xref: /kernel/linux/linux-6.6/drivers/bus/mhi/ep/main.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * MHI Endpoint bus stack
4 *
5 * Copyright (C) 2022 Linaro Ltd.
6 * Author: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
7 */
8
9#include <linux/bitfield.h>
10#include <linux/delay.h>
11#include <linux/dma-direction.h>
12#include <linux/interrupt.h>
13#include <linux/io.h>
14#include <linux/irq.h>
15#include <linux/mhi_ep.h>
16#include <linux/mod_devicetable.h>
17#include <linux/module.h>
18#include "internal.h"
19
20#define M0_WAIT_DELAY_MS	100
21#define M0_WAIT_COUNT		100
22
23static DEFINE_IDA(mhi_ep_cntrl_ida);
24
25static int mhi_ep_create_device(struct mhi_ep_cntrl *mhi_cntrl, u32 ch_id);
26static int mhi_ep_destroy_device(struct device *dev, void *data);
27
28static int mhi_ep_send_event(struct mhi_ep_cntrl *mhi_cntrl, u32 ring_idx,
29			     struct mhi_ring_element *el, bool bei)
30{
31	struct device *dev = &mhi_cntrl->mhi_dev->dev;
32	union mhi_ep_ring_ctx *ctx;
33	struct mhi_ep_ring *ring;
34	int ret;
35
36	mutex_lock(&mhi_cntrl->event_lock);
37	ring = &mhi_cntrl->mhi_event[ring_idx].ring;
38	ctx = (union mhi_ep_ring_ctx *)&mhi_cntrl->ev_ctx_cache[ring_idx];
39	if (!ring->started) {
40		ret = mhi_ep_ring_start(mhi_cntrl, ring, ctx);
41		if (ret) {
42			dev_err(dev, "Error starting event ring (%u)\n", ring_idx);
43			goto err_unlock;
44		}
45	}
46
47	/* Add element to the event ring */
48	ret = mhi_ep_ring_add_element(ring, el);
49	if (ret) {
50		dev_err(dev, "Error adding element to event ring (%u)\n", ring_idx);
51		goto err_unlock;
52	}
53
54	mutex_unlock(&mhi_cntrl->event_lock);
55
56	/*
57	 * Raise IRQ to host only if the BEI flag is not set in TRE. Host might
58	 * set this flag for interrupt moderation as per MHI protocol.
59	 */
60	if (!bei)
61		mhi_cntrl->raise_irq(mhi_cntrl, ring->irq_vector);
62
63	return 0;
64
65err_unlock:
66	mutex_unlock(&mhi_cntrl->event_lock);
67
68	return ret;
69}
70
71static int mhi_ep_send_completion_event(struct mhi_ep_cntrl *mhi_cntrl, struct mhi_ep_ring *ring,
72					struct mhi_ring_element *tre, u32 len, enum mhi_ev_ccs code)
73{
74	struct mhi_ring_element *event;
75	int ret;
76
77	event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL | GFP_DMA);
78	if (!event)
79		return -ENOMEM;
80
81	event->ptr = cpu_to_le64(ring->rbase + ring->rd_offset * sizeof(*tre));
82	event->dword[0] = MHI_TRE_EV_DWORD0(code, len);
83	event->dword[1] = MHI_TRE_EV_DWORD1(ring->ch_id, MHI_PKT_TYPE_TX_EVENT);
84
85	ret = mhi_ep_send_event(mhi_cntrl, ring->er_index, event, MHI_TRE_DATA_GET_BEI(tre));
86	kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event);
87
88	return ret;
89}
90
91int mhi_ep_send_state_change_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_state state)
92{
93	struct mhi_ring_element *event;
94	int ret;
95
96	event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL | GFP_DMA);
97	if (!event)
98		return -ENOMEM;
99
100	event->dword[0] = MHI_SC_EV_DWORD0(state);
101	event->dword[1] = MHI_SC_EV_DWORD1(MHI_PKT_TYPE_STATE_CHANGE_EVENT);
102
103	ret = mhi_ep_send_event(mhi_cntrl, 0, event, 0);
104	kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event);
105
106	return ret;
107}
108
109int mhi_ep_send_ee_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_ee_type exec_env)
110{
111	struct mhi_ring_element *event;
112	int ret;
113
114	event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL | GFP_DMA);
115	if (!event)
116		return -ENOMEM;
117
118	event->dword[0] = MHI_EE_EV_DWORD0(exec_env);
119	event->dword[1] = MHI_SC_EV_DWORD1(MHI_PKT_TYPE_EE_EVENT);
120
121	ret = mhi_ep_send_event(mhi_cntrl, 0, event, 0);
122	kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event);
123
124	return ret;
125}
126
127static int mhi_ep_send_cmd_comp_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_ev_ccs code)
128{
129	struct mhi_ep_ring *ring = &mhi_cntrl->mhi_cmd->ring;
130	struct mhi_ring_element *event;
131	int ret;
132
133	event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL | GFP_DMA);
134	if (!event)
135		return -ENOMEM;
136
137	event->ptr = cpu_to_le64(ring->rbase + ring->rd_offset * sizeof(struct mhi_ring_element));
138	event->dword[0] = MHI_CC_EV_DWORD0(code);
139	event->dword[1] = MHI_CC_EV_DWORD1(MHI_PKT_TYPE_CMD_COMPLETION_EVENT);
140
141	ret = mhi_ep_send_event(mhi_cntrl, 0, event, 0);
142	kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event);
143
144	return ret;
145}
146
147static int mhi_ep_process_cmd_ring(struct mhi_ep_ring *ring, struct mhi_ring_element *el)
148{
149	struct mhi_ep_cntrl *mhi_cntrl = ring->mhi_cntrl;
150	struct device *dev = &mhi_cntrl->mhi_dev->dev;
151	struct mhi_result result = {};
152	struct mhi_ep_chan *mhi_chan;
153	struct mhi_ep_ring *ch_ring;
154	u32 tmp, ch_id;
155	int ret;
156
157	ch_id = MHI_TRE_GET_CMD_CHID(el);
158
159	/* Check if the channel is supported by the controller */
160	if ((ch_id >= mhi_cntrl->max_chan) || !mhi_cntrl->mhi_chan[ch_id].name) {
161		dev_dbg(dev, "Channel (%u) not supported!\n", ch_id);
162		return -ENODEV;
163	}
164
165	mhi_chan = &mhi_cntrl->mhi_chan[ch_id];
166	ch_ring = &mhi_cntrl->mhi_chan[ch_id].ring;
167
168	switch (MHI_TRE_GET_CMD_TYPE(el)) {
169	case MHI_PKT_TYPE_START_CHAN_CMD:
170		dev_dbg(dev, "Received START command for channel (%u)\n", ch_id);
171
172		mutex_lock(&mhi_chan->lock);
173		/* Initialize and configure the corresponding channel ring */
174		if (!ch_ring->started) {
175			ret = mhi_ep_ring_start(mhi_cntrl, ch_ring,
176				(union mhi_ep_ring_ctx *)&mhi_cntrl->ch_ctx_cache[ch_id]);
177			if (ret) {
178				dev_err(dev, "Failed to start ring for channel (%u)\n", ch_id);
179				ret = mhi_ep_send_cmd_comp_event(mhi_cntrl,
180							MHI_EV_CC_UNDEFINED_ERR);
181				if (ret)
182					dev_err(dev, "Error sending completion event: %d\n", ret);
183
184				goto err_unlock;
185			}
186		}
187
188		/* Set channel state to RUNNING */
189		mhi_chan->state = MHI_CH_STATE_RUNNING;
190		tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg);
191		tmp &= ~CHAN_CTX_CHSTATE_MASK;
192		tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_RUNNING);
193		mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp);
194
195		ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS);
196		if (ret) {
197			dev_err(dev, "Error sending command completion event (%u)\n",
198				MHI_EV_CC_SUCCESS);
199			goto err_unlock;
200		}
201
202		mutex_unlock(&mhi_chan->lock);
203
204		/*
205		 * Create MHI device only during UL channel start. Since the MHI
206		 * channels operate in a pair, we'll associate both UL and DL
207		 * channels to the same device.
208		 *
209		 * We also need to check for mhi_dev != NULL because, the host
210		 * will issue START_CHAN command during resume and we don't
211		 * destroy the device during suspend.
212		 */
213		if (!(ch_id % 2) && !mhi_chan->mhi_dev) {
214			ret = mhi_ep_create_device(mhi_cntrl, ch_id);
215			if (ret) {
216				dev_err(dev, "Error creating device for channel (%u)\n", ch_id);
217				mhi_ep_handle_syserr(mhi_cntrl);
218				return ret;
219			}
220		}
221
222		/* Finally, enable DB for the channel */
223		mhi_ep_mmio_enable_chdb(mhi_cntrl, ch_id);
224
225		break;
226	case MHI_PKT_TYPE_STOP_CHAN_CMD:
227		dev_dbg(dev, "Received STOP command for channel (%u)\n", ch_id);
228		if (!ch_ring->started) {
229			dev_err(dev, "Channel (%u) not opened\n", ch_id);
230			return -ENODEV;
231		}
232
233		mutex_lock(&mhi_chan->lock);
234		/* Disable DB for the channel */
235		mhi_ep_mmio_disable_chdb(mhi_cntrl, ch_id);
236
237		/* Send channel disconnect status to client drivers */
238		if (mhi_chan->xfer_cb) {
239			result.transaction_status = -ENOTCONN;
240			result.bytes_xferd = 0;
241			mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
242		}
243
244		/* Set channel state to STOP */
245		mhi_chan->state = MHI_CH_STATE_STOP;
246		tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg);
247		tmp &= ~CHAN_CTX_CHSTATE_MASK;
248		tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_STOP);
249		mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp);
250
251		ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS);
252		if (ret) {
253			dev_err(dev, "Error sending command completion event (%u)\n",
254				MHI_EV_CC_SUCCESS);
255			goto err_unlock;
256		}
257
258		mutex_unlock(&mhi_chan->lock);
259		break;
260	case MHI_PKT_TYPE_RESET_CHAN_CMD:
261		dev_dbg(dev, "Received RESET command for channel (%u)\n", ch_id);
262		if (!ch_ring->started) {
263			dev_err(dev, "Channel (%u) not opened\n", ch_id);
264			return -ENODEV;
265		}
266
267		mutex_lock(&mhi_chan->lock);
268		/* Stop and reset the transfer ring */
269		mhi_ep_ring_reset(mhi_cntrl, ch_ring);
270
271		/* Send channel disconnect status to client driver */
272		if (mhi_chan->xfer_cb) {
273			result.transaction_status = -ENOTCONN;
274			result.bytes_xferd = 0;
275			mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
276		}
277
278		/* Set channel state to DISABLED */
279		mhi_chan->state = MHI_CH_STATE_DISABLED;
280		tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg);
281		tmp &= ~CHAN_CTX_CHSTATE_MASK;
282		tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_DISABLED);
283		mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp);
284
285		ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS);
286		if (ret) {
287			dev_err(dev, "Error sending command completion event (%u)\n",
288				MHI_EV_CC_SUCCESS);
289			goto err_unlock;
290		}
291
292		mutex_unlock(&mhi_chan->lock);
293		break;
294	default:
295		dev_err(dev, "Invalid command received: %lu for channel (%u)\n",
296			MHI_TRE_GET_CMD_TYPE(el), ch_id);
297		return -EINVAL;
298	}
299
300	return 0;
301
302err_unlock:
303	mutex_unlock(&mhi_chan->lock);
304
305	return ret;
306}
307
308bool mhi_ep_queue_is_empty(struct mhi_ep_device *mhi_dev, enum dma_data_direction dir)
309{
310	struct mhi_ep_chan *mhi_chan = (dir == DMA_FROM_DEVICE) ? mhi_dev->dl_chan :
311								mhi_dev->ul_chan;
312	struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl;
313	struct mhi_ep_ring *ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring;
314
315	return !!(ring->rd_offset == ring->wr_offset);
316}
317EXPORT_SYMBOL_GPL(mhi_ep_queue_is_empty);
318
319static int mhi_ep_read_channel(struct mhi_ep_cntrl *mhi_cntrl,
320				struct mhi_ep_ring *ring,
321				struct mhi_result *result,
322				u32 len)
323{
324	struct mhi_ep_chan *mhi_chan = &mhi_cntrl->mhi_chan[ring->ch_id];
325	struct device *dev = &mhi_cntrl->mhi_dev->dev;
326	size_t tr_len, read_offset, write_offset;
327	struct mhi_ep_buf_info buf_info = {};
328	struct mhi_ring_element *el;
329	bool tr_done = false;
330	u32 buf_left;
331	int ret;
332
333	buf_left = len;
334
335	do {
336		/* Don't process the transfer ring if the channel is not in RUNNING state */
337		if (mhi_chan->state != MHI_CH_STATE_RUNNING) {
338			dev_err(dev, "Channel not available\n");
339			return -ENODEV;
340		}
341
342		el = &ring->ring_cache[ring->rd_offset];
343
344		/* Check if there is data pending to be read from previous read operation */
345		if (mhi_chan->tre_bytes_left) {
346			dev_dbg(dev, "TRE bytes remaining: %u\n", mhi_chan->tre_bytes_left);
347			tr_len = min(buf_left, mhi_chan->tre_bytes_left);
348		} else {
349			mhi_chan->tre_loc = MHI_TRE_DATA_GET_PTR(el);
350			mhi_chan->tre_size = MHI_TRE_DATA_GET_LEN(el);
351			mhi_chan->tre_bytes_left = mhi_chan->tre_size;
352
353			tr_len = min(buf_left, mhi_chan->tre_size);
354		}
355
356		read_offset = mhi_chan->tre_size - mhi_chan->tre_bytes_left;
357		write_offset = len - buf_left;
358
359		buf_info.host_addr = mhi_chan->tre_loc + read_offset;
360		buf_info.dev_addr = result->buf_addr + write_offset;
361		buf_info.size = tr_len;
362
363		dev_dbg(dev, "Reading %zd bytes from channel (%u)\n", tr_len, ring->ch_id);
364		ret = mhi_cntrl->read_from_host(mhi_cntrl, &buf_info);
365		if (ret < 0) {
366			dev_err(&mhi_chan->mhi_dev->dev, "Error reading from channel\n");
367			return ret;
368		}
369
370		buf_left -= tr_len;
371		mhi_chan->tre_bytes_left -= tr_len;
372
373		/*
374		 * Once the TRE (Transfer Ring Element) of a TD (Transfer Descriptor) has been
375		 * read completely:
376		 *
377		 * 1. Send completion event to the host based on the flags set in TRE.
378		 * 2. Increment the local read offset of the transfer ring.
379		 */
380		if (!mhi_chan->tre_bytes_left) {
381			/*
382			 * The host will split the data packet into multiple TREs if it can't fit
383			 * the packet in a single TRE. In that case, CHAIN flag will be set by the
384			 * host for all TREs except the last one.
385			 */
386			if (MHI_TRE_DATA_GET_CHAIN(el)) {
387				/*
388				 * IEOB (Interrupt on End of Block) flag will be set by the host if
389				 * it expects the completion event for all TREs of a TD.
390				 */
391				if (MHI_TRE_DATA_GET_IEOB(el)) {
392					ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el,
393								     MHI_TRE_DATA_GET_LEN(el),
394								     MHI_EV_CC_EOB);
395					if (ret < 0) {
396						dev_err(&mhi_chan->mhi_dev->dev,
397							"Error sending transfer compl. event\n");
398						return ret;
399					}
400				}
401			} else {
402				/*
403				 * IEOT (Interrupt on End of Transfer) flag will be set by the host
404				 * for the last TRE of the TD and expects the completion event for
405				 * the same.
406				 */
407				if (MHI_TRE_DATA_GET_IEOT(el)) {
408					ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el,
409								     MHI_TRE_DATA_GET_LEN(el),
410								     MHI_EV_CC_EOT);
411					if (ret < 0) {
412						dev_err(&mhi_chan->mhi_dev->dev,
413							"Error sending transfer compl. event\n");
414						return ret;
415					}
416				}
417
418				tr_done = true;
419			}
420
421			mhi_ep_ring_inc_index(ring);
422		}
423
424		result->bytes_xferd += tr_len;
425	} while (buf_left && !tr_done);
426
427	return 0;
428}
429
430static int mhi_ep_process_ch_ring(struct mhi_ep_ring *ring, struct mhi_ring_element *el)
431{
432	struct mhi_ep_cntrl *mhi_cntrl = ring->mhi_cntrl;
433	struct mhi_result result = {};
434	u32 len = MHI_EP_DEFAULT_MTU;
435	struct mhi_ep_chan *mhi_chan;
436	int ret;
437
438	mhi_chan = &mhi_cntrl->mhi_chan[ring->ch_id];
439
440	/*
441	 * Bail out if transfer callback is not registered for the channel.
442	 * This is most likely due to the client driver not loaded at this point.
443	 */
444	if (!mhi_chan->xfer_cb) {
445		dev_err(&mhi_chan->mhi_dev->dev, "Client driver not available\n");
446		return -ENODEV;
447	}
448
449	if (ring->ch_id % 2) {
450		/* DL channel */
451		result.dir = mhi_chan->dir;
452		mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
453	} else {
454		/* UL channel */
455		result.buf_addr = kmem_cache_zalloc(mhi_cntrl->tre_buf_cache, GFP_KERNEL | GFP_DMA);
456		if (!result.buf_addr)
457			return -ENOMEM;
458
459		do {
460			ret = mhi_ep_read_channel(mhi_cntrl, ring, &result, len);
461			if (ret < 0) {
462				dev_err(&mhi_chan->mhi_dev->dev, "Failed to read channel\n");
463				kmem_cache_free(mhi_cntrl->tre_buf_cache, result.buf_addr);
464				return ret;
465			}
466
467			result.dir = mhi_chan->dir;
468			mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
469			result.bytes_xferd = 0;
470			memset(result.buf_addr, 0, len);
471
472			/* Read until the ring becomes empty */
473		} while (!mhi_ep_queue_is_empty(mhi_chan->mhi_dev, DMA_TO_DEVICE));
474
475		kmem_cache_free(mhi_cntrl->tre_buf_cache, result.buf_addr);
476	}
477
478	return 0;
479}
480
481/* TODO: Handle partially formed TDs */
482int mhi_ep_queue_skb(struct mhi_ep_device *mhi_dev, struct sk_buff *skb)
483{
484	struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl;
485	struct mhi_ep_chan *mhi_chan = mhi_dev->dl_chan;
486	struct device *dev = &mhi_chan->mhi_dev->dev;
487	struct mhi_ep_buf_info buf_info = {};
488	struct mhi_ring_element *el;
489	u32 buf_left, read_offset;
490	struct mhi_ep_ring *ring;
491	enum mhi_ev_ccs code;
492	size_t tr_len;
493	u32 tre_len;
494	int ret;
495
496	buf_left = skb->len;
497	ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring;
498
499	mutex_lock(&mhi_chan->lock);
500
501	do {
502		/* Don't process the transfer ring if the channel is not in RUNNING state */
503		if (mhi_chan->state != MHI_CH_STATE_RUNNING) {
504			dev_err(dev, "Channel not available\n");
505			ret = -ENODEV;
506			goto err_exit;
507		}
508
509		if (mhi_ep_queue_is_empty(mhi_dev, DMA_FROM_DEVICE)) {
510			dev_err(dev, "TRE not available!\n");
511			ret = -ENOSPC;
512			goto err_exit;
513		}
514
515		el = &ring->ring_cache[ring->rd_offset];
516		tre_len = MHI_TRE_DATA_GET_LEN(el);
517
518		tr_len = min(buf_left, tre_len);
519		read_offset = skb->len - buf_left;
520
521		buf_info.dev_addr = skb->data + read_offset;
522		buf_info.host_addr = MHI_TRE_DATA_GET_PTR(el);
523		buf_info.size = tr_len;
524
525		dev_dbg(dev, "Writing %zd bytes to channel (%u)\n", tr_len, ring->ch_id);
526		ret = mhi_cntrl->write_to_host(mhi_cntrl, &buf_info);
527		if (ret < 0) {
528			dev_err(dev, "Error writing to the channel\n");
529			goto err_exit;
530		}
531
532		buf_left -= tr_len;
533		/*
534		 * For all TREs queued by the host for DL channel, only the EOT flag will be set.
535		 * If the packet doesn't fit into a single TRE, send the OVERFLOW event to
536		 * the host so that the host can adjust the packet boundary to next TREs. Else send
537		 * the EOT event to the host indicating the packet boundary.
538		 */
539		if (buf_left)
540			code = MHI_EV_CC_OVERFLOW;
541		else
542			code = MHI_EV_CC_EOT;
543
544		ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el, tr_len, code);
545		if (ret) {
546			dev_err(dev, "Error sending transfer completion event\n");
547			goto err_exit;
548		}
549
550		mhi_ep_ring_inc_index(ring);
551	} while (buf_left);
552
553	mutex_unlock(&mhi_chan->lock);
554
555	return 0;
556
557err_exit:
558	mutex_unlock(&mhi_chan->lock);
559
560	return ret;
561}
562EXPORT_SYMBOL_GPL(mhi_ep_queue_skb);
563
564static int mhi_ep_cache_host_cfg(struct mhi_ep_cntrl *mhi_cntrl)
565{
566	size_t cmd_ctx_host_size, ch_ctx_host_size, ev_ctx_host_size;
567	struct device *dev = &mhi_cntrl->mhi_dev->dev;
568	int ret;
569
570	/* Update the number of event rings (NER) programmed by the host */
571	mhi_ep_mmio_update_ner(mhi_cntrl);
572
573	dev_dbg(dev, "Number of Event rings: %u, HW Event rings: %u\n",
574		 mhi_cntrl->event_rings, mhi_cntrl->hw_event_rings);
575
576	ch_ctx_host_size = sizeof(struct mhi_chan_ctxt) * mhi_cntrl->max_chan;
577	ev_ctx_host_size = sizeof(struct mhi_event_ctxt) * mhi_cntrl->event_rings;
578	cmd_ctx_host_size = sizeof(struct mhi_cmd_ctxt) * NR_OF_CMD_RINGS;
579
580	/* Get the channel context base pointer from host */
581	mhi_ep_mmio_get_chc_base(mhi_cntrl);
582
583	/* Allocate and map memory for caching host channel context */
584	ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa,
585				   &mhi_cntrl->ch_ctx_cache_phys,
586				   (void __iomem **) &mhi_cntrl->ch_ctx_cache,
587				   ch_ctx_host_size);
588	if (ret) {
589		dev_err(dev, "Failed to allocate and map ch_ctx_cache\n");
590		return ret;
591	}
592
593	/* Get the event context base pointer from host */
594	mhi_ep_mmio_get_erc_base(mhi_cntrl);
595
596	/* Allocate and map memory for caching host event context */
597	ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa,
598				   &mhi_cntrl->ev_ctx_cache_phys,
599				   (void __iomem **) &mhi_cntrl->ev_ctx_cache,
600				   ev_ctx_host_size);
601	if (ret) {
602		dev_err(dev, "Failed to allocate and map ev_ctx_cache\n");
603		goto err_ch_ctx;
604	}
605
606	/* Get the command context base pointer from host */
607	mhi_ep_mmio_get_crc_base(mhi_cntrl);
608
609	/* Allocate and map memory for caching host command context */
610	ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa,
611				   &mhi_cntrl->cmd_ctx_cache_phys,
612				   (void __iomem **) &mhi_cntrl->cmd_ctx_cache,
613				   cmd_ctx_host_size);
614	if (ret) {
615		dev_err(dev, "Failed to allocate and map cmd_ctx_cache\n");
616		goto err_ev_ctx;
617	}
618
619	/* Initialize command ring */
620	ret = mhi_ep_ring_start(mhi_cntrl, &mhi_cntrl->mhi_cmd->ring,
621				(union mhi_ep_ring_ctx *)mhi_cntrl->cmd_ctx_cache);
622	if (ret) {
623		dev_err(dev, "Failed to start the command ring\n");
624		goto err_cmd_ctx;
625	}
626
627	return ret;
628
629err_cmd_ctx:
630	mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa, mhi_cntrl->cmd_ctx_cache_phys,
631			      (void __iomem *) mhi_cntrl->cmd_ctx_cache, cmd_ctx_host_size);
632
633err_ev_ctx:
634	mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa, mhi_cntrl->ev_ctx_cache_phys,
635			      (void __iomem *) mhi_cntrl->ev_ctx_cache, ev_ctx_host_size);
636
637err_ch_ctx:
638	mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa, mhi_cntrl->ch_ctx_cache_phys,
639			      (void __iomem *) mhi_cntrl->ch_ctx_cache, ch_ctx_host_size);
640
641	return ret;
642}
643
644static void mhi_ep_free_host_cfg(struct mhi_ep_cntrl *mhi_cntrl)
645{
646	size_t cmd_ctx_host_size, ch_ctx_host_size, ev_ctx_host_size;
647
648	ch_ctx_host_size = sizeof(struct mhi_chan_ctxt) * mhi_cntrl->max_chan;
649	ev_ctx_host_size = sizeof(struct mhi_event_ctxt) * mhi_cntrl->event_rings;
650	cmd_ctx_host_size = sizeof(struct mhi_cmd_ctxt) * NR_OF_CMD_RINGS;
651
652	mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa, mhi_cntrl->cmd_ctx_cache_phys,
653			      (void __iomem *) mhi_cntrl->cmd_ctx_cache, cmd_ctx_host_size);
654
655	mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa, mhi_cntrl->ev_ctx_cache_phys,
656			      (void __iomem *) mhi_cntrl->ev_ctx_cache, ev_ctx_host_size);
657
658	mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa, mhi_cntrl->ch_ctx_cache_phys,
659			      (void __iomem *) mhi_cntrl->ch_ctx_cache, ch_ctx_host_size);
660}
661
662static void mhi_ep_enable_int(struct mhi_ep_cntrl *mhi_cntrl)
663{
664	/*
665	 * Doorbell interrupts are enabled when the corresponding channel gets started.
666	 * Enabling all interrupts here triggers spurious irqs as some of the interrupts
667	 * associated with hw channels always get triggered.
668	 */
669	mhi_ep_mmio_enable_ctrl_interrupt(mhi_cntrl);
670	mhi_ep_mmio_enable_cmdb_interrupt(mhi_cntrl);
671}
672
673static int mhi_ep_enable(struct mhi_ep_cntrl *mhi_cntrl)
674{
675	struct device *dev = &mhi_cntrl->mhi_dev->dev;
676	enum mhi_state state;
677	bool mhi_reset;
678	u32 count = 0;
679	int ret;
680
681	/* Wait for Host to set the M0 state */
682	do {
683		msleep(M0_WAIT_DELAY_MS);
684		mhi_ep_mmio_get_mhi_state(mhi_cntrl, &state, &mhi_reset);
685		if (mhi_reset) {
686			/* Clear the MHI reset if host is in reset state */
687			mhi_ep_mmio_clear_reset(mhi_cntrl);
688			dev_info(dev, "Detected Host reset while waiting for M0\n");
689		}
690		count++;
691	} while (state != MHI_STATE_M0 && count < M0_WAIT_COUNT);
692
693	if (state != MHI_STATE_M0) {
694		dev_err(dev, "Host failed to enter M0\n");
695		return -ETIMEDOUT;
696	}
697
698	ret = mhi_ep_cache_host_cfg(mhi_cntrl);
699	if (ret) {
700		dev_err(dev, "Failed to cache host config\n");
701		return ret;
702	}
703
704	mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS);
705
706	/* Enable all interrupts now */
707	mhi_ep_enable_int(mhi_cntrl);
708
709	return 0;
710}
711
712static void mhi_ep_cmd_ring_worker(struct work_struct *work)
713{
714	struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, cmd_ring_work);
715	struct mhi_ep_ring *ring = &mhi_cntrl->mhi_cmd->ring;
716	struct device *dev = &mhi_cntrl->mhi_dev->dev;
717	struct mhi_ring_element *el;
718	int ret;
719
720	/* Update the write offset for the ring */
721	ret = mhi_ep_update_wr_offset(ring);
722	if (ret) {
723		dev_err(dev, "Error updating write offset for ring\n");
724		return;
725	}
726
727	/* Sanity check to make sure there are elements in the ring */
728	if (ring->rd_offset == ring->wr_offset)
729		return;
730
731	/*
732	 * Process command ring element till write offset. In case of an error, just try to
733	 * process next element.
734	 */
735	while (ring->rd_offset != ring->wr_offset) {
736		el = &ring->ring_cache[ring->rd_offset];
737
738		ret = mhi_ep_process_cmd_ring(ring, el);
739		if (ret && ret != -ENODEV)
740			dev_err(dev, "Error processing cmd ring element: %zu\n", ring->rd_offset);
741
742		mhi_ep_ring_inc_index(ring);
743	}
744}
745
746static void mhi_ep_ch_ring_worker(struct work_struct *work)
747{
748	struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, ch_ring_work);
749	struct device *dev = &mhi_cntrl->mhi_dev->dev;
750	struct mhi_ep_ring_item *itr, *tmp;
751	struct mhi_ring_element *el;
752	struct mhi_ep_ring *ring;
753	struct mhi_ep_chan *chan;
754	unsigned long flags;
755	LIST_HEAD(head);
756	int ret;
757
758	spin_lock_irqsave(&mhi_cntrl->list_lock, flags);
759	list_splice_tail_init(&mhi_cntrl->ch_db_list, &head);
760	spin_unlock_irqrestore(&mhi_cntrl->list_lock, flags);
761
762	/* Process each queued channel ring. In case of an error, just process next element. */
763	list_for_each_entry_safe(itr, tmp, &head, node) {
764		list_del(&itr->node);
765		ring = itr->ring;
766
767		chan = &mhi_cntrl->mhi_chan[ring->ch_id];
768		mutex_lock(&chan->lock);
769
770		/*
771		 * The ring could've stopped while we waited to grab the (chan->lock), so do
772		 * a sanity check before going further.
773		 */
774		if (!ring->started) {
775			mutex_unlock(&chan->lock);
776			kfree(itr);
777			continue;
778		}
779
780		/* Update the write offset for the ring */
781		ret = mhi_ep_update_wr_offset(ring);
782		if (ret) {
783			dev_err(dev, "Error updating write offset for ring\n");
784			mutex_unlock(&chan->lock);
785			kmem_cache_free(mhi_cntrl->ring_item_cache, itr);
786			continue;
787		}
788
789		/* Sanity check to make sure there are elements in the ring */
790		if (ring->rd_offset == ring->wr_offset) {
791			mutex_unlock(&chan->lock);
792			kmem_cache_free(mhi_cntrl->ring_item_cache, itr);
793			continue;
794		}
795
796		el = &ring->ring_cache[ring->rd_offset];
797
798		dev_dbg(dev, "Processing the ring for channel (%u)\n", ring->ch_id);
799		ret = mhi_ep_process_ch_ring(ring, el);
800		if (ret) {
801			dev_err(dev, "Error processing ring for channel (%u): %d\n",
802				ring->ch_id, ret);
803			mutex_unlock(&chan->lock);
804			kmem_cache_free(mhi_cntrl->ring_item_cache, itr);
805			continue;
806		}
807
808		mutex_unlock(&chan->lock);
809		kmem_cache_free(mhi_cntrl->ring_item_cache, itr);
810	}
811}
812
813static void mhi_ep_state_worker(struct work_struct *work)
814{
815	struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, state_work);
816	struct device *dev = &mhi_cntrl->mhi_dev->dev;
817	struct mhi_ep_state_transition *itr, *tmp;
818	unsigned long flags;
819	LIST_HEAD(head);
820	int ret;
821
822	spin_lock_irqsave(&mhi_cntrl->list_lock, flags);
823	list_splice_tail_init(&mhi_cntrl->st_transition_list, &head);
824	spin_unlock_irqrestore(&mhi_cntrl->list_lock, flags);
825
826	list_for_each_entry_safe(itr, tmp, &head, node) {
827		list_del(&itr->node);
828		dev_dbg(dev, "Handling MHI state transition to %s\n",
829			 mhi_state_str(itr->state));
830
831		switch (itr->state) {
832		case MHI_STATE_M0:
833			ret = mhi_ep_set_m0_state(mhi_cntrl);
834			if (ret)
835				dev_err(dev, "Failed to transition to M0 state\n");
836			break;
837		case MHI_STATE_M3:
838			ret = mhi_ep_set_m3_state(mhi_cntrl);
839			if (ret)
840				dev_err(dev, "Failed to transition to M3 state\n");
841			break;
842		default:
843			dev_err(dev, "Invalid MHI state transition: %d\n", itr->state);
844			break;
845		}
846		kfree(itr);
847	}
848}
849
850static void mhi_ep_queue_channel_db(struct mhi_ep_cntrl *mhi_cntrl, unsigned long ch_int,
851				    u32 ch_idx)
852{
853	struct mhi_ep_ring_item *item;
854	struct mhi_ep_ring *ring;
855	bool work = !!ch_int;
856	LIST_HEAD(head);
857	u32 i;
858
859	/* First add the ring items to a local list */
860	for_each_set_bit(i, &ch_int, 32) {
861		/* Channel index varies for each register: 0, 32, 64, 96 */
862		u32 ch_id = ch_idx + i;
863
864		ring = &mhi_cntrl->mhi_chan[ch_id].ring;
865		item = kmem_cache_zalloc(mhi_cntrl->ring_item_cache, GFP_ATOMIC);
866		if (!item)
867			return;
868
869		item->ring = ring;
870		list_add_tail(&item->node, &head);
871	}
872
873	/* Now, splice the local list into ch_db_list and queue the work item */
874	if (work) {
875		spin_lock(&mhi_cntrl->list_lock);
876		list_splice_tail_init(&head, &mhi_cntrl->ch_db_list);
877		spin_unlock(&mhi_cntrl->list_lock);
878
879		queue_work(mhi_cntrl->wq, &mhi_cntrl->ch_ring_work);
880	}
881}
882
883/*
884 * Channel interrupt statuses are contained in 4 registers each of 32bit length.
885 * For checking all interrupts, we need to loop through each registers and then
886 * check for bits set.
887 */
888static void mhi_ep_check_channel_interrupt(struct mhi_ep_cntrl *mhi_cntrl)
889{
890	u32 ch_int, ch_idx, i;
891
892	/* Bail out if there is no channel doorbell interrupt */
893	if (!mhi_ep_mmio_read_chdb_status_interrupts(mhi_cntrl))
894		return;
895
896	for (i = 0; i < MHI_MASK_ROWS_CH_DB; i++) {
897		ch_idx = i * MHI_MASK_CH_LEN;
898
899		/* Only process channel interrupt if the mask is enabled */
900		ch_int = mhi_cntrl->chdb[i].status & mhi_cntrl->chdb[i].mask;
901		if (ch_int) {
902			mhi_ep_queue_channel_db(mhi_cntrl, ch_int, ch_idx);
903			mhi_ep_mmio_write(mhi_cntrl, MHI_CHDB_INT_CLEAR_n(i),
904							mhi_cntrl->chdb[i].status);
905		}
906	}
907}
908
909static void mhi_ep_process_ctrl_interrupt(struct mhi_ep_cntrl *mhi_cntrl,
910					 enum mhi_state state)
911{
912	struct mhi_ep_state_transition *item;
913
914	item = kzalloc(sizeof(*item), GFP_ATOMIC);
915	if (!item)
916		return;
917
918	item->state = state;
919	spin_lock(&mhi_cntrl->list_lock);
920	list_add_tail(&item->node, &mhi_cntrl->st_transition_list);
921	spin_unlock(&mhi_cntrl->list_lock);
922
923	queue_work(mhi_cntrl->wq, &mhi_cntrl->state_work);
924}
925
926/*
927 * Interrupt handler that services interrupts raised by the host writing to
928 * MHICTRL and Command ring doorbell (CRDB) registers for state change and
929 * channel interrupts.
930 */
931static irqreturn_t mhi_ep_irq(int irq, void *data)
932{
933	struct mhi_ep_cntrl *mhi_cntrl = data;
934	struct device *dev = &mhi_cntrl->mhi_dev->dev;
935	enum mhi_state state;
936	u32 int_value;
937	bool mhi_reset;
938
939	/* Acknowledge the ctrl interrupt */
940	int_value = mhi_ep_mmio_read(mhi_cntrl, MHI_CTRL_INT_STATUS);
941	mhi_ep_mmio_write(mhi_cntrl, MHI_CTRL_INT_CLEAR, int_value);
942
943	/* Check for ctrl interrupt */
944	if (FIELD_GET(MHI_CTRL_INT_STATUS_MSK, int_value)) {
945		dev_dbg(dev, "Processing ctrl interrupt\n");
946		mhi_ep_mmio_get_mhi_state(mhi_cntrl, &state, &mhi_reset);
947		if (mhi_reset) {
948			dev_info(dev, "Host triggered MHI reset!\n");
949			disable_irq_nosync(mhi_cntrl->irq);
950			schedule_work(&mhi_cntrl->reset_work);
951			return IRQ_HANDLED;
952		}
953
954		mhi_ep_process_ctrl_interrupt(mhi_cntrl, state);
955	}
956
957	/* Check for command doorbell interrupt */
958	if (FIELD_GET(MHI_CTRL_INT_STATUS_CRDB_MSK, int_value)) {
959		dev_dbg(dev, "Processing command doorbell interrupt\n");
960		queue_work(mhi_cntrl->wq, &mhi_cntrl->cmd_ring_work);
961	}
962
963	/* Check for channel interrupts */
964	mhi_ep_check_channel_interrupt(mhi_cntrl);
965
966	return IRQ_HANDLED;
967}
968
969static void mhi_ep_abort_transfer(struct mhi_ep_cntrl *mhi_cntrl)
970{
971	struct mhi_ep_ring *ch_ring, *ev_ring;
972	struct mhi_result result = {};
973	struct mhi_ep_chan *mhi_chan;
974	int i;
975
976	/* Stop all the channels */
977	for (i = 0; i < mhi_cntrl->max_chan; i++) {
978		mhi_chan = &mhi_cntrl->mhi_chan[i];
979		if (!mhi_chan->ring.started)
980			continue;
981
982		mutex_lock(&mhi_chan->lock);
983		/* Send channel disconnect status to client drivers */
984		if (mhi_chan->xfer_cb) {
985			result.transaction_status = -ENOTCONN;
986			result.bytes_xferd = 0;
987			mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
988		}
989
990		mhi_chan->state = MHI_CH_STATE_DISABLED;
991		mutex_unlock(&mhi_chan->lock);
992	}
993
994	flush_workqueue(mhi_cntrl->wq);
995
996	/* Destroy devices associated with all channels */
997	device_for_each_child(&mhi_cntrl->mhi_dev->dev, NULL, mhi_ep_destroy_device);
998
999	/* Stop and reset the transfer rings */
1000	for (i = 0; i < mhi_cntrl->max_chan; i++) {
1001		mhi_chan = &mhi_cntrl->mhi_chan[i];
1002		if (!mhi_chan->ring.started)
1003			continue;
1004
1005		ch_ring = &mhi_cntrl->mhi_chan[i].ring;
1006		mutex_lock(&mhi_chan->lock);
1007		mhi_ep_ring_reset(mhi_cntrl, ch_ring);
1008		mutex_unlock(&mhi_chan->lock);
1009	}
1010
1011	/* Stop and reset the event rings */
1012	for (i = 0; i < mhi_cntrl->event_rings; i++) {
1013		ev_ring = &mhi_cntrl->mhi_event[i].ring;
1014		if (!ev_ring->started)
1015			continue;
1016
1017		mutex_lock(&mhi_cntrl->event_lock);
1018		mhi_ep_ring_reset(mhi_cntrl, ev_ring);
1019		mutex_unlock(&mhi_cntrl->event_lock);
1020	}
1021
1022	/* Stop and reset the command ring */
1023	mhi_ep_ring_reset(mhi_cntrl, &mhi_cntrl->mhi_cmd->ring);
1024
1025	mhi_ep_free_host_cfg(mhi_cntrl);
1026	mhi_ep_mmio_mask_interrupts(mhi_cntrl);
1027
1028	mhi_cntrl->enabled = false;
1029}
1030
1031static void mhi_ep_reset_worker(struct work_struct *work)
1032{
1033	struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, reset_work);
1034	enum mhi_state cur_state;
1035
1036	mhi_ep_power_down(mhi_cntrl);
1037
1038	mutex_lock(&mhi_cntrl->state_lock);
1039
1040	/* Reset MMIO to signal host that the MHI_RESET is completed in endpoint */
1041	mhi_ep_mmio_reset(mhi_cntrl);
1042	cur_state = mhi_cntrl->mhi_state;
1043
1044	/*
1045	 * Only proceed further if the reset is due to SYS_ERR. The host will
1046	 * issue reset during shutdown also and we don't need to do re-init in
1047	 * that case.
1048	 */
1049	if (cur_state == MHI_STATE_SYS_ERR)
1050		mhi_ep_power_up(mhi_cntrl);
1051
1052	mutex_unlock(&mhi_cntrl->state_lock);
1053}
1054
1055/*
1056 * We don't need to do anything special other than setting the MHI SYS_ERR
1057 * state. The host will reset all contexts and issue MHI RESET so that we
1058 * could also recover from error state.
1059 */
1060void mhi_ep_handle_syserr(struct mhi_ep_cntrl *mhi_cntrl)
1061{
1062	struct device *dev = &mhi_cntrl->mhi_dev->dev;
1063	int ret;
1064
1065	ret = mhi_ep_set_mhi_state(mhi_cntrl, MHI_STATE_SYS_ERR);
1066	if (ret)
1067		return;
1068
1069	/* Signal host that the device went to SYS_ERR state */
1070	ret = mhi_ep_send_state_change_event(mhi_cntrl, MHI_STATE_SYS_ERR);
1071	if (ret)
1072		dev_err(dev, "Failed sending SYS_ERR state change event: %d\n", ret);
1073}
1074
1075int mhi_ep_power_up(struct mhi_ep_cntrl *mhi_cntrl)
1076{
1077	struct device *dev = &mhi_cntrl->mhi_dev->dev;
1078	int ret, i;
1079
1080	/*
1081	 * Mask all interrupts until the state machine is ready. Interrupts will
1082	 * be enabled later with mhi_ep_enable().
1083	 */
1084	mhi_ep_mmio_mask_interrupts(mhi_cntrl);
1085	mhi_ep_mmio_init(mhi_cntrl);
1086
1087	mhi_cntrl->mhi_event = kzalloc(mhi_cntrl->event_rings * (sizeof(*mhi_cntrl->mhi_event)),
1088					GFP_KERNEL);
1089	if (!mhi_cntrl->mhi_event)
1090		return -ENOMEM;
1091
1092	/* Initialize command, channel and event rings */
1093	mhi_ep_ring_init(&mhi_cntrl->mhi_cmd->ring, RING_TYPE_CMD, 0);
1094	for (i = 0; i < mhi_cntrl->max_chan; i++)
1095		mhi_ep_ring_init(&mhi_cntrl->mhi_chan[i].ring, RING_TYPE_CH, i);
1096	for (i = 0; i < mhi_cntrl->event_rings; i++)
1097		mhi_ep_ring_init(&mhi_cntrl->mhi_event[i].ring, RING_TYPE_ER, i);
1098
1099	mhi_cntrl->mhi_state = MHI_STATE_RESET;
1100
1101	/* Set AMSS EE before signaling ready state */
1102	mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS);
1103
1104	/* All set, notify the host that we are ready */
1105	ret = mhi_ep_set_ready_state(mhi_cntrl);
1106	if (ret)
1107		goto err_free_event;
1108
1109	dev_dbg(dev, "READY state notification sent to the host\n");
1110
1111	ret = mhi_ep_enable(mhi_cntrl);
1112	if (ret) {
1113		dev_err(dev, "Failed to enable MHI endpoint\n");
1114		goto err_free_event;
1115	}
1116
1117	enable_irq(mhi_cntrl->irq);
1118	mhi_cntrl->enabled = true;
1119
1120	return 0;
1121
1122err_free_event:
1123	kfree(mhi_cntrl->mhi_event);
1124
1125	return ret;
1126}
1127EXPORT_SYMBOL_GPL(mhi_ep_power_up);
1128
1129void mhi_ep_power_down(struct mhi_ep_cntrl *mhi_cntrl)
1130{
1131	if (mhi_cntrl->enabled) {
1132		mhi_ep_abort_transfer(mhi_cntrl);
1133		kfree(mhi_cntrl->mhi_event);
1134		disable_irq(mhi_cntrl->irq);
1135	}
1136}
1137EXPORT_SYMBOL_GPL(mhi_ep_power_down);
1138
1139void mhi_ep_suspend_channels(struct mhi_ep_cntrl *mhi_cntrl)
1140{
1141	struct mhi_ep_chan *mhi_chan;
1142	u32 tmp;
1143	int i;
1144
1145	for (i = 0; i < mhi_cntrl->max_chan; i++) {
1146		mhi_chan = &mhi_cntrl->mhi_chan[i];
1147
1148		if (!mhi_chan->mhi_dev)
1149			continue;
1150
1151		mutex_lock(&mhi_chan->lock);
1152		/* Skip if the channel is not currently running */
1153		tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[i].chcfg);
1154		if (FIELD_GET(CHAN_CTX_CHSTATE_MASK, tmp) != MHI_CH_STATE_RUNNING) {
1155			mutex_unlock(&mhi_chan->lock);
1156			continue;
1157		}
1158
1159		dev_dbg(&mhi_chan->mhi_dev->dev, "Suspending channel\n");
1160		/* Set channel state to SUSPENDED */
1161		mhi_chan->state = MHI_CH_STATE_SUSPENDED;
1162		tmp &= ~CHAN_CTX_CHSTATE_MASK;
1163		tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_SUSPENDED);
1164		mhi_cntrl->ch_ctx_cache[i].chcfg = cpu_to_le32(tmp);
1165		mutex_unlock(&mhi_chan->lock);
1166	}
1167}
1168
1169void mhi_ep_resume_channels(struct mhi_ep_cntrl *mhi_cntrl)
1170{
1171	struct mhi_ep_chan *mhi_chan;
1172	u32 tmp;
1173	int i;
1174
1175	for (i = 0; i < mhi_cntrl->max_chan; i++) {
1176		mhi_chan = &mhi_cntrl->mhi_chan[i];
1177
1178		if (!mhi_chan->mhi_dev)
1179			continue;
1180
1181		mutex_lock(&mhi_chan->lock);
1182		/* Skip if the channel is not currently suspended */
1183		tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[i].chcfg);
1184		if (FIELD_GET(CHAN_CTX_CHSTATE_MASK, tmp) != MHI_CH_STATE_SUSPENDED) {
1185			mutex_unlock(&mhi_chan->lock);
1186			continue;
1187		}
1188
1189		dev_dbg(&mhi_chan->mhi_dev->dev, "Resuming channel\n");
1190		/* Set channel state to RUNNING */
1191		mhi_chan->state = MHI_CH_STATE_RUNNING;
1192		tmp &= ~CHAN_CTX_CHSTATE_MASK;
1193		tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_RUNNING);
1194		mhi_cntrl->ch_ctx_cache[i].chcfg = cpu_to_le32(tmp);
1195		mutex_unlock(&mhi_chan->lock);
1196	}
1197}
1198
1199static void mhi_ep_release_device(struct device *dev)
1200{
1201	struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1202
1203	if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1204		mhi_dev->mhi_cntrl->mhi_dev = NULL;
1205
1206	/*
1207	 * We need to set the mhi_chan->mhi_dev to NULL here since the MHI
1208	 * devices for the channels will only get created in mhi_ep_create_device()
1209	 * if the mhi_dev associated with it is NULL.
1210	 */
1211	if (mhi_dev->ul_chan)
1212		mhi_dev->ul_chan->mhi_dev = NULL;
1213
1214	if (mhi_dev->dl_chan)
1215		mhi_dev->dl_chan->mhi_dev = NULL;
1216
1217	kfree(mhi_dev);
1218}
1219
1220static struct mhi_ep_device *mhi_ep_alloc_device(struct mhi_ep_cntrl *mhi_cntrl,
1221						 enum mhi_device_type dev_type)
1222{
1223	struct mhi_ep_device *mhi_dev;
1224	struct device *dev;
1225
1226	mhi_dev = kzalloc(sizeof(*mhi_dev), GFP_KERNEL);
1227	if (!mhi_dev)
1228		return ERR_PTR(-ENOMEM);
1229
1230	dev = &mhi_dev->dev;
1231	device_initialize(dev);
1232	dev->bus = &mhi_ep_bus_type;
1233	dev->release = mhi_ep_release_device;
1234
1235	/* Controller device is always allocated first */
1236	if (dev_type == MHI_DEVICE_CONTROLLER)
1237		/* for MHI controller device, parent is the bus device (e.g. PCI EPF) */
1238		dev->parent = mhi_cntrl->cntrl_dev;
1239	else
1240		/* for MHI client devices, parent is the MHI controller device */
1241		dev->parent = &mhi_cntrl->mhi_dev->dev;
1242
1243	mhi_dev->mhi_cntrl = mhi_cntrl;
1244	mhi_dev->dev_type = dev_type;
1245
1246	return mhi_dev;
1247}
1248
1249/*
1250 * MHI channels are always defined in pairs with UL as the even numbered
1251 * channel and DL as odd numbered one. This function gets UL channel (primary)
1252 * as the ch_id and always looks after the next entry in channel list for
1253 * the corresponding DL channel (secondary).
1254 */
1255static int mhi_ep_create_device(struct mhi_ep_cntrl *mhi_cntrl, u32 ch_id)
1256{
1257	struct mhi_ep_chan *mhi_chan = &mhi_cntrl->mhi_chan[ch_id];
1258	struct device *dev = mhi_cntrl->cntrl_dev;
1259	struct mhi_ep_device *mhi_dev;
1260	int ret;
1261
1262	/* Check if the channel name is same for both UL and DL */
1263	if (strcmp(mhi_chan->name, mhi_chan[1].name)) {
1264		dev_err(dev, "UL and DL channel names are not same: (%s) != (%s)\n",
1265			mhi_chan->name, mhi_chan[1].name);
1266		return -EINVAL;
1267	}
1268
1269	mhi_dev = mhi_ep_alloc_device(mhi_cntrl, MHI_DEVICE_XFER);
1270	if (IS_ERR(mhi_dev))
1271		return PTR_ERR(mhi_dev);
1272
1273	/* Configure primary channel */
1274	mhi_dev->ul_chan = mhi_chan;
1275	get_device(&mhi_dev->dev);
1276	mhi_chan->mhi_dev = mhi_dev;
1277
1278	/* Configure secondary channel as well */
1279	mhi_chan++;
1280	mhi_dev->dl_chan = mhi_chan;
1281	get_device(&mhi_dev->dev);
1282	mhi_chan->mhi_dev = mhi_dev;
1283
1284	/* Channel name is same for both UL and DL */
1285	mhi_dev->name = mhi_chan->name;
1286	ret = dev_set_name(&mhi_dev->dev, "%s_%s",
1287		     dev_name(&mhi_cntrl->mhi_dev->dev),
1288		     mhi_dev->name);
1289	if (ret) {
1290		put_device(&mhi_dev->dev);
1291		return ret;
1292	}
1293
1294	ret = device_add(&mhi_dev->dev);
1295	if (ret)
1296		put_device(&mhi_dev->dev);
1297
1298	return ret;
1299}
1300
1301static int mhi_ep_destroy_device(struct device *dev, void *data)
1302{
1303	struct mhi_ep_device *mhi_dev;
1304	struct mhi_ep_cntrl *mhi_cntrl;
1305	struct mhi_ep_chan *ul_chan, *dl_chan;
1306
1307	if (dev->bus != &mhi_ep_bus_type)
1308		return 0;
1309
1310	mhi_dev = to_mhi_ep_device(dev);
1311	mhi_cntrl = mhi_dev->mhi_cntrl;
1312
1313	/* Only destroy devices created for channels */
1314	if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1315		return 0;
1316
1317	ul_chan = mhi_dev->ul_chan;
1318	dl_chan = mhi_dev->dl_chan;
1319
1320	if (ul_chan)
1321		put_device(&ul_chan->mhi_dev->dev);
1322
1323	if (dl_chan)
1324		put_device(&dl_chan->mhi_dev->dev);
1325
1326	dev_dbg(&mhi_cntrl->mhi_dev->dev, "Destroying device for chan:%s\n",
1327		 mhi_dev->name);
1328
1329	/* Notify the client and remove the device from MHI bus */
1330	device_del(dev);
1331	put_device(dev);
1332
1333	return 0;
1334}
1335
1336static int mhi_ep_chan_init(struct mhi_ep_cntrl *mhi_cntrl,
1337			    const struct mhi_ep_cntrl_config *config)
1338{
1339	const struct mhi_ep_channel_config *ch_cfg;
1340	struct device *dev = mhi_cntrl->cntrl_dev;
1341	u32 chan, i;
1342	int ret = -EINVAL;
1343
1344	mhi_cntrl->max_chan = config->max_channels;
1345
1346	/*
1347	 * Allocate max_channels supported by the MHI endpoint and populate
1348	 * only the defined channels
1349	 */
1350	mhi_cntrl->mhi_chan = kcalloc(mhi_cntrl->max_chan, sizeof(*mhi_cntrl->mhi_chan),
1351				      GFP_KERNEL);
1352	if (!mhi_cntrl->mhi_chan)
1353		return -ENOMEM;
1354
1355	for (i = 0; i < config->num_channels; i++) {
1356		struct mhi_ep_chan *mhi_chan;
1357
1358		ch_cfg = &config->ch_cfg[i];
1359
1360		chan = ch_cfg->num;
1361		if (chan >= mhi_cntrl->max_chan) {
1362			dev_err(dev, "Channel (%u) exceeds maximum available channels (%u)\n",
1363				chan, mhi_cntrl->max_chan);
1364			goto error_chan_cfg;
1365		}
1366
1367		/* Bi-directional and direction less channels are not supported */
1368		if (ch_cfg->dir == DMA_BIDIRECTIONAL || ch_cfg->dir == DMA_NONE) {
1369			dev_err(dev, "Invalid direction (%u) for channel (%u)\n",
1370				ch_cfg->dir, chan);
1371			goto error_chan_cfg;
1372		}
1373
1374		mhi_chan = &mhi_cntrl->mhi_chan[chan];
1375		mhi_chan->name = ch_cfg->name;
1376		mhi_chan->chan = chan;
1377		mhi_chan->dir = ch_cfg->dir;
1378		mutex_init(&mhi_chan->lock);
1379	}
1380
1381	return 0;
1382
1383error_chan_cfg:
1384	kfree(mhi_cntrl->mhi_chan);
1385
1386	return ret;
1387}
1388
1389/*
1390 * Allocate channel and command rings here. Event rings will be allocated
1391 * in mhi_ep_power_up() as the config comes from the host.
1392 */
1393int mhi_ep_register_controller(struct mhi_ep_cntrl *mhi_cntrl,
1394				const struct mhi_ep_cntrl_config *config)
1395{
1396	struct mhi_ep_device *mhi_dev;
1397	int ret;
1398
1399	if (!mhi_cntrl || !mhi_cntrl->cntrl_dev || !mhi_cntrl->mmio || !mhi_cntrl->irq)
1400		return -EINVAL;
1401
1402	ret = mhi_ep_chan_init(mhi_cntrl, config);
1403	if (ret)
1404		return ret;
1405
1406	mhi_cntrl->mhi_cmd = kcalloc(NR_OF_CMD_RINGS, sizeof(*mhi_cntrl->mhi_cmd), GFP_KERNEL);
1407	if (!mhi_cntrl->mhi_cmd) {
1408		ret = -ENOMEM;
1409		goto err_free_ch;
1410	}
1411
1412	mhi_cntrl->ev_ring_el_cache = kmem_cache_create("mhi_ep_event_ring_el",
1413							sizeof(struct mhi_ring_element), 0,
1414							SLAB_CACHE_DMA, NULL);
1415	if (!mhi_cntrl->ev_ring_el_cache) {
1416		ret = -ENOMEM;
1417		goto err_free_cmd;
1418	}
1419
1420	mhi_cntrl->tre_buf_cache = kmem_cache_create("mhi_ep_tre_buf", MHI_EP_DEFAULT_MTU, 0,
1421						      SLAB_CACHE_DMA, NULL);
1422	if (!mhi_cntrl->tre_buf_cache) {
1423		ret = -ENOMEM;
1424		goto err_destroy_ev_ring_el_cache;
1425	}
1426
1427	mhi_cntrl->ring_item_cache = kmem_cache_create("mhi_ep_ring_item",
1428							sizeof(struct mhi_ep_ring_item), 0,
1429							0, NULL);
1430	if (!mhi_cntrl->ring_item_cache) {
1431		ret = -ENOMEM;
1432		goto err_destroy_tre_buf_cache;
1433	}
1434	INIT_WORK(&mhi_cntrl->state_work, mhi_ep_state_worker);
1435	INIT_WORK(&mhi_cntrl->reset_work, mhi_ep_reset_worker);
1436	INIT_WORK(&mhi_cntrl->cmd_ring_work, mhi_ep_cmd_ring_worker);
1437	INIT_WORK(&mhi_cntrl->ch_ring_work, mhi_ep_ch_ring_worker);
1438
1439	mhi_cntrl->wq = alloc_workqueue("mhi_ep_wq", 0, 0);
1440	if (!mhi_cntrl->wq) {
1441		ret = -ENOMEM;
1442		goto err_destroy_ring_item_cache;
1443	}
1444
1445	INIT_LIST_HEAD(&mhi_cntrl->st_transition_list);
1446	INIT_LIST_HEAD(&mhi_cntrl->ch_db_list);
1447	spin_lock_init(&mhi_cntrl->list_lock);
1448	mutex_init(&mhi_cntrl->state_lock);
1449	mutex_init(&mhi_cntrl->event_lock);
1450
1451	/* Set MHI version and AMSS EE before enumeration */
1452	mhi_ep_mmio_write(mhi_cntrl, EP_MHIVER, config->mhi_version);
1453	mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS);
1454
1455	/* Set controller index */
1456	ret = ida_alloc(&mhi_ep_cntrl_ida, GFP_KERNEL);
1457	if (ret < 0)
1458		goto err_destroy_wq;
1459
1460	mhi_cntrl->index = ret;
1461
1462	irq_set_status_flags(mhi_cntrl->irq, IRQ_NOAUTOEN);
1463	ret = request_irq(mhi_cntrl->irq, mhi_ep_irq, IRQF_TRIGGER_HIGH,
1464			  "doorbell_irq", mhi_cntrl);
1465	if (ret) {
1466		dev_err(mhi_cntrl->cntrl_dev, "Failed to request Doorbell IRQ\n");
1467		goto err_ida_free;
1468	}
1469
1470	/* Allocate the controller device */
1471	mhi_dev = mhi_ep_alloc_device(mhi_cntrl, MHI_DEVICE_CONTROLLER);
1472	if (IS_ERR(mhi_dev)) {
1473		dev_err(mhi_cntrl->cntrl_dev, "Failed to allocate controller device\n");
1474		ret = PTR_ERR(mhi_dev);
1475		goto err_free_irq;
1476	}
1477
1478	ret = dev_set_name(&mhi_dev->dev, "mhi_ep%u", mhi_cntrl->index);
1479	if (ret)
1480		goto err_put_dev;
1481
1482	mhi_dev->name = dev_name(&mhi_dev->dev);
1483	mhi_cntrl->mhi_dev = mhi_dev;
1484
1485	ret = device_add(&mhi_dev->dev);
1486	if (ret)
1487		goto err_put_dev;
1488
1489	dev_dbg(&mhi_dev->dev, "MHI EP Controller registered\n");
1490
1491	return 0;
1492
1493err_put_dev:
1494	put_device(&mhi_dev->dev);
1495err_free_irq:
1496	free_irq(mhi_cntrl->irq, mhi_cntrl);
1497err_ida_free:
1498	ida_free(&mhi_ep_cntrl_ida, mhi_cntrl->index);
1499err_destroy_wq:
1500	destroy_workqueue(mhi_cntrl->wq);
1501err_destroy_ring_item_cache:
1502	kmem_cache_destroy(mhi_cntrl->ring_item_cache);
1503err_destroy_ev_ring_el_cache:
1504	kmem_cache_destroy(mhi_cntrl->ev_ring_el_cache);
1505err_destroy_tre_buf_cache:
1506	kmem_cache_destroy(mhi_cntrl->tre_buf_cache);
1507err_free_cmd:
1508	kfree(mhi_cntrl->mhi_cmd);
1509err_free_ch:
1510	kfree(mhi_cntrl->mhi_chan);
1511
1512	return ret;
1513}
1514EXPORT_SYMBOL_GPL(mhi_ep_register_controller);
1515
1516/*
1517 * It is expected that the controller drivers will power down the MHI EP stack
1518 * using "mhi_ep_power_down()" before calling this function to unregister themselves.
1519 */
1520void mhi_ep_unregister_controller(struct mhi_ep_cntrl *mhi_cntrl)
1521{
1522	struct mhi_ep_device *mhi_dev = mhi_cntrl->mhi_dev;
1523
1524	destroy_workqueue(mhi_cntrl->wq);
1525
1526	free_irq(mhi_cntrl->irq, mhi_cntrl);
1527
1528	kmem_cache_destroy(mhi_cntrl->tre_buf_cache);
1529	kmem_cache_destroy(mhi_cntrl->ev_ring_el_cache);
1530	kmem_cache_destroy(mhi_cntrl->ring_item_cache);
1531	kfree(mhi_cntrl->mhi_cmd);
1532	kfree(mhi_cntrl->mhi_chan);
1533
1534	device_del(&mhi_dev->dev);
1535	put_device(&mhi_dev->dev);
1536
1537	ida_free(&mhi_ep_cntrl_ida, mhi_cntrl->index);
1538}
1539EXPORT_SYMBOL_GPL(mhi_ep_unregister_controller);
1540
1541static int mhi_ep_driver_probe(struct device *dev)
1542{
1543	struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1544	struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(dev->driver);
1545	struct mhi_ep_chan *ul_chan = mhi_dev->ul_chan;
1546	struct mhi_ep_chan *dl_chan = mhi_dev->dl_chan;
1547
1548	ul_chan->xfer_cb = mhi_drv->ul_xfer_cb;
1549	dl_chan->xfer_cb = mhi_drv->dl_xfer_cb;
1550
1551	return mhi_drv->probe(mhi_dev, mhi_dev->id);
1552}
1553
1554static int mhi_ep_driver_remove(struct device *dev)
1555{
1556	struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1557	struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(dev->driver);
1558	struct mhi_result result = {};
1559	struct mhi_ep_chan *mhi_chan;
1560	int dir;
1561
1562	/* Skip if it is a controller device */
1563	if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1564		return 0;
1565
1566	/* Disconnect the channels associated with the driver */
1567	for (dir = 0; dir < 2; dir++) {
1568		mhi_chan = dir ? mhi_dev->ul_chan : mhi_dev->dl_chan;
1569
1570		if (!mhi_chan)
1571			continue;
1572
1573		mutex_lock(&mhi_chan->lock);
1574		/* Send channel disconnect status to the client driver */
1575		if (mhi_chan->xfer_cb) {
1576			result.transaction_status = -ENOTCONN;
1577			result.bytes_xferd = 0;
1578			mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
1579		}
1580
1581		mhi_chan->state = MHI_CH_STATE_DISABLED;
1582		mhi_chan->xfer_cb = NULL;
1583		mutex_unlock(&mhi_chan->lock);
1584	}
1585
1586	/* Remove the client driver now */
1587	mhi_drv->remove(mhi_dev);
1588
1589	return 0;
1590}
1591
1592int __mhi_ep_driver_register(struct mhi_ep_driver *mhi_drv, struct module *owner)
1593{
1594	struct device_driver *driver = &mhi_drv->driver;
1595
1596	if (!mhi_drv->probe || !mhi_drv->remove)
1597		return -EINVAL;
1598
1599	/* Client drivers should have callbacks defined for both channels */
1600	if (!mhi_drv->ul_xfer_cb || !mhi_drv->dl_xfer_cb)
1601		return -EINVAL;
1602
1603	driver->bus = &mhi_ep_bus_type;
1604	driver->owner = owner;
1605	driver->probe = mhi_ep_driver_probe;
1606	driver->remove = mhi_ep_driver_remove;
1607
1608	return driver_register(driver);
1609}
1610EXPORT_SYMBOL_GPL(__mhi_ep_driver_register);
1611
1612void mhi_ep_driver_unregister(struct mhi_ep_driver *mhi_drv)
1613{
1614	driver_unregister(&mhi_drv->driver);
1615}
1616EXPORT_SYMBOL_GPL(mhi_ep_driver_unregister);
1617
1618static int mhi_ep_uevent(const struct device *dev, struct kobj_uevent_env *env)
1619{
1620	const struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1621
1622	return add_uevent_var(env, "MODALIAS=" MHI_EP_DEVICE_MODALIAS_FMT,
1623					mhi_dev->name);
1624}
1625
1626static int mhi_ep_match(struct device *dev, struct device_driver *drv)
1627{
1628	struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1629	struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(drv);
1630	const struct mhi_device_id *id;
1631
1632	/*
1633	 * If the device is a controller type then there is no client driver
1634	 * associated with it
1635	 */
1636	if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1637		return 0;
1638
1639	for (id = mhi_drv->id_table; id->chan[0]; id++)
1640		if (!strcmp(mhi_dev->name, id->chan)) {
1641			mhi_dev->id = id;
1642			return 1;
1643		}
1644
1645	return 0;
1646};
1647
1648struct bus_type mhi_ep_bus_type = {
1649	.name = "mhi_ep",
1650	.dev_name = "mhi_ep",
1651	.match = mhi_ep_match,
1652	.uevent = mhi_ep_uevent,
1653};
1654
1655static int __init mhi_ep_init(void)
1656{
1657	return bus_register(&mhi_ep_bus_type);
1658}
1659
1660static void __exit mhi_ep_exit(void)
1661{
1662	bus_unregister(&mhi_ep_bus_type);
1663}
1664
1665postcore_initcall(mhi_ep_init);
1666module_exit(mhi_ep_exit);
1667
1668MODULE_LICENSE("GPL v2");
1669MODULE_DESCRIPTION("MHI Bus Endpoint stack");
1670MODULE_AUTHOR("Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>");
1671