xref: /kernel/linux/linux-6.6/drivers/block/pktcdvd.c (revision 62306a36)
1/*
2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
5 *
6 * May be copied or modified under the terms of the GNU General Public
7 * License.  See linux/COPYING for more information.
8 *
9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10 * DVD-RAM devices.
11 *
12 * Theory of operation:
13 *
14 * At the lowest level, there is the standard driver for the CD/DVD device,
15 * such as drivers/scsi/sr.c. This driver can handle read and write requests,
16 * but it doesn't know anything about the special restrictions that apply to
17 * packet writing. One restriction is that write requests must be aligned to
18 * packet boundaries on the physical media, and the size of a write request
19 * must be equal to the packet size. Another restriction is that a
20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21 * command, if the previous command was a write.
22 *
23 * The purpose of the packet writing driver is to hide these restrictions from
24 * higher layers, such as file systems, and present a block device that can be
25 * randomly read and written using 2kB-sized blocks.
26 *
27 * The lowest layer in the packet writing driver is the packet I/O scheduler.
28 * Its data is defined by the struct packet_iosched and includes two bio
29 * queues with pending read and write requests. These queues are processed
30 * by the pkt_iosched_process_queue() function. The write requests in this
31 * queue are already properly aligned and sized. This layer is responsible for
32 * issuing the flush cache commands and scheduling the I/O in a good order.
33 *
34 * The next layer transforms unaligned write requests to aligned writes. This
35 * transformation requires reading missing pieces of data from the underlying
36 * block device, assembling the pieces to full packets and queuing them to the
37 * packet I/O scheduler.
38 *
39 * At the top layer there is a custom ->submit_bio function that forwards
40 * read requests directly to the iosched queue and puts write requests in the
41 * unaligned write queue. A kernel thread performs the necessary read
42 * gathering to convert the unaligned writes to aligned writes and then feeds
43 * them to the packet I/O scheduler.
44 *
45 *************************************************************************/
46
47#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
48
49#include <linux/backing-dev.h>
50#include <linux/compat.h>
51#include <linux/debugfs.h>
52#include <linux/device.h>
53#include <linux/errno.h>
54#include <linux/file.h>
55#include <linux/freezer.h>
56#include <linux/kernel.h>
57#include <linux/kthread.h>
58#include <linux/miscdevice.h>
59#include <linux/module.h>
60#include <linux/mutex.h>
61#include <linux/nospec.h>
62#include <linux/pktcdvd.h>
63#include <linux/proc_fs.h>
64#include <linux/seq_file.h>
65#include <linux/slab.h>
66#include <linux/spinlock.h>
67#include <linux/types.h>
68#include <linux/uaccess.h>
69
70#include <scsi/scsi.h>
71#include <scsi/scsi_cmnd.h>
72#include <scsi/scsi_ioctl.h>
73
74#include <asm/unaligned.h>
75
76#define DRIVER_NAME	"pktcdvd"
77
78#define MAX_SPEED 0xffff
79
80static DEFINE_MUTEX(pktcdvd_mutex);
81static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
82static struct proc_dir_entry *pkt_proc;
83static int pktdev_major;
84static int write_congestion_on  = PKT_WRITE_CONGESTION_ON;
85static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
86static struct mutex ctl_mutex;	/* Serialize open/close/setup/teardown */
87static mempool_t psd_pool;
88static struct bio_set pkt_bio_set;
89
90/* /sys/class/pktcdvd */
91static struct class	class_pktcdvd;
92static struct dentry	*pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
93
94/* forward declaration */
95static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
96static int pkt_remove_dev(dev_t pkt_dev);
97
98static sector_t get_zone(sector_t sector, struct pktcdvd_device *pd)
99{
100	return (sector + pd->offset) & ~(sector_t)(pd->settings.size - 1);
101}
102
103/**********************************************************
104 * sysfs interface for pktcdvd
105 * by (C) 2006  Thomas Maier <balagi@justmail.de>
106
107  /sys/class/pktcdvd/pktcdvd[0-7]/
108                     stat/reset
109                     stat/packets_started
110                     stat/packets_finished
111                     stat/kb_written
112                     stat/kb_read
113                     stat/kb_read_gather
114                     write_queue/size
115                     write_queue/congestion_off
116                     write_queue/congestion_on
117 **********************************************************/
118
119static ssize_t packets_started_show(struct device *dev,
120				    struct device_attribute *attr, char *buf)
121{
122	struct pktcdvd_device *pd = dev_get_drvdata(dev);
123
124	return sysfs_emit(buf, "%lu\n", pd->stats.pkt_started);
125}
126static DEVICE_ATTR_RO(packets_started);
127
128static ssize_t packets_finished_show(struct device *dev,
129				     struct device_attribute *attr, char *buf)
130{
131	struct pktcdvd_device *pd = dev_get_drvdata(dev);
132
133	return sysfs_emit(buf, "%lu\n", pd->stats.pkt_ended);
134}
135static DEVICE_ATTR_RO(packets_finished);
136
137static ssize_t kb_written_show(struct device *dev,
138			       struct device_attribute *attr, char *buf)
139{
140	struct pktcdvd_device *pd = dev_get_drvdata(dev);
141
142	return sysfs_emit(buf, "%lu\n", pd->stats.secs_w >> 1);
143}
144static DEVICE_ATTR_RO(kb_written);
145
146static ssize_t kb_read_show(struct device *dev,
147			    struct device_attribute *attr, char *buf)
148{
149	struct pktcdvd_device *pd = dev_get_drvdata(dev);
150
151	return sysfs_emit(buf, "%lu\n", pd->stats.secs_r >> 1);
152}
153static DEVICE_ATTR_RO(kb_read);
154
155static ssize_t kb_read_gather_show(struct device *dev,
156				   struct device_attribute *attr, char *buf)
157{
158	struct pktcdvd_device *pd = dev_get_drvdata(dev);
159
160	return sysfs_emit(buf, "%lu\n", pd->stats.secs_rg >> 1);
161}
162static DEVICE_ATTR_RO(kb_read_gather);
163
164static ssize_t reset_store(struct device *dev, struct device_attribute *attr,
165			   const char *buf, size_t len)
166{
167	struct pktcdvd_device *pd = dev_get_drvdata(dev);
168
169	if (len > 0) {
170		pd->stats.pkt_started = 0;
171		pd->stats.pkt_ended = 0;
172		pd->stats.secs_w = 0;
173		pd->stats.secs_rg = 0;
174		pd->stats.secs_r = 0;
175	}
176	return len;
177}
178static DEVICE_ATTR_WO(reset);
179
180static struct attribute *pkt_stat_attrs[] = {
181	&dev_attr_packets_finished.attr,
182	&dev_attr_packets_started.attr,
183	&dev_attr_kb_read.attr,
184	&dev_attr_kb_written.attr,
185	&dev_attr_kb_read_gather.attr,
186	&dev_attr_reset.attr,
187	NULL,
188};
189
190static const struct attribute_group pkt_stat_group = {
191	.name = "stat",
192	.attrs = pkt_stat_attrs,
193};
194
195static ssize_t size_show(struct device *dev,
196			 struct device_attribute *attr, char *buf)
197{
198	struct pktcdvd_device *pd = dev_get_drvdata(dev);
199	int n;
200
201	spin_lock(&pd->lock);
202	n = sysfs_emit(buf, "%d\n", pd->bio_queue_size);
203	spin_unlock(&pd->lock);
204	return n;
205}
206static DEVICE_ATTR_RO(size);
207
208static void init_write_congestion_marks(int* lo, int* hi)
209{
210	if (*hi > 0) {
211		*hi = max(*hi, 500);
212		*hi = min(*hi, 1000000);
213		if (*lo <= 0)
214			*lo = *hi - 100;
215		else {
216			*lo = min(*lo, *hi - 100);
217			*lo = max(*lo, 100);
218		}
219	} else {
220		*hi = -1;
221		*lo = -1;
222	}
223}
224
225static ssize_t congestion_off_show(struct device *dev,
226				   struct device_attribute *attr, char *buf)
227{
228	struct pktcdvd_device *pd = dev_get_drvdata(dev);
229	int n;
230
231	spin_lock(&pd->lock);
232	n = sysfs_emit(buf, "%d\n", pd->write_congestion_off);
233	spin_unlock(&pd->lock);
234	return n;
235}
236
237static ssize_t congestion_off_store(struct device *dev,
238				    struct device_attribute *attr,
239				    const char *buf, size_t len)
240{
241	struct pktcdvd_device *pd = dev_get_drvdata(dev);
242	int val, ret;
243
244	ret = kstrtoint(buf, 10, &val);
245	if (ret)
246		return ret;
247
248	spin_lock(&pd->lock);
249	pd->write_congestion_off = val;
250	init_write_congestion_marks(&pd->write_congestion_off, &pd->write_congestion_on);
251	spin_unlock(&pd->lock);
252	return len;
253}
254static DEVICE_ATTR_RW(congestion_off);
255
256static ssize_t congestion_on_show(struct device *dev,
257				  struct device_attribute *attr, char *buf)
258{
259	struct pktcdvd_device *pd = dev_get_drvdata(dev);
260	int n;
261
262	spin_lock(&pd->lock);
263	n = sysfs_emit(buf, "%d\n", pd->write_congestion_on);
264	spin_unlock(&pd->lock);
265	return n;
266}
267
268static ssize_t congestion_on_store(struct device *dev,
269				   struct device_attribute *attr,
270				   const char *buf, size_t len)
271{
272	struct pktcdvd_device *pd = dev_get_drvdata(dev);
273	int val, ret;
274
275	ret = kstrtoint(buf, 10, &val);
276	if (ret)
277		return ret;
278
279	spin_lock(&pd->lock);
280	pd->write_congestion_on = val;
281	init_write_congestion_marks(&pd->write_congestion_off, &pd->write_congestion_on);
282	spin_unlock(&pd->lock);
283	return len;
284}
285static DEVICE_ATTR_RW(congestion_on);
286
287static struct attribute *pkt_wq_attrs[] = {
288	&dev_attr_congestion_on.attr,
289	&dev_attr_congestion_off.attr,
290	&dev_attr_size.attr,
291	NULL,
292};
293
294static const struct attribute_group pkt_wq_group = {
295	.name = "write_queue",
296	.attrs = pkt_wq_attrs,
297};
298
299static const struct attribute_group *pkt_groups[] = {
300	&pkt_stat_group,
301	&pkt_wq_group,
302	NULL,
303};
304
305static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
306{
307	if (class_is_registered(&class_pktcdvd)) {
308		pd->dev = device_create_with_groups(&class_pktcdvd, NULL,
309						    MKDEV(0, 0), pd, pkt_groups,
310						    "%s", pd->disk->disk_name);
311		if (IS_ERR(pd->dev))
312			pd->dev = NULL;
313	}
314}
315
316static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
317{
318	if (class_is_registered(&class_pktcdvd))
319		device_unregister(pd->dev);
320}
321
322
323/********************************************************************
324  /sys/class/pktcdvd/
325                     add            map block device
326                     remove         unmap packet dev
327                     device_map     show mappings
328 *******************************************************************/
329
330static ssize_t device_map_show(const struct class *c, const struct class_attribute *attr,
331			       char *data)
332{
333	int n = 0;
334	int idx;
335	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
336	for (idx = 0; idx < MAX_WRITERS; idx++) {
337		struct pktcdvd_device *pd = pkt_devs[idx];
338		if (!pd)
339			continue;
340		n += sysfs_emit_at(data, n, "%s %u:%u %u:%u\n",
341			pd->disk->disk_name,
342			MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
343			MAJOR(pd->bdev->bd_dev),
344			MINOR(pd->bdev->bd_dev));
345	}
346	mutex_unlock(&ctl_mutex);
347	return n;
348}
349static CLASS_ATTR_RO(device_map);
350
351static ssize_t add_store(const struct class *c, const struct class_attribute *attr,
352			 const char *buf, size_t count)
353{
354	unsigned int major, minor;
355
356	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
357		/* pkt_setup_dev() expects caller to hold reference to self */
358		if (!try_module_get(THIS_MODULE))
359			return -ENODEV;
360
361		pkt_setup_dev(MKDEV(major, minor), NULL);
362
363		module_put(THIS_MODULE);
364
365		return count;
366	}
367
368	return -EINVAL;
369}
370static CLASS_ATTR_WO(add);
371
372static ssize_t remove_store(const struct class *c, const struct class_attribute *attr,
373			    const char *buf, size_t count)
374{
375	unsigned int major, minor;
376	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
377		pkt_remove_dev(MKDEV(major, minor));
378		return count;
379	}
380	return -EINVAL;
381}
382static CLASS_ATTR_WO(remove);
383
384static struct attribute *class_pktcdvd_attrs[] = {
385	&class_attr_add.attr,
386	&class_attr_remove.attr,
387	&class_attr_device_map.attr,
388	NULL,
389};
390ATTRIBUTE_GROUPS(class_pktcdvd);
391
392static struct class class_pktcdvd = {
393	.name		= DRIVER_NAME,
394	.class_groups	= class_pktcdvd_groups,
395};
396
397static int pkt_sysfs_init(void)
398{
399	/*
400	 * create control files in sysfs
401	 * /sys/class/pktcdvd/...
402	 */
403	return class_register(&class_pktcdvd);
404}
405
406static void pkt_sysfs_cleanup(void)
407{
408	class_unregister(&class_pktcdvd);
409}
410
411/********************************************************************
412  entries in debugfs
413
414  /sys/kernel/debug/pktcdvd[0-7]/
415			info
416
417 *******************************************************************/
418
419static void pkt_count_states(struct pktcdvd_device *pd, int *states)
420{
421	struct packet_data *pkt;
422	int i;
423
424	for (i = 0; i < PACKET_NUM_STATES; i++)
425		states[i] = 0;
426
427	spin_lock(&pd->cdrw.active_list_lock);
428	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
429		states[pkt->state]++;
430	}
431	spin_unlock(&pd->cdrw.active_list_lock);
432}
433
434static int pkt_seq_show(struct seq_file *m, void *p)
435{
436	struct pktcdvd_device *pd = m->private;
437	char *msg;
438	int states[PACKET_NUM_STATES];
439
440	seq_printf(m, "Writer %s mapped to %pg:\n", pd->disk->disk_name, pd->bdev);
441
442	seq_printf(m, "\nSettings:\n");
443	seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
444
445	if (pd->settings.write_type == 0)
446		msg = "Packet";
447	else
448		msg = "Unknown";
449	seq_printf(m, "\twrite type:\t\t%s\n", msg);
450
451	seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
452	seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
453
454	seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
455
456	if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
457		msg = "Mode 1";
458	else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
459		msg = "Mode 2";
460	else
461		msg = "Unknown";
462	seq_printf(m, "\tblock mode:\t\t%s\n", msg);
463
464	seq_printf(m, "\nStatistics:\n");
465	seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
466	seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
467	seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
468	seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
469	seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
470
471	seq_printf(m, "\nMisc:\n");
472	seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
473	seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
474	seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
475	seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
476	seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
477	seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
478
479	seq_printf(m, "\nQueue state:\n");
480	seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
481	seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
482	seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", pd->current_sector);
483
484	pkt_count_states(pd, states);
485	seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
486		   states[0], states[1], states[2], states[3], states[4], states[5]);
487
488	seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
489			pd->write_congestion_off,
490			pd->write_congestion_on);
491	return 0;
492}
493DEFINE_SHOW_ATTRIBUTE(pkt_seq);
494
495static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
496{
497	if (!pkt_debugfs_root)
498		return;
499	pd->dfs_d_root = debugfs_create_dir(pd->disk->disk_name, pkt_debugfs_root);
500	if (!pd->dfs_d_root)
501		return;
502
503	pd->dfs_f_info = debugfs_create_file("info", 0444, pd->dfs_d_root,
504					     pd, &pkt_seq_fops);
505}
506
507static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
508{
509	if (!pkt_debugfs_root)
510		return;
511	debugfs_remove(pd->dfs_f_info);
512	debugfs_remove(pd->dfs_d_root);
513	pd->dfs_f_info = NULL;
514	pd->dfs_d_root = NULL;
515}
516
517static void pkt_debugfs_init(void)
518{
519	pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
520}
521
522static void pkt_debugfs_cleanup(void)
523{
524	debugfs_remove(pkt_debugfs_root);
525	pkt_debugfs_root = NULL;
526}
527
528/* ----------------------------------------------------------*/
529
530
531static void pkt_bio_finished(struct pktcdvd_device *pd)
532{
533	struct device *ddev = disk_to_dev(pd->disk);
534
535	BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
536	if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
537		dev_dbg(ddev, "queue empty\n");
538		atomic_set(&pd->iosched.attention, 1);
539		wake_up(&pd->wqueue);
540	}
541}
542
543/*
544 * Allocate a packet_data struct
545 */
546static struct packet_data *pkt_alloc_packet_data(int frames)
547{
548	int i;
549	struct packet_data *pkt;
550
551	pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
552	if (!pkt)
553		goto no_pkt;
554
555	pkt->frames = frames;
556	pkt->w_bio = bio_kmalloc(frames, GFP_KERNEL);
557	if (!pkt->w_bio)
558		goto no_bio;
559
560	for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
561		pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
562		if (!pkt->pages[i])
563			goto no_page;
564	}
565
566	spin_lock_init(&pkt->lock);
567	bio_list_init(&pkt->orig_bios);
568
569	for (i = 0; i < frames; i++) {
570		pkt->r_bios[i] = bio_kmalloc(1, GFP_KERNEL);
571		if (!pkt->r_bios[i])
572			goto no_rd_bio;
573	}
574
575	return pkt;
576
577no_rd_bio:
578	for (i = 0; i < frames; i++)
579		kfree(pkt->r_bios[i]);
580no_page:
581	for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
582		if (pkt->pages[i])
583			__free_page(pkt->pages[i]);
584	kfree(pkt->w_bio);
585no_bio:
586	kfree(pkt);
587no_pkt:
588	return NULL;
589}
590
591/*
592 * Free a packet_data struct
593 */
594static void pkt_free_packet_data(struct packet_data *pkt)
595{
596	int i;
597
598	for (i = 0; i < pkt->frames; i++)
599		kfree(pkt->r_bios[i]);
600	for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
601		__free_page(pkt->pages[i]);
602	kfree(pkt->w_bio);
603	kfree(pkt);
604}
605
606static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
607{
608	struct packet_data *pkt, *next;
609
610	BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
611
612	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
613		pkt_free_packet_data(pkt);
614	}
615	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
616}
617
618static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
619{
620	struct packet_data *pkt;
621
622	BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
623
624	while (nr_packets > 0) {
625		pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
626		if (!pkt) {
627			pkt_shrink_pktlist(pd);
628			return 0;
629		}
630		pkt->id = nr_packets;
631		pkt->pd = pd;
632		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
633		nr_packets--;
634	}
635	return 1;
636}
637
638static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
639{
640	struct rb_node *n = rb_next(&node->rb_node);
641	if (!n)
642		return NULL;
643	return rb_entry(n, struct pkt_rb_node, rb_node);
644}
645
646static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
647{
648	rb_erase(&node->rb_node, &pd->bio_queue);
649	mempool_free(node, &pd->rb_pool);
650	pd->bio_queue_size--;
651	BUG_ON(pd->bio_queue_size < 0);
652}
653
654/*
655 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
656 */
657static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
658{
659	struct rb_node *n = pd->bio_queue.rb_node;
660	struct rb_node *next;
661	struct pkt_rb_node *tmp;
662
663	if (!n) {
664		BUG_ON(pd->bio_queue_size > 0);
665		return NULL;
666	}
667
668	for (;;) {
669		tmp = rb_entry(n, struct pkt_rb_node, rb_node);
670		if (s <= tmp->bio->bi_iter.bi_sector)
671			next = n->rb_left;
672		else
673			next = n->rb_right;
674		if (!next)
675			break;
676		n = next;
677	}
678
679	if (s > tmp->bio->bi_iter.bi_sector) {
680		tmp = pkt_rbtree_next(tmp);
681		if (!tmp)
682			return NULL;
683	}
684	BUG_ON(s > tmp->bio->bi_iter.bi_sector);
685	return tmp;
686}
687
688/*
689 * Insert a node into the pd->bio_queue rb tree.
690 */
691static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
692{
693	struct rb_node **p = &pd->bio_queue.rb_node;
694	struct rb_node *parent = NULL;
695	sector_t s = node->bio->bi_iter.bi_sector;
696	struct pkt_rb_node *tmp;
697
698	while (*p) {
699		parent = *p;
700		tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
701		if (s < tmp->bio->bi_iter.bi_sector)
702			p = &(*p)->rb_left;
703		else
704			p = &(*p)->rb_right;
705	}
706	rb_link_node(&node->rb_node, parent, p);
707	rb_insert_color(&node->rb_node, &pd->bio_queue);
708	pd->bio_queue_size++;
709}
710
711/*
712 * Send a packet_command to the underlying block device and
713 * wait for completion.
714 */
715static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
716{
717	struct request_queue *q = bdev_get_queue(pd->bdev);
718	struct scsi_cmnd *scmd;
719	struct request *rq;
720	int ret = 0;
721
722	rq = scsi_alloc_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
723			     REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
724	if (IS_ERR(rq))
725		return PTR_ERR(rq);
726	scmd = blk_mq_rq_to_pdu(rq);
727
728	if (cgc->buflen) {
729		ret = blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen,
730				      GFP_NOIO);
731		if (ret)
732			goto out;
733	}
734
735	scmd->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
736	memcpy(scmd->cmnd, cgc->cmd, CDROM_PACKET_SIZE);
737
738	rq->timeout = 60*HZ;
739	if (cgc->quiet)
740		rq->rq_flags |= RQF_QUIET;
741
742	blk_execute_rq(rq, false);
743	if (scmd->result)
744		ret = -EIO;
745out:
746	blk_mq_free_request(rq);
747	return ret;
748}
749
750static const char *sense_key_string(__u8 index)
751{
752	static const char * const info[] = {
753		"No sense", "Recovered error", "Not ready",
754		"Medium error", "Hardware error", "Illegal request",
755		"Unit attention", "Data protect", "Blank check",
756	};
757
758	return index < ARRAY_SIZE(info) ? info[index] : "INVALID";
759}
760
761/*
762 * A generic sense dump / resolve mechanism should be implemented across
763 * all ATAPI + SCSI devices.
764 */
765static void pkt_dump_sense(struct pktcdvd_device *pd,
766			   struct packet_command *cgc)
767{
768	struct device *ddev = disk_to_dev(pd->disk);
769	struct scsi_sense_hdr *sshdr = cgc->sshdr;
770
771	if (sshdr)
772		dev_err(ddev, "%*ph - sense %02x.%02x.%02x (%s)\n",
773			CDROM_PACKET_SIZE, cgc->cmd,
774			sshdr->sense_key, sshdr->asc, sshdr->ascq,
775			sense_key_string(sshdr->sense_key));
776	else
777		dev_err(ddev, "%*ph - no sense\n", CDROM_PACKET_SIZE, cgc->cmd);
778}
779
780/*
781 * flush the drive cache to media
782 */
783static int pkt_flush_cache(struct pktcdvd_device *pd)
784{
785	struct packet_command cgc;
786
787	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
788	cgc.cmd[0] = GPCMD_FLUSH_CACHE;
789	cgc.quiet = 1;
790
791	/*
792	 * the IMMED bit -- we default to not setting it, although that
793	 * would allow a much faster close, this is safer
794	 */
795#if 0
796	cgc.cmd[1] = 1 << 1;
797#endif
798	return pkt_generic_packet(pd, &cgc);
799}
800
801/*
802 * speed is given as the normal factor, e.g. 4 for 4x
803 */
804static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
805				unsigned write_speed, unsigned read_speed)
806{
807	struct packet_command cgc;
808	struct scsi_sense_hdr sshdr;
809	int ret;
810
811	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
812	cgc.sshdr = &sshdr;
813	cgc.cmd[0] = GPCMD_SET_SPEED;
814	put_unaligned_be16(read_speed, &cgc.cmd[2]);
815	put_unaligned_be16(write_speed, &cgc.cmd[4]);
816
817	ret = pkt_generic_packet(pd, &cgc);
818	if (ret)
819		pkt_dump_sense(pd, &cgc);
820
821	return ret;
822}
823
824/*
825 * Queue a bio for processing by the low-level CD device. Must be called
826 * from process context.
827 */
828static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
829{
830	spin_lock(&pd->iosched.lock);
831	if (bio_data_dir(bio) == READ)
832		bio_list_add(&pd->iosched.read_queue, bio);
833	else
834		bio_list_add(&pd->iosched.write_queue, bio);
835	spin_unlock(&pd->iosched.lock);
836
837	atomic_set(&pd->iosched.attention, 1);
838	wake_up(&pd->wqueue);
839}
840
841/*
842 * Process the queued read/write requests. This function handles special
843 * requirements for CDRW drives:
844 * - A cache flush command must be inserted before a read request if the
845 *   previous request was a write.
846 * - Switching between reading and writing is slow, so don't do it more often
847 *   than necessary.
848 * - Optimize for throughput at the expense of latency. This means that streaming
849 *   writes will never be interrupted by a read, but if the drive has to seek
850 *   before the next write, switch to reading instead if there are any pending
851 *   read requests.
852 * - Set the read speed according to current usage pattern. When only reading
853 *   from the device, it's best to use the highest possible read speed, but
854 *   when switching often between reading and writing, it's better to have the
855 *   same read and write speeds.
856 */
857static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
858{
859	struct device *ddev = disk_to_dev(pd->disk);
860
861	if (atomic_read(&pd->iosched.attention) == 0)
862		return;
863	atomic_set(&pd->iosched.attention, 0);
864
865	for (;;) {
866		struct bio *bio;
867		int reads_queued, writes_queued;
868
869		spin_lock(&pd->iosched.lock);
870		reads_queued = !bio_list_empty(&pd->iosched.read_queue);
871		writes_queued = !bio_list_empty(&pd->iosched.write_queue);
872		spin_unlock(&pd->iosched.lock);
873
874		if (!reads_queued && !writes_queued)
875			break;
876
877		if (pd->iosched.writing) {
878			int need_write_seek = 1;
879			spin_lock(&pd->iosched.lock);
880			bio = bio_list_peek(&pd->iosched.write_queue);
881			spin_unlock(&pd->iosched.lock);
882			if (bio && (bio->bi_iter.bi_sector ==
883				    pd->iosched.last_write))
884				need_write_seek = 0;
885			if (need_write_seek && reads_queued) {
886				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
887					dev_dbg(ddev, "write, waiting\n");
888					break;
889				}
890				pkt_flush_cache(pd);
891				pd->iosched.writing = 0;
892			}
893		} else {
894			if (!reads_queued && writes_queued) {
895				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
896					dev_dbg(ddev, "read, waiting\n");
897					break;
898				}
899				pd->iosched.writing = 1;
900			}
901		}
902
903		spin_lock(&pd->iosched.lock);
904		if (pd->iosched.writing)
905			bio = bio_list_pop(&pd->iosched.write_queue);
906		else
907			bio = bio_list_pop(&pd->iosched.read_queue);
908		spin_unlock(&pd->iosched.lock);
909
910		if (!bio)
911			continue;
912
913		if (bio_data_dir(bio) == READ)
914			pd->iosched.successive_reads +=
915				bio->bi_iter.bi_size >> 10;
916		else {
917			pd->iosched.successive_reads = 0;
918			pd->iosched.last_write = bio_end_sector(bio);
919		}
920		if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
921			if (pd->read_speed == pd->write_speed) {
922				pd->read_speed = MAX_SPEED;
923				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
924			}
925		} else {
926			if (pd->read_speed != pd->write_speed) {
927				pd->read_speed = pd->write_speed;
928				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
929			}
930		}
931
932		atomic_inc(&pd->cdrw.pending_bios);
933		submit_bio_noacct(bio);
934	}
935}
936
937/*
938 * Special care is needed if the underlying block device has a small
939 * max_phys_segments value.
940 */
941static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
942{
943	struct device *ddev = disk_to_dev(pd->disk);
944
945	if ((pd->settings.size << 9) / CD_FRAMESIZE <= queue_max_segments(q)) {
946		/*
947		 * The cdrom device can handle one segment/frame
948		 */
949		clear_bit(PACKET_MERGE_SEGS, &pd->flags);
950		return 0;
951	}
952
953	if ((pd->settings.size << 9) / PAGE_SIZE <= queue_max_segments(q)) {
954		/*
955		 * We can handle this case at the expense of some extra memory
956		 * copies during write operations
957		 */
958		set_bit(PACKET_MERGE_SEGS, &pd->flags);
959		return 0;
960	}
961
962	dev_err(ddev, "cdrom max_phys_segments too small\n");
963	return -EIO;
964}
965
966static void pkt_end_io_read(struct bio *bio)
967{
968	struct packet_data *pkt = bio->bi_private;
969	struct pktcdvd_device *pd = pkt->pd;
970	BUG_ON(!pd);
971
972	dev_dbg(disk_to_dev(pd->disk), "bio=%p sec0=%llx sec=%llx err=%d\n",
973		bio, pkt->sector, bio->bi_iter.bi_sector, bio->bi_status);
974
975	if (bio->bi_status)
976		atomic_inc(&pkt->io_errors);
977	bio_uninit(bio);
978	if (atomic_dec_and_test(&pkt->io_wait)) {
979		atomic_inc(&pkt->run_sm);
980		wake_up(&pd->wqueue);
981	}
982	pkt_bio_finished(pd);
983}
984
985static void pkt_end_io_packet_write(struct bio *bio)
986{
987	struct packet_data *pkt = bio->bi_private;
988	struct pktcdvd_device *pd = pkt->pd;
989	BUG_ON(!pd);
990
991	dev_dbg(disk_to_dev(pd->disk), "id=%d, err=%d\n", pkt->id, bio->bi_status);
992
993	pd->stats.pkt_ended++;
994
995	bio_uninit(bio);
996	pkt_bio_finished(pd);
997	atomic_dec(&pkt->io_wait);
998	atomic_inc(&pkt->run_sm);
999	wake_up(&pd->wqueue);
1000}
1001
1002/*
1003 * Schedule reads for the holes in a packet
1004 */
1005static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1006{
1007	struct device *ddev = disk_to_dev(pd->disk);
1008	int frames_read = 0;
1009	struct bio *bio;
1010	int f;
1011	char written[PACKET_MAX_SIZE];
1012
1013	BUG_ON(bio_list_empty(&pkt->orig_bios));
1014
1015	atomic_set(&pkt->io_wait, 0);
1016	atomic_set(&pkt->io_errors, 0);
1017
1018	/*
1019	 * Figure out which frames we need to read before we can write.
1020	 */
1021	memset(written, 0, sizeof(written));
1022	spin_lock(&pkt->lock);
1023	bio_list_for_each(bio, &pkt->orig_bios) {
1024		int first_frame = (bio->bi_iter.bi_sector - pkt->sector) /
1025			(CD_FRAMESIZE >> 9);
1026		int num_frames = bio->bi_iter.bi_size / CD_FRAMESIZE;
1027		pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1028		BUG_ON(first_frame < 0);
1029		BUG_ON(first_frame + num_frames > pkt->frames);
1030		for (f = first_frame; f < first_frame + num_frames; f++)
1031			written[f] = 1;
1032	}
1033	spin_unlock(&pkt->lock);
1034
1035	if (pkt->cache_valid) {
1036		dev_dbg(ddev, "zone %llx cached\n", pkt->sector);
1037		goto out_account;
1038	}
1039
1040	/*
1041	 * Schedule reads for missing parts of the packet.
1042	 */
1043	for (f = 0; f < pkt->frames; f++) {
1044		int p, offset;
1045
1046		if (written[f])
1047			continue;
1048
1049		bio = pkt->r_bios[f];
1050		bio_init(bio, pd->bdev, bio->bi_inline_vecs, 1, REQ_OP_READ);
1051		bio->bi_iter.bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1052		bio->bi_end_io = pkt_end_io_read;
1053		bio->bi_private = pkt;
1054
1055		p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1056		offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1057		dev_dbg(ddev, "Adding frame %d, page:%p offs:%d\n", f,
1058			pkt->pages[p], offset);
1059		if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1060			BUG();
1061
1062		atomic_inc(&pkt->io_wait);
1063		pkt_queue_bio(pd, bio);
1064		frames_read++;
1065	}
1066
1067out_account:
1068	dev_dbg(ddev, "need %d frames for zone %llx\n", frames_read, pkt->sector);
1069	pd->stats.pkt_started++;
1070	pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1071}
1072
1073/*
1074 * Find a packet matching zone, or the least recently used packet if
1075 * there is no match.
1076 */
1077static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1078{
1079	struct packet_data *pkt;
1080
1081	list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1082		if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1083			list_del_init(&pkt->list);
1084			if (pkt->sector != zone)
1085				pkt->cache_valid = 0;
1086			return pkt;
1087		}
1088	}
1089	BUG();
1090	return NULL;
1091}
1092
1093static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1094{
1095	if (pkt->cache_valid) {
1096		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1097	} else {
1098		list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1099	}
1100}
1101
1102static inline void pkt_set_state(struct device *ddev, struct packet_data *pkt,
1103				 enum packet_data_state state)
1104{
1105	static const char *state_name[] = {
1106		"IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1107	};
1108	enum packet_data_state old_state = pkt->state;
1109
1110	dev_dbg(ddev, "pkt %2d : s=%6llx %s -> %s\n",
1111		pkt->id, pkt->sector, state_name[old_state], state_name[state]);
1112
1113	pkt->state = state;
1114}
1115
1116/*
1117 * Scan the work queue to see if we can start a new packet.
1118 * returns non-zero if any work was done.
1119 */
1120static int pkt_handle_queue(struct pktcdvd_device *pd)
1121{
1122	struct device *ddev = disk_to_dev(pd->disk);
1123	struct packet_data *pkt, *p;
1124	struct bio *bio = NULL;
1125	sector_t zone = 0; /* Suppress gcc warning */
1126	struct pkt_rb_node *node, *first_node;
1127	struct rb_node *n;
1128
1129	atomic_set(&pd->scan_queue, 0);
1130
1131	if (list_empty(&pd->cdrw.pkt_free_list)) {
1132		dev_dbg(ddev, "no pkt\n");
1133		return 0;
1134	}
1135
1136	/*
1137	 * Try to find a zone we are not already working on.
1138	 */
1139	spin_lock(&pd->lock);
1140	first_node = pkt_rbtree_find(pd, pd->current_sector);
1141	if (!first_node) {
1142		n = rb_first(&pd->bio_queue);
1143		if (n)
1144			first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1145	}
1146	node = first_node;
1147	while (node) {
1148		bio = node->bio;
1149		zone = get_zone(bio->bi_iter.bi_sector, pd);
1150		list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1151			if (p->sector == zone) {
1152				bio = NULL;
1153				goto try_next_bio;
1154			}
1155		}
1156		break;
1157try_next_bio:
1158		node = pkt_rbtree_next(node);
1159		if (!node) {
1160			n = rb_first(&pd->bio_queue);
1161			if (n)
1162				node = rb_entry(n, struct pkt_rb_node, rb_node);
1163		}
1164		if (node == first_node)
1165			node = NULL;
1166	}
1167	spin_unlock(&pd->lock);
1168	if (!bio) {
1169		dev_dbg(ddev, "no bio\n");
1170		return 0;
1171	}
1172
1173	pkt = pkt_get_packet_data(pd, zone);
1174
1175	pd->current_sector = zone + pd->settings.size;
1176	pkt->sector = zone;
1177	BUG_ON(pkt->frames != pd->settings.size >> 2);
1178	pkt->write_size = 0;
1179
1180	/*
1181	 * Scan work queue for bios in the same zone and link them
1182	 * to this packet.
1183	 */
1184	spin_lock(&pd->lock);
1185	dev_dbg(ddev, "looking for zone %llx\n", zone);
1186	while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1187		sector_t tmp = get_zone(node->bio->bi_iter.bi_sector, pd);
1188
1189		bio = node->bio;
1190		dev_dbg(ddev, "found zone=%llx\n", tmp);
1191		if (tmp != zone)
1192			break;
1193		pkt_rbtree_erase(pd, node);
1194		spin_lock(&pkt->lock);
1195		bio_list_add(&pkt->orig_bios, bio);
1196		pkt->write_size += bio->bi_iter.bi_size / CD_FRAMESIZE;
1197		spin_unlock(&pkt->lock);
1198	}
1199	/* check write congestion marks, and if bio_queue_size is
1200	 * below, wake up any waiters
1201	 */
1202	if (pd->congested &&
1203	    pd->bio_queue_size <= pd->write_congestion_off) {
1204		pd->congested = false;
1205		wake_up_var(&pd->congested);
1206	}
1207	spin_unlock(&pd->lock);
1208
1209	pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1210	pkt_set_state(ddev, pkt, PACKET_WAITING_STATE);
1211	atomic_set(&pkt->run_sm, 1);
1212
1213	spin_lock(&pd->cdrw.active_list_lock);
1214	list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1215	spin_unlock(&pd->cdrw.active_list_lock);
1216
1217	return 1;
1218}
1219
1220/**
1221 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1222 * another
1223 * @src: source bio list
1224 * @dst: destination bio list
1225 *
1226 * Stops when it reaches the end of either the @src list or @dst list - that is,
1227 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1228 * bios).
1229 */
1230static void bio_list_copy_data(struct bio *dst, struct bio *src)
1231{
1232	struct bvec_iter src_iter = src->bi_iter;
1233	struct bvec_iter dst_iter = dst->bi_iter;
1234
1235	while (1) {
1236		if (!src_iter.bi_size) {
1237			src = src->bi_next;
1238			if (!src)
1239				break;
1240
1241			src_iter = src->bi_iter;
1242		}
1243
1244		if (!dst_iter.bi_size) {
1245			dst = dst->bi_next;
1246			if (!dst)
1247				break;
1248
1249			dst_iter = dst->bi_iter;
1250		}
1251
1252		bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1253	}
1254}
1255
1256/*
1257 * Assemble a bio to write one packet and queue the bio for processing
1258 * by the underlying block device.
1259 */
1260static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1261{
1262	struct device *ddev = disk_to_dev(pd->disk);
1263	int f;
1264
1265	bio_init(pkt->w_bio, pd->bdev, pkt->w_bio->bi_inline_vecs, pkt->frames,
1266		 REQ_OP_WRITE);
1267	pkt->w_bio->bi_iter.bi_sector = pkt->sector;
1268	pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1269	pkt->w_bio->bi_private = pkt;
1270
1271	/* XXX: locking? */
1272	for (f = 0; f < pkt->frames; f++) {
1273		struct page *page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1274		unsigned offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1275
1276		if (!bio_add_page(pkt->w_bio, page, CD_FRAMESIZE, offset))
1277			BUG();
1278	}
1279	dev_dbg(ddev, "vcnt=%d\n", pkt->w_bio->bi_vcnt);
1280
1281	/*
1282	 * Fill-in bvec with data from orig_bios.
1283	 */
1284	spin_lock(&pkt->lock);
1285	bio_list_copy_data(pkt->w_bio, pkt->orig_bios.head);
1286
1287	pkt_set_state(ddev, pkt, PACKET_WRITE_WAIT_STATE);
1288	spin_unlock(&pkt->lock);
1289
1290	dev_dbg(ddev, "Writing %d frames for zone %llx\n", pkt->write_size, pkt->sector);
1291
1292	if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames))
1293		pkt->cache_valid = 1;
1294	else
1295		pkt->cache_valid = 0;
1296
1297	/* Start the write request */
1298	atomic_set(&pkt->io_wait, 1);
1299	pkt_queue_bio(pd, pkt->w_bio);
1300}
1301
1302static void pkt_finish_packet(struct packet_data *pkt, blk_status_t status)
1303{
1304	struct bio *bio;
1305
1306	if (status)
1307		pkt->cache_valid = 0;
1308
1309	/* Finish all bios corresponding to this packet */
1310	while ((bio = bio_list_pop(&pkt->orig_bios))) {
1311		bio->bi_status = status;
1312		bio_endio(bio);
1313	}
1314}
1315
1316static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1317{
1318	struct device *ddev = disk_to_dev(pd->disk);
1319
1320	dev_dbg(ddev, "pkt %d\n", pkt->id);
1321
1322	for (;;) {
1323		switch (pkt->state) {
1324		case PACKET_WAITING_STATE:
1325			if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1326				return;
1327
1328			pkt->sleep_time = 0;
1329			pkt_gather_data(pd, pkt);
1330			pkt_set_state(ddev, pkt, PACKET_READ_WAIT_STATE);
1331			break;
1332
1333		case PACKET_READ_WAIT_STATE:
1334			if (atomic_read(&pkt->io_wait) > 0)
1335				return;
1336
1337			if (atomic_read(&pkt->io_errors) > 0) {
1338				pkt_set_state(ddev, pkt, PACKET_RECOVERY_STATE);
1339			} else {
1340				pkt_start_write(pd, pkt);
1341			}
1342			break;
1343
1344		case PACKET_WRITE_WAIT_STATE:
1345			if (atomic_read(&pkt->io_wait) > 0)
1346				return;
1347
1348			if (!pkt->w_bio->bi_status) {
1349				pkt_set_state(ddev, pkt, PACKET_FINISHED_STATE);
1350			} else {
1351				pkt_set_state(ddev, pkt, PACKET_RECOVERY_STATE);
1352			}
1353			break;
1354
1355		case PACKET_RECOVERY_STATE:
1356			dev_dbg(ddev, "No recovery possible\n");
1357			pkt_set_state(ddev, pkt, PACKET_FINISHED_STATE);
1358			break;
1359
1360		case PACKET_FINISHED_STATE:
1361			pkt_finish_packet(pkt, pkt->w_bio->bi_status);
1362			return;
1363
1364		default:
1365			BUG();
1366			break;
1367		}
1368	}
1369}
1370
1371static void pkt_handle_packets(struct pktcdvd_device *pd)
1372{
1373	struct device *ddev = disk_to_dev(pd->disk);
1374	struct packet_data *pkt, *next;
1375
1376	/*
1377	 * Run state machine for active packets
1378	 */
1379	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1380		if (atomic_read(&pkt->run_sm) > 0) {
1381			atomic_set(&pkt->run_sm, 0);
1382			pkt_run_state_machine(pd, pkt);
1383		}
1384	}
1385
1386	/*
1387	 * Move no longer active packets to the free list
1388	 */
1389	spin_lock(&pd->cdrw.active_list_lock);
1390	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1391		if (pkt->state == PACKET_FINISHED_STATE) {
1392			list_del(&pkt->list);
1393			pkt_put_packet_data(pd, pkt);
1394			pkt_set_state(ddev, pkt, PACKET_IDLE_STATE);
1395			atomic_set(&pd->scan_queue, 1);
1396		}
1397	}
1398	spin_unlock(&pd->cdrw.active_list_lock);
1399}
1400
1401/*
1402 * kcdrwd is woken up when writes have been queued for one of our
1403 * registered devices
1404 */
1405static int kcdrwd(void *foobar)
1406{
1407	struct pktcdvd_device *pd = foobar;
1408	struct device *ddev = disk_to_dev(pd->disk);
1409	struct packet_data *pkt;
1410	int states[PACKET_NUM_STATES];
1411	long min_sleep_time, residue;
1412
1413	set_user_nice(current, MIN_NICE);
1414	set_freezable();
1415
1416	for (;;) {
1417		DECLARE_WAITQUEUE(wait, current);
1418
1419		/*
1420		 * Wait until there is something to do
1421		 */
1422		add_wait_queue(&pd->wqueue, &wait);
1423		for (;;) {
1424			set_current_state(TASK_INTERRUPTIBLE);
1425
1426			/* Check if we need to run pkt_handle_queue */
1427			if (atomic_read(&pd->scan_queue) > 0)
1428				goto work_to_do;
1429
1430			/* Check if we need to run the state machine for some packet */
1431			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1432				if (atomic_read(&pkt->run_sm) > 0)
1433					goto work_to_do;
1434			}
1435
1436			/* Check if we need to process the iosched queues */
1437			if (atomic_read(&pd->iosched.attention) != 0)
1438				goto work_to_do;
1439
1440			/* Otherwise, go to sleep */
1441			pkt_count_states(pd, states);
1442			dev_dbg(ddev, "i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1443				states[0], states[1], states[2], states[3], states[4], states[5]);
1444
1445			min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1446			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1447				if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1448					min_sleep_time = pkt->sleep_time;
1449			}
1450
1451			dev_dbg(ddev, "sleeping\n");
1452			residue = schedule_timeout(min_sleep_time);
1453			dev_dbg(ddev, "wake up\n");
1454
1455			/* make swsusp happy with our thread */
1456			try_to_freeze();
1457
1458			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1459				if (!pkt->sleep_time)
1460					continue;
1461				pkt->sleep_time -= min_sleep_time - residue;
1462				if (pkt->sleep_time <= 0) {
1463					pkt->sleep_time = 0;
1464					atomic_inc(&pkt->run_sm);
1465				}
1466			}
1467
1468			if (kthread_should_stop())
1469				break;
1470		}
1471work_to_do:
1472		set_current_state(TASK_RUNNING);
1473		remove_wait_queue(&pd->wqueue, &wait);
1474
1475		if (kthread_should_stop())
1476			break;
1477
1478		/*
1479		 * if pkt_handle_queue returns true, we can queue
1480		 * another request.
1481		 */
1482		while (pkt_handle_queue(pd))
1483			;
1484
1485		/*
1486		 * Handle packet state machine
1487		 */
1488		pkt_handle_packets(pd);
1489
1490		/*
1491		 * Handle iosched queues
1492		 */
1493		pkt_iosched_process_queue(pd);
1494	}
1495
1496	return 0;
1497}
1498
1499static void pkt_print_settings(struct pktcdvd_device *pd)
1500{
1501	dev_info(disk_to_dev(pd->disk), "%s packets, %u blocks, Mode-%c disc\n",
1502		 pd->settings.fp ? "Fixed" : "Variable",
1503		 pd->settings.size >> 2,
1504		 pd->settings.block_mode == 8 ? '1' : '2');
1505}
1506
1507static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1508{
1509	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1510
1511	cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1512	cgc->cmd[2] = page_code | (page_control << 6);
1513	put_unaligned_be16(cgc->buflen, &cgc->cmd[7]);
1514	cgc->data_direction = CGC_DATA_READ;
1515	return pkt_generic_packet(pd, cgc);
1516}
1517
1518static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1519{
1520	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1521	memset(cgc->buffer, 0, 2);
1522	cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1523	cgc->cmd[1] = 0x10;		/* PF */
1524	put_unaligned_be16(cgc->buflen, &cgc->cmd[7]);
1525	cgc->data_direction = CGC_DATA_WRITE;
1526	return pkt_generic_packet(pd, cgc);
1527}
1528
1529static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1530{
1531	struct packet_command cgc;
1532	int ret;
1533
1534	/* set up command and get the disc info */
1535	init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1536	cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1537	cgc.cmd[8] = cgc.buflen = 2;
1538	cgc.quiet = 1;
1539
1540	ret = pkt_generic_packet(pd, &cgc);
1541	if (ret)
1542		return ret;
1543
1544	/* not all drives have the same disc_info length, so requeue
1545	 * packet with the length the drive tells us it can supply
1546	 */
1547	cgc.buflen = be16_to_cpu(di->disc_information_length) +
1548		     sizeof(di->disc_information_length);
1549
1550	if (cgc.buflen > sizeof(disc_information))
1551		cgc.buflen = sizeof(disc_information);
1552
1553	cgc.cmd[8] = cgc.buflen;
1554	return pkt_generic_packet(pd, &cgc);
1555}
1556
1557static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1558{
1559	struct packet_command cgc;
1560	int ret;
1561
1562	init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1563	cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1564	cgc.cmd[1] = type & 3;
1565	put_unaligned_be16(track, &cgc.cmd[4]);
1566	cgc.cmd[8] = 8;
1567	cgc.quiet = 1;
1568
1569	ret = pkt_generic_packet(pd, &cgc);
1570	if (ret)
1571		return ret;
1572
1573	cgc.buflen = be16_to_cpu(ti->track_information_length) +
1574		     sizeof(ti->track_information_length);
1575
1576	if (cgc.buflen > sizeof(track_information))
1577		cgc.buflen = sizeof(track_information);
1578
1579	cgc.cmd[8] = cgc.buflen;
1580	return pkt_generic_packet(pd, &cgc);
1581}
1582
1583static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1584						long *last_written)
1585{
1586	disc_information di;
1587	track_information ti;
1588	__u32 last_track;
1589	int ret;
1590
1591	ret = pkt_get_disc_info(pd, &di);
1592	if (ret)
1593		return ret;
1594
1595	last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1596	ret = pkt_get_track_info(pd, last_track, 1, &ti);
1597	if (ret)
1598		return ret;
1599
1600	/* if this track is blank, try the previous. */
1601	if (ti.blank) {
1602		last_track--;
1603		ret = pkt_get_track_info(pd, last_track, 1, &ti);
1604		if (ret)
1605			return ret;
1606	}
1607
1608	/* if last recorded field is valid, return it. */
1609	if (ti.lra_v) {
1610		*last_written = be32_to_cpu(ti.last_rec_address);
1611	} else {
1612		/* make it up instead */
1613		*last_written = be32_to_cpu(ti.track_start) +
1614				be32_to_cpu(ti.track_size);
1615		if (ti.free_blocks)
1616			*last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1617	}
1618	return 0;
1619}
1620
1621/*
1622 * write mode select package based on pd->settings
1623 */
1624static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1625{
1626	struct device *ddev = disk_to_dev(pd->disk);
1627	struct packet_command cgc;
1628	struct scsi_sense_hdr sshdr;
1629	write_param_page *wp;
1630	char buffer[128];
1631	int ret, size;
1632
1633	/* doesn't apply to DVD+RW or DVD-RAM */
1634	if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1635		return 0;
1636
1637	memset(buffer, 0, sizeof(buffer));
1638	init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1639	cgc.sshdr = &sshdr;
1640	ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0);
1641	if (ret) {
1642		pkt_dump_sense(pd, &cgc);
1643		return ret;
1644	}
1645
1646	size = 2 + get_unaligned_be16(&buffer[0]);
1647	pd->mode_offset = get_unaligned_be16(&buffer[6]);
1648	if (size > sizeof(buffer))
1649		size = sizeof(buffer);
1650
1651	/*
1652	 * now get it all
1653	 */
1654	init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1655	cgc.sshdr = &sshdr;
1656	ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0);
1657	if (ret) {
1658		pkt_dump_sense(pd, &cgc);
1659		return ret;
1660	}
1661
1662	/*
1663	 * write page is offset header + block descriptor length
1664	 */
1665	wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1666
1667	wp->fp = pd->settings.fp;
1668	wp->track_mode = pd->settings.track_mode;
1669	wp->write_type = pd->settings.write_type;
1670	wp->data_block_type = pd->settings.block_mode;
1671
1672	wp->multi_session = 0;
1673
1674#ifdef PACKET_USE_LS
1675	wp->link_size = 7;
1676	wp->ls_v = 1;
1677#endif
1678
1679	if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1680		wp->session_format = 0;
1681		wp->subhdr2 = 0x20;
1682	} else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1683		wp->session_format = 0x20;
1684		wp->subhdr2 = 8;
1685#if 0
1686		wp->mcn[0] = 0x80;
1687		memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1688#endif
1689	} else {
1690		/*
1691		 * paranoia
1692		 */
1693		dev_err(ddev, "write mode wrong %d\n", wp->data_block_type);
1694		return 1;
1695	}
1696	wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1697
1698	cgc.buflen = cgc.cmd[8] = size;
1699	ret = pkt_mode_select(pd, &cgc);
1700	if (ret) {
1701		pkt_dump_sense(pd, &cgc);
1702		return ret;
1703	}
1704
1705	pkt_print_settings(pd);
1706	return 0;
1707}
1708
1709/*
1710 * 1 -- we can write to this track, 0 -- we can't
1711 */
1712static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1713{
1714	struct device *ddev = disk_to_dev(pd->disk);
1715
1716	switch (pd->mmc3_profile) {
1717		case 0x1a: /* DVD+RW */
1718		case 0x12: /* DVD-RAM */
1719			/* The track is always writable on DVD+RW/DVD-RAM */
1720			return 1;
1721		default:
1722			break;
1723	}
1724
1725	if (!ti->packet || !ti->fp)
1726		return 0;
1727
1728	/*
1729	 * "good" settings as per Mt Fuji.
1730	 */
1731	if (ti->rt == 0 && ti->blank == 0)
1732		return 1;
1733
1734	if (ti->rt == 0 && ti->blank == 1)
1735		return 1;
1736
1737	if (ti->rt == 1 && ti->blank == 0)
1738		return 1;
1739
1740	dev_err(ddev, "bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1741	return 0;
1742}
1743
1744/*
1745 * 1 -- we can write to this disc, 0 -- we can't
1746 */
1747static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1748{
1749	struct device *ddev = disk_to_dev(pd->disk);
1750
1751	switch (pd->mmc3_profile) {
1752		case 0x0a: /* CD-RW */
1753		case 0xffff: /* MMC3 not supported */
1754			break;
1755		case 0x1a: /* DVD+RW */
1756		case 0x13: /* DVD-RW */
1757		case 0x12: /* DVD-RAM */
1758			return 1;
1759		default:
1760			dev_dbg(ddev, "Wrong disc profile (%x)\n", pd->mmc3_profile);
1761			return 0;
1762	}
1763
1764	/*
1765	 * for disc type 0xff we should probably reserve a new track.
1766	 * but i'm not sure, should we leave this to user apps? probably.
1767	 */
1768	if (di->disc_type == 0xff) {
1769		dev_notice(ddev, "unknown disc - no track?\n");
1770		return 0;
1771	}
1772
1773	if (di->disc_type != 0x20 && di->disc_type != 0) {
1774		dev_err(ddev, "wrong disc type (%x)\n", di->disc_type);
1775		return 0;
1776	}
1777
1778	if (di->erasable == 0) {
1779		dev_err(ddev, "disc not erasable\n");
1780		return 0;
1781	}
1782
1783	if (di->border_status == PACKET_SESSION_RESERVED) {
1784		dev_err(ddev, "can't write to last track (reserved)\n");
1785		return 0;
1786	}
1787
1788	return 1;
1789}
1790
1791static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1792{
1793	struct device *ddev = disk_to_dev(pd->disk);
1794	struct packet_command cgc;
1795	unsigned char buf[12];
1796	disc_information di;
1797	track_information ti;
1798	int ret, track;
1799
1800	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1801	cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1802	cgc.cmd[8] = 8;
1803	ret = pkt_generic_packet(pd, &cgc);
1804	pd->mmc3_profile = ret ? 0xffff : get_unaligned_be16(&buf[6]);
1805
1806	memset(&di, 0, sizeof(disc_information));
1807	memset(&ti, 0, sizeof(track_information));
1808
1809	ret = pkt_get_disc_info(pd, &di);
1810	if (ret) {
1811		dev_err(ddev, "failed get_disc\n");
1812		return ret;
1813	}
1814
1815	if (!pkt_writable_disc(pd, &di))
1816		return -EROFS;
1817
1818	pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1819
1820	track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1821	ret = pkt_get_track_info(pd, track, 1, &ti);
1822	if (ret) {
1823		dev_err(ddev, "failed get_track\n");
1824		return ret;
1825	}
1826
1827	if (!pkt_writable_track(pd, &ti)) {
1828		dev_err(ddev, "can't write to this track\n");
1829		return -EROFS;
1830	}
1831
1832	/*
1833	 * we keep packet size in 512 byte units, makes it easier to
1834	 * deal with request calculations.
1835	 */
1836	pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1837	if (pd->settings.size == 0) {
1838		dev_notice(ddev, "detected zero packet size!\n");
1839		return -ENXIO;
1840	}
1841	if (pd->settings.size > PACKET_MAX_SECTORS) {
1842		dev_err(ddev, "packet size is too big\n");
1843		return -EROFS;
1844	}
1845	pd->settings.fp = ti.fp;
1846	pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1847
1848	if (ti.nwa_v) {
1849		pd->nwa = be32_to_cpu(ti.next_writable);
1850		set_bit(PACKET_NWA_VALID, &pd->flags);
1851	}
1852
1853	/*
1854	 * in theory we could use lra on -RW media as well and just zero
1855	 * blocks that haven't been written yet, but in practice that
1856	 * is just a no-go. we'll use that for -R, naturally.
1857	 */
1858	if (ti.lra_v) {
1859		pd->lra = be32_to_cpu(ti.last_rec_address);
1860		set_bit(PACKET_LRA_VALID, &pd->flags);
1861	} else {
1862		pd->lra = 0xffffffff;
1863		set_bit(PACKET_LRA_VALID, &pd->flags);
1864	}
1865
1866	/*
1867	 * fine for now
1868	 */
1869	pd->settings.link_loss = 7;
1870	pd->settings.write_type = 0;	/* packet */
1871	pd->settings.track_mode = ti.track_mode;
1872
1873	/*
1874	 * mode1 or mode2 disc
1875	 */
1876	switch (ti.data_mode) {
1877		case PACKET_MODE1:
1878			pd->settings.block_mode = PACKET_BLOCK_MODE1;
1879			break;
1880		case PACKET_MODE2:
1881			pd->settings.block_mode = PACKET_BLOCK_MODE2;
1882			break;
1883		default:
1884			dev_err(ddev, "unknown data mode\n");
1885			return -EROFS;
1886	}
1887	return 0;
1888}
1889
1890/*
1891 * enable/disable write caching on drive
1892 */
1893static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd)
1894{
1895	struct device *ddev = disk_to_dev(pd->disk);
1896	struct packet_command cgc;
1897	struct scsi_sense_hdr sshdr;
1898	unsigned char buf[64];
1899	bool set = IS_ENABLED(CONFIG_CDROM_PKTCDVD_WCACHE);
1900	int ret;
1901
1902	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1903	cgc.sshdr = &sshdr;
1904	cgc.buflen = pd->mode_offset + 12;
1905
1906	/*
1907	 * caching mode page might not be there, so quiet this command
1908	 */
1909	cgc.quiet = 1;
1910
1911	ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0);
1912	if (ret)
1913		return ret;
1914
1915	/*
1916	 * use drive write caching -- we need deferred error handling to be
1917	 * able to successfully recover with this option (drive will return good
1918	 * status as soon as the cdb is validated).
1919	 */
1920	buf[pd->mode_offset + 10] |= (set << 2);
1921
1922	cgc.buflen = cgc.cmd[8] = 2 + get_unaligned_be16(&buf[0]);
1923	ret = pkt_mode_select(pd, &cgc);
1924	if (ret) {
1925		dev_err(ddev, "write caching control failed\n");
1926		pkt_dump_sense(pd, &cgc);
1927	} else if (!ret && set)
1928		dev_notice(ddev, "enabled write caching\n");
1929	return ret;
1930}
1931
1932static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1933{
1934	struct packet_command cgc;
1935
1936	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1937	cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1938	cgc.cmd[4] = lockflag ? 1 : 0;
1939	return pkt_generic_packet(pd, &cgc);
1940}
1941
1942/*
1943 * Returns drive maximum write speed
1944 */
1945static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
1946						unsigned *write_speed)
1947{
1948	struct packet_command cgc;
1949	struct scsi_sense_hdr sshdr;
1950	unsigned char buf[256+18];
1951	unsigned char *cap_buf;
1952	int ret, offset;
1953
1954	cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1955	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
1956	cgc.sshdr = &sshdr;
1957
1958	ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1959	if (ret) {
1960		cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
1961			     sizeof(struct mode_page_header);
1962		ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1963		if (ret) {
1964			pkt_dump_sense(pd, &cgc);
1965			return ret;
1966		}
1967	}
1968
1969	offset = 20;			    /* Obsoleted field, used by older drives */
1970	if (cap_buf[1] >= 28)
1971		offset = 28;		    /* Current write speed selected */
1972	if (cap_buf[1] >= 30) {
1973		/* If the drive reports at least one "Logical Unit Write
1974		 * Speed Performance Descriptor Block", use the information
1975		 * in the first block. (contains the highest speed)
1976		 */
1977		int num_spdb = get_unaligned_be16(&cap_buf[30]);
1978		if (num_spdb > 0)
1979			offset = 34;
1980	}
1981
1982	*write_speed = get_unaligned_be16(&cap_buf[offset]);
1983	return 0;
1984}
1985
1986/* These tables from cdrecord - I don't have orange book */
1987/* standard speed CD-RW (1-4x) */
1988static char clv_to_speed[16] = {
1989	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
1990	   0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1991};
1992/* high speed CD-RW (-10x) */
1993static char hs_clv_to_speed[16] = {
1994	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
1995	   0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1996};
1997/* ultra high speed CD-RW */
1998static char us_clv_to_speed[16] = {
1999	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2000	   0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2001};
2002
2003/*
2004 * reads the maximum media speed from ATIP
2005 */
2006static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2007						unsigned *speed)
2008{
2009	struct device *ddev = disk_to_dev(pd->disk);
2010	struct packet_command cgc;
2011	struct scsi_sense_hdr sshdr;
2012	unsigned char buf[64];
2013	unsigned int size, st, sp;
2014	int ret;
2015
2016	init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2017	cgc.sshdr = &sshdr;
2018	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2019	cgc.cmd[1] = 2;
2020	cgc.cmd[2] = 4; /* READ ATIP */
2021	cgc.cmd[8] = 2;
2022	ret = pkt_generic_packet(pd, &cgc);
2023	if (ret) {
2024		pkt_dump_sense(pd, &cgc);
2025		return ret;
2026	}
2027	size = 2 + get_unaligned_be16(&buf[0]);
2028	if (size > sizeof(buf))
2029		size = sizeof(buf);
2030
2031	init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2032	cgc.sshdr = &sshdr;
2033	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2034	cgc.cmd[1] = 2;
2035	cgc.cmd[2] = 4;
2036	cgc.cmd[8] = size;
2037	ret = pkt_generic_packet(pd, &cgc);
2038	if (ret) {
2039		pkt_dump_sense(pd, &cgc);
2040		return ret;
2041	}
2042
2043	if (!(buf[6] & 0x40)) {
2044		dev_notice(ddev, "disc type is not CD-RW\n");
2045		return 1;
2046	}
2047	if (!(buf[6] & 0x4)) {
2048		dev_notice(ddev, "A1 values on media are not valid, maybe not CDRW?\n");
2049		return 1;
2050	}
2051
2052	st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2053
2054	sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2055
2056	/* Info from cdrecord */
2057	switch (st) {
2058		case 0: /* standard speed */
2059			*speed = clv_to_speed[sp];
2060			break;
2061		case 1: /* high speed */
2062			*speed = hs_clv_to_speed[sp];
2063			break;
2064		case 2: /* ultra high speed */
2065			*speed = us_clv_to_speed[sp];
2066			break;
2067		default:
2068			dev_notice(ddev, "unknown disc sub-type %d\n", st);
2069			return 1;
2070	}
2071	if (*speed) {
2072		dev_info(ddev, "maximum media speed: %d\n", *speed);
2073		return 0;
2074	} else {
2075		dev_notice(ddev, "unknown speed %d for sub-type %d\n", sp, st);
2076		return 1;
2077	}
2078}
2079
2080static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2081{
2082	struct device *ddev = disk_to_dev(pd->disk);
2083	struct packet_command cgc;
2084	struct scsi_sense_hdr sshdr;
2085	int ret;
2086
2087	dev_dbg(ddev, "Performing OPC\n");
2088
2089	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2090	cgc.sshdr = &sshdr;
2091	cgc.timeout = 60*HZ;
2092	cgc.cmd[0] = GPCMD_SEND_OPC;
2093	cgc.cmd[1] = 1;
2094	ret = pkt_generic_packet(pd, &cgc);
2095	if (ret)
2096		pkt_dump_sense(pd, &cgc);
2097	return ret;
2098}
2099
2100static int pkt_open_write(struct pktcdvd_device *pd)
2101{
2102	struct device *ddev = disk_to_dev(pd->disk);
2103	int ret;
2104	unsigned int write_speed, media_write_speed, read_speed;
2105
2106	ret = pkt_probe_settings(pd);
2107	if (ret) {
2108		dev_dbg(ddev, "failed probe\n");
2109		return ret;
2110	}
2111
2112	ret = pkt_set_write_settings(pd);
2113	if (ret) {
2114		dev_notice(ddev, "failed saving write settings\n");
2115		return -EIO;
2116	}
2117
2118	pkt_write_caching(pd);
2119
2120	ret = pkt_get_max_speed(pd, &write_speed);
2121	if (ret)
2122		write_speed = 16 * 177;
2123	switch (pd->mmc3_profile) {
2124		case 0x13: /* DVD-RW */
2125		case 0x1a: /* DVD+RW */
2126		case 0x12: /* DVD-RAM */
2127			dev_notice(ddev, "write speed %ukB/s\n", write_speed);
2128			break;
2129		default:
2130			ret = pkt_media_speed(pd, &media_write_speed);
2131			if (ret)
2132				media_write_speed = 16;
2133			write_speed = min(write_speed, media_write_speed * 177);
2134			dev_notice(ddev, "write speed %ux\n", write_speed / 176);
2135			break;
2136	}
2137	read_speed = write_speed;
2138
2139	ret = pkt_set_speed(pd, write_speed, read_speed);
2140	if (ret) {
2141		dev_notice(ddev, "couldn't set write speed\n");
2142		return -EIO;
2143	}
2144	pd->write_speed = write_speed;
2145	pd->read_speed = read_speed;
2146
2147	ret = pkt_perform_opc(pd);
2148	if (ret)
2149		dev_notice(ddev, "Optimum Power Calibration failed\n");
2150
2151	return 0;
2152}
2153
2154/*
2155 * called at open time.
2156 */
2157static int pkt_open_dev(struct pktcdvd_device *pd, bool write)
2158{
2159	struct device *ddev = disk_to_dev(pd->disk);
2160	int ret;
2161	long lba;
2162	struct request_queue *q;
2163	struct block_device *bdev;
2164
2165	/*
2166	 * We need to re-open the cdrom device without O_NONBLOCK to be able
2167	 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2168	 * so open should not fail.
2169	 */
2170	bdev = blkdev_get_by_dev(pd->bdev->bd_dev, BLK_OPEN_READ, pd, NULL);
2171	if (IS_ERR(bdev)) {
2172		ret = PTR_ERR(bdev);
2173		goto out;
2174	}
2175
2176	ret = pkt_get_last_written(pd, &lba);
2177	if (ret) {
2178		dev_err(ddev, "pkt_get_last_written failed\n");
2179		goto out_putdev;
2180	}
2181
2182	set_capacity(pd->disk, lba << 2);
2183	set_capacity_and_notify(pd->bdev->bd_disk, lba << 2);
2184
2185	q = bdev_get_queue(pd->bdev);
2186	if (write) {
2187		ret = pkt_open_write(pd);
2188		if (ret)
2189			goto out_putdev;
2190		/*
2191		 * Some CDRW drives can not handle writes larger than one packet,
2192		 * even if the size is a multiple of the packet size.
2193		 */
2194		blk_queue_max_hw_sectors(q, pd->settings.size);
2195		set_bit(PACKET_WRITABLE, &pd->flags);
2196	} else {
2197		pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2198		clear_bit(PACKET_WRITABLE, &pd->flags);
2199	}
2200
2201	ret = pkt_set_segment_merging(pd, q);
2202	if (ret)
2203		goto out_putdev;
2204
2205	if (write) {
2206		if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2207			dev_err(ddev, "not enough memory for buffers\n");
2208			ret = -ENOMEM;
2209			goto out_putdev;
2210		}
2211		dev_info(ddev, "%lukB available on disc\n", lba << 1);
2212	}
2213
2214	return 0;
2215
2216out_putdev:
2217	blkdev_put(bdev, pd);
2218out:
2219	return ret;
2220}
2221
2222/*
2223 * called when the device is closed. makes sure that the device flushes
2224 * the internal cache before we close.
2225 */
2226static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2227{
2228	struct device *ddev = disk_to_dev(pd->disk);
2229
2230	if (flush && pkt_flush_cache(pd))
2231		dev_notice(ddev, "not flushing cache\n");
2232
2233	pkt_lock_door(pd, 0);
2234
2235	pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2236	blkdev_put(pd->bdev, pd);
2237
2238	pkt_shrink_pktlist(pd);
2239}
2240
2241static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2242{
2243	if (dev_minor >= MAX_WRITERS)
2244		return NULL;
2245
2246	dev_minor = array_index_nospec(dev_minor, MAX_WRITERS);
2247	return pkt_devs[dev_minor];
2248}
2249
2250static int pkt_open(struct gendisk *disk, blk_mode_t mode)
2251{
2252	struct pktcdvd_device *pd = NULL;
2253	int ret;
2254
2255	mutex_lock(&pktcdvd_mutex);
2256	mutex_lock(&ctl_mutex);
2257	pd = pkt_find_dev_from_minor(disk->first_minor);
2258	if (!pd) {
2259		ret = -ENODEV;
2260		goto out;
2261	}
2262	BUG_ON(pd->refcnt < 0);
2263
2264	pd->refcnt++;
2265	if (pd->refcnt > 1) {
2266		if ((mode & BLK_OPEN_WRITE) &&
2267		    !test_bit(PACKET_WRITABLE, &pd->flags)) {
2268			ret = -EBUSY;
2269			goto out_dec;
2270		}
2271	} else {
2272		ret = pkt_open_dev(pd, mode & BLK_OPEN_WRITE);
2273		if (ret)
2274			goto out_dec;
2275		/*
2276		 * needed here as well, since ext2 (among others) may change
2277		 * the blocksize at mount time
2278		 */
2279		set_blocksize(disk->part0, CD_FRAMESIZE);
2280	}
2281	mutex_unlock(&ctl_mutex);
2282	mutex_unlock(&pktcdvd_mutex);
2283	return 0;
2284
2285out_dec:
2286	pd->refcnt--;
2287out:
2288	mutex_unlock(&ctl_mutex);
2289	mutex_unlock(&pktcdvd_mutex);
2290	return ret;
2291}
2292
2293static void pkt_release(struct gendisk *disk)
2294{
2295	struct pktcdvd_device *pd = disk->private_data;
2296
2297	mutex_lock(&pktcdvd_mutex);
2298	mutex_lock(&ctl_mutex);
2299	pd->refcnt--;
2300	BUG_ON(pd->refcnt < 0);
2301	if (pd->refcnt == 0) {
2302		int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2303		pkt_release_dev(pd, flush);
2304	}
2305	mutex_unlock(&ctl_mutex);
2306	mutex_unlock(&pktcdvd_mutex);
2307}
2308
2309
2310static void pkt_end_io_read_cloned(struct bio *bio)
2311{
2312	struct packet_stacked_data *psd = bio->bi_private;
2313	struct pktcdvd_device *pd = psd->pd;
2314
2315	psd->bio->bi_status = bio->bi_status;
2316	bio_put(bio);
2317	bio_endio(psd->bio);
2318	mempool_free(psd, &psd_pool);
2319	pkt_bio_finished(pd);
2320}
2321
2322static void pkt_make_request_read(struct pktcdvd_device *pd, struct bio *bio)
2323{
2324	struct bio *cloned_bio =
2325		bio_alloc_clone(pd->bdev, bio, GFP_NOIO, &pkt_bio_set);
2326	struct packet_stacked_data *psd = mempool_alloc(&psd_pool, GFP_NOIO);
2327
2328	psd->pd = pd;
2329	psd->bio = bio;
2330	cloned_bio->bi_private = psd;
2331	cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2332	pd->stats.secs_r += bio_sectors(bio);
2333	pkt_queue_bio(pd, cloned_bio);
2334}
2335
2336static void pkt_make_request_write(struct request_queue *q, struct bio *bio)
2337{
2338	struct pktcdvd_device *pd = q->queuedata;
2339	sector_t zone;
2340	struct packet_data *pkt;
2341	int was_empty, blocked_bio;
2342	struct pkt_rb_node *node;
2343
2344	zone = get_zone(bio->bi_iter.bi_sector, pd);
2345
2346	/*
2347	 * If we find a matching packet in state WAITING or READ_WAIT, we can
2348	 * just append this bio to that packet.
2349	 */
2350	spin_lock(&pd->cdrw.active_list_lock);
2351	blocked_bio = 0;
2352	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2353		if (pkt->sector == zone) {
2354			spin_lock(&pkt->lock);
2355			if ((pkt->state == PACKET_WAITING_STATE) ||
2356			    (pkt->state == PACKET_READ_WAIT_STATE)) {
2357				bio_list_add(&pkt->orig_bios, bio);
2358				pkt->write_size +=
2359					bio->bi_iter.bi_size / CD_FRAMESIZE;
2360				if ((pkt->write_size >= pkt->frames) &&
2361				    (pkt->state == PACKET_WAITING_STATE)) {
2362					atomic_inc(&pkt->run_sm);
2363					wake_up(&pd->wqueue);
2364				}
2365				spin_unlock(&pkt->lock);
2366				spin_unlock(&pd->cdrw.active_list_lock);
2367				return;
2368			} else {
2369				blocked_bio = 1;
2370			}
2371			spin_unlock(&pkt->lock);
2372		}
2373	}
2374	spin_unlock(&pd->cdrw.active_list_lock);
2375
2376	/*
2377	 * Test if there is enough room left in the bio work queue
2378	 * (queue size >= congestion on mark).
2379	 * If not, wait till the work queue size is below the congestion off mark.
2380	 */
2381	spin_lock(&pd->lock);
2382	if (pd->write_congestion_on > 0
2383	    && pd->bio_queue_size >= pd->write_congestion_on) {
2384		struct wait_bit_queue_entry wqe;
2385
2386		init_wait_var_entry(&wqe, &pd->congested, 0);
2387		for (;;) {
2388			prepare_to_wait_event(__var_waitqueue(&pd->congested),
2389					      &wqe.wq_entry,
2390					      TASK_UNINTERRUPTIBLE);
2391			if (pd->bio_queue_size <= pd->write_congestion_off)
2392				break;
2393			pd->congested = true;
2394			spin_unlock(&pd->lock);
2395			schedule();
2396			spin_lock(&pd->lock);
2397		}
2398	}
2399	spin_unlock(&pd->lock);
2400
2401	/*
2402	 * No matching packet found. Store the bio in the work queue.
2403	 */
2404	node = mempool_alloc(&pd->rb_pool, GFP_NOIO);
2405	node->bio = bio;
2406	spin_lock(&pd->lock);
2407	BUG_ON(pd->bio_queue_size < 0);
2408	was_empty = (pd->bio_queue_size == 0);
2409	pkt_rbtree_insert(pd, node);
2410	spin_unlock(&pd->lock);
2411
2412	/*
2413	 * Wake up the worker thread.
2414	 */
2415	atomic_set(&pd->scan_queue, 1);
2416	if (was_empty) {
2417		/* This wake_up is required for correct operation */
2418		wake_up(&pd->wqueue);
2419	} else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2420		/*
2421		 * This wake up is not required for correct operation,
2422		 * but improves performance in some cases.
2423		 */
2424		wake_up(&pd->wqueue);
2425	}
2426}
2427
2428static void pkt_submit_bio(struct bio *bio)
2429{
2430	struct pktcdvd_device *pd = bio->bi_bdev->bd_disk->queue->queuedata;
2431	struct device *ddev = disk_to_dev(pd->disk);
2432	struct bio *split;
2433
2434	bio = bio_split_to_limits(bio);
2435	if (!bio)
2436		return;
2437
2438	dev_dbg(ddev, "start = %6llx stop = %6llx\n",
2439		bio->bi_iter.bi_sector, bio_end_sector(bio));
2440
2441	/*
2442	 * Clone READ bios so we can have our own bi_end_io callback.
2443	 */
2444	if (bio_data_dir(bio) == READ) {
2445		pkt_make_request_read(pd, bio);
2446		return;
2447	}
2448
2449	if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2450		dev_notice(ddev, "WRITE for ro device (%llu)\n", bio->bi_iter.bi_sector);
2451		goto end_io;
2452	}
2453
2454	if (!bio->bi_iter.bi_size || (bio->bi_iter.bi_size % CD_FRAMESIZE)) {
2455		dev_err(ddev, "wrong bio size\n");
2456		goto end_io;
2457	}
2458
2459	do {
2460		sector_t zone = get_zone(bio->bi_iter.bi_sector, pd);
2461		sector_t last_zone = get_zone(bio_end_sector(bio) - 1, pd);
2462
2463		if (last_zone != zone) {
2464			BUG_ON(last_zone != zone + pd->settings.size);
2465
2466			split = bio_split(bio, last_zone -
2467					  bio->bi_iter.bi_sector,
2468					  GFP_NOIO, &pkt_bio_set);
2469			bio_chain(split, bio);
2470		} else {
2471			split = bio;
2472		}
2473
2474		pkt_make_request_write(bio->bi_bdev->bd_disk->queue, split);
2475	} while (split != bio);
2476
2477	return;
2478end_io:
2479	bio_io_error(bio);
2480}
2481
2482static void pkt_init_queue(struct pktcdvd_device *pd)
2483{
2484	struct request_queue *q = pd->disk->queue;
2485
2486	blk_queue_logical_block_size(q, CD_FRAMESIZE);
2487	blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
2488	q->queuedata = pd;
2489}
2490
2491static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2492{
2493	struct device *ddev = disk_to_dev(pd->disk);
2494	int i;
2495	struct block_device *bdev;
2496	struct scsi_device *sdev;
2497
2498	if (pd->pkt_dev == dev) {
2499		dev_err(ddev, "recursive setup not allowed\n");
2500		return -EBUSY;
2501	}
2502	for (i = 0; i < MAX_WRITERS; i++) {
2503		struct pktcdvd_device *pd2 = pkt_devs[i];
2504		if (!pd2)
2505			continue;
2506		if (pd2->bdev->bd_dev == dev) {
2507			dev_err(ddev, "%pg already setup\n", pd2->bdev);
2508			return -EBUSY;
2509		}
2510		if (pd2->pkt_dev == dev) {
2511			dev_err(ddev, "can't chain pktcdvd devices\n");
2512			return -EBUSY;
2513		}
2514	}
2515
2516	bdev = blkdev_get_by_dev(dev, BLK_OPEN_READ | BLK_OPEN_NDELAY, NULL,
2517				 NULL);
2518	if (IS_ERR(bdev))
2519		return PTR_ERR(bdev);
2520	sdev = scsi_device_from_queue(bdev->bd_disk->queue);
2521	if (!sdev) {
2522		blkdev_put(bdev, NULL);
2523		return -EINVAL;
2524	}
2525	put_device(&sdev->sdev_gendev);
2526
2527	/* This is safe, since we have a reference from open(). */
2528	__module_get(THIS_MODULE);
2529
2530	pd->bdev = bdev;
2531	set_blocksize(bdev, CD_FRAMESIZE);
2532
2533	pkt_init_queue(pd);
2534
2535	atomic_set(&pd->cdrw.pending_bios, 0);
2536	pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->disk->disk_name);
2537	if (IS_ERR(pd->cdrw.thread)) {
2538		dev_err(ddev, "can't start kernel thread\n");
2539		goto out_mem;
2540	}
2541
2542	proc_create_single_data(pd->disk->disk_name, 0, pkt_proc, pkt_seq_show, pd);
2543	dev_notice(ddev, "writer mapped to %pg\n", bdev);
2544	return 0;
2545
2546out_mem:
2547	blkdev_put(bdev, NULL);
2548	/* This is safe: open() is still holding a reference. */
2549	module_put(THIS_MODULE);
2550	return -ENOMEM;
2551}
2552
2553static int pkt_ioctl(struct block_device *bdev, blk_mode_t mode,
2554		unsigned int cmd, unsigned long arg)
2555{
2556	struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2557	struct device *ddev = disk_to_dev(pd->disk);
2558	int ret;
2559
2560	dev_dbg(ddev, "cmd %x, dev %d:%d\n", cmd, MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2561
2562	mutex_lock(&pktcdvd_mutex);
2563	switch (cmd) {
2564	case CDROMEJECT:
2565		/*
2566		 * The door gets locked when the device is opened, so we
2567		 * have to unlock it or else the eject command fails.
2568		 */
2569		if (pd->refcnt == 1)
2570			pkt_lock_door(pd, 0);
2571		fallthrough;
2572	/*
2573	 * forward selected CDROM ioctls to CD-ROM, for UDF
2574	 */
2575	case CDROMMULTISESSION:
2576	case CDROMREADTOCENTRY:
2577	case CDROM_LAST_WRITTEN:
2578	case CDROM_SEND_PACKET:
2579	case SCSI_IOCTL_SEND_COMMAND:
2580		if (!bdev->bd_disk->fops->ioctl)
2581			ret = -ENOTTY;
2582		else
2583			ret = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
2584		break;
2585	default:
2586		dev_dbg(ddev, "Unknown ioctl (%x)\n", cmd);
2587		ret = -ENOTTY;
2588	}
2589	mutex_unlock(&pktcdvd_mutex);
2590
2591	return ret;
2592}
2593
2594static unsigned int pkt_check_events(struct gendisk *disk,
2595				     unsigned int clearing)
2596{
2597	struct pktcdvd_device *pd = disk->private_data;
2598	struct gendisk *attached_disk;
2599
2600	if (!pd)
2601		return 0;
2602	if (!pd->bdev)
2603		return 0;
2604	attached_disk = pd->bdev->bd_disk;
2605	if (!attached_disk || !attached_disk->fops->check_events)
2606		return 0;
2607	return attached_disk->fops->check_events(attached_disk, clearing);
2608}
2609
2610static char *pkt_devnode(struct gendisk *disk, umode_t *mode)
2611{
2612	return kasprintf(GFP_KERNEL, "pktcdvd/%s", disk->disk_name);
2613}
2614
2615static const struct block_device_operations pktcdvd_ops = {
2616	.owner =		THIS_MODULE,
2617	.submit_bio =		pkt_submit_bio,
2618	.open =			pkt_open,
2619	.release =		pkt_release,
2620	.ioctl =		pkt_ioctl,
2621	.compat_ioctl =		blkdev_compat_ptr_ioctl,
2622	.check_events =		pkt_check_events,
2623	.devnode =		pkt_devnode,
2624};
2625
2626/*
2627 * Set up mapping from pktcdvd device to CD-ROM device.
2628 */
2629static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2630{
2631	int idx;
2632	int ret = -ENOMEM;
2633	struct pktcdvd_device *pd;
2634	struct gendisk *disk;
2635
2636	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2637
2638	for (idx = 0; idx < MAX_WRITERS; idx++)
2639		if (!pkt_devs[idx])
2640			break;
2641	if (idx == MAX_WRITERS) {
2642		pr_err("max %d writers supported\n", MAX_WRITERS);
2643		ret = -EBUSY;
2644		goto out_mutex;
2645	}
2646
2647	pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2648	if (!pd)
2649		goto out_mutex;
2650
2651	ret = mempool_init_kmalloc_pool(&pd->rb_pool, PKT_RB_POOL_SIZE,
2652					sizeof(struct pkt_rb_node));
2653	if (ret)
2654		goto out_mem;
2655
2656	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2657	INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2658	spin_lock_init(&pd->cdrw.active_list_lock);
2659
2660	spin_lock_init(&pd->lock);
2661	spin_lock_init(&pd->iosched.lock);
2662	bio_list_init(&pd->iosched.read_queue);
2663	bio_list_init(&pd->iosched.write_queue);
2664	init_waitqueue_head(&pd->wqueue);
2665	pd->bio_queue = RB_ROOT;
2666
2667	pd->write_congestion_on  = write_congestion_on;
2668	pd->write_congestion_off = write_congestion_off;
2669
2670	ret = -ENOMEM;
2671	disk = blk_alloc_disk(NUMA_NO_NODE);
2672	if (!disk)
2673		goto out_mem;
2674	pd->disk = disk;
2675	disk->major = pktdev_major;
2676	disk->first_minor = idx;
2677	disk->minors = 1;
2678	disk->fops = &pktcdvd_ops;
2679	disk->flags = GENHD_FL_REMOVABLE | GENHD_FL_NO_PART;
2680	snprintf(disk->disk_name, sizeof(disk->disk_name), DRIVER_NAME"%d", idx);
2681	disk->private_data = pd;
2682
2683	pd->pkt_dev = MKDEV(pktdev_major, idx);
2684	ret = pkt_new_dev(pd, dev);
2685	if (ret)
2686		goto out_mem2;
2687
2688	/* inherit events of the host device */
2689	disk->events = pd->bdev->bd_disk->events;
2690
2691	ret = add_disk(disk);
2692	if (ret)
2693		goto out_mem2;
2694
2695	pkt_sysfs_dev_new(pd);
2696	pkt_debugfs_dev_new(pd);
2697
2698	pkt_devs[idx] = pd;
2699	if (pkt_dev)
2700		*pkt_dev = pd->pkt_dev;
2701
2702	mutex_unlock(&ctl_mutex);
2703	return 0;
2704
2705out_mem2:
2706	put_disk(disk);
2707out_mem:
2708	mempool_exit(&pd->rb_pool);
2709	kfree(pd);
2710out_mutex:
2711	mutex_unlock(&ctl_mutex);
2712	pr_err("setup of pktcdvd device failed\n");
2713	return ret;
2714}
2715
2716/*
2717 * Tear down mapping from pktcdvd device to CD-ROM device.
2718 */
2719static int pkt_remove_dev(dev_t pkt_dev)
2720{
2721	struct pktcdvd_device *pd;
2722	struct device *ddev;
2723	int idx;
2724	int ret = 0;
2725
2726	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2727
2728	for (idx = 0; idx < MAX_WRITERS; idx++) {
2729		pd = pkt_devs[idx];
2730		if (pd && (pd->pkt_dev == pkt_dev))
2731			break;
2732	}
2733	if (idx == MAX_WRITERS) {
2734		pr_debug("dev not setup\n");
2735		ret = -ENXIO;
2736		goto out;
2737	}
2738
2739	if (pd->refcnt > 0) {
2740		ret = -EBUSY;
2741		goto out;
2742	}
2743
2744	ddev = disk_to_dev(pd->disk);
2745
2746	if (!IS_ERR(pd->cdrw.thread))
2747		kthread_stop(pd->cdrw.thread);
2748
2749	pkt_devs[idx] = NULL;
2750
2751	pkt_debugfs_dev_remove(pd);
2752	pkt_sysfs_dev_remove(pd);
2753
2754	blkdev_put(pd->bdev, NULL);
2755
2756	remove_proc_entry(pd->disk->disk_name, pkt_proc);
2757	dev_notice(ddev, "writer unmapped\n");
2758
2759	del_gendisk(pd->disk);
2760	put_disk(pd->disk);
2761
2762	mempool_exit(&pd->rb_pool);
2763	kfree(pd);
2764
2765	/* This is safe: open() is still holding a reference. */
2766	module_put(THIS_MODULE);
2767
2768out:
2769	mutex_unlock(&ctl_mutex);
2770	return ret;
2771}
2772
2773static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2774{
2775	struct pktcdvd_device *pd;
2776
2777	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2778
2779	pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2780	if (pd) {
2781		ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2782		ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2783	} else {
2784		ctrl_cmd->dev = 0;
2785		ctrl_cmd->pkt_dev = 0;
2786	}
2787	ctrl_cmd->num_devices = MAX_WRITERS;
2788
2789	mutex_unlock(&ctl_mutex);
2790}
2791
2792static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2793{
2794	void __user *argp = (void __user *)arg;
2795	struct pkt_ctrl_command ctrl_cmd;
2796	int ret = 0;
2797	dev_t pkt_dev = 0;
2798
2799	if (cmd != PACKET_CTRL_CMD)
2800		return -ENOTTY;
2801
2802	if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2803		return -EFAULT;
2804
2805	switch (ctrl_cmd.command) {
2806	case PKT_CTRL_CMD_SETUP:
2807		if (!capable(CAP_SYS_ADMIN))
2808			return -EPERM;
2809		ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
2810		ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
2811		break;
2812	case PKT_CTRL_CMD_TEARDOWN:
2813		if (!capable(CAP_SYS_ADMIN))
2814			return -EPERM;
2815		ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
2816		break;
2817	case PKT_CTRL_CMD_STATUS:
2818		pkt_get_status(&ctrl_cmd);
2819		break;
2820	default:
2821		return -ENOTTY;
2822	}
2823
2824	if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2825		return -EFAULT;
2826	return ret;
2827}
2828
2829#ifdef CONFIG_COMPAT
2830static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2831{
2832	return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2833}
2834#endif
2835
2836static const struct file_operations pkt_ctl_fops = {
2837	.open		= nonseekable_open,
2838	.unlocked_ioctl	= pkt_ctl_ioctl,
2839#ifdef CONFIG_COMPAT
2840	.compat_ioctl	= pkt_ctl_compat_ioctl,
2841#endif
2842	.owner		= THIS_MODULE,
2843	.llseek		= no_llseek,
2844};
2845
2846static struct miscdevice pkt_misc = {
2847	.minor 		= MISC_DYNAMIC_MINOR,
2848	.name  		= DRIVER_NAME,
2849	.nodename	= "pktcdvd/control",
2850	.fops  		= &pkt_ctl_fops
2851};
2852
2853static int __init pkt_init(void)
2854{
2855	int ret;
2856
2857	mutex_init(&ctl_mutex);
2858
2859	ret = mempool_init_kmalloc_pool(&psd_pool, PSD_POOL_SIZE,
2860				    sizeof(struct packet_stacked_data));
2861	if (ret)
2862		return ret;
2863	ret = bioset_init(&pkt_bio_set, BIO_POOL_SIZE, 0, 0);
2864	if (ret) {
2865		mempool_exit(&psd_pool);
2866		return ret;
2867	}
2868
2869	ret = register_blkdev(pktdev_major, DRIVER_NAME);
2870	if (ret < 0) {
2871		pr_err("unable to register block device\n");
2872		goto out2;
2873	}
2874	if (!pktdev_major)
2875		pktdev_major = ret;
2876
2877	ret = pkt_sysfs_init();
2878	if (ret)
2879		goto out;
2880
2881	pkt_debugfs_init();
2882
2883	ret = misc_register(&pkt_misc);
2884	if (ret) {
2885		pr_err("unable to register misc device\n");
2886		goto out_misc;
2887	}
2888
2889	pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
2890
2891	return 0;
2892
2893out_misc:
2894	pkt_debugfs_cleanup();
2895	pkt_sysfs_cleanup();
2896out:
2897	unregister_blkdev(pktdev_major, DRIVER_NAME);
2898out2:
2899	mempool_exit(&psd_pool);
2900	bioset_exit(&pkt_bio_set);
2901	return ret;
2902}
2903
2904static void __exit pkt_exit(void)
2905{
2906	remove_proc_entry("driver/"DRIVER_NAME, NULL);
2907	misc_deregister(&pkt_misc);
2908
2909	pkt_debugfs_cleanup();
2910	pkt_sysfs_cleanup();
2911
2912	unregister_blkdev(pktdev_major, DRIVER_NAME);
2913	mempool_exit(&psd_pool);
2914	bioset_exit(&pkt_bio_set);
2915}
2916
2917MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
2918MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
2919MODULE_LICENSE("GPL");
2920
2921module_init(pkt_init);
2922module_exit(pkt_exit);
2923