1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Add configfs and memory store: Kyungchan Koh <kkc6196@fb.com> and
4 * Shaohua Li <shli@fb.com>
5 */
6#include <linux/module.h>
7
8#include <linux/moduleparam.h>
9#include <linux/sched.h>
10#include <linux/fs.h>
11#include <linux/init.h>
12#include "null_blk.h"
13
14#undef pr_fmt
15#define pr_fmt(fmt)	"null_blk: " fmt
16
17#define FREE_BATCH		16
18
19#define TICKS_PER_SEC		50ULL
20#define TIMER_INTERVAL		(NSEC_PER_SEC / TICKS_PER_SEC)
21
22#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
23static DECLARE_FAULT_ATTR(null_timeout_attr);
24static DECLARE_FAULT_ATTR(null_requeue_attr);
25static DECLARE_FAULT_ATTR(null_init_hctx_attr);
26#endif
27
28static inline u64 mb_per_tick(int mbps)
29{
30	return (1 << 20) / TICKS_PER_SEC * ((u64) mbps);
31}
32
33/*
34 * Status flags for nullb_device.
35 *
36 * CONFIGURED:	Device has been configured and turned on. Cannot reconfigure.
37 * UP:		Device is currently on and visible in userspace.
38 * THROTTLED:	Device is being throttled.
39 * CACHE:	Device is using a write-back cache.
40 */
41enum nullb_device_flags {
42	NULLB_DEV_FL_CONFIGURED	= 0,
43	NULLB_DEV_FL_UP		= 1,
44	NULLB_DEV_FL_THROTTLED	= 2,
45	NULLB_DEV_FL_CACHE	= 3,
46};
47
48#define MAP_SZ		((PAGE_SIZE >> SECTOR_SHIFT) + 2)
49/*
50 * nullb_page is a page in memory for nullb devices.
51 *
52 * @page:	The page holding the data.
53 * @bitmap:	The bitmap represents which sector in the page has data.
54 *		Each bit represents one block size. For example, sector 8
55 *		will use the 7th bit
56 * The highest 2 bits of bitmap are for special purpose. LOCK means the cache
57 * page is being flushing to storage. FREE means the cache page is freed and
58 * should be skipped from flushing to storage. Please see
59 * null_make_cache_space
60 */
61struct nullb_page {
62	struct page *page;
63	DECLARE_BITMAP(bitmap, MAP_SZ);
64};
65#define NULLB_PAGE_LOCK (MAP_SZ - 1)
66#define NULLB_PAGE_FREE (MAP_SZ - 2)
67
68static LIST_HEAD(nullb_list);
69static struct mutex lock;
70static int null_major;
71static DEFINE_IDA(nullb_indexes);
72static struct blk_mq_tag_set tag_set;
73
74enum {
75	NULL_IRQ_NONE		= 0,
76	NULL_IRQ_SOFTIRQ	= 1,
77	NULL_IRQ_TIMER		= 2,
78};
79
80static bool g_virt_boundary = false;
81module_param_named(virt_boundary, g_virt_boundary, bool, 0444);
82MODULE_PARM_DESC(virt_boundary, "Require a virtual boundary for the device. Default: False");
83
84static int g_no_sched;
85module_param_named(no_sched, g_no_sched, int, 0444);
86MODULE_PARM_DESC(no_sched, "No io scheduler");
87
88static int g_submit_queues = 1;
89module_param_named(submit_queues, g_submit_queues, int, 0444);
90MODULE_PARM_DESC(submit_queues, "Number of submission queues");
91
92static int g_poll_queues = 1;
93module_param_named(poll_queues, g_poll_queues, int, 0444);
94MODULE_PARM_DESC(poll_queues, "Number of IOPOLL submission queues");
95
96static int g_home_node = NUMA_NO_NODE;
97module_param_named(home_node, g_home_node, int, 0444);
98MODULE_PARM_DESC(home_node, "Home node for the device");
99
100#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
101/*
102 * For more details about fault injection, please refer to
103 * Documentation/fault-injection/fault-injection.rst.
104 */
105static char g_timeout_str[80];
106module_param_string(timeout, g_timeout_str, sizeof(g_timeout_str), 0444);
107MODULE_PARM_DESC(timeout, "Fault injection. timeout=<interval>,<probability>,<space>,<times>");
108
109static char g_requeue_str[80];
110module_param_string(requeue, g_requeue_str, sizeof(g_requeue_str), 0444);
111MODULE_PARM_DESC(requeue, "Fault injection. requeue=<interval>,<probability>,<space>,<times>");
112
113static char g_init_hctx_str[80];
114module_param_string(init_hctx, g_init_hctx_str, sizeof(g_init_hctx_str), 0444);
115MODULE_PARM_DESC(init_hctx, "Fault injection to fail hctx init. init_hctx=<interval>,<probability>,<space>,<times>");
116#endif
117
118static int g_queue_mode = NULL_Q_MQ;
119
120static int null_param_store_val(const char *str, int *val, int min, int max)
121{
122	int ret, new_val;
123
124	ret = kstrtoint(str, 10, &new_val);
125	if (ret)
126		return -EINVAL;
127
128	if (new_val < min || new_val > max)
129		return -EINVAL;
130
131	*val = new_val;
132	return 0;
133}
134
135static int null_set_queue_mode(const char *str, const struct kernel_param *kp)
136{
137	return null_param_store_val(str, &g_queue_mode, NULL_Q_BIO, NULL_Q_MQ);
138}
139
140static const struct kernel_param_ops null_queue_mode_param_ops = {
141	.set	= null_set_queue_mode,
142	.get	= param_get_int,
143};
144
145device_param_cb(queue_mode, &null_queue_mode_param_ops, &g_queue_mode, 0444);
146MODULE_PARM_DESC(queue_mode, "Block interface to use (0=bio,1=rq,2=multiqueue)");
147
148static int g_gb = 250;
149module_param_named(gb, g_gb, int, 0444);
150MODULE_PARM_DESC(gb, "Size in GB");
151
152static int g_bs = 512;
153module_param_named(bs, g_bs, int, 0444);
154MODULE_PARM_DESC(bs, "Block size (in bytes)");
155
156static int g_max_sectors;
157module_param_named(max_sectors, g_max_sectors, int, 0444);
158MODULE_PARM_DESC(max_sectors, "Maximum size of a command (in 512B sectors)");
159
160static unsigned int nr_devices = 1;
161module_param(nr_devices, uint, 0444);
162MODULE_PARM_DESC(nr_devices, "Number of devices to register");
163
164static bool g_blocking;
165module_param_named(blocking, g_blocking, bool, 0444);
166MODULE_PARM_DESC(blocking, "Register as a blocking blk-mq driver device");
167
168static bool shared_tags;
169module_param(shared_tags, bool, 0444);
170MODULE_PARM_DESC(shared_tags, "Share tag set between devices for blk-mq");
171
172static bool g_shared_tag_bitmap;
173module_param_named(shared_tag_bitmap, g_shared_tag_bitmap, bool, 0444);
174MODULE_PARM_DESC(shared_tag_bitmap, "Use shared tag bitmap for all submission queues for blk-mq");
175
176static int g_irqmode = NULL_IRQ_SOFTIRQ;
177
178static int null_set_irqmode(const char *str, const struct kernel_param *kp)
179{
180	return null_param_store_val(str, &g_irqmode, NULL_IRQ_NONE,
181					NULL_IRQ_TIMER);
182}
183
184static const struct kernel_param_ops null_irqmode_param_ops = {
185	.set	= null_set_irqmode,
186	.get	= param_get_int,
187};
188
189device_param_cb(irqmode, &null_irqmode_param_ops, &g_irqmode, 0444);
190MODULE_PARM_DESC(irqmode, "IRQ completion handler. 0-none, 1-softirq, 2-timer");
191
192static unsigned long g_completion_nsec = 10000;
193module_param_named(completion_nsec, g_completion_nsec, ulong, 0444);
194MODULE_PARM_DESC(completion_nsec, "Time in ns to complete a request in hardware. Default: 10,000ns");
195
196static int g_hw_queue_depth = 64;
197module_param_named(hw_queue_depth, g_hw_queue_depth, int, 0444);
198MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: 64");
199
200static bool g_use_per_node_hctx;
201module_param_named(use_per_node_hctx, g_use_per_node_hctx, bool, 0444);
202MODULE_PARM_DESC(use_per_node_hctx, "Use per-node allocation for hardware context queues. Default: false");
203
204static bool g_memory_backed;
205module_param_named(memory_backed, g_memory_backed, bool, 0444);
206MODULE_PARM_DESC(memory_backed, "Create a memory-backed block device. Default: false");
207
208static bool g_discard;
209module_param_named(discard, g_discard, bool, 0444);
210MODULE_PARM_DESC(discard, "Support discard operations (requires memory-backed null_blk device). Default: false");
211
212static unsigned long g_cache_size;
213module_param_named(cache_size, g_cache_size, ulong, 0444);
214MODULE_PARM_DESC(mbps, "Cache size in MiB for memory-backed device. Default: 0 (none)");
215
216static unsigned int g_mbps;
217module_param_named(mbps, g_mbps, uint, 0444);
218MODULE_PARM_DESC(mbps, "Limit maximum bandwidth (in MiB/s). Default: 0 (no limit)");
219
220static bool g_zoned;
221module_param_named(zoned, g_zoned, bool, S_IRUGO);
222MODULE_PARM_DESC(zoned, "Make device as a host-managed zoned block device. Default: false");
223
224static unsigned long g_zone_size = 256;
225module_param_named(zone_size, g_zone_size, ulong, S_IRUGO);
226MODULE_PARM_DESC(zone_size, "Zone size in MB when block device is zoned. Must be power-of-two: Default: 256");
227
228static unsigned long g_zone_capacity;
229module_param_named(zone_capacity, g_zone_capacity, ulong, 0444);
230MODULE_PARM_DESC(zone_capacity, "Zone capacity in MB when block device is zoned. Can be less than or equal to zone size. Default: Zone size");
231
232static unsigned int g_zone_nr_conv;
233module_param_named(zone_nr_conv, g_zone_nr_conv, uint, 0444);
234MODULE_PARM_DESC(zone_nr_conv, "Number of conventional zones when block device is zoned. Default: 0");
235
236static unsigned int g_zone_max_open;
237module_param_named(zone_max_open, g_zone_max_open, uint, 0444);
238MODULE_PARM_DESC(zone_max_open, "Maximum number of open zones when block device is zoned. Default: 0 (no limit)");
239
240static unsigned int g_zone_max_active;
241module_param_named(zone_max_active, g_zone_max_active, uint, 0444);
242MODULE_PARM_DESC(zone_max_active, "Maximum number of active zones when block device is zoned. Default: 0 (no limit)");
243
244static struct nullb_device *null_alloc_dev(void);
245static void null_free_dev(struct nullb_device *dev);
246static void null_del_dev(struct nullb *nullb);
247static int null_add_dev(struct nullb_device *dev);
248static struct nullb *null_find_dev_by_name(const char *name);
249static void null_free_device_storage(struct nullb_device *dev, bool is_cache);
250
251static inline struct nullb_device *to_nullb_device(struct config_item *item)
252{
253	return item ? container_of(to_config_group(item), struct nullb_device, group) : NULL;
254}
255
256static inline ssize_t nullb_device_uint_attr_show(unsigned int val, char *page)
257{
258	return snprintf(page, PAGE_SIZE, "%u\n", val);
259}
260
261static inline ssize_t nullb_device_ulong_attr_show(unsigned long val,
262	char *page)
263{
264	return snprintf(page, PAGE_SIZE, "%lu\n", val);
265}
266
267static inline ssize_t nullb_device_bool_attr_show(bool val, char *page)
268{
269	return snprintf(page, PAGE_SIZE, "%u\n", val);
270}
271
272static ssize_t nullb_device_uint_attr_store(unsigned int *val,
273	const char *page, size_t count)
274{
275	unsigned int tmp;
276	int result;
277
278	result = kstrtouint(page, 0, &tmp);
279	if (result < 0)
280		return result;
281
282	*val = tmp;
283	return count;
284}
285
286static ssize_t nullb_device_ulong_attr_store(unsigned long *val,
287	const char *page, size_t count)
288{
289	int result;
290	unsigned long tmp;
291
292	result = kstrtoul(page, 0, &tmp);
293	if (result < 0)
294		return result;
295
296	*val = tmp;
297	return count;
298}
299
300static ssize_t nullb_device_bool_attr_store(bool *val, const char *page,
301	size_t count)
302{
303	bool tmp;
304	int result;
305
306	result = kstrtobool(page,  &tmp);
307	if (result < 0)
308		return result;
309
310	*val = tmp;
311	return count;
312}
313
314/* The following macro should only be used with TYPE = {uint, ulong, bool}. */
315#define NULLB_DEVICE_ATTR(NAME, TYPE, APPLY)				\
316static ssize_t								\
317nullb_device_##NAME##_show(struct config_item *item, char *page)	\
318{									\
319	return nullb_device_##TYPE##_attr_show(				\
320				to_nullb_device(item)->NAME, page);	\
321}									\
322static ssize_t								\
323nullb_device_##NAME##_store(struct config_item *item, const char *page,	\
324			    size_t count)				\
325{									\
326	int (*apply_fn)(struct nullb_device *dev, TYPE new_value) = APPLY;\
327	struct nullb_device *dev = to_nullb_device(item);		\
328	TYPE new_value = 0;						\
329	int ret;							\
330									\
331	ret = nullb_device_##TYPE##_attr_store(&new_value, page, count);\
332	if (ret < 0)							\
333		return ret;						\
334	if (apply_fn)							\
335		ret = apply_fn(dev, new_value);				\
336	else if (test_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags)) 	\
337		ret = -EBUSY;						\
338	if (ret < 0)							\
339		return ret;						\
340	dev->NAME = new_value;						\
341	return count;							\
342}									\
343CONFIGFS_ATTR(nullb_device_, NAME);
344
345static int nullb_update_nr_hw_queues(struct nullb_device *dev,
346				     unsigned int submit_queues,
347				     unsigned int poll_queues)
348
349{
350	struct blk_mq_tag_set *set;
351	int ret, nr_hw_queues;
352
353	if (!dev->nullb)
354		return 0;
355
356	/*
357	 * Make sure at least one submit queue exists.
358	 */
359	if (!submit_queues)
360		return -EINVAL;
361
362	/*
363	 * Make sure that null_init_hctx() does not access nullb->queues[] past
364	 * the end of that array.
365	 */
366	if (submit_queues > nr_cpu_ids || poll_queues > g_poll_queues)
367		return -EINVAL;
368
369	/*
370	 * Keep previous and new queue numbers in nullb_device for reference in
371	 * the call back function null_map_queues().
372	 */
373	dev->prev_submit_queues = dev->submit_queues;
374	dev->prev_poll_queues = dev->poll_queues;
375	dev->submit_queues = submit_queues;
376	dev->poll_queues = poll_queues;
377
378	set = dev->nullb->tag_set;
379	nr_hw_queues = submit_queues + poll_queues;
380	blk_mq_update_nr_hw_queues(set, nr_hw_queues);
381	ret = set->nr_hw_queues == nr_hw_queues ? 0 : -ENOMEM;
382
383	if (ret) {
384		/* on error, revert the queue numbers */
385		dev->submit_queues = dev->prev_submit_queues;
386		dev->poll_queues = dev->prev_poll_queues;
387	}
388
389	return ret;
390}
391
392static int nullb_apply_submit_queues(struct nullb_device *dev,
393				     unsigned int submit_queues)
394{
395	return nullb_update_nr_hw_queues(dev, submit_queues, dev->poll_queues);
396}
397
398static int nullb_apply_poll_queues(struct nullb_device *dev,
399				   unsigned int poll_queues)
400{
401	return nullb_update_nr_hw_queues(dev, dev->submit_queues, poll_queues);
402}
403
404NULLB_DEVICE_ATTR(size, ulong, NULL);
405NULLB_DEVICE_ATTR(completion_nsec, ulong, NULL);
406NULLB_DEVICE_ATTR(submit_queues, uint, nullb_apply_submit_queues);
407NULLB_DEVICE_ATTR(poll_queues, uint, nullb_apply_poll_queues);
408NULLB_DEVICE_ATTR(home_node, uint, NULL);
409NULLB_DEVICE_ATTR(queue_mode, uint, NULL);
410NULLB_DEVICE_ATTR(blocksize, uint, NULL);
411NULLB_DEVICE_ATTR(max_sectors, uint, NULL);
412NULLB_DEVICE_ATTR(irqmode, uint, NULL);
413NULLB_DEVICE_ATTR(hw_queue_depth, uint, NULL);
414NULLB_DEVICE_ATTR(index, uint, NULL);
415NULLB_DEVICE_ATTR(blocking, bool, NULL);
416NULLB_DEVICE_ATTR(use_per_node_hctx, bool, NULL);
417NULLB_DEVICE_ATTR(memory_backed, bool, NULL);
418NULLB_DEVICE_ATTR(discard, bool, NULL);
419NULLB_DEVICE_ATTR(mbps, uint, NULL);
420NULLB_DEVICE_ATTR(cache_size, ulong, NULL);
421NULLB_DEVICE_ATTR(zoned, bool, NULL);
422NULLB_DEVICE_ATTR(zone_size, ulong, NULL);
423NULLB_DEVICE_ATTR(zone_capacity, ulong, NULL);
424NULLB_DEVICE_ATTR(zone_nr_conv, uint, NULL);
425NULLB_DEVICE_ATTR(zone_max_open, uint, NULL);
426NULLB_DEVICE_ATTR(zone_max_active, uint, NULL);
427NULLB_DEVICE_ATTR(virt_boundary, bool, NULL);
428NULLB_DEVICE_ATTR(no_sched, bool, NULL);
429NULLB_DEVICE_ATTR(shared_tag_bitmap, bool, NULL);
430
431static ssize_t nullb_device_power_show(struct config_item *item, char *page)
432{
433	return nullb_device_bool_attr_show(to_nullb_device(item)->power, page);
434}
435
436static ssize_t nullb_device_power_store(struct config_item *item,
437				     const char *page, size_t count)
438{
439	struct nullb_device *dev = to_nullb_device(item);
440	bool newp = false;
441	ssize_t ret;
442
443	ret = nullb_device_bool_attr_store(&newp, page, count);
444	if (ret < 0)
445		return ret;
446
447	if (!dev->power && newp) {
448		if (test_and_set_bit(NULLB_DEV_FL_UP, &dev->flags))
449			return count;
450		ret = null_add_dev(dev);
451		if (ret) {
452			clear_bit(NULLB_DEV_FL_UP, &dev->flags);
453			return ret;
454		}
455
456		set_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
457		dev->power = newp;
458	} else if (dev->power && !newp) {
459		if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
460			mutex_lock(&lock);
461			dev->power = newp;
462			null_del_dev(dev->nullb);
463			mutex_unlock(&lock);
464		}
465		clear_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
466	}
467
468	return count;
469}
470
471CONFIGFS_ATTR(nullb_device_, power);
472
473static ssize_t nullb_device_badblocks_show(struct config_item *item, char *page)
474{
475	struct nullb_device *t_dev = to_nullb_device(item);
476
477	return badblocks_show(&t_dev->badblocks, page, 0);
478}
479
480static ssize_t nullb_device_badblocks_store(struct config_item *item,
481				     const char *page, size_t count)
482{
483	struct nullb_device *t_dev = to_nullb_device(item);
484	char *orig, *buf, *tmp;
485	u64 start, end;
486	int ret;
487
488	orig = kstrndup(page, count, GFP_KERNEL);
489	if (!orig)
490		return -ENOMEM;
491
492	buf = strstrip(orig);
493
494	ret = -EINVAL;
495	if (buf[0] != '+' && buf[0] != '-')
496		goto out;
497	tmp = strchr(&buf[1], '-');
498	if (!tmp)
499		goto out;
500	*tmp = '\0';
501	ret = kstrtoull(buf + 1, 0, &start);
502	if (ret)
503		goto out;
504	ret = kstrtoull(tmp + 1, 0, &end);
505	if (ret)
506		goto out;
507	ret = -EINVAL;
508	if (start > end)
509		goto out;
510	/* enable badblocks */
511	cmpxchg(&t_dev->badblocks.shift, -1, 0);
512	if (buf[0] == '+')
513		ret = badblocks_set(&t_dev->badblocks, start,
514			end - start + 1, 1);
515	else
516		ret = badblocks_clear(&t_dev->badblocks, start,
517			end - start + 1);
518	if (ret == 0)
519		ret = count;
520out:
521	kfree(orig);
522	return ret;
523}
524CONFIGFS_ATTR(nullb_device_, badblocks);
525
526static ssize_t nullb_device_zone_readonly_store(struct config_item *item,
527						const char *page, size_t count)
528{
529	struct nullb_device *dev = to_nullb_device(item);
530
531	return zone_cond_store(dev, page, count, BLK_ZONE_COND_READONLY);
532}
533CONFIGFS_ATTR_WO(nullb_device_, zone_readonly);
534
535static ssize_t nullb_device_zone_offline_store(struct config_item *item,
536					       const char *page, size_t count)
537{
538	struct nullb_device *dev = to_nullb_device(item);
539
540	return zone_cond_store(dev, page, count, BLK_ZONE_COND_OFFLINE);
541}
542CONFIGFS_ATTR_WO(nullb_device_, zone_offline);
543
544static struct configfs_attribute *nullb_device_attrs[] = {
545	&nullb_device_attr_size,
546	&nullb_device_attr_completion_nsec,
547	&nullb_device_attr_submit_queues,
548	&nullb_device_attr_poll_queues,
549	&nullb_device_attr_home_node,
550	&nullb_device_attr_queue_mode,
551	&nullb_device_attr_blocksize,
552	&nullb_device_attr_max_sectors,
553	&nullb_device_attr_irqmode,
554	&nullb_device_attr_hw_queue_depth,
555	&nullb_device_attr_index,
556	&nullb_device_attr_blocking,
557	&nullb_device_attr_use_per_node_hctx,
558	&nullb_device_attr_power,
559	&nullb_device_attr_memory_backed,
560	&nullb_device_attr_discard,
561	&nullb_device_attr_mbps,
562	&nullb_device_attr_cache_size,
563	&nullb_device_attr_badblocks,
564	&nullb_device_attr_zoned,
565	&nullb_device_attr_zone_size,
566	&nullb_device_attr_zone_capacity,
567	&nullb_device_attr_zone_nr_conv,
568	&nullb_device_attr_zone_max_open,
569	&nullb_device_attr_zone_max_active,
570	&nullb_device_attr_zone_readonly,
571	&nullb_device_attr_zone_offline,
572	&nullb_device_attr_virt_boundary,
573	&nullb_device_attr_no_sched,
574	&nullb_device_attr_shared_tag_bitmap,
575	NULL,
576};
577
578static void nullb_device_release(struct config_item *item)
579{
580	struct nullb_device *dev = to_nullb_device(item);
581
582	null_free_device_storage(dev, false);
583	null_free_dev(dev);
584}
585
586static struct configfs_item_operations nullb_device_ops = {
587	.release	= nullb_device_release,
588};
589
590static const struct config_item_type nullb_device_type = {
591	.ct_item_ops	= &nullb_device_ops,
592	.ct_attrs	= nullb_device_attrs,
593	.ct_owner	= THIS_MODULE,
594};
595
596#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
597
598static void nullb_add_fault_config(struct nullb_device *dev)
599{
600	fault_config_init(&dev->timeout_config, "timeout_inject");
601	fault_config_init(&dev->requeue_config, "requeue_inject");
602	fault_config_init(&dev->init_hctx_fault_config, "init_hctx_fault_inject");
603
604	configfs_add_default_group(&dev->timeout_config.group, &dev->group);
605	configfs_add_default_group(&dev->requeue_config.group, &dev->group);
606	configfs_add_default_group(&dev->init_hctx_fault_config.group, &dev->group);
607}
608
609#else
610
611static void nullb_add_fault_config(struct nullb_device *dev)
612{
613}
614
615#endif
616
617static struct
618config_group *nullb_group_make_group(struct config_group *group, const char *name)
619{
620	struct nullb_device *dev;
621
622	if (null_find_dev_by_name(name))
623		return ERR_PTR(-EEXIST);
624
625	dev = null_alloc_dev();
626	if (!dev)
627		return ERR_PTR(-ENOMEM);
628
629	config_group_init_type_name(&dev->group, name, &nullb_device_type);
630	nullb_add_fault_config(dev);
631
632	return &dev->group;
633}
634
635static void
636nullb_group_drop_item(struct config_group *group, struct config_item *item)
637{
638	struct nullb_device *dev = to_nullb_device(item);
639
640	if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
641		mutex_lock(&lock);
642		dev->power = false;
643		null_del_dev(dev->nullb);
644		mutex_unlock(&lock);
645	}
646
647	config_item_put(item);
648}
649
650static ssize_t memb_group_features_show(struct config_item *item, char *page)
651{
652	return snprintf(page, PAGE_SIZE,
653			"badblocks,blocking,blocksize,cache_size,"
654			"completion_nsec,discard,home_node,hw_queue_depth,"
655			"irqmode,max_sectors,mbps,memory_backed,no_sched,"
656			"poll_queues,power,queue_mode,shared_tag_bitmap,size,"
657			"submit_queues,use_per_node_hctx,virt_boundary,zoned,"
658			"zone_capacity,zone_max_active,zone_max_open,"
659			"zone_nr_conv,zone_offline,zone_readonly,zone_size\n");
660}
661
662CONFIGFS_ATTR_RO(memb_group_, features);
663
664static struct configfs_attribute *nullb_group_attrs[] = {
665	&memb_group_attr_features,
666	NULL,
667};
668
669static struct configfs_group_operations nullb_group_ops = {
670	.make_group	= nullb_group_make_group,
671	.drop_item	= nullb_group_drop_item,
672};
673
674static const struct config_item_type nullb_group_type = {
675	.ct_group_ops	= &nullb_group_ops,
676	.ct_attrs	= nullb_group_attrs,
677	.ct_owner	= THIS_MODULE,
678};
679
680static struct configfs_subsystem nullb_subsys = {
681	.su_group = {
682		.cg_item = {
683			.ci_namebuf = "nullb",
684			.ci_type = &nullb_group_type,
685		},
686	},
687};
688
689static inline int null_cache_active(struct nullb *nullb)
690{
691	return test_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
692}
693
694static struct nullb_device *null_alloc_dev(void)
695{
696	struct nullb_device *dev;
697
698	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
699	if (!dev)
700		return NULL;
701
702#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
703	dev->timeout_config.attr = null_timeout_attr;
704	dev->requeue_config.attr = null_requeue_attr;
705	dev->init_hctx_fault_config.attr = null_init_hctx_attr;
706#endif
707
708	INIT_RADIX_TREE(&dev->data, GFP_ATOMIC);
709	INIT_RADIX_TREE(&dev->cache, GFP_ATOMIC);
710	if (badblocks_init(&dev->badblocks, 0)) {
711		kfree(dev);
712		return NULL;
713	}
714
715	dev->size = g_gb * 1024;
716	dev->completion_nsec = g_completion_nsec;
717	dev->submit_queues = g_submit_queues;
718	dev->prev_submit_queues = g_submit_queues;
719	dev->poll_queues = g_poll_queues;
720	dev->prev_poll_queues = g_poll_queues;
721	dev->home_node = g_home_node;
722	dev->queue_mode = g_queue_mode;
723	dev->blocksize = g_bs;
724	dev->max_sectors = g_max_sectors;
725	dev->irqmode = g_irqmode;
726	dev->hw_queue_depth = g_hw_queue_depth;
727	dev->blocking = g_blocking;
728	dev->memory_backed = g_memory_backed;
729	dev->discard = g_discard;
730	dev->cache_size = g_cache_size;
731	dev->mbps = g_mbps;
732	dev->use_per_node_hctx = g_use_per_node_hctx;
733	dev->zoned = g_zoned;
734	dev->zone_size = g_zone_size;
735	dev->zone_capacity = g_zone_capacity;
736	dev->zone_nr_conv = g_zone_nr_conv;
737	dev->zone_max_open = g_zone_max_open;
738	dev->zone_max_active = g_zone_max_active;
739	dev->virt_boundary = g_virt_boundary;
740	dev->no_sched = g_no_sched;
741	dev->shared_tag_bitmap = g_shared_tag_bitmap;
742	return dev;
743}
744
745static void null_free_dev(struct nullb_device *dev)
746{
747	if (!dev)
748		return;
749
750	null_free_zoned_dev(dev);
751	badblocks_exit(&dev->badblocks);
752	kfree(dev);
753}
754
755static void put_tag(struct nullb_queue *nq, unsigned int tag)
756{
757	clear_bit_unlock(tag, nq->tag_map);
758
759	if (waitqueue_active(&nq->wait))
760		wake_up(&nq->wait);
761}
762
763static unsigned int get_tag(struct nullb_queue *nq)
764{
765	unsigned int tag;
766
767	do {
768		tag = find_first_zero_bit(nq->tag_map, nq->queue_depth);
769		if (tag >= nq->queue_depth)
770			return -1U;
771	} while (test_and_set_bit_lock(tag, nq->tag_map));
772
773	return tag;
774}
775
776static void free_cmd(struct nullb_cmd *cmd)
777{
778	put_tag(cmd->nq, cmd->tag);
779}
780
781static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer);
782
783static struct nullb_cmd *__alloc_cmd(struct nullb_queue *nq)
784{
785	struct nullb_cmd *cmd;
786	unsigned int tag;
787
788	tag = get_tag(nq);
789	if (tag != -1U) {
790		cmd = &nq->cmds[tag];
791		cmd->tag = tag;
792		cmd->error = BLK_STS_OK;
793		cmd->nq = nq;
794		if (nq->dev->irqmode == NULL_IRQ_TIMER) {
795			hrtimer_init(&cmd->timer, CLOCK_MONOTONIC,
796				     HRTIMER_MODE_REL);
797			cmd->timer.function = null_cmd_timer_expired;
798		}
799		return cmd;
800	}
801
802	return NULL;
803}
804
805static struct nullb_cmd *alloc_cmd(struct nullb_queue *nq, struct bio *bio)
806{
807	struct nullb_cmd *cmd;
808	DEFINE_WAIT(wait);
809
810	do {
811		/*
812		 * This avoids multiple return statements, multiple calls to
813		 * __alloc_cmd() and a fast path call to prepare_to_wait().
814		 */
815		cmd = __alloc_cmd(nq);
816		if (cmd) {
817			cmd->bio = bio;
818			return cmd;
819		}
820		prepare_to_wait(&nq->wait, &wait, TASK_UNINTERRUPTIBLE);
821		io_schedule();
822		finish_wait(&nq->wait, &wait);
823	} while (1);
824}
825
826static void end_cmd(struct nullb_cmd *cmd)
827{
828	int queue_mode = cmd->nq->dev->queue_mode;
829
830	switch (queue_mode)  {
831	case NULL_Q_MQ:
832		blk_mq_end_request(cmd->rq, cmd->error);
833		return;
834	case NULL_Q_BIO:
835		cmd->bio->bi_status = cmd->error;
836		bio_endio(cmd->bio);
837		break;
838	}
839
840	free_cmd(cmd);
841}
842
843static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer)
844{
845	end_cmd(container_of(timer, struct nullb_cmd, timer));
846
847	return HRTIMER_NORESTART;
848}
849
850static void null_cmd_end_timer(struct nullb_cmd *cmd)
851{
852	ktime_t kt = cmd->nq->dev->completion_nsec;
853
854	hrtimer_start(&cmd->timer, kt, HRTIMER_MODE_REL);
855}
856
857static void null_complete_rq(struct request *rq)
858{
859	end_cmd(blk_mq_rq_to_pdu(rq));
860}
861
862static struct nullb_page *null_alloc_page(void)
863{
864	struct nullb_page *t_page;
865
866	t_page = kmalloc(sizeof(struct nullb_page), GFP_NOIO);
867	if (!t_page)
868		return NULL;
869
870	t_page->page = alloc_pages(GFP_NOIO, 0);
871	if (!t_page->page) {
872		kfree(t_page);
873		return NULL;
874	}
875
876	memset(t_page->bitmap, 0, sizeof(t_page->bitmap));
877	return t_page;
878}
879
880static void null_free_page(struct nullb_page *t_page)
881{
882	__set_bit(NULLB_PAGE_FREE, t_page->bitmap);
883	if (test_bit(NULLB_PAGE_LOCK, t_page->bitmap))
884		return;
885	__free_page(t_page->page);
886	kfree(t_page);
887}
888
889static bool null_page_empty(struct nullb_page *page)
890{
891	int size = MAP_SZ - 2;
892
893	return find_first_bit(page->bitmap, size) == size;
894}
895
896static void null_free_sector(struct nullb *nullb, sector_t sector,
897	bool is_cache)
898{
899	unsigned int sector_bit;
900	u64 idx;
901	struct nullb_page *t_page, *ret;
902	struct radix_tree_root *root;
903
904	root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
905	idx = sector >> PAGE_SECTORS_SHIFT;
906	sector_bit = (sector & SECTOR_MASK);
907
908	t_page = radix_tree_lookup(root, idx);
909	if (t_page) {
910		__clear_bit(sector_bit, t_page->bitmap);
911
912		if (null_page_empty(t_page)) {
913			ret = radix_tree_delete_item(root, idx, t_page);
914			WARN_ON(ret != t_page);
915			null_free_page(ret);
916			if (is_cache)
917				nullb->dev->curr_cache -= PAGE_SIZE;
918		}
919	}
920}
921
922static struct nullb_page *null_radix_tree_insert(struct nullb *nullb, u64 idx,
923	struct nullb_page *t_page, bool is_cache)
924{
925	struct radix_tree_root *root;
926
927	root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
928
929	if (radix_tree_insert(root, idx, t_page)) {
930		null_free_page(t_page);
931		t_page = radix_tree_lookup(root, idx);
932		WARN_ON(!t_page || t_page->page->index != idx);
933	} else if (is_cache)
934		nullb->dev->curr_cache += PAGE_SIZE;
935
936	return t_page;
937}
938
939static void null_free_device_storage(struct nullb_device *dev, bool is_cache)
940{
941	unsigned long pos = 0;
942	int nr_pages;
943	struct nullb_page *ret, *t_pages[FREE_BATCH];
944	struct radix_tree_root *root;
945
946	root = is_cache ? &dev->cache : &dev->data;
947
948	do {
949		int i;
950
951		nr_pages = radix_tree_gang_lookup(root,
952				(void **)t_pages, pos, FREE_BATCH);
953
954		for (i = 0; i < nr_pages; i++) {
955			pos = t_pages[i]->page->index;
956			ret = radix_tree_delete_item(root, pos, t_pages[i]);
957			WARN_ON(ret != t_pages[i]);
958			null_free_page(ret);
959		}
960
961		pos++;
962	} while (nr_pages == FREE_BATCH);
963
964	if (is_cache)
965		dev->curr_cache = 0;
966}
967
968static struct nullb_page *__null_lookup_page(struct nullb *nullb,
969	sector_t sector, bool for_write, bool is_cache)
970{
971	unsigned int sector_bit;
972	u64 idx;
973	struct nullb_page *t_page;
974	struct radix_tree_root *root;
975
976	idx = sector >> PAGE_SECTORS_SHIFT;
977	sector_bit = (sector & SECTOR_MASK);
978
979	root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
980	t_page = radix_tree_lookup(root, idx);
981	WARN_ON(t_page && t_page->page->index != idx);
982
983	if (t_page && (for_write || test_bit(sector_bit, t_page->bitmap)))
984		return t_page;
985
986	return NULL;
987}
988
989static struct nullb_page *null_lookup_page(struct nullb *nullb,
990	sector_t sector, bool for_write, bool ignore_cache)
991{
992	struct nullb_page *page = NULL;
993
994	if (!ignore_cache)
995		page = __null_lookup_page(nullb, sector, for_write, true);
996	if (page)
997		return page;
998	return __null_lookup_page(nullb, sector, for_write, false);
999}
1000
1001static struct nullb_page *null_insert_page(struct nullb *nullb,
1002					   sector_t sector, bool ignore_cache)
1003	__releases(&nullb->lock)
1004	__acquires(&nullb->lock)
1005{
1006	u64 idx;
1007	struct nullb_page *t_page;
1008
1009	t_page = null_lookup_page(nullb, sector, true, ignore_cache);
1010	if (t_page)
1011		return t_page;
1012
1013	spin_unlock_irq(&nullb->lock);
1014
1015	t_page = null_alloc_page();
1016	if (!t_page)
1017		goto out_lock;
1018
1019	if (radix_tree_preload(GFP_NOIO))
1020		goto out_freepage;
1021
1022	spin_lock_irq(&nullb->lock);
1023	idx = sector >> PAGE_SECTORS_SHIFT;
1024	t_page->page->index = idx;
1025	t_page = null_radix_tree_insert(nullb, idx, t_page, !ignore_cache);
1026	radix_tree_preload_end();
1027
1028	return t_page;
1029out_freepage:
1030	null_free_page(t_page);
1031out_lock:
1032	spin_lock_irq(&nullb->lock);
1033	return null_lookup_page(nullb, sector, true, ignore_cache);
1034}
1035
1036static int null_flush_cache_page(struct nullb *nullb, struct nullb_page *c_page)
1037{
1038	int i;
1039	unsigned int offset;
1040	u64 idx;
1041	struct nullb_page *t_page, *ret;
1042	void *dst, *src;
1043
1044	idx = c_page->page->index;
1045
1046	t_page = null_insert_page(nullb, idx << PAGE_SECTORS_SHIFT, true);
1047
1048	__clear_bit(NULLB_PAGE_LOCK, c_page->bitmap);
1049	if (test_bit(NULLB_PAGE_FREE, c_page->bitmap)) {
1050		null_free_page(c_page);
1051		if (t_page && null_page_empty(t_page)) {
1052			ret = radix_tree_delete_item(&nullb->dev->data,
1053				idx, t_page);
1054			null_free_page(t_page);
1055		}
1056		return 0;
1057	}
1058
1059	if (!t_page)
1060		return -ENOMEM;
1061
1062	src = kmap_local_page(c_page->page);
1063	dst = kmap_local_page(t_page->page);
1064
1065	for (i = 0; i < PAGE_SECTORS;
1066			i += (nullb->dev->blocksize >> SECTOR_SHIFT)) {
1067		if (test_bit(i, c_page->bitmap)) {
1068			offset = (i << SECTOR_SHIFT);
1069			memcpy(dst + offset, src + offset,
1070				nullb->dev->blocksize);
1071			__set_bit(i, t_page->bitmap);
1072		}
1073	}
1074
1075	kunmap_local(dst);
1076	kunmap_local(src);
1077
1078	ret = radix_tree_delete_item(&nullb->dev->cache, idx, c_page);
1079	null_free_page(ret);
1080	nullb->dev->curr_cache -= PAGE_SIZE;
1081
1082	return 0;
1083}
1084
1085static int null_make_cache_space(struct nullb *nullb, unsigned long n)
1086{
1087	int i, err, nr_pages;
1088	struct nullb_page *c_pages[FREE_BATCH];
1089	unsigned long flushed = 0, one_round;
1090
1091again:
1092	if ((nullb->dev->cache_size * 1024 * 1024) >
1093	     nullb->dev->curr_cache + n || nullb->dev->curr_cache == 0)
1094		return 0;
1095
1096	nr_pages = radix_tree_gang_lookup(&nullb->dev->cache,
1097			(void **)c_pages, nullb->cache_flush_pos, FREE_BATCH);
1098	/*
1099	 * nullb_flush_cache_page could unlock before using the c_pages. To
1100	 * avoid race, we don't allow page free
1101	 */
1102	for (i = 0; i < nr_pages; i++) {
1103		nullb->cache_flush_pos = c_pages[i]->page->index;
1104		/*
1105		 * We found the page which is being flushed to disk by other
1106		 * threads
1107		 */
1108		if (test_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap))
1109			c_pages[i] = NULL;
1110		else
1111			__set_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap);
1112	}
1113
1114	one_round = 0;
1115	for (i = 0; i < nr_pages; i++) {
1116		if (c_pages[i] == NULL)
1117			continue;
1118		err = null_flush_cache_page(nullb, c_pages[i]);
1119		if (err)
1120			return err;
1121		one_round++;
1122	}
1123	flushed += one_round << PAGE_SHIFT;
1124
1125	if (n > flushed) {
1126		if (nr_pages == 0)
1127			nullb->cache_flush_pos = 0;
1128		if (one_round == 0) {
1129			/* give other threads a chance */
1130			spin_unlock_irq(&nullb->lock);
1131			spin_lock_irq(&nullb->lock);
1132		}
1133		goto again;
1134	}
1135	return 0;
1136}
1137
1138static int copy_to_nullb(struct nullb *nullb, struct page *source,
1139	unsigned int off, sector_t sector, size_t n, bool is_fua)
1140{
1141	size_t temp, count = 0;
1142	unsigned int offset;
1143	struct nullb_page *t_page;
1144
1145	while (count < n) {
1146		temp = min_t(size_t, nullb->dev->blocksize, n - count);
1147
1148		if (null_cache_active(nullb) && !is_fua)
1149			null_make_cache_space(nullb, PAGE_SIZE);
1150
1151		offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
1152		t_page = null_insert_page(nullb, sector,
1153			!null_cache_active(nullb) || is_fua);
1154		if (!t_page)
1155			return -ENOSPC;
1156
1157		memcpy_page(t_page->page, offset, source, off + count, temp);
1158
1159		__set_bit(sector & SECTOR_MASK, t_page->bitmap);
1160
1161		if (is_fua)
1162			null_free_sector(nullb, sector, true);
1163
1164		count += temp;
1165		sector += temp >> SECTOR_SHIFT;
1166	}
1167	return 0;
1168}
1169
1170static int copy_from_nullb(struct nullb *nullb, struct page *dest,
1171	unsigned int off, sector_t sector, size_t n)
1172{
1173	size_t temp, count = 0;
1174	unsigned int offset;
1175	struct nullb_page *t_page;
1176
1177	while (count < n) {
1178		temp = min_t(size_t, nullb->dev->blocksize, n - count);
1179
1180		offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
1181		t_page = null_lookup_page(nullb, sector, false,
1182			!null_cache_active(nullb));
1183
1184		if (t_page)
1185			memcpy_page(dest, off + count, t_page->page, offset,
1186				    temp);
1187		else
1188			zero_user(dest, off + count, temp);
1189
1190		count += temp;
1191		sector += temp >> SECTOR_SHIFT;
1192	}
1193	return 0;
1194}
1195
1196static void nullb_fill_pattern(struct nullb *nullb, struct page *page,
1197			       unsigned int len, unsigned int off)
1198{
1199	memset_page(page, off, 0xff, len);
1200}
1201
1202blk_status_t null_handle_discard(struct nullb_device *dev,
1203				 sector_t sector, sector_t nr_sectors)
1204{
1205	struct nullb *nullb = dev->nullb;
1206	size_t n = nr_sectors << SECTOR_SHIFT;
1207	size_t temp;
1208
1209	spin_lock_irq(&nullb->lock);
1210	while (n > 0) {
1211		temp = min_t(size_t, n, dev->blocksize);
1212		null_free_sector(nullb, sector, false);
1213		if (null_cache_active(nullb))
1214			null_free_sector(nullb, sector, true);
1215		sector += temp >> SECTOR_SHIFT;
1216		n -= temp;
1217	}
1218	spin_unlock_irq(&nullb->lock);
1219
1220	return BLK_STS_OK;
1221}
1222
1223static int null_handle_flush(struct nullb *nullb)
1224{
1225	int err;
1226
1227	if (!null_cache_active(nullb))
1228		return 0;
1229
1230	spin_lock_irq(&nullb->lock);
1231	while (true) {
1232		err = null_make_cache_space(nullb,
1233			nullb->dev->cache_size * 1024 * 1024);
1234		if (err || nullb->dev->curr_cache == 0)
1235			break;
1236	}
1237
1238	WARN_ON(!radix_tree_empty(&nullb->dev->cache));
1239	spin_unlock_irq(&nullb->lock);
1240	return err;
1241}
1242
1243static int null_transfer(struct nullb *nullb, struct page *page,
1244	unsigned int len, unsigned int off, bool is_write, sector_t sector,
1245	bool is_fua)
1246{
1247	struct nullb_device *dev = nullb->dev;
1248	unsigned int valid_len = len;
1249	int err = 0;
1250
1251	if (!is_write) {
1252		if (dev->zoned)
1253			valid_len = null_zone_valid_read_len(nullb,
1254				sector, len);
1255
1256		if (valid_len) {
1257			err = copy_from_nullb(nullb, page, off,
1258				sector, valid_len);
1259			off += valid_len;
1260			len -= valid_len;
1261		}
1262
1263		if (len)
1264			nullb_fill_pattern(nullb, page, len, off);
1265		flush_dcache_page(page);
1266	} else {
1267		flush_dcache_page(page);
1268		err = copy_to_nullb(nullb, page, off, sector, len, is_fua);
1269	}
1270
1271	return err;
1272}
1273
1274static int null_handle_rq(struct nullb_cmd *cmd)
1275{
1276	struct request *rq = cmd->rq;
1277	struct nullb *nullb = cmd->nq->dev->nullb;
1278	int err;
1279	unsigned int len;
1280	sector_t sector = blk_rq_pos(rq);
1281	struct req_iterator iter;
1282	struct bio_vec bvec;
1283
1284	spin_lock_irq(&nullb->lock);
1285	rq_for_each_segment(bvec, rq, iter) {
1286		len = bvec.bv_len;
1287		err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1288				     op_is_write(req_op(rq)), sector,
1289				     rq->cmd_flags & REQ_FUA);
1290		if (err) {
1291			spin_unlock_irq(&nullb->lock);
1292			return err;
1293		}
1294		sector += len >> SECTOR_SHIFT;
1295	}
1296	spin_unlock_irq(&nullb->lock);
1297
1298	return 0;
1299}
1300
1301static int null_handle_bio(struct nullb_cmd *cmd)
1302{
1303	struct bio *bio = cmd->bio;
1304	struct nullb *nullb = cmd->nq->dev->nullb;
1305	int err;
1306	unsigned int len;
1307	sector_t sector = bio->bi_iter.bi_sector;
1308	struct bio_vec bvec;
1309	struct bvec_iter iter;
1310
1311	spin_lock_irq(&nullb->lock);
1312	bio_for_each_segment(bvec, bio, iter) {
1313		len = bvec.bv_len;
1314		err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1315				     op_is_write(bio_op(bio)), sector,
1316				     bio->bi_opf & REQ_FUA);
1317		if (err) {
1318			spin_unlock_irq(&nullb->lock);
1319			return err;
1320		}
1321		sector += len >> SECTOR_SHIFT;
1322	}
1323	spin_unlock_irq(&nullb->lock);
1324	return 0;
1325}
1326
1327static void null_stop_queue(struct nullb *nullb)
1328{
1329	struct request_queue *q = nullb->q;
1330
1331	if (nullb->dev->queue_mode == NULL_Q_MQ)
1332		blk_mq_stop_hw_queues(q);
1333}
1334
1335static void null_restart_queue_async(struct nullb *nullb)
1336{
1337	struct request_queue *q = nullb->q;
1338
1339	if (nullb->dev->queue_mode == NULL_Q_MQ)
1340		blk_mq_start_stopped_hw_queues(q, true);
1341}
1342
1343static inline blk_status_t null_handle_throttled(struct nullb_cmd *cmd)
1344{
1345	struct nullb_device *dev = cmd->nq->dev;
1346	struct nullb *nullb = dev->nullb;
1347	blk_status_t sts = BLK_STS_OK;
1348	struct request *rq = cmd->rq;
1349
1350	if (!hrtimer_active(&nullb->bw_timer))
1351		hrtimer_restart(&nullb->bw_timer);
1352
1353	if (atomic_long_sub_return(blk_rq_bytes(rq), &nullb->cur_bytes) < 0) {
1354		null_stop_queue(nullb);
1355		/* race with timer */
1356		if (atomic_long_read(&nullb->cur_bytes) > 0)
1357			null_restart_queue_async(nullb);
1358		/* requeue request */
1359		sts = BLK_STS_DEV_RESOURCE;
1360	}
1361	return sts;
1362}
1363
1364static inline blk_status_t null_handle_badblocks(struct nullb_cmd *cmd,
1365						 sector_t sector,
1366						 sector_t nr_sectors)
1367{
1368	struct badblocks *bb = &cmd->nq->dev->badblocks;
1369	sector_t first_bad;
1370	int bad_sectors;
1371
1372	if (badblocks_check(bb, sector, nr_sectors, &first_bad, &bad_sectors))
1373		return BLK_STS_IOERR;
1374
1375	return BLK_STS_OK;
1376}
1377
1378static inline blk_status_t null_handle_memory_backed(struct nullb_cmd *cmd,
1379						     enum req_op op,
1380						     sector_t sector,
1381						     sector_t nr_sectors)
1382{
1383	struct nullb_device *dev = cmd->nq->dev;
1384	int err;
1385
1386	if (op == REQ_OP_DISCARD)
1387		return null_handle_discard(dev, sector, nr_sectors);
1388
1389	if (dev->queue_mode == NULL_Q_BIO)
1390		err = null_handle_bio(cmd);
1391	else
1392		err = null_handle_rq(cmd);
1393
1394	return errno_to_blk_status(err);
1395}
1396
1397static void nullb_zero_read_cmd_buffer(struct nullb_cmd *cmd)
1398{
1399	struct nullb_device *dev = cmd->nq->dev;
1400	struct bio *bio;
1401
1402	if (dev->memory_backed)
1403		return;
1404
1405	if (dev->queue_mode == NULL_Q_BIO && bio_op(cmd->bio) == REQ_OP_READ) {
1406		zero_fill_bio(cmd->bio);
1407	} else if (req_op(cmd->rq) == REQ_OP_READ) {
1408		__rq_for_each_bio(bio, cmd->rq)
1409			zero_fill_bio(bio);
1410	}
1411}
1412
1413static inline void nullb_complete_cmd(struct nullb_cmd *cmd)
1414{
1415	/*
1416	 * Since root privileges are required to configure the null_blk
1417	 * driver, it is fine that this driver does not initialize the
1418	 * data buffers of read commands. Zero-initialize these buffers
1419	 * anyway if KMSAN is enabled to prevent that KMSAN complains
1420	 * about null_blk not initializing read data buffers.
1421	 */
1422	if (IS_ENABLED(CONFIG_KMSAN))
1423		nullb_zero_read_cmd_buffer(cmd);
1424
1425	/* Complete IO by inline, softirq or timer */
1426	switch (cmd->nq->dev->irqmode) {
1427	case NULL_IRQ_SOFTIRQ:
1428		switch (cmd->nq->dev->queue_mode) {
1429		case NULL_Q_MQ:
1430			blk_mq_complete_request(cmd->rq);
1431			break;
1432		case NULL_Q_BIO:
1433			/*
1434			 * XXX: no proper submitting cpu information available.
1435			 */
1436			end_cmd(cmd);
1437			break;
1438		}
1439		break;
1440	case NULL_IRQ_NONE:
1441		end_cmd(cmd);
1442		break;
1443	case NULL_IRQ_TIMER:
1444		null_cmd_end_timer(cmd);
1445		break;
1446	}
1447}
1448
1449blk_status_t null_process_cmd(struct nullb_cmd *cmd, enum req_op op,
1450			      sector_t sector, unsigned int nr_sectors)
1451{
1452	struct nullb_device *dev = cmd->nq->dev;
1453	blk_status_t ret;
1454
1455	if (dev->badblocks.shift != -1) {
1456		ret = null_handle_badblocks(cmd, sector, nr_sectors);
1457		if (ret != BLK_STS_OK)
1458			return ret;
1459	}
1460
1461	if (dev->memory_backed)
1462		return null_handle_memory_backed(cmd, op, sector, nr_sectors);
1463
1464	return BLK_STS_OK;
1465}
1466
1467static blk_status_t null_handle_cmd(struct nullb_cmd *cmd, sector_t sector,
1468				    sector_t nr_sectors, enum req_op op)
1469{
1470	struct nullb_device *dev = cmd->nq->dev;
1471	struct nullb *nullb = dev->nullb;
1472	blk_status_t sts;
1473
1474	if (test_bit(NULLB_DEV_FL_THROTTLED, &dev->flags)) {
1475		sts = null_handle_throttled(cmd);
1476		if (sts != BLK_STS_OK)
1477			return sts;
1478	}
1479
1480	if (op == REQ_OP_FLUSH) {
1481		cmd->error = errno_to_blk_status(null_handle_flush(nullb));
1482		goto out;
1483	}
1484
1485	if (dev->zoned)
1486		sts = null_process_zoned_cmd(cmd, op, sector, nr_sectors);
1487	else
1488		sts = null_process_cmd(cmd, op, sector, nr_sectors);
1489
1490	/* Do not overwrite errors (e.g. timeout errors) */
1491	if (cmd->error == BLK_STS_OK)
1492		cmd->error = sts;
1493
1494out:
1495	nullb_complete_cmd(cmd);
1496	return BLK_STS_OK;
1497}
1498
1499static enum hrtimer_restart nullb_bwtimer_fn(struct hrtimer *timer)
1500{
1501	struct nullb *nullb = container_of(timer, struct nullb, bw_timer);
1502	ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1503	unsigned int mbps = nullb->dev->mbps;
1504
1505	if (atomic_long_read(&nullb->cur_bytes) == mb_per_tick(mbps))
1506		return HRTIMER_NORESTART;
1507
1508	atomic_long_set(&nullb->cur_bytes, mb_per_tick(mbps));
1509	null_restart_queue_async(nullb);
1510
1511	hrtimer_forward_now(&nullb->bw_timer, timer_interval);
1512
1513	return HRTIMER_RESTART;
1514}
1515
1516static void nullb_setup_bwtimer(struct nullb *nullb)
1517{
1518	ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1519
1520	hrtimer_init(&nullb->bw_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1521	nullb->bw_timer.function = nullb_bwtimer_fn;
1522	atomic_long_set(&nullb->cur_bytes, mb_per_tick(nullb->dev->mbps));
1523	hrtimer_start(&nullb->bw_timer, timer_interval, HRTIMER_MODE_REL);
1524}
1525
1526static struct nullb_queue *nullb_to_queue(struct nullb *nullb)
1527{
1528	int index = 0;
1529
1530	if (nullb->nr_queues != 1)
1531		index = raw_smp_processor_id() / ((nr_cpu_ids + nullb->nr_queues - 1) / nullb->nr_queues);
1532
1533	return &nullb->queues[index];
1534}
1535
1536static void null_submit_bio(struct bio *bio)
1537{
1538	sector_t sector = bio->bi_iter.bi_sector;
1539	sector_t nr_sectors = bio_sectors(bio);
1540	struct nullb *nullb = bio->bi_bdev->bd_disk->private_data;
1541	struct nullb_queue *nq = nullb_to_queue(nullb);
1542
1543	null_handle_cmd(alloc_cmd(nq, bio), sector, nr_sectors, bio_op(bio));
1544}
1545
1546#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1547
1548static bool should_timeout_request(struct request *rq)
1549{
1550	struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1551	struct nullb_device *dev = cmd->nq->dev;
1552
1553	return should_fail(&dev->timeout_config.attr, 1);
1554}
1555
1556static bool should_requeue_request(struct request *rq)
1557{
1558	struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1559	struct nullb_device *dev = cmd->nq->dev;
1560
1561	return should_fail(&dev->requeue_config.attr, 1);
1562}
1563
1564static bool should_init_hctx_fail(struct nullb_device *dev)
1565{
1566	return should_fail(&dev->init_hctx_fault_config.attr, 1);
1567}
1568
1569#else
1570
1571static bool should_timeout_request(struct request *rq)
1572{
1573	return false;
1574}
1575
1576static bool should_requeue_request(struct request *rq)
1577{
1578	return false;
1579}
1580
1581static bool should_init_hctx_fail(struct nullb_device *dev)
1582{
1583	return false;
1584}
1585
1586#endif
1587
1588static void null_map_queues(struct blk_mq_tag_set *set)
1589{
1590	struct nullb *nullb = set->driver_data;
1591	int i, qoff;
1592	unsigned int submit_queues = g_submit_queues;
1593	unsigned int poll_queues = g_poll_queues;
1594
1595	if (nullb) {
1596		struct nullb_device *dev = nullb->dev;
1597
1598		/*
1599		 * Refer nr_hw_queues of the tag set to check if the expected
1600		 * number of hardware queues are prepared. If block layer failed
1601		 * to prepare them, use previous numbers of submit queues and
1602		 * poll queues to map queues.
1603		 */
1604		if (set->nr_hw_queues ==
1605		    dev->submit_queues + dev->poll_queues) {
1606			submit_queues = dev->submit_queues;
1607			poll_queues = dev->poll_queues;
1608		} else if (set->nr_hw_queues ==
1609			   dev->prev_submit_queues + dev->prev_poll_queues) {
1610			submit_queues = dev->prev_submit_queues;
1611			poll_queues = dev->prev_poll_queues;
1612		} else {
1613			pr_warn("tag set has unexpected nr_hw_queues: %d\n",
1614				set->nr_hw_queues);
1615			WARN_ON_ONCE(true);
1616			submit_queues = 1;
1617			poll_queues = 0;
1618		}
1619	}
1620
1621	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
1622		struct blk_mq_queue_map *map = &set->map[i];
1623
1624		switch (i) {
1625		case HCTX_TYPE_DEFAULT:
1626			map->nr_queues = submit_queues;
1627			break;
1628		case HCTX_TYPE_READ:
1629			map->nr_queues = 0;
1630			continue;
1631		case HCTX_TYPE_POLL:
1632			map->nr_queues = poll_queues;
1633			break;
1634		}
1635		map->queue_offset = qoff;
1636		qoff += map->nr_queues;
1637		blk_mq_map_queues(map);
1638	}
1639}
1640
1641static int null_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1642{
1643	struct nullb_queue *nq = hctx->driver_data;
1644	LIST_HEAD(list);
1645	int nr = 0;
1646	struct request *rq;
1647
1648	spin_lock(&nq->poll_lock);
1649	list_splice_init(&nq->poll_list, &list);
1650	list_for_each_entry(rq, &list, queuelist)
1651		blk_mq_set_request_complete(rq);
1652	spin_unlock(&nq->poll_lock);
1653
1654	while (!list_empty(&list)) {
1655		struct nullb_cmd *cmd;
1656		struct request *req;
1657
1658		req = list_first_entry(&list, struct request, queuelist);
1659		list_del_init(&req->queuelist);
1660		cmd = blk_mq_rq_to_pdu(req);
1661		cmd->error = null_process_cmd(cmd, req_op(req), blk_rq_pos(req),
1662						blk_rq_sectors(req));
1663		if (!blk_mq_add_to_batch(req, iob, (__force int) cmd->error,
1664					blk_mq_end_request_batch))
1665			end_cmd(cmd);
1666		nr++;
1667	}
1668
1669	return nr;
1670}
1671
1672static enum blk_eh_timer_return null_timeout_rq(struct request *rq)
1673{
1674	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1675	struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1676
1677	if (hctx->type == HCTX_TYPE_POLL) {
1678		struct nullb_queue *nq = hctx->driver_data;
1679
1680		spin_lock(&nq->poll_lock);
1681		/* The request may have completed meanwhile. */
1682		if (blk_mq_request_completed(rq)) {
1683			spin_unlock(&nq->poll_lock);
1684			return BLK_EH_DONE;
1685		}
1686		list_del_init(&rq->queuelist);
1687		spin_unlock(&nq->poll_lock);
1688	}
1689
1690	pr_info("rq %p timed out\n", rq);
1691
1692	/*
1693	 * If the device is marked as blocking (i.e. memory backed or zoned
1694	 * device), the submission path may be blocked waiting for resources
1695	 * and cause real timeouts. For these real timeouts, the submission
1696	 * path will complete the request using blk_mq_complete_request().
1697	 * Only fake timeouts need to execute blk_mq_complete_request() here.
1698	 */
1699	cmd->error = BLK_STS_TIMEOUT;
1700	if (cmd->fake_timeout || hctx->type == HCTX_TYPE_POLL)
1701		blk_mq_complete_request(rq);
1702	return BLK_EH_DONE;
1703}
1704
1705static blk_status_t null_queue_rq(struct blk_mq_hw_ctx *hctx,
1706				  const struct blk_mq_queue_data *bd)
1707{
1708	struct request *rq = bd->rq;
1709	struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1710	struct nullb_queue *nq = hctx->driver_data;
1711	sector_t nr_sectors = blk_rq_sectors(rq);
1712	sector_t sector = blk_rq_pos(rq);
1713	const bool is_poll = hctx->type == HCTX_TYPE_POLL;
1714
1715	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1716
1717	if (!is_poll && nq->dev->irqmode == NULL_IRQ_TIMER) {
1718		hrtimer_init(&cmd->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1719		cmd->timer.function = null_cmd_timer_expired;
1720	}
1721	cmd->rq = rq;
1722	cmd->error = BLK_STS_OK;
1723	cmd->nq = nq;
1724	cmd->fake_timeout = should_timeout_request(rq) ||
1725		blk_should_fake_timeout(rq->q);
1726
1727	blk_mq_start_request(rq);
1728
1729	if (should_requeue_request(rq)) {
1730		/*
1731		 * Alternate between hitting the core BUSY path, and the
1732		 * driver driven requeue path
1733		 */
1734		nq->requeue_selection++;
1735		if (nq->requeue_selection & 1)
1736			return BLK_STS_RESOURCE;
1737		blk_mq_requeue_request(rq, true);
1738		return BLK_STS_OK;
1739	}
1740
1741	if (is_poll) {
1742		spin_lock(&nq->poll_lock);
1743		list_add_tail(&rq->queuelist, &nq->poll_list);
1744		spin_unlock(&nq->poll_lock);
1745		return BLK_STS_OK;
1746	}
1747	if (cmd->fake_timeout)
1748		return BLK_STS_OK;
1749
1750	return null_handle_cmd(cmd, sector, nr_sectors, req_op(rq));
1751}
1752
1753static void cleanup_queue(struct nullb_queue *nq)
1754{
1755	bitmap_free(nq->tag_map);
1756	kfree(nq->cmds);
1757}
1758
1759static void cleanup_queues(struct nullb *nullb)
1760{
1761	int i;
1762
1763	for (i = 0; i < nullb->nr_queues; i++)
1764		cleanup_queue(&nullb->queues[i]);
1765
1766	kfree(nullb->queues);
1767}
1768
1769static void null_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1770{
1771	struct nullb_queue *nq = hctx->driver_data;
1772	struct nullb *nullb = nq->dev->nullb;
1773
1774	nullb->nr_queues--;
1775}
1776
1777static void null_init_queue(struct nullb *nullb, struct nullb_queue *nq)
1778{
1779	init_waitqueue_head(&nq->wait);
1780	nq->queue_depth = nullb->queue_depth;
1781	nq->dev = nullb->dev;
1782	INIT_LIST_HEAD(&nq->poll_list);
1783	spin_lock_init(&nq->poll_lock);
1784}
1785
1786static int null_init_hctx(struct blk_mq_hw_ctx *hctx, void *driver_data,
1787			  unsigned int hctx_idx)
1788{
1789	struct nullb *nullb = hctx->queue->queuedata;
1790	struct nullb_queue *nq;
1791
1792	if (should_init_hctx_fail(nullb->dev))
1793		return -EFAULT;
1794
1795	nq = &nullb->queues[hctx_idx];
1796	hctx->driver_data = nq;
1797	null_init_queue(nullb, nq);
1798	nullb->nr_queues++;
1799
1800	return 0;
1801}
1802
1803static const struct blk_mq_ops null_mq_ops = {
1804	.queue_rq       = null_queue_rq,
1805	.complete	= null_complete_rq,
1806	.timeout	= null_timeout_rq,
1807	.poll		= null_poll,
1808	.map_queues	= null_map_queues,
1809	.init_hctx	= null_init_hctx,
1810	.exit_hctx	= null_exit_hctx,
1811};
1812
1813static void null_del_dev(struct nullb *nullb)
1814{
1815	struct nullb_device *dev;
1816
1817	if (!nullb)
1818		return;
1819
1820	dev = nullb->dev;
1821
1822	ida_simple_remove(&nullb_indexes, nullb->index);
1823
1824	list_del_init(&nullb->list);
1825
1826	del_gendisk(nullb->disk);
1827
1828	if (test_bit(NULLB_DEV_FL_THROTTLED, &nullb->dev->flags)) {
1829		hrtimer_cancel(&nullb->bw_timer);
1830		atomic_long_set(&nullb->cur_bytes, LONG_MAX);
1831		null_restart_queue_async(nullb);
1832	}
1833
1834	put_disk(nullb->disk);
1835	if (dev->queue_mode == NULL_Q_MQ &&
1836	    nullb->tag_set == &nullb->__tag_set)
1837		blk_mq_free_tag_set(nullb->tag_set);
1838	cleanup_queues(nullb);
1839	if (null_cache_active(nullb))
1840		null_free_device_storage(nullb->dev, true);
1841	kfree(nullb);
1842	dev->nullb = NULL;
1843}
1844
1845static void null_config_discard(struct nullb *nullb)
1846{
1847	if (nullb->dev->discard == false)
1848		return;
1849
1850	if (!nullb->dev->memory_backed) {
1851		nullb->dev->discard = false;
1852		pr_info("discard option is ignored without memory backing\n");
1853		return;
1854	}
1855
1856	if (nullb->dev->zoned) {
1857		nullb->dev->discard = false;
1858		pr_info("discard option is ignored in zoned mode\n");
1859		return;
1860	}
1861
1862	nullb->q->limits.discard_granularity = nullb->dev->blocksize;
1863	blk_queue_max_discard_sectors(nullb->q, UINT_MAX >> 9);
1864}
1865
1866static const struct block_device_operations null_bio_ops = {
1867	.owner		= THIS_MODULE,
1868	.submit_bio	= null_submit_bio,
1869	.report_zones	= null_report_zones,
1870};
1871
1872static const struct block_device_operations null_rq_ops = {
1873	.owner		= THIS_MODULE,
1874	.report_zones	= null_report_zones,
1875};
1876
1877static int setup_commands(struct nullb_queue *nq)
1878{
1879	struct nullb_cmd *cmd;
1880	int i;
1881
1882	nq->cmds = kcalloc(nq->queue_depth, sizeof(*cmd), GFP_KERNEL);
1883	if (!nq->cmds)
1884		return -ENOMEM;
1885
1886	nq->tag_map = bitmap_zalloc(nq->queue_depth, GFP_KERNEL);
1887	if (!nq->tag_map) {
1888		kfree(nq->cmds);
1889		return -ENOMEM;
1890	}
1891
1892	for (i = 0; i < nq->queue_depth; i++) {
1893		cmd = &nq->cmds[i];
1894		cmd->tag = -1U;
1895	}
1896
1897	return 0;
1898}
1899
1900static int setup_queues(struct nullb *nullb)
1901{
1902	int nqueues = nr_cpu_ids;
1903
1904	if (g_poll_queues)
1905		nqueues += g_poll_queues;
1906
1907	nullb->queues = kcalloc(nqueues, sizeof(struct nullb_queue),
1908				GFP_KERNEL);
1909	if (!nullb->queues)
1910		return -ENOMEM;
1911
1912	nullb->queue_depth = nullb->dev->hw_queue_depth;
1913	return 0;
1914}
1915
1916static int init_driver_queues(struct nullb *nullb)
1917{
1918	struct nullb_queue *nq;
1919	int i, ret = 0;
1920
1921	for (i = 0; i < nullb->dev->submit_queues; i++) {
1922		nq = &nullb->queues[i];
1923
1924		null_init_queue(nullb, nq);
1925
1926		ret = setup_commands(nq);
1927		if (ret)
1928			return ret;
1929		nullb->nr_queues++;
1930	}
1931	return 0;
1932}
1933
1934static int null_gendisk_register(struct nullb *nullb)
1935{
1936	sector_t size = ((sector_t)nullb->dev->size * SZ_1M) >> SECTOR_SHIFT;
1937	struct gendisk *disk = nullb->disk;
1938
1939	set_capacity(disk, size);
1940
1941	disk->major		= null_major;
1942	disk->first_minor	= nullb->index;
1943	disk->minors		= 1;
1944	if (queue_is_mq(nullb->q))
1945		disk->fops		= &null_rq_ops;
1946	else
1947		disk->fops		= &null_bio_ops;
1948	disk->private_data	= nullb;
1949	strncpy(disk->disk_name, nullb->disk_name, DISK_NAME_LEN);
1950
1951	if (nullb->dev->zoned) {
1952		int ret = null_register_zoned_dev(nullb);
1953
1954		if (ret)
1955			return ret;
1956	}
1957
1958	return add_disk(disk);
1959}
1960
1961static int null_init_tag_set(struct nullb *nullb, struct blk_mq_tag_set *set)
1962{
1963	unsigned int flags = BLK_MQ_F_SHOULD_MERGE;
1964	int hw_queues, numa_node;
1965	unsigned int queue_depth;
1966	int poll_queues;
1967
1968	if (nullb) {
1969		hw_queues = nullb->dev->submit_queues;
1970		poll_queues = nullb->dev->poll_queues;
1971		queue_depth = nullb->dev->hw_queue_depth;
1972		numa_node = nullb->dev->home_node;
1973		if (nullb->dev->no_sched)
1974			flags |= BLK_MQ_F_NO_SCHED;
1975		if (nullb->dev->shared_tag_bitmap)
1976			flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1977		if (nullb->dev->blocking)
1978			flags |= BLK_MQ_F_BLOCKING;
1979	} else {
1980		hw_queues = g_submit_queues;
1981		poll_queues = g_poll_queues;
1982		queue_depth = g_hw_queue_depth;
1983		numa_node = g_home_node;
1984		if (g_no_sched)
1985			flags |= BLK_MQ_F_NO_SCHED;
1986		if (g_shared_tag_bitmap)
1987			flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1988		if (g_blocking)
1989			flags |= BLK_MQ_F_BLOCKING;
1990	}
1991
1992	set->ops = &null_mq_ops;
1993	set->cmd_size	= sizeof(struct nullb_cmd);
1994	set->flags = flags;
1995	set->driver_data = nullb;
1996	set->nr_hw_queues = hw_queues;
1997	set->queue_depth = queue_depth;
1998	set->numa_node = numa_node;
1999	if (poll_queues) {
2000		set->nr_hw_queues += poll_queues;
2001		set->nr_maps = 3;
2002	} else {
2003		set->nr_maps = 1;
2004	}
2005
2006	return blk_mq_alloc_tag_set(set);
2007}
2008
2009static int null_validate_conf(struct nullb_device *dev)
2010{
2011	if (dev->queue_mode == NULL_Q_RQ) {
2012		pr_err("legacy IO path is no longer available\n");
2013		return -EINVAL;
2014	}
2015
2016	dev->blocksize = round_down(dev->blocksize, 512);
2017	dev->blocksize = clamp_t(unsigned int, dev->blocksize, 512, 4096);
2018
2019	if (dev->queue_mode == NULL_Q_MQ && dev->use_per_node_hctx) {
2020		if (dev->submit_queues != nr_online_nodes)
2021			dev->submit_queues = nr_online_nodes;
2022	} else if (dev->submit_queues > nr_cpu_ids)
2023		dev->submit_queues = nr_cpu_ids;
2024	else if (dev->submit_queues == 0)
2025		dev->submit_queues = 1;
2026	dev->prev_submit_queues = dev->submit_queues;
2027
2028	if (dev->poll_queues > g_poll_queues)
2029		dev->poll_queues = g_poll_queues;
2030	dev->prev_poll_queues = dev->poll_queues;
2031
2032	dev->queue_mode = min_t(unsigned int, dev->queue_mode, NULL_Q_MQ);
2033	dev->irqmode = min_t(unsigned int, dev->irqmode, NULL_IRQ_TIMER);
2034
2035	/* Do memory allocation, so set blocking */
2036	if (dev->memory_backed)
2037		dev->blocking = true;
2038	else /* cache is meaningless */
2039		dev->cache_size = 0;
2040	dev->cache_size = min_t(unsigned long, ULONG_MAX / 1024 / 1024,
2041						dev->cache_size);
2042	dev->mbps = min_t(unsigned int, 1024 * 40, dev->mbps);
2043	/* can not stop a queue */
2044	if (dev->queue_mode == NULL_Q_BIO)
2045		dev->mbps = 0;
2046
2047	if (dev->zoned &&
2048	    (!dev->zone_size || !is_power_of_2(dev->zone_size))) {
2049		pr_err("zone_size must be power-of-two\n");
2050		return -EINVAL;
2051	}
2052
2053	return 0;
2054}
2055
2056#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
2057static bool __null_setup_fault(struct fault_attr *attr, char *str)
2058{
2059	if (!str[0])
2060		return true;
2061
2062	if (!setup_fault_attr(attr, str))
2063		return false;
2064
2065	attr->verbose = 0;
2066	return true;
2067}
2068#endif
2069
2070static bool null_setup_fault(void)
2071{
2072#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
2073	if (!__null_setup_fault(&null_timeout_attr, g_timeout_str))
2074		return false;
2075	if (!__null_setup_fault(&null_requeue_attr, g_requeue_str))
2076		return false;
2077	if (!__null_setup_fault(&null_init_hctx_attr, g_init_hctx_str))
2078		return false;
2079#endif
2080	return true;
2081}
2082
2083static int null_add_dev(struct nullb_device *dev)
2084{
2085	struct nullb *nullb;
2086	int rv;
2087
2088	rv = null_validate_conf(dev);
2089	if (rv)
2090		return rv;
2091
2092	nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, dev->home_node);
2093	if (!nullb) {
2094		rv = -ENOMEM;
2095		goto out;
2096	}
2097	nullb->dev = dev;
2098	dev->nullb = nullb;
2099
2100	spin_lock_init(&nullb->lock);
2101
2102	rv = setup_queues(nullb);
2103	if (rv)
2104		goto out_free_nullb;
2105
2106	if (dev->queue_mode == NULL_Q_MQ) {
2107		if (shared_tags) {
2108			nullb->tag_set = &tag_set;
2109			rv = 0;
2110		} else {
2111			nullb->tag_set = &nullb->__tag_set;
2112			rv = null_init_tag_set(nullb, nullb->tag_set);
2113		}
2114
2115		if (rv)
2116			goto out_cleanup_queues;
2117
2118		nullb->tag_set->timeout = 5 * HZ;
2119		nullb->disk = blk_mq_alloc_disk(nullb->tag_set, nullb);
2120		if (IS_ERR(nullb->disk)) {
2121			rv = PTR_ERR(nullb->disk);
2122			goto out_cleanup_tags;
2123		}
2124		nullb->q = nullb->disk->queue;
2125	} else if (dev->queue_mode == NULL_Q_BIO) {
2126		rv = -ENOMEM;
2127		nullb->disk = blk_alloc_disk(nullb->dev->home_node);
2128		if (!nullb->disk)
2129			goto out_cleanup_queues;
2130
2131		nullb->q = nullb->disk->queue;
2132		rv = init_driver_queues(nullb);
2133		if (rv)
2134			goto out_cleanup_disk;
2135	}
2136
2137	if (dev->mbps) {
2138		set_bit(NULLB_DEV_FL_THROTTLED, &dev->flags);
2139		nullb_setup_bwtimer(nullb);
2140	}
2141
2142	if (dev->cache_size > 0) {
2143		set_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
2144		blk_queue_write_cache(nullb->q, true, true);
2145	}
2146
2147	if (dev->zoned) {
2148		rv = null_init_zoned_dev(dev, nullb->q);
2149		if (rv)
2150			goto out_cleanup_disk;
2151	}
2152
2153	nullb->q->queuedata = nullb;
2154	blk_queue_flag_set(QUEUE_FLAG_NONROT, nullb->q);
2155
2156	mutex_lock(&lock);
2157	rv = ida_simple_get(&nullb_indexes, 0, 0, GFP_KERNEL);
2158	if (rv < 0) {
2159		mutex_unlock(&lock);
2160		goto out_cleanup_zone;
2161	}
2162	nullb->index = rv;
2163	dev->index = rv;
2164	mutex_unlock(&lock);
2165
2166	blk_queue_logical_block_size(nullb->q, dev->blocksize);
2167	blk_queue_physical_block_size(nullb->q, dev->blocksize);
2168	if (dev->max_sectors)
2169		blk_queue_max_hw_sectors(nullb->q, dev->max_sectors);
2170
2171	if (dev->virt_boundary)
2172		blk_queue_virt_boundary(nullb->q, PAGE_SIZE - 1);
2173
2174	null_config_discard(nullb);
2175
2176	if (config_item_name(&dev->group.cg_item)) {
2177		/* Use configfs dir name as the device name */
2178		snprintf(nullb->disk_name, sizeof(nullb->disk_name),
2179			 "%s", config_item_name(&dev->group.cg_item));
2180	} else {
2181		sprintf(nullb->disk_name, "nullb%d", nullb->index);
2182	}
2183
2184	rv = null_gendisk_register(nullb);
2185	if (rv)
2186		goto out_ida_free;
2187
2188	mutex_lock(&lock);
2189	list_add_tail(&nullb->list, &nullb_list);
2190	mutex_unlock(&lock);
2191
2192	pr_info("disk %s created\n", nullb->disk_name);
2193
2194	return 0;
2195
2196out_ida_free:
2197	ida_free(&nullb_indexes, nullb->index);
2198out_cleanup_zone:
2199	null_free_zoned_dev(dev);
2200out_cleanup_disk:
2201	put_disk(nullb->disk);
2202out_cleanup_tags:
2203	if (dev->queue_mode == NULL_Q_MQ && nullb->tag_set == &nullb->__tag_set)
2204		blk_mq_free_tag_set(nullb->tag_set);
2205out_cleanup_queues:
2206	cleanup_queues(nullb);
2207out_free_nullb:
2208	kfree(nullb);
2209	dev->nullb = NULL;
2210out:
2211	return rv;
2212}
2213
2214static struct nullb *null_find_dev_by_name(const char *name)
2215{
2216	struct nullb *nullb = NULL, *nb;
2217
2218	mutex_lock(&lock);
2219	list_for_each_entry(nb, &nullb_list, list) {
2220		if (strcmp(nb->disk_name, name) == 0) {
2221			nullb = nb;
2222			break;
2223		}
2224	}
2225	mutex_unlock(&lock);
2226
2227	return nullb;
2228}
2229
2230static int null_create_dev(void)
2231{
2232	struct nullb_device *dev;
2233	int ret;
2234
2235	dev = null_alloc_dev();
2236	if (!dev)
2237		return -ENOMEM;
2238
2239	ret = null_add_dev(dev);
2240	if (ret) {
2241		null_free_dev(dev);
2242		return ret;
2243	}
2244
2245	return 0;
2246}
2247
2248static void null_destroy_dev(struct nullb *nullb)
2249{
2250	struct nullb_device *dev = nullb->dev;
2251
2252	null_del_dev(nullb);
2253	null_free_device_storage(dev, false);
2254	null_free_dev(dev);
2255}
2256
2257static int __init null_init(void)
2258{
2259	int ret = 0;
2260	unsigned int i;
2261	struct nullb *nullb;
2262
2263	if (g_bs > PAGE_SIZE) {
2264		pr_warn("invalid block size\n");
2265		pr_warn("defaults block size to %lu\n", PAGE_SIZE);
2266		g_bs = PAGE_SIZE;
2267	}
2268
2269	if (g_home_node != NUMA_NO_NODE && g_home_node >= nr_online_nodes) {
2270		pr_err("invalid home_node value\n");
2271		g_home_node = NUMA_NO_NODE;
2272	}
2273
2274	if (!null_setup_fault())
2275		return -EINVAL;
2276
2277	if (g_queue_mode == NULL_Q_RQ) {
2278		pr_err("legacy IO path is no longer available\n");
2279		return -EINVAL;
2280	}
2281
2282	if (g_queue_mode == NULL_Q_MQ && g_use_per_node_hctx) {
2283		if (g_submit_queues != nr_online_nodes) {
2284			pr_warn("submit_queues param is set to %u.\n",
2285				nr_online_nodes);
2286			g_submit_queues = nr_online_nodes;
2287		}
2288	} else if (g_submit_queues > nr_cpu_ids) {
2289		g_submit_queues = nr_cpu_ids;
2290	} else if (g_submit_queues <= 0) {
2291		g_submit_queues = 1;
2292	}
2293
2294	if (g_queue_mode == NULL_Q_MQ && shared_tags) {
2295		ret = null_init_tag_set(NULL, &tag_set);
2296		if (ret)
2297			return ret;
2298	}
2299
2300	config_group_init(&nullb_subsys.su_group);
2301	mutex_init(&nullb_subsys.su_mutex);
2302
2303	ret = configfs_register_subsystem(&nullb_subsys);
2304	if (ret)
2305		goto err_tagset;
2306
2307	mutex_init(&lock);
2308
2309	null_major = register_blkdev(0, "nullb");
2310	if (null_major < 0) {
2311		ret = null_major;
2312		goto err_conf;
2313	}
2314
2315	for (i = 0; i < nr_devices; i++) {
2316		ret = null_create_dev();
2317		if (ret)
2318			goto err_dev;
2319	}
2320
2321	pr_info("module loaded\n");
2322	return 0;
2323
2324err_dev:
2325	while (!list_empty(&nullb_list)) {
2326		nullb = list_entry(nullb_list.next, struct nullb, list);
2327		null_destroy_dev(nullb);
2328	}
2329	unregister_blkdev(null_major, "nullb");
2330err_conf:
2331	configfs_unregister_subsystem(&nullb_subsys);
2332err_tagset:
2333	if (g_queue_mode == NULL_Q_MQ && shared_tags)
2334		blk_mq_free_tag_set(&tag_set);
2335	return ret;
2336}
2337
2338static void __exit null_exit(void)
2339{
2340	struct nullb *nullb;
2341
2342	configfs_unregister_subsystem(&nullb_subsys);
2343
2344	unregister_blkdev(null_major, "nullb");
2345
2346	mutex_lock(&lock);
2347	while (!list_empty(&nullb_list)) {
2348		nullb = list_entry(nullb_list.next, struct nullb, list);
2349		null_destroy_dev(nullb);
2350	}
2351	mutex_unlock(&lock);
2352
2353	if (g_queue_mode == NULL_Q_MQ && shared_tags)
2354		blk_mq_free_tag_set(&tag_set);
2355}
2356
2357module_init(null_init);
2358module_exit(null_exit);
2359
2360MODULE_AUTHOR("Jens Axboe <axboe@kernel.dk>");
2361MODULE_LICENSE("GPL");
2362