 has an x86 codegen bug here: see LLVM bug 50118. The
320	 * sequence below avoids it.
321	 */
322	shift = __builtin_clzll(den);
323	den <<= shift;
324	numhi <<= shift;
325	numhi |= (numlo >> (-shift & 63)) & (-(s64)shift >> 63);
326	numlo <<= shift;
327
328	/*
329	 * Extract the low digits of the numerator and both digits of the
330	 * denominator.
331	 */
332	num1 = (u32)(numlo >> 32);
333	num0 = (u32)(numlo & 0xFFFFFFFFu);
334	den1 = (u32)(den >> 32);
335	den0 = (u32)(den & 0xFFFFFFFFu);
336
337	/*
338	 * We wish to compute q1 = [n3 n2 n1] / [d1 d0].
339	 * Estimate q1 as [n3 n2] / [d1], and then correct it.
340	 * Note while qhat may be 2 digits, q1 is always 1 digit.
341	 */
342	qhat = div64_u64_rem(numhi, den1, &rhat);
343	c1 = qhat * den0;
344	c2 = rhat * b + num1;
345	if (c1 > c2)
346		qhat -= (c1 - c2 > den) ? 2 : 1;
347	q1 = (u32)qhat;
348
349	/* Compute the true (partial) remainder. */
350	rem = numhi * b + num1 - q1 * den;
351
352	/*
353	 * We wish to compute q0 = [rem1 rem0 n0] / [d1 d0].
354	 * Estimate q0 as [rem1 rem0] / [d1] and correct it.
355	 */
356	qhat = div64_u64_rem(rem, den1, &rhat);
357	c1 = qhat * den0;
358	c2 = rhat * b + num0;
359	if (c1 > c2)
360		qhat -= (c1 - c2 > den) ? 2 : 1;
361	q0 = (u32)qhat;
362
363	/* Return remainder if requested. */
364	if (r)
365		*r = (rem * b + num0 - q0 * den) >> shift;
366	return ((u64)q1 << 32) | q0;
367}
368
369static int vc7_get_bank_clk(struct vc7_driver_data *vc7,
370			    unsigned int bank_idx,
371			    unsigned int output_bank_src,
372			    struct vc7_bank_src_map *map)
373{
374	/* Mapping from Table 38 in datasheet */
375	if (bank_idx == 0 || bank_idx == 1) {
376		switch (output_bank_src) {
377		case 0:
378			map->type = VC7_IOD,
379			map->src.iod = &vc7->clk_iod[0];
380			return 0;
381		case 1:
382			map->type = VC7_IOD,
383			map->src.iod = &vc7->clk_iod[1];
384			return 0;
385		case 4:
386			map->type = VC7_FOD,
387			map->src.fod = &vc7->clk_fod[0];
388			return 0;
389		case 5:
390			map->type = VC7_FOD,
391			map->src.fod = &vc7->clk_fod[1];
392			return 0;
393		default:
394			break;
395		}
396	} else if (bank_idx == 2) {
397		switch (output_bank_src) {
398		case 1:
399			map->type = VC7_IOD,
400			map->src.iod = &vc7->clk_iod[1];
401			return 0;
402		case 4:
403			map->type = VC7_FOD,
404			map->src.fod = &vc7->clk_fod[0];
405			return 0;
406		case 5:
407			map->type = VC7_FOD,
408			map->src.fod = &vc7->clk_fod[1];
409			return 0;
410		default:
411			break;
412		}
413	} else if (bank_idx == 3) {
414		switch (output_bank_src) {
415		case 4:
416			map->type = VC7_FOD,
417			map->src.fod = &vc7->clk_fod[0];
418			return 0;
419		case 5:
420			map->type = VC7_FOD,
421			map->src.fod = &vc7->clk_fod[1];
422			return 0;
423		case 6:
424			map->type = VC7_FOD,
425			map->src.fod = &vc7->clk_fod[2];
426			return 0;
427		default:
428			break;
429		}
430	} else if (bank_idx == 4) {
431		switch (output_bank_src) {
432		case 0:
433			/* CLKIN1 not supported in this driver */
434			break;
435		case 2:
436			map->type = VC7_IOD,
437			map->src.iod = &vc7->clk_iod[2];
438			return 0;
439		case 5:
440			map->type = VC7_FOD,
441			map->src.fod = &vc7->clk_fod[1];
442			return 0;
443		case 6:
444			map->type = VC7_FOD,
445			map->src.fod = &vc7->clk_fod[2];
446			return 0;
447		case 7:
448			/* CLKIN0 not supported in this driver */
449			break;
450		default:
451			break;
452		}
453	} else if (bank_idx == 5) {
454		switch (output_bank_src) {
455		case 0:
456			/* CLKIN1 not supported in this driver */
457			break;
458		case 1:
459			/* XIN_REFIN not supported in this driver */
460			break;
461		case 2:
462			map->type = VC7_IOD,
463			map->src.iod = &vc7->clk_iod[2];
464			return 0;
465		case 3:
466			map->type = VC7_IOD,
467			map->src.iod = &vc7->clk_iod[3];
468			return 0;
469		case 5:
470			map->type = VC7_FOD,
471			map->src.fod = &vc7->clk_fod[1];
472			return 0;
473		case 6:
474			map->type = VC7_FOD,
475			map->src.fod = &vc7->clk_fod[2];
476			return 0;
477		case 7:
478			/* CLKIN0 not supported in this driver */
479			break;
480		default:
481			break;
482		}
483	} else if (bank_idx == 6) {
484		switch (output_bank_src) {
485		case 0:
486			/* CLKIN1 not supported in this driver */
487			break;
488		case 2:
489			map->type = VC7_IOD,
490			map->src.iod = &vc7->clk_iod[2];
491			return 0;
492		case 3:
493			map->type = VC7_IOD,
494			map->src.iod = &vc7->clk_iod[3];
495			return 0;
496		case 5:
497			map->type = VC7_FOD,
498			map->src.fod = &vc7->clk_fod[1];
499			return 0;
500		case 6:
501			map->type = VC7_FOD,
502			map->src.fod = &vc7->clk_fod[2];
503			return 0;
504		case 7:
505			/* CLKIN0 not supported in this driver */
506			break;
507		default:
508			break;
509		}
510	}
511
512	pr_warn("bank_src%d = %d is not supported\n", bank_idx, output_bank_src);
513	return -1;
514}
515
516static int vc7_read_apll(struct vc7_driver_data *vc7)
517{
518	int err;
519	u32 val32;
520	u16 val16;
521
522	err = regmap_bulk_read(vc7->regmap,
523			       VC7_REG_XO_CNFG,
524			       (u32 *)&val32,
525			       VC7_REG_XO_CNFG_COUNT);
526	if (err) {
527		dev_err(&vc7->client->dev, "failed to read XO_CNFG\n");
528		return err;
529	}
530
531	vc7->clk_apll.xo_ib_h_div = (val32 & VC7_REG_XO_IB_H_DIV_MASK)
532		>> VC7_REG_XO_IB_H_DIV_SHIFT;
533
534	err = regmap_read(vc7->regmap,
535			  VC7_REG_APLL_CNFG,
536			  &val32);
537	if (err) {
538		dev_err(&vc7->client->dev, "failed to read APLL_CNFG\n");
539		return err;
540	}
541
542	vc7->clk_apll.en_doubler = val32 & VC7_REG_APLL_EN_DOUBLER;
543
544	err = regmap_bulk_read(vc7->regmap,
545			       VC7_REG_APLL_FB_DIV_FRAC,
546			       (u32 *)&val32,
547			       VC7_REG_APLL_FB_DIV_FRAC_COUNT);
548	if (err) {
549		dev_err(&vc7->client->dev, "failed to read APLL_FB_DIV_FRAC\n");
550		return err;
551	}
552
553	vc7->clk_apll.apll_fb_div_frac = val32 & VC7_REG_APLL_FB_DIV_FRAC_MASK;
554
555	err = regmap_bulk_read(vc7->regmap,
556			       VC7_REG_APLL_FB_DIV_INT,
557			       (u16 *)&val16,
558			       VC7_REG_APLL_FB_DIV_INT_COUNT);
559	if (err) {
560		dev_err(&vc7->client->dev, "failed to read APLL_FB_DIV_INT\n");
561		return err;
562	}
563
564	vc7->clk_apll.apll_fb_div_int = val16 & VC7_REG_APLL_FB_DIV_INT_MASK;
565
566	return 0;
567}
568
569static int vc7_read_fod(struct vc7_driver_data *vc7, unsigned int idx)
570{
571	int err;
572	u64 val;
573
574	err = regmap_bulk_read(vc7->regmap,
575			       VC7_REG_FOD_INT_CNFG(idx),
576			       (u64 *)&val,
577			       VC7_REG_FOD_INT_CNFG_COUNT);
578	if (err) {
579		dev_err(&vc7->client->dev, "failed to read FOD%d\n", idx);
580		return err;
581	}
582
583	vc7->clk_fod[idx].fod_1st_int = (val & VC7_REG_FOD_1ST_INT_MASK);
584	vc7->clk_fod[idx].fod_2nd_int =
585	    (val & VC7_REG_FOD_2ND_INT_MASK) >> VC7_REG_FOD_2ND_INT_SHIFT;
586	vc7->clk_fod[idx].fod_frac = (val & VC7_REG_FOD_FRAC_MASK)
587		>> VC7_REG_FOD_FRAC_SHIFT;
588
589	return 0;
590}
591
592static int vc7_write_fod(struct vc7_driver_data *vc7, unsigned int idx)
593{
594	int err;
595	u64 val;
596
597	/*
598	 * FOD dividers are part of an atomic group where fod_1st_int,
599	 * fod_2nd_int, and fod_frac must be written together. The new divider
600	 * is applied when the MSB of fod_frac is written.
601	 */
602
603	err = regmap_bulk_read(vc7->regmap,
604			       VC7_REG_FOD_INT_CNFG(idx),
605			       (u64 *)&val,
606			       VC7_REG_FOD_INT_CNFG_COUNT);
607	if (err) {
608		dev_err(&vc7->client->dev, "failed to read FOD%d\n", idx);
609		return err;
610	}
611
612	val = u64_replace_bits(val,
613			       vc7->clk_fod[idx].fod_1st_int,
614			       VC7_REG_FOD_1ST_INT_MASK);
615	val = u64_replace_bits(val,
616			       vc7->clk_fod[idx].fod_2nd_int,
617			       VC7_REG_FOD_2ND_INT_MASK);
618	val = u64_replace_bits(val,
619			       vc7->clk_fod[idx].fod_frac,
620			       VC7_REG_FOD_FRAC_MASK);
621
622	err = regmap_bulk_write(vc7->regmap,
623				VC7_REG_FOD_INT_CNFG(idx),
624				(u64 *)&val,
625				sizeof(u64));
626	if (err) {
627		dev_err(&vc7->client->dev, "failed to write FOD%d\n", idx);
628		return err;
629	}
630
631	return 0;
632}
633
634static int vc7_read_iod(struct vc7_driver_data *vc7, unsigned int idx)
635{
636	int err;
637	u32 val;
638
639	err = regmap_bulk_read(vc7->regmap,
640			       VC7_REG_IOD_INT_CNFG(idx),
641			       (u32 *)&val,
642			       VC7_REG_IOD_INT_CNFG_COUNT);
643	if (err) {
644		dev_err(&vc7->client->dev, "failed to read IOD%d\n", idx);
645		return err;
646	}
647
648	vc7->clk_iod[idx].iod_int = (val & VC7_REG_IOD_INT_MASK);
649
650	return 0;
651}
652
653static int vc7_write_iod(struct vc7_driver_data *vc7, unsigned int idx)
654{
655	int err;
656	u32 val;
657
658	/*
659	 * IOD divider field is atomic and all bits must be written.
660	 * The new divider is applied when the MSB of iod_int is written.
661	 */
662
663	err = regmap_bulk_read(vc7->regmap,
664			       VC7_REG_IOD_INT_CNFG(idx),
665			       (u32 *)&val,
666			       VC7_REG_IOD_INT_CNFG_COUNT);
667	if (err) {
668		dev_err(&vc7->client->dev, "failed to read IOD%d\n", idx);
669		return err;
670	}
671
672	val = u32_replace_bits(val,
673			       vc7->clk_iod[idx].iod_int,
674			       VC7_REG_IOD_INT_MASK);
675
676	err = regmap_bulk_write(vc7->regmap,
677				VC7_REG_IOD_INT_CNFG(idx),
678				(u32 *)&val,
679				sizeof(u32));
680	if (err) {
681		dev_err(&vc7->client->dev, "failed to write IOD%d\n", idx);
682		return err;
683	}
684
685	return 0;
686}
687
688static int vc7_read_output(struct vc7_driver_data *vc7, unsigned int idx)
689{
690	int err;
691	unsigned int val, out_num;
692
693	out_num = vc7_map_index_to_output(vc7->chip_info->model, idx);
694	err = regmap_read(vc7->regmap,
695			  VC7_REG_ODRV_EN(out_num),
696			  &val);
697	if (err) {
698		dev_err(&vc7->client->dev, "failed to read ODRV_EN[%d]\n", idx);
699		return err;
700	}
701
702	vc7->clk_out[idx].out_dis = val & VC7_REG_OUT_DIS;
703
704	return 0;
705}
706
707static int vc7_write_output(struct vc7_driver_data *vc7, unsigned int idx)
708{
709	int err;
710	unsigned int out_num;
711
712	out_num = vc7_map_index_to_output(vc7->chip_info->model, idx);
713	err = regmap_write_bits(vc7->regmap,
714				VC7_REG_ODRV_EN(out_num),
715				VC7_REG_OUT_DIS,
716				vc7->clk_out[idx].out_dis);
717
718	if (err) {
719		dev_err(&vc7->client->dev, "failed to write ODRV_EN[%d]\n", idx);
720		return err;
721	}
722
723	return 0;
724}
725
726static unsigned long vc7_get_apll_rate(struct vc7_driver_data *vc7)
727{
728	int err;
729	unsigned long xtal_rate;
730	u64 refin_div, apll_rate;
731
732	xtal_rate = clk_get_rate(vc7->pin_xin);
733	err = vc7_read_apll(vc7);
734	if (err) {
735		dev_err(&vc7->client->dev, "unable to read apll\n");
736		return err;
737	}
738
739	/* 0 is bypassed, 1 is reserved */
740	if (vc7->clk_apll.xo_ib_h_div < 2)
741		refin_div = xtal_rate;
742	else
743		refin_div = div64_u64(xtal_rate, vc7->clk_apll.xo_ib_h_div);
744
745	if (vc7->clk_apll.en_doubler)
746		refin_div *= 2;
747
748	/* divider = int + (frac / 2^27) */
749	apll_rate = (refin_div * vc7->clk_apll.apll_fb_div_int) +
750		    ((refin_div * vc7->clk_apll.apll_fb_div_frac) >> VC7_APLL_DENOMINATOR_BITS);
751
752	pr_debug("%s - xo_ib_h_div: %u, apll_fb_div_int: %u, apll_fb_div_frac: %u\n",
753		 __func__, vc7->clk_apll.xo_ib_h_div, vc7->clk_apll.apll_fb_div_int,
754		 vc7->clk_apll.apll_fb_div_frac);
755	pr_debug("%s - refin_div: %llu, apll rate: %llu\n",
756		 __func__, refin_div, apll_rate);
757
758	return apll_rate;
759}
760
761static void vc7_calc_iod_divider(unsigned long rate, unsigned long parent_rate,
762				 u32 *divider)
763{
764	*divider = DIV_ROUND_UP(parent_rate, rate);
765	if (*divider < VC7_IOD_MIN_DIVISOR)
766		*divider = VC7_IOD_MIN_DIVISOR;
767	if (*divider > VC7_IOD_MAX_DIVISOR)
768		*divider = VC7_IOD_MAX_DIVISOR;
769}
770
771static void vc7_calc_fod_1st_stage(unsigned long rate, unsigned long parent_rate,
772				   u32 *div_int, u64 *div_frac)
773{
774	u64 rem;
775
776	*div_int = (u32)div64_u64_rem(parent_rate, rate, &rem);
777	*div_frac = div64_u64(rem << VC7_FOD_DENOMINATOR_BITS, rate);
778}
779
780static unsigned long vc7_calc_fod_1st_stage_rate(unsigned long parent_rate,
781						 u32 fod_1st_int, u64 fod_frac)
782{
783	u64 numer, denom, hi, lo, divisor;
784
785	numer = fod_frac;
786	denom = BIT_ULL(VC7_FOD_DENOMINATOR_BITS);
787
788	if (fod_frac) {
789		vc7_64_mul_64_to_128(parent_rate, denom, &hi, &lo);
790		divisor = ((u64)fod_1st_int * denom) + numer;
791		return vc7_128_div_64_to_64(hi, lo, divisor, NULL);
792	}
793
794	return div64_u64(parent_rate, fod_1st_int);
795}
796
797static unsigned long vc7_calc_fod_2nd_stage_rate(unsigned long parent_rate,
798						 u32 fod_1st_int, u32 fod_2nd_int, u64 fod_frac)
799{
800	unsigned long fod_1st_stage_rate;
801
802	fod_1st_stage_rate = vc7_calc_fod_1st_stage_rate(parent_rate, fod_1st_int, fod_frac);
803
804	if (fod_2nd_int < 2)
805		return fod_1st_stage_rate;
806
807	/*
808	 * There is a div-by-2 preceding the 2nd stage integer divider
809	 * (not shown on block diagram) so the actual 2nd stage integer
810	 * divisor is 2 * N.
811	 */
812	return div64_u64(fod_1st_stage_rate >> 1, fod_2nd_int);
813}
814
815static void vc7_calc_fod_divider(unsigned long rate, unsigned long parent_rate,
816				 u32 *fod_1st_int, u32 *fod_2nd_int, u64 *fod_frac)
817{
818	unsigned int allow_frac, i, best_frac_i;
819	unsigned long first_stage_rate;
820
821	vc7_calc_fod_1st_stage(rate, parent_rate, fod_1st_int, fod_frac);
822	first_stage_rate = vc7_calc_fod_1st_stage_rate(parent_rate, *fod_1st_int, *fod_frac);
823
824	*fod_2nd_int = 0;
825
826	/* Do we need the second stage integer divider? */
827	if (first_stage_rate < VC7_FOD_1ST_STAGE_RATE_MIN) {
828		allow_frac = 0;
829		best_frac_i = VC7_FOD_2ND_INT_MIN;
830
831		for (i = VC7_FOD_2ND_INT_MIN; i <= VC7_FOD_2ND_INT_MAX; i++) {
832			/*
833			 * 1) There is a div-by-2 preceding the 2nd stage integer divider
834			 *    (not shown on block diagram) so the actual 2nd stage integer
835			 *    divisor is 2 * N.
836			 * 2) Attempt to find an integer solution first. This means stepping
837			 *    through each 2nd stage integer and recalculating the 1st stage
838			 *    until the 1st stage frequency is out of bounds. If no integer
839			 *    solution is found, use the best fractional solution.
840			 */
841			vc7_calc_fod_1st_stage(parent_rate, rate * 2 * i, fod_1st_int, fod_frac);
842			first_stage_rate = vc7_calc_fod_1st_stage_rate(parent_rate,
843								       *fod_1st_int,
844								       *fod_frac);
845
846			/* Remember the first viable fractional solution */
847			if (best_frac_i == VC7_FOD_2ND_INT_MIN &&
848			    first_stage_rate > VC7_FOD_1ST_STAGE_RATE_MIN) {
849				best_frac_i = i;
850			}
851
852			/* Is the divider viable? Prefer integer solutions over fractional. */
853			if (*fod_1st_int < VC7_FOD_1ST_INT_MAX &&
854			    first_stage_rate >= VC7_FOD_1ST_STAGE_RATE_MIN &&
855			    (allow_frac || *fod_frac == 0)) {
856				*fod_2nd_int = i;
857				break;
858			}
859
860			/* Ran out of divisors or the 1st stage frequency is out of range */
861			if (i >= VC7_FOD_2ND_INT_MAX ||
862			    first_stage_rate > VC7_FOD_1ST_STAGE_RATE_MAX) {
863				allow_frac = 1;
864				i = best_frac_i;
865
866				/* Restore the best frac and rerun the loop for the last time */
867				if (best_frac_i != VC7_FOD_2ND_INT_MIN)
868					i--;
869
870				continue;
871			}
872		}
873	}
874}
875
876static unsigned long vc7_fod_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
877{
878	struct vc7_fod_data *fod = container_of(hw, struct vc7_fod_data, hw);
879	struct vc7_driver_data *vc7 = fod->vc7;
880	int err;
881	unsigned long fod_rate;
882
883	err = vc7_read_fod(vc7, fod->num);
884	if (err) {
885		dev_err(&vc7->client->dev, "error reading registers for %s\n",
886			clk_hw_get_name(hw));
887		return err;
888	}
889
890	pr_debug("%s - %s: parent_rate: %lu\n", __func__, clk_hw_get_name(hw), parent_rate);
891
892	fod_rate = vc7_calc_fod_2nd_stage_rate(parent_rate, fod->fod_1st_int,
893					       fod->fod_2nd_int, fod->fod_frac);
894
895	pr_debug("%s - %s: fod_1st_int: %u, fod_2nd_int: %u, fod_frac: %llu\n",
896		 __func__, clk_hw_get_name(hw),
897		 fod->fod_1st_int, fod->fod_2nd_int, fod->fod_frac);
898	pr_debug("%s - %s rate: %lu\n", __func__, clk_hw_get_name(hw), fod_rate);
899
900	return fod_rate;
901}
902
903static long vc7_fod_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate)
904{
905	struct vc7_fod_data *fod = container_of(hw, struct vc7_fod_data, hw);
906	unsigned long fod_rate;
907
908	pr_debug("%s - %s: requested rate: %lu, parent_rate: %lu\n",
909		 __func__, clk_hw_get_name(hw), rate, *parent_rate);
910
911	vc7_calc_fod_divider(rate, *parent_rate,
912			     &fod->fod_1st_int, &fod->fod_2nd_int, &fod->fod_frac);
913	fod_rate = vc7_calc_fod_2nd_stage_rate(*parent_rate, fod->fod_1st_int,
914					       fod->fod_2nd_int, fod->fod_frac);
915
916	pr_debug("%s - %s: fod_1st_int: %u, fod_2nd_int: %u, fod_frac: %llu\n",
917		 __func__, clk_hw_get_name(hw),
918		 fod->fod_1st_int, fod->fod_2nd_int, fod->fod_frac);
919	pr_debug("%s - %s rate: %lu\n", __func__, clk_hw_get_name(hw), fod_rate);
920
921	return fod_rate;
922}
923
924static int vc7_fod_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate)
925{
926	struct vc7_fod_data *fod = container_of(hw, struct vc7_fod_data, hw);
927	struct vc7_driver_data *vc7 = fod->vc7;
928	unsigned long fod_rate;
929
930	pr_debug("%s - %s: rate: %lu, parent_rate: %lu\n",
931		 __func__, clk_hw_get_name(hw), rate, parent_rate);
932
933	if (rate < VC7_FOD_RATE_MIN || rate > VC7_FOD_RATE_MAX) {
934		dev_err(&vc7->client->dev,
935			"requested frequency %lu Hz for %s is out of range\n",
936			rate, clk_hw_get_name(hw));
937		return -EINVAL;
938	}
939
940	vc7_write_fod(vc7, fod->num);
941
942	fod_rate = vc7_calc_fod_2nd_stage_rate(parent_rate, fod->fod_1st_int,
943					       fod->fod_2nd_int, fod->fod_frac);
944
945	pr_debug("%s - %s: fod_1st_int: %u, fod_2nd_int: %u, fod_frac: %llu\n",
946		 __func__, clk_hw_get_name(hw),
947		 fod->fod_1st_int, fod->fod_2nd_int, fod->fod_frac);
948	pr_debug("%s - %s rate: %lu\n", __func__, clk_hw_get_name(hw), fod_rate);
949
950	return 0;
951}
952
953static const struct clk_ops vc7_fod_ops = {
954	.recalc_rate = vc7_fod_recalc_rate,
955	.round_rate = vc7_fod_round_rate,
956	.set_rate = vc7_fod_set_rate,
957};
958
959static unsigned long vc7_iod_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
960{
961	struct vc7_iod_data *iod = container_of(hw, struct vc7_iod_data, hw);
962	struct vc7_driver_data *vc7 = iod->vc7;
963	int err;
964	unsigned long iod_rate;
965
966	err = vc7_read_iod(vc7, iod->num);
967	if (err) {
968		dev_err(&vc7->client->dev, "error reading registers for %s\n",
969			clk_hw_get_name(hw));
970		return err;
971	}
972
973	iod_rate = div64_u64(parent_rate, iod->iod_int);
974
975	pr_debug("%s - %s: iod_int: %u\n", __func__, clk_hw_get_name(hw), iod->iod_int);
976	pr_debug("%s - %s rate: %lu\n", __func__, clk_hw_get_name(hw), iod_rate);
977
978	return iod_rate;
979}
980
981static long vc7_iod_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate)
982{
983	struct vc7_iod_data *iod = container_of(hw, struct vc7_iod_data, hw);
984	unsigned long iod_rate;
985
986	pr_debug("%s - %s: requested rate: %lu, parent_rate: %lu\n",
987		 __func__, clk_hw_get_name(hw), rate, *parent_rate);
988
989	vc7_calc_iod_divider(rate, *parent_rate, &iod->iod_int);
990	iod_rate = div64_u64(*parent_rate, iod->iod_int);
991
992	pr_debug("%s - %s: iod_int: %u\n", __func__, clk_hw_get_name(hw), iod->iod_int);
993	pr_debug("%s - %s rate: %ld\n", __func__, clk_hw_get_name(hw), iod_rate);
994
995	return iod_rate;
996}
997
998static int vc7_iod_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate)
999{
1000	struct vc7_iod_data *iod = container_of(hw, struct vc7_iod_data, hw);
1001	struct vc7_driver_data *vc7 = iod->vc7;
1002	unsigned long iod_rate;
1003
1004	pr_debug("%s - %s: rate: %lu, parent_rate: %lu\n",
1005		 __func__, clk_hw_get_name(hw), rate, parent_rate);
1006
1007	if (rate < VC7_IOD_RATE_MIN || rate > VC7_IOD_RATE_MAX) {
1008		dev_err(&vc7->client->dev,
1009			"requested frequency %lu Hz for %s is out of range\n",
1010			rate, clk_hw_get_name(hw));
1011		return -EINVAL;
1012	}
1013
1014	vc7_write_iod(vc7, iod->num);
1015
1016	iod_rate = div64_u64(parent_rate, iod->iod_int);
1017
1018	pr_debug("%s - %s: iod_int: %u\n", __func__, clk_hw_get_name(hw), iod->iod_int);
1019	pr_debug("%s - %s rate: %ld\n", __func__, clk_hw_get_name(hw), iod_rate);
1020
1021	return 0;
1022}
1023
1024static const struct clk_ops vc7_iod_ops = {
1025	.recalc_rate = vc7_iod_recalc_rate,
1026	.round_rate = vc7_iod_round_rate,
1027	.set_rate = vc7_iod_set_rate,
1028};
1029
1030static int vc7_clk_out_prepare(struct clk_hw *hw)
1031{
1032	struct vc7_out_data *out = container_of(hw, struct vc7_out_data, hw);
1033	struct vc7_driver_data *vc7 = out->vc7;
1034	int err;
1035
1036	out->out_dis = 0;
1037
1038	err = vc7_write_output(vc7, out->num);
1039	if (err) {
1040		dev_err(&vc7->client->dev, "error writing registers for %s\n",
1041			clk_hw_get_name(hw));
1042		return err;
1043	}
1044
1045	pr_debug("%s - %s: clk prepared\n", __func__, clk_hw_get_name(hw));
1046
1047	return 0;
1048}
1049
1050static void vc7_clk_out_unprepare(struct clk_hw *hw)
1051{
1052	struct vc7_out_data *out = container_of(hw, struct vc7_out_data, hw);
1053	struct vc7_driver_data *vc7 = out->vc7;
1054	int err;
1055
1056	out->out_dis = 1;
1057
1058	err = vc7_write_output(vc7, out->num);
1059	if (err) {
1060		dev_err(&vc7->client->dev, "error writing registers for %s\n",
1061			clk_hw_get_name(hw));
1062		return;
1063	}
1064
1065	pr_debug("%s - %s: clk unprepared\n", __func__, clk_hw_get_name(hw));
1066}
1067
1068static int vc7_clk_out_is_enabled(struct clk_hw *hw)
1069{
1070	struct vc7_out_data *out = container_of(hw, struct vc7_out_data, hw);
1071	struct vc7_driver_data *vc7 = out->vc7;
1072	int err, is_enabled;
1073
1074	err = vc7_read_output(vc7, out->num);
1075	if (err) {
1076		dev_err(&vc7->client->dev, "error reading registers for %s\n",
1077			clk_hw_get_name(hw));
1078		return err;
1079	}
1080
1081	is_enabled = !out->out_dis;
1082
1083	pr_debug("%s - %s: is_enabled=%d\n", __func__, clk_hw_get_name(hw), is_enabled);
1084
1085	return is_enabled;
1086}
1087
1088static const struct clk_ops vc7_clk_out_ops = {
1089	.prepare = vc7_clk_out_prepare,
1090	.unprepare = vc7_clk_out_unprepare,
1091	.is_enabled = vc7_clk_out_is_enabled,
1092};
1093
1094static int vc7_probe(struct i2c_client *client)
1095{
1096	struct vc7_driver_data *vc7;
1097	struct clk_init_data clk_init;
1098	struct vc7_bank_src_map bank_src_map;
1099	const char *node_name, *apll_name;
1100	const char *parent_names[1];
1101	unsigned int i, val, bank_idx, out_num;
1102	unsigned long apll_rate;
1103	int ret;
1104
1105	vc7 = devm_kzalloc(&client->dev, sizeof(*vc7), GFP_KERNEL);
1106	if (!vc7)
1107		return -ENOMEM;
1108
1109	i2c_set_clientdata(client, vc7);
1110	vc7->client = client;
1111	vc7->chip_info = i2c_get_match_data(client);
1112
1113	vc7->pin_xin = devm_clk_get(&client->dev, "xin");
1114	if (PTR_ERR(vc7->pin_xin) == -EPROBE_DEFER) {
1115		return dev_err_probe(&client->dev, -EPROBE_DEFER,
1116				     "xin not specified\n");
1117	}
1118
1119	vc7->regmap = devm_regmap_init_i2c(client, &vc7_regmap_config);
1120	if (IS_ERR(vc7->regmap)) {
1121		return dev_err_probe(&client->dev, PTR_ERR(vc7->regmap),
1122				     "failed to allocate register map\n");
1123	}
1124
1125	if (of_property_read_string(client->dev.of_node, "clock-output-names",
1126				    &node_name))
1127		node_name = client->dev.of_node->name;
1128
1129	/* Register APLL */
1130	apll_rate = vc7_get_apll_rate(vc7);
1131	apll_name = kasprintf(GFP_KERNEL, "%s_apll", node_name);
1132	vc7->clk_apll.clk = clk_register_fixed_rate(&client->dev, apll_name,
1133						    __clk_get_name(vc7->pin_xin),
1134						    0, apll_rate);
1135	kfree(apll_name); /* ccf made a copy of the name */
1136	if (IS_ERR(vc7->clk_apll.clk)) {
1137		return dev_err_probe(&client->dev, PTR_ERR(vc7->clk_apll.clk),
1138				     "failed to register apll\n");
1139	}
1140
1141	/* Register FODs */
1142	for (i = 0; i < VC7_NUM_FOD; i++) {
1143		memset(&clk_init, 0, sizeof(clk_init));
1144		clk_init.name = kasprintf(GFP_KERNEL, "%s_fod%d", node_name, i);
1145		clk_init.ops = &vc7_fod_ops;
1146		clk_init.parent_names = parent_names;
1147		parent_names[0] = __clk_get_name(vc7->clk_apll.clk);
1148		clk_init.num_parents = 1;
1149		vc7->clk_fod[i].num = i;
1150		vc7->clk_fod[i].vc7 = vc7;
1151		vc7->clk_fod[i].hw.init = &clk_init;
1152		ret = devm_clk_hw_register(&client->dev, &vc7->clk_fod[i].hw);
1153		if (ret)
1154			goto err_clk_register;
1155		kfree(clk_init.name); /* ccf made a copy of the name */
1156	}
1157
1158	/* Register IODs */
1159	for (i = 0; i < VC7_NUM_IOD; i++) {
1160		memset(&clk_init, 0, sizeof(clk_init));
1161		clk_init.name = kasprintf(GFP_KERNEL, "%s_iod%d", node_name, i);
1162		clk_init.ops = &vc7_iod_ops;
1163		clk_init.parent_names = parent_names;
1164		parent_names[0] = __clk_get_name(vc7->clk_apll.clk);
1165		clk_init.num_parents = 1;
1166		vc7->clk_iod[i].num = i;
1167		vc7->clk_iod[i].vc7 = vc7;
1168		vc7->clk_iod[i].hw.init = &clk_init;
1169		ret = devm_clk_hw_register(&client->dev, &vc7->clk_iod[i].hw);
1170		if (ret)
1171			goto err_clk_register;
1172		kfree(clk_init.name); /* ccf made a copy of the name */
1173	}
1174
1175	/* Register outputs */
1176	for (i = 0; i < vc7->chip_info->num_outputs; i++) {
1177		out_num = vc7_map_index_to_output(vc7->chip_info->model, i);
1178
1179		/*
1180		 * This driver does not support remapping FOD/IOD to banks.
1181		 * The device state is read and the driver is setup to match
1182		 * the device's existing mapping.
1183		 */
1184		bank_idx = output_bank_mapping[out_num];
1185
1186		regmap_read(vc7->regmap, VC7_REG_OUT_BANK_CNFG(bank_idx), &val);
1187		val &= VC7_REG_OUTPUT_BANK_SRC_MASK;
1188
1189		memset(&bank_src_map, 0, sizeof(bank_src_map));
1190		ret = vc7_get_bank_clk(vc7, bank_idx, val, &bank_src_map);
1191		if (ret) {
1192			dev_err_probe(&client->dev, ret,
1193				      "unable to register output %d\n", i);
1194			return ret;
1195		}
1196
1197		switch (bank_src_map.type) {
1198		case VC7_FOD:
1199			parent_names[0] = clk_hw_get_name(&bank_src_map.src.fod->hw);
1200			break;
1201		case VC7_IOD:
1202			parent_names[0] = clk_hw_get_name(&bank_src_map.src.iod->hw);
1203			break;
1204		}
1205
1206		memset(&clk_init, 0, sizeof(clk_init));
1207		clk_init.name = kasprintf(GFP_KERNEL, "%s_out%d", node_name, i);
1208		clk_init.ops = &vc7_clk_out_ops;
1209		clk_init.flags = CLK_SET_RATE_PARENT;
1210		clk_init.parent_names = parent_names;
1211		clk_init.num_parents = 1;
1212		vc7->clk_out[i].num = i;
1213		vc7->clk_out[i].vc7 = vc7;
1214		vc7->clk_out[i].hw.init = &clk_init;
1215		ret = devm_clk_hw_register(&client->dev, &vc7->clk_out[i].hw);
1216		if (ret)
1217			goto err_clk_register;
1218		kfree(clk_init.name); /* ccf made a copy of the name */
1219	}
1220
1221	ret = of_clk_add_hw_provider(client->dev.of_node, vc7_of_clk_get, vc7);
1222	if (ret) {
1223		dev_err_probe(&client->dev, ret, "unable to add clk provider\n");
1224		goto err_clk;
1225	}
1226
1227	return ret;
1228
1229err_clk_register:
1230	dev_err_probe(&client->dev, ret,
1231		      "unable to register %s\n", clk_init.name);
1232	kfree(clk_init.name); /* ccf made a copy of the name */
1233err_clk:
1234	clk_unregister_fixed_rate(vc7->clk_apll.clk);
1235	return ret;
1236}
1237
1238static void vc7_remove(struct i2c_client *client)
1239{
1240	struct vc7_driver_data *vc7 = i2c_get_clientdata(client);
1241
1242	of_clk_del_provider(client->dev.of_node);
1243	clk_unregister_fixed_rate(vc7->clk_apll.clk);
1244}
1245
1246static bool vc7_volatile_reg(struct device *dev, unsigned int reg)
1247{
1248	if (reg == VC7_PAGE_ADDR)
1249		return false;
1250
1251	return true;
1252}
1253
1254static const struct vc7_chip_info vc7_rc21008a_info = {
1255	.model = VC7_RC21008A,
1256	.num_banks = 6,
1257	.num_outputs = 8,
1258};
1259
1260static struct regmap_range_cfg vc7_range_cfg[] = {
1261{
1262	.range_min = 0,
1263	.range_max = VC7_MAX_REG,
1264	.selector_reg = VC7_PAGE_ADDR,
1265	.selector_mask = 0xFF,
1266	.selector_shift = 0,
1267	.window_start = 0,
1268	.window_len = VC7_PAGE_WINDOW,
1269}};
1270
1271static const struct regmap_config vc7_regmap_config = {
1272	.reg_bits = 8,
1273	.val_bits = 8,
1274	.max_register = VC7_MAX_REG,
1275	.ranges = vc7_range_cfg,
1276	.num_ranges = ARRAY_SIZE(vc7_range_cfg),
1277	.volatile_reg = vc7_volatile_reg,
1278	.cache_type = REGCACHE_RBTREE,
1279	.can_multi_write = true,
1280	.reg_format_endian = REGMAP_ENDIAN_LITTLE,
1281	.val_format_endian = REGMAP_ENDIAN_LITTLE,
1282};
1283
1284static const struct i2c_device_id vc7_i2c_id[] = {
1285	{ "rc21008a", .driver_data = (kernel_ulong_t)&vc7_rc21008a_info },
1286	{}
1287};
1288MODULE_DEVICE_TABLE(i2c, vc7_i2c_id);
1289
1290static const struct of_device_id vc7_of_match[] = {
1291	{ .compatible = "renesas,rc21008a", .data = &vc7_rc21008a_info },
1292	{}
1293};
1294MODULE_DEVICE_TABLE(of, vc7_of_match);
1295
1296static struct i2c_driver vc7_i2c_driver = {
1297	.driver = {
1298		.name = "vc7",
1299		.of_match_table = vc7_of_match,
1300	},
1301	.probe = vc7_probe,
1302	.remove = vc7_remove,
1303	.id_table = vc7_i2c_id,
1304};
1305module_i2c_driver(vc7_i2c_driver);
1306
1307MODULE_LICENSE("GPL");
1308MODULE_AUTHOR("Alex Helms <alexander.helms.jy@renesas.com");
1309MODULE_DESCRIPTION("Renesas Versaclock7 common clock framework driver");
1310