xref: /kernel/linux/linux-6.6/drivers/block/loop.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright 1993 by Theodore Ts'o.
4 */
5#include <linux/module.h>
6#include <linux/moduleparam.h>
7#include <linux/sched.h>
8#include <linux/fs.h>
9#include <linux/pagemap.h>
10#include <linux/file.h>
11#include <linux/stat.h>
12#include <linux/errno.h>
13#include <linux/major.h>
14#include <linux/wait.h>
15#include <linux/blkpg.h>
16#include <linux/init.h>
17#include <linux/swap.h>
18#include <linux/slab.h>
19#include <linux/compat.h>
20#include <linux/suspend.h>
21#include <linux/freezer.h>
22#include <linux/mutex.h>
23#include <linux/writeback.h>
24#include <linux/completion.h>
25#include <linux/highmem.h>
26#include <linux/splice.h>
27#include <linux/sysfs.h>
28#include <linux/miscdevice.h>
29#include <linux/falloc.h>
30#include <linux/uio.h>
31#include <linux/ioprio.h>
32#include <linux/blk-cgroup.h>
33#include <linux/sched/mm.h>
34#include <linux/statfs.h>
35#include <linux/uaccess.h>
36#include <linux/blk-mq.h>
37#include <linux/spinlock.h>
38#include <uapi/linux/loop.h>
39
40/* Possible states of device */
41enum {
42	Lo_unbound,
43	Lo_bound,
44	Lo_rundown,
45	Lo_deleting,
46};
47
48struct loop_func_table;
49
50struct loop_device {
51	int		lo_number;
52	loff_t		lo_offset;
53	loff_t		lo_sizelimit;
54	int		lo_flags;
55	char		lo_file_name[LO_NAME_SIZE];
56
57	struct file *	lo_backing_file;
58	struct block_device *lo_device;
59
60	gfp_t		old_gfp_mask;
61
62	spinlock_t		lo_lock;
63	int			lo_state;
64	spinlock_t              lo_work_lock;
65	struct workqueue_struct *workqueue;
66	struct work_struct      rootcg_work;
67	struct list_head        rootcg_cmd_list;
68	struct list_head        idle_worker_list;
69	struct rb_root          worker_tree;
70	struct timer_list       timer;
71	bool			use_dio;
72	bool			sysfs_inited;
73
74	struct request_queue	*lo_queue;
75	struct blk_mq_tag_set	tag_set;
76	struct gendisk		*lo_disk;
77	struct mutex		lo_mutex;
78	bool			idr_visible;
79};
80
81struct loop_cmd {
82	struct list_head list_entry;
83	bool use_aio; /* use AIO interface to handle I/O */
84	atomic_t ref; /* only for aio */
85	long ret;
86	struct kiocb iocb;
87	struct bio_vec *bvec;
88	struct cgroup_subsys_state *blkcg_css;
89	struct cgroup_subsys_state *memcg_css;
90};
91
92#define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ)
93#define LOOP_DEFAULT_HW_Q_DEPTH 128
94
95static DEFINE_IDR(loop_index_idr);
96static DEFINE_MUTEX(loop_ctl_mutex);
97static DEFINE_MUTEX(loop_validate_mutex);
98
99/**
100 * loop_global_lock_killable() - take locks for safe loop_validate_file() test
101 *
102 * @lo: struct loop_device
103 * @global: true if @lo is about to bind another "struct loop_device", false otherwise
104 *
105 * Returns 0 on success, -EINTR otherwise.
106 *
107 * Since loop_validate_file() traverses on other "struct loop_device" if
108 * is_loop_device() is true, we need a global lock for serializing concurrent
109 * loop_configure()/loop_change_fd()/__loop_clr_fd() calls.
110 */
111static int loop_global_lock_killable(struct loop_device *lo, bool global)
112{
113	int err;
114
115	if (global) {
116		err = mutex_lock_killable(&loop_validate_mutex);
117		if (err)
118			return err;
119	}
120	err = mutex_lock_killable(&lo->lo_mutex);
121	if (err && global)
122		mutex_unlock(&loop_validate_mutex);
123	return err;
124}
125
126/**
127 * loop_global_unlock() - release locks taken by loop_global_lock_killable()
128 *
129 * @lo: struct loop_device
130 * @global: true if @lo was about to bind another "struct loop_device", false otherwise
131 */
132static void loop_global_unlock(struct loop_device *lo, bool global)
133{
134	mutex_unlock(&lo->lo_mutex);
135	if (global)
136		mutex_unlock(&loop_validate_mutex);
137}
138
139static int max_part;
140static int part_shift;
141
142static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
143{
144	loff_t loopsize;
145
146	/* Compute loopsize in bytes */
147	loopsize = i_size_read(file->f_mapping->host);
148	if (offset > 0)
149		loopsize -= offset;
150	/* offset is beyond i_size, weird but possible */
151	if (loopsize < 0)
152		return 0;
153
154	if (sizelimit > 0 && sizelimit < loopsize)
155		loopsize = sizelimit;
156	/*
157	 * Unfortunately, if we want to do I/O on the device,
158	 * the number of 512-byte sectors has to fit into a sector_t.
159	 */
160	return loopsize >> 9;
161}
162
163static loff_t get_loop_size(struct loop_device *lo, struct file *file)
164{
165	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
166}
167
168/*
169 * We support direct I/O only if lo_offset is aligned with the logical I/O size
170 * of backing device, and the logical block size of loop is bigger than that of
171 * the backing device.
172 */
173static bool lo_bdev_can_use_dio(struct loop_device *lo,
174		struct block_device *backing_bdev)
175{
176	unsigned short sb_bsize = bdev_logical_block_size(backing_bdev);
177
178	if (queue_logical_block_size(lo->lo_queue) < sb_bsize)
179		return false;
180	if (lo->lo_offset & (sb_bsize - 1))
181		return false;
182	return true;
183}
184
185static void __loop_update_dio(struct loop_device *lo, bool dio)
186{
187	struct file *file = lo->lo_backing_file;
188	struct inode *inode = file->f_mapping->host;
189	struct block_device *backing_bdev = NULL;
190	bool use_dio;
191
192	if (S_ISBLK(inode->i_mode))
193		backing_bdev = I_BDEV(inode);
194	else if (inode->i_sb->s_bdev)
195		backing_bdev = inode->i_sb->s_bdev;
196
197	use_dio = dio && (file->f_mode & FMODE_CAN_ODIRECT) &&
198		(!backing_bdev || lo_bdev_can_use_dio(lo, backing_bdev));
199
200	if (lo->use_dio == use_dio)
201		return;
202
203	/* flush dirty pages before changing direct IO */
204	vfs_fsync(file, 0);
205
206	/*
207	 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
208	 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
209	 * will get updated by ioctl(LOOP_GET_STATUS)
210	 */
211	if (lo->lo_state == Lo_bound)
212		blk_mq_freeze_queue(lo->lo_queue);
213	lo->use_dio = use_dio;
214	if (use_dio) {
215		blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue);
216		lo->lo_flags |= LO_FLAGS_DIRECT_IO;
217	} else {
218		blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
219		lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
220	}
221	if (lo->lo_state == Lo_bound)
222		blk_mq_unfreeze_queue(lo->lo_queue);
223}
224
225/**
226 * loop_set_size() - sets device size and notifies userspace
227 * @lo: struct loop_device to set the size for
228 * @size: new size of the loop device
229 *
230 * Callers must validate that the size passed into this function fits into
231 * a sector_t, eg using loop_validate_size()
232 */
233static void loop_set_size(struct loop_device *lo, loff_t size)
234{
235	if (!set_capacity_and_notify(lo->lo_disk, size))
236		kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
237}
238
239static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
240{
241	struct iov_iter i;
242	ssize_t bw;
243
244	iov_iter_bvec(&i, ITER_SOURCE, bvec, 1, bvec->bv_len);
245
246	file_start_write(file);
247	bw = vfs_iter_write(file, &i, ppos, 0);
248	file_end_write(file);
249
250	if (likely(bw ==  bvec->bv_len))
251		return 0;
252
253	printk_ratelimited(KERN_ERR
254		"loop: Write error at byte offset %llu, length %i.\n",
255		(unsigned long long)*ppos, bvec->bv_len);
256	if (bw >= 0)
257		bw = -EIO;
258	return bw;
259}
260
261static int lo_write_simple(struct loop_device *lo, struct request *rq,
262		loff_t pos)
263{
264	struct bio_vec bvec;
265	struct req_iterator iter;
266	int ret = 0;
267
268	rq_for_each_segment(bvec, rq, iter) {
269		ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
270		if (ret < 0)
271			break;
272		cond_resched();
273	}
274
275	return ret;
276}
277
278static int lo_read_simple(struct loop_device *lo, struct request *rq,
279		loff_t pos)
280{
281	struct bio_vec bvec;
282	struct req_iterator iter;
283	struct iov_iter i;
284	ssize_t len;
285
286	rq_for_each_segment(bvec, rq, iter) {
287		iov_iter_bvec(&i, ITER_DEST, &bvec, 1, bvec.bv_len);
288		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
289		if (len < 0)
290			return len;
291
292		flush_dcache_page(bvec.bv_page);
293
294		if (len != bvec.bv_len) {
295			struct bio *bio;
296
297			__rq_for_each_bio(bio, rq)
298				zero_fill_bio(bio);
299			break;
300		}
301		cond_resched();
302	}
303
304	return 0;
305}
306
307static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos,
308			int mode)
309{
310	/*
311	 * We use fallocate to manipulate the space mappings used by the image
312	 * a.k.a. discard/zerorange.
313	 */
314	struct file *file = lo->lo_backing_file;
315	int ret;
316
317	mode |= FALLOC_FL_KEEP_SIZE;
318
319	if (!bdev_max_discard_sectors(lo->lo_device))
320		return -EOPNOTSUPP;
321
322	ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
323	if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
324		return -EIO;
325	return ret;
326}
327
328static int lo_req_flush(struct loop_device *lo, struct request *rq)
329{
330	int ret = vfs_fsync(lo->lo_backing_file, 0);
331	if (unlikely(ret && ret != -EINVAL))
332		ret = -EIO;
333
334	return ret;
335}
336
337static void lo_complete_rq(struct request *rq)
338{
339	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
340	blk_status_t ret = BLK_STS_OK;
341
342	if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
343	    req_op(rq) != REQ_OP_READ) {
344		if (cmd->ret < 0)
345			ret = errno_to_blk_status(cmd->ret);
346		goto end_io;
347	}
348
349	/*
350	 * Short READ - if we got some data, advance our request and
351	 * retry it. If we got no data, end the rest with EIO.
352	 */
353	if (cmd->ret) {
354		blk_update_request(rq, BLK_STS_OK, cmd->ret);
355		cmd->ret = 0;
356		blk_mq_requeue_request(rq, true);
357	} else {
358		if (cmd->use_aio) {
359			struct bio *bio = rq->bio;
360
361			while (bio) {
362				zero_fill_bio(bio);
363				bio = bio->bi_next;
364			}
365		}
366		ret = BLK_STS_IOERR;
367end_io:
368		blk_mq_end_request(rq, ret);
369	}
370}
371
372static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
373{
374	struct request *rq = blk_mq_rq_from_pdu(cmd);
375
376	if (!atomic_dec_and_test(&cmd->ref))
377		return;
378	kfree(cmd->bvec);
379	cmd->bvec = NULL;
380	if (likely(!blk_should_fake_timeout(rq->q)))
381		blk_mq_complete_request(rq);
382}
383
384static void lo_rw_aio_complete(struct kiocb *iocb, long ret)
385{
386	struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
387
388	cmd->ret = ret;
389	lo_rw_aio_do_completion(cmd);
390}
391
392static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
393		     loff_t pos, int rw)
394{
395	struct iov_iter iter;
396	struct req_iterator rq_iter;
397	struct bio_vec *bvec;
398	struct request *rq = blk_mq_rq_from_pdu(cmd);
399	struct bio *bio = rq->bio;
400	struct file *file = lo->lo_backing_file;
401	struct bio_vec tmp;
402	unsigned int offset;
403	int nr_bvec = 0;
404	int ret;
405
406	rq_for_each_bvec(tmp, rq, rq_iter)
407		nr_bvec++;
408
409	if (rq->bio != rq->biotail) {
410
411		bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec),
412				     GFP_NOIO);
413		if (!bvec)
414			return -EIO;
415		cmd->bvec = bvec;
416
417		/*
418		 * The bios of the request may be started from the middle of
419		 * the 'bvec' because of bio splitting, so we can't directly
420		 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec
421		 * API will take care of all details for us.
422		 */
423		rq_for_each_bvec(tmp, rq, rq_iter) {
424			*bvec = tmp;
425			bvec++;
426		}
427		bvec = cmd->bvec;
428		offset = 0;
429	} else {
430		/*
431		 * Same here, this bio may be started from the middle of the
432		 * 'bvec' because of bio splitting, so offset from the bvec
433		 * must be passed to iov iterator
434		 */
435		offset = bio->bi_iter.bi_bvec_done;
436		bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
437	}
438	atomic_set(&cmd->ref, 2);
439
440	iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq));
441	iter.iov_offset = offset;
442
443	cmd->iocb.ki_pos = pos;
444	cmd->iocb.ki_filp = file;
445	cmd->iocb.ki_complete = lo_rw_aio_complete;
446	cmd->iocb.ki_flags = IOCB_DIRECT;
447	cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
448
449	if (rw == ITER_SOURCE)
450		ret = call_write_iter(file, &cmd->iocb, &iter);
451	else
452		ret = call_read_iter(file, &cmd->iocb, &iter);
453
454	lo_rw_aio_do_completion(cmd);
455
456	if (ret != -EIOCBQUEUED)
457		lo_rw_aio_complete(&cmd->iocb, ret);
458	return 0;
459}
460
461static int do_req_filebacked(struct loop_device *lo, struct request *rq)
462{
463	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
464	loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
465
466	/*
467	 * lo_write_simple and lo_read_simple should have been covered
468	 * by io submit style function like lo_rw_aio(), one blocker
469	 * is that lo_read_simple() need to call flush_dcache_page after
470	 * the page is written from kernel, and it isn't easy to handle
471	 * this in io submit style function which submits all segments
472	 * of the req at one time. And direct read IO doesn't need to
473	 * run flush_dcache_page().
474	 */
475	switch (req_op(rq)) {
476	case REQ_OP_FLUSH:
477		return lo_req_flush(lo, rq);
478	case REQ_OP_WRITE_ZEROES:
479		/*
480		 * If the caller doesn't want deallocation, call zeroout to
481		 * write zeroes the range.  Otherwise, punch them out.
482		 */
483		return lo_fallocate(lo, rq, pos,
484			(rq->cmd_flags & REQ_NOUNMAP) ?
485				FALLOC_FL_ZERO_RANGE :
486				FALLOC_FL_PUNCH_HOLE);
487	case REQ_OP_DISCARD:
488		return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE);
489	case REQ_OP_WRITE:
490		if (cmd->use_aio)
491			return lo_rw_aio(lo, cmd, pos, ITER_SOURCE);
492		else
493			return lo_write_simple(lo, rq, pos);
494	case REQ_OP_READ:
495		if (cmd->use_aio)
496			return lo_rw_aio(lo, cmd, pos, ITER_DEST);
497		else
498			return lo_read_simple(lo, rq, pos);
499	default:
500		WARN_ON_ONCE(1);
501		return -EIO;
502	}
503}
504
505static inline void loop_update_dio(struct loop_device *lo)
506{
507	__loop_update_dio(lo, (lo->lo_backing_file->f_flags & O_DIRECT) |
508				lo->use_dio);
509}
510
511static void loop_reread_partitions(struct loop_device *lo)
512{
513	int rc;
514
515	mutex_lock(&lo->lo_disk->open_mutex);
516	rc = bdev_disk_changed(lo->lo_disk, false);
517	mutex_unlock(&lo->lo_disk->open_mutex);
518	if (rc)
519		pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
520			__func__, lo->lo_number, lo->lo_file_name, rc);
521}
522
523static inline int is_loop_device(struct file *file)
524{
525	struct inode *i = file->f_mapping->host;
526
527	return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR;
528}
529
530static int loop_validate_file(struct file *file, struct block_device *bdev)
531{
532	struct inode	*inode = file->f_mapping->host;
533	struct file	*f = file;
534
535	/* Avoid recursion */
536	while (is_loop_device(f)) {
537		struct loop_device *l;
538
539		lockdep_assert_held(&loop_validate_mutex);
540		if (f->f_mapping->host->i_rdev == bdev->bd_dev)
541			return -EBADF;
542
543		l = I_BDEV(f->f_mapping->host)->bd_disk->private_data;
544		if (l->lo_state != Lo_bound)
545			return -EINVAL;
546		/* Order wrt setting lo->lo_backing_file in loop_configure(). */
547		rmb();
548		f = l->lo_backing_file;
549	}
550	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
551		return -EINVAL;
552	return 0;
553}
554
555/*
556 * loop_change_fd switched the backing store of a loopback device to
557 * a new file. This is useful for operating system installers to free up
558 * the original file and in High Availability environments to switch to
559 * an alternative location for the content in case of server meltdown.
560 * This can only work if the loop device is used read-only, and if the
561 * new backing store is the same size and type as the old backing store.
562 */
563static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
564			  unsigned int arg)
565{
566	struct file *file = fget(arg);
567	struct file *old_file;
568	int error;
569	bool partscan;
570	bool is_loop;
571
572	if (!file)
573		return -EBADF;
574
575	/* suppress uevents while reconfiguring the device */
576	dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1);
577
578	is_loop = is_loop_device(file);
579	error = loop_global_lock_killable(lo, is_loop);
580	if (error)
581		goto out_putf;
582	error = -ENXIO;
583	if (lo->lo_state != Lo_bound)
584		goto out_err;
585
586	/* the loop device has to be read-only */
587	error = -EINVAL;
588	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
589		goto out_err;
590
591	error = loop_validate_file(file, bdev);
592	if (error)
593		goto out_err;
594
595	old_file = lo->lo_backing_file;
596
597	error = -EINVAL;
598
599	/* size of the new backing store needs to be the same */
600	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
601		goto out_err;
602
603	/* and ... switch */
604	disk_force_media_change(lo->lo_disk);
605	blk_mq_freeze_queue(lo->lo_queue);
606	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
607	lo->lo_backing_file = file;
608	lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
609	mapping_set_gfp_mask(file->f_mapping,
610			     lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
611	loop_update_dio(lo);
612	blk_mq_unfreeze_queue(lo->lo_queue);
613	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
614	loop_global_unlock(lo, is_loop);
615
616	/*
617	 * Flush loop_validate_file() before fput(), for l->lo_backing_file
618	 * might be pointing at old_file which might be the last reference.
619	 */
620	if (!is_loop) {
621		mutex_lock(&loop_validate_mutex);
622		mutex_unlock(&loop_validate_mutex);
623	}
624	/*
625	 * We must drop file reference outside of lo_mutex as dropping
626	 * the file ref can take open_mutex which creates circular locking
627	 * dependency.
628	 */
629	fput(old_file);
630	if (partscan)
631		loop_reread_partitions(lo);
632
633	error = 0;
634done:
635	/* enable and uncork uevent now that we are done */
636	dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
637	return error;
638
639out_err:
640	loop_global_unlock(lo, is_loop);
641out_putf:
642	fput(file);
643	goto done;
644}
645
646/* loop sysfs attributes */
647
648static ssize_t loop_attr_show(struct device *dev, char *page,
649			      ssize_t (*callback)(struct loop_device *, char *))
650{
651	struct gendisk *disk = dev_to_disk(dev);
652	struct loop_device *lo = disk->private_data;
653
654	return callback(lo, page);
655}
656
657#define LOOP_ATTR_RO(_name)						\
658static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
659static ssize_t loop_attr_do_show_##_name(struct device *d,		\
660				struct device_attribute *attr, char *b)	\
661{									\
662	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
663}									\
664static struct device_attribute loop_attr_##_name =			\
665	__ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
666
667static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
668{
669	ssize_t ret;
670	char *p = NULL;
671
672	spin_lock_irq(&lo->lo_lock);
673	if (lo->lo_backing_file)
674		p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
675	spin_unlock_irq(&lo->lo_lock);
676
677	if (IS_ERR_OR_NULL(p))
678		ret = PTR_ERR(p);
679	else {
680		ret = strlen(p);
681		memmove(buf, p, ret);
682		buf[ret++] = '\n';
683		buf[ret] = 0;
684	}
685
686	return ret;
687}
688
689static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
690{
691	return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_offset);
692}
693
694static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
695{
696	return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
697}
698
699static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
700{
701	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
702
703	return sysfs_emit(buf, "%s\n", autoclear ? "1" : "0");
704}
705
706static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
707{
708	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
709
710	return sysfs_emit(buf, "%s\n", partscan ? "1" : "0");
711}
712
713static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
714{
715	int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
716
717	return sysfs_emit(buf, "%s\n", dio ? "1" : "0");
718}
719
720LOOP_ATTR_RO(backing_file);
721LOOP_ATTR_RO(offset);
722LOOP_ATTR_RO(sizelimit);
723LOOP_ATTR_RO(autoclear);
724LOOP_ATTR_RO(partscan);
725LOOP_ATTR_RO(dio);
726
727static struct attribute *loop_attrs[] = {
728	&loop_attr_backing_file.attr,
729	&loop_attr_offset.attr,
730	&loop_attr_sizelimit.attr,
731	&loop_attr_autoclear.attr,
732	&loop_attr_partscan.attr,
733	&loop_attr_dio.attr,
734	NULL,
735};
736
737static struct attribute_group loop_attribute_group = {
738	.name = "loop",
739	.attrs= loop_attrs,
740};
741
742static void loop_sysfs_init(struct loop_device *lo)
743{
744	lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
745						&loop_attribute_group);
746}
747
748static void loop_sysfs_exit(struct loop_device *lo)
749{
750	if (lo->sysfs_inited)
751		sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
752				   &loop_attribute_group);
753}
754
755static void loop_config_discard(struct loop_device *lo)
756{
757	struct file *file = lo->lo_backing_file;
758	struct inode *inode = file->f_mapping->host;
759	struct request_queue *q = lo->lo_queue;
760	u32 granularity, max_discard_sectors;
761
762	/*
763	 * If the backing device is a block device, mirror its zeroing
764	 * capability. Set the discard sectors to the block device's zeroing
765	 * capabilities because loop discards result in blkdev_issue_zeroout(),
766	 * not blkdev_issue_discard(). This maintains consistent behavior with
767	 * file-backed loop devices: discarded regions read back as zero.
768	 */
769	if (S_ISBLK(inode->i_mode)) {
770		struct request_queue *backingq = bdev_get_queue(I_BDEV(inode));
771
772		max_discard_sectors = backingq->limits.max_write_zeroes_sectors;
773		granularity = bdev_discard_granularity(I_BDEV(inode)) ?:
774			queue_physical_block_size(backingq);
775
776	/*
777	 * We use punch hole to reclaim the free space used by the
778	 * image a.k.a. discard.
779	 */
780	} else if (!file->f_op->fallocate) {
781		max_discard_sectors = 0;
782		granularity = 0;
783
784	} else {
785		struct kstatfs sbuf;
786
787		max_discard_sectors = UINT_MAX >> 9;
788		if (!vfs_statfs(&file->f_path, &sbuf))
789			granularity = sbuf.f_bsize;
790		else
791			max_discard_sectors = 0;
792	}
793
794	if (max_discard_sectors) {
795		q->limits.discard_granularity = granularity;
796		blk_queue_max_discard_sectors(q, max_discard_sectors);
797		blk_queue_max_write_zeroes_sectors(q, max_discard_sectors);
798	} else {
799		q->limits.discard_granularity = 0;
800		blk_queue_max_discard_sectors(q, 0);
801		blk_queue_max_write_zeroes_sectors(q, 0);
802	}
803}
804
805struct loop_worker {
806	struct rb_node rb_node;
807	struct work_struct work;
808	struct list_head cmd_list;
809	struct list_head idle_list;
810	struct loop_device *lo;
811	struct cgroup_subsys_state *blkcg_css;
812	unsigned long last_ran_at;
813};
814
815static void loop_workfn(struct work_struct *work);
816
817#ifdef CONFIG_BLK_CGROUP
818static inline int queue_on_root_worker(struct cgroup_subsys_state *css)
819{
820	return !css || css == blkcg_root_css;
821}
822#else
823static inline int queue_on_root_worker(struct cgroup_subsys_state *css)
824{
825	return !css;
826}
827#endif
828
829static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd)
830{
831	struct rb_node **node, *parent = NULL;
832	struct loop_worker *cur_worker, *worker = NULL;
833	struct work_struct *work;
834	struct list_head *cmd_list;
835
836	spin_lock_irq(&lo->lo_work_lock);
837
838	if (queue_on_root_worker(cmd->blkcg_css))
839		goto queue_work;
840
841	node = &lo->worker_tree.rb_node;
842
843	while (*node) {
844		parent = *node;
845		cur_worker = container_of(*node, struct loop_worker, rb_node);
846		if (cur_worker->blkcg_css == cmd->blkcg_css) {
847			worker = cur_worker;
848			break;
849		} else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) {
850			node = &(*node)->rb_left;
851		} else {
852			node = &(*node)->rb_right;
853		}
854	}
855	if (worker)
856		goto queue_work;
857
858	worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT | __GFP_NOWARN);
859	/*
860	 * In the event we cannot allocate a worker, just queue on the
861	 * rootcg worker and issue the I/O as the rootcg
862	 */
863	if (!worker) {
864		cmd->blkcg_css = NULL;
865		if (cmd->memcg_css)
866			css_put(cmd->memcg_css);
867		cmd->memcg_css = NULL;
868		goto queue_work;
869	}
870
871	worker->blkcg_css = cmd->blkcg_css;
872	css_get(worker->blkcg_css);
873	INIT_WORK(&worker->work, loop_workfn);
874	INIT_LIST_HEAD(&worker->cmd_list);
875	INIT_LIST_HEAD(&worker->idle_list);
876	worker->lo = lo;
877	rb_link_node(&worker->rb_node, parent, node);
878	rb_insert_color(&worker->rb_node, &lo->worker_tree);
879queue_work:
880	if (worker) {
881		/*
882		 * We need to remove from the idle list here while
883		 * holding the lock so that the idle timer doesn't
884		 * free the worker
885		 */
886		if (!list_empty(&worker->idle_list))
887			list_del_init(&worker->idle_list);
888		work = &worker->work;
889		cmd_list = &worker->cmd_list;
890	} else {
891		work = &lo->rootcg_work;
892		cmd_list = &lo->rootcg_cmd_list;
893	}
894	list_add_tail(&cmd->list_entry, cmd_list);
895	queue_work(lo->workqueue, work);
896	spin_unlock_irq(&lo->lo_work_lock);
897}
898
899static void loop_set_timer(struct loop_device *lo)
900{
901	timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT);
902}
903
904static void loop_free_idle_workers(struct loop_device *lo, bool delete_all)
905{
906	struct loop_worker *pos, *worker;
907
908	spin_lock_irq(&lo->lo_work_lock);
909	list_for_each_entry_safe(worker, pos, &lo->idle_worker_list,
910				idle_list) {
911		if (!delete_all &&
912		    time_is_after_jiffies(worker->last_ran_at +
913					  LOOP_IDLE_WORKER_TIMEOUT))
914			break;
915		list_del(&worker->idle_list);
916		rb_erase(&worker->rb_node, &lo->worker_tree);
917		css_put(worker->blkcg_css);
918		kfree(worker);
919	}
920	if (!list_empty(&lo->idle_worker_list))
921		loop_set_timer(lo);
922	spin_unlock_irq(&lo->lo_work_lock);
923}
924
925static void loop_free_idle_workers_timer(struct timer_list *timer)
926{
927	struct loop_device *lo = container_of(timer, struct loop_device, timer);
928
929	return loop_free_idle_workers(lo, false);
930}
931
932static void loop_update_rotational(struct loop_device *lo)
933{
934	struct file *file = lo->lo_backing_file;
935	struct inode *file_inode = file->f_mapping->host;
936	struct block_device *file_bdev = file_inode->i_sb->s_bdev;
937	struct request_queue *q = lo->lo_queue;
938	bool nonrot = true;
939
940	/* not all filesystems (e.g. tmpfs) have a sb->s_bdev */
941	if (file_bdev)
942		nonrot = bdev_nonrot(file_bdev);
943
944	if (nonrot)
945		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
946	else
947		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
948}
949
950/**
951 * loop_set_status_from_info - configure device from loop_info
952 * @lo: struct loop_device to configure
953 * @info: struct loop_info64 to configure the device with
954 *
955 * Configures the loop device parameters according to the passed
956 * in loop_info64 configuration.
957 */
958static int
959loop_set_status_from_info(struct loop_device *lo,
960			  const struct loop_info64 *info)
961{
962	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
963		return -EINVAL;
964
965	switch (info->lo_encrypt_type) {
966	case LO_CRYPT_NONE:
967		break;
968	case LO_CRYPT_XOR:
969		pr_warn("support for the xor transformation has been removed.\n");
970		return -EINVAL;
971	case LO_CRYPT_CRYPTOAPI:
972		pr_warn("support for cryptoloop has been removed.  Use dm-crypt instead.\n");
973		return -EINVAL;
974	default:
975		return -EINVAL;
976	}
977
978	/* Avoid assigning overflow values */
979	if (info->lo_offset > LLONG_MAX || info->lo_sizelimit > LLONG_MAX)
980		return -EOVERFLOW;
981
982	lo->lo_offset = info->lo_offset;
983	lo->lo_sizelimit = info->lo_sizelimit;
984
985	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
986	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
987	lo->lo_flags = info->lo_flags;
988	return 0;
989}
990
991static int loop_configure(struct loop_device *lo, blk_mode_t mode,
992			  struct block_device *bdev,
993			  const struct loop_config *config)
994{
995	struct file *file = fget(config->fd);
996	struct inode *inode;
997	struct address_space *mapping;
998	int error;
999	loff_t size;
1000	bool partscan;
1001	unsigned short bsize;
1002	bool is_loop;
1003
1004	if (!file)
1005		return -EBADF;
1006	is_loop = is_loop_device(file);
1007
1008	/* This is safe, since we have a reference from open(). */
1009	__module_get(THIS_MODULE);
1010
1011	/*
1012	 * If we don't hold exclusive handle for the device, upgrade to it
1013	 * here to avoid changing device under exclusive owner.
1014	 */
1015	if (!(mode & BLK_OPEN_EXCL)) {
1016		error = bd_prepare_to_claim(bdev, loop_configure, NULL);
1017		if (error)
1018			goto out_putf;
1019	}
1020
1021	error = loop_global_lock_killable(lo, is_loop);
1022	if (error)
1023		goto out_bdev;
1024
1025	error = -EBUSY;
1026	if (lo->lo_state != Lo_unbound)
1027		goto out_unlock;
1028
1029	error = loop_validate_file(file, bdev);
1030	if (error)
1031		goto out_unlock;
1032
1033	mapping = file->f_mapping;
1034	inode = mapping->host;
1035
1036	if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) {
1037		error = -EINVAL;
1038		goto out_unlock;
1039	}
1040
1041	if (config->block_size) {
1042		error = blk_validate_block_size(config->block_size);
1043		if (error)
1044			goto out_unlock;
1045	}
1046
1047	error = loop_set_status_from_info(lo, &config->info);
1048	if (error)
1049		goto out_unlock;
1050
1051	if (!(file->f_mode & FMODE_WRITE) || !(mode & BLK_OPEN_WRITE) ||
1052	    !file->f_op->write_iter)
1053		lo->lo_flags |= LO_FLAGS_READ_ONLY;
1054
1055	if (!lo->workqueue) {
1056		lo->workqueue = alloc_workqueue("loop%d",
1057						WQ_UNBOUND | WQ_FREEZABLE,
1058						0, lo->lo_number);
1059		if (!lo->workqueue) {
1060			error = -ENOMEM;
1061			goto out_unlock;
1062		}
1063	}
1064
1065	/* suppress uevents while reconfiguring the device */
1066	dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1);
1067
1068	disk_force_media_change(lo->lo_disk);
1069	set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0);
1070
1071	lo->use_dio = lo->lo_flags & LO_FLAGS_DIRECT_IO;
1072	lo->lo_device = bdev;
1073	lo->lo_backing_file = file;
1074	lo->old_gfp_mask = mapping_gfp_mask(mapping);
1075	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
1076
1077	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
1078		blk_queue_write_cache(lo->lo_queue, true, false);
1079
1080	if (config->block_size)
1081		bsize = config->block_size;
1082	else if ((lo->lo_backing_file->f_flags & O_DIRECT) && inode->i_sb->s_bdev)
1083		/* In case of direct I/O, match underlying block size */
1084		bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
1085	else
1086		bsize = 512;
1087
1088	blk_queue_logical_block_size(lo->lo_queue, bsize);
1089	blk_queue_physical_block_size(lo->lo_queue, bsize);
1090	blk_queue_io_min(lo->lo_queue, bsize);
1091
1092	loop_config_discard(lo);
1093	loop_update_rotational(lo);
1094	loop_update_dio(lo);
1095	loop_sysfs_init(lo);
1096
1097	size = get_loop_size(lo, file);
1098	loop_set_size(lo, size);
1099
1100	/* Order wrt reading lo_state in loop_validate_file(). */
1101	wmb();
1102
1103	lo->lo_state = Lo_bound;
1104	if (part_shift)
1105		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1106	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
1107	if (partscan)
1108		clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1109
1110	/* enable and uncork uevent now that we are done */
1111	dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
1112
1113	loop_global_unlock(lo, is_loop);
1114	if (partscan)
1115		loop_reread_partitions(lo);
1116
1117	if (!(mode & BLK_OPEN_EXCL))
1118		bd_abort_claiming(bdev, loop_configure);
1119
1120	return 0;
1121
1122out_unlock:
1123	loop_global_unlock(lo, is_loop);
1124out_bdev:
1125	if (!(mode & BLK_OPEN_EXCL))
1126		bd_abort_claiming(bdev, loop_configure);
1127out_putf:
1128	fput(file);
1129	/* This is safe: open() is still holding a reference. */
1130	module_put(THIS_MODULE);
1131	return error;
1132}
1133
1134static void __loop_clr_fd(struct loop_device *lo, bool release)
1135{
1136	struct file *filp;
1137	gfp_t gfp = lo->old_gfp_mask;
1138
1139	if (test_bit(QUEUE_FLAG_WC, &lo->lo_queue->queue_flags))
1140		blk_queue_write_cache(lo->lo_queue, false, false);
1141
1142	/*
1143	 * Freeze the request queue when unbinding on a live file descriptor and
1144	 * thus an open device.  When called from ->release we are guaranteed
1145	 * that there is no I/O in progress already.
1146	 */
1147	if (!release)
1148		blk_mq_freeze_queue(lo->lo_queue);
1149
1150	spin_lock_irq(&lo->lo_lock);
1151	filp = lo->lo_backing_file;
1152	lo->lo_backing_file = NULL;
1153	spin_unlock_irq(&lo->lo_lock);
1154
1155	lo->lo_device = NULL;
1156	lo->lo_offset = 0;
1157	lo->lo_sizelimit = 0;
1158	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1159	blk_queue_logical_block_size(lo->lo_queue, 512);
1160	blk_queue_physical_block_size(lo->lo_queue, 512);
1161	blk_queue_io_min(lo->lo_queue, 512);
1162	invalidate_disk(lo->lo_disk);
1163	loop_sysfs_exit(lo);
1164	/* let user-space know about this change */
1165	kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
1166	mapping_set_gfp_mask(filp->f_mapping, gfp);
1167	/* This is safe: open() is still holding a reference. */
1168	module_put(THIS_MODULE);
1169	if (!release)
1170		blk_mq_unfreeze_queue(lo->lo_queue);
1171
1172	disk_force_media_change(lo->lo_disk);
1173
1174	if (lo->lo_flags & LO_FLAGS_PARTSCAN) {
1175		int err;
1176
1177		/*
1178		 * open_mutex has been held already in release path, so don't
1179		 * acquire it if this function is called in such case.
1180		 *
1181		 * If the reread partition isn't from release path, lo_refcnt
1182		 * must be at least one and it can only become zero when the
1183		 * current holder is released.
1184		 */
1185		if (!release)
1186			mutex_lock(&lo->lo_disk->open_mutex);
1187		err = bdev_disk_changed(lo->lo_disk, false);
1188		if (!release)
1189			mutex_unlock(&lo->lo_disk->open_mutex);
1190		if (err)
1191			pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1192				__func__, lo->lo_number, err);
1193		/* Device is gone, no point in returning error */
1194	}
1195
1196	/*
1197	 * lo->lo_state is set to Lo_unbound here after above partscan has
1198	 * finished. There cannot be anybody else entering __loop_clr_fd() as
1199	 * Lo_rundown state protects us from all the other places trying to
1200	 * change the 'lo' device.
1201	 */
1202	lo->lo_flags = 0;
1203	if (!part_shift)
1204		set_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1205	mutex_lock(&lo->lo_mutex);
1206	lo->lo_state = Lo_unbound;
1207	mutex_unlock(&lo->lo_mutex);
1208
1209	/*
1210	 * Need not hold lo_mutex to fput backing file. Calling fput holding
1211	 * lo_mutex triggers a circular lock dependency possibility warning as
1212	 * fput can take open_mutex which is usually taken before lo_mutex.
1213	 */
1214	fput(filp);
1215}
1216
1217static int loop_clr_fd(struct loop_device *lo)
1218{
1219	int err;
1220
1221	/*
1222	 * Since lo_ioctl() is called without locks held, it is possible that
1223	 * loop_configure()/loop_change_fd() and loop_clr_fd() run in parallel.
1224	 *
1225	 * Therefore, use global lock when setting Lo_rundown state in order to
1226	 * make sure that loop_validate_file() will fail if the "struct file"
1227	 * which loop_configure()/loop_change_fd() found via fget() was this
1228	 * loop device.
1229	 */
1230	err = loop_global_lock_killable(lo, true);
1231	if (err)
1232		return err;
1233	if (lo->lo_state != Lo_bound) {
1234		loop_global_unlock(lo, true);
1235		return -ENXIO;
1236	}
1237	/*
1238	 * If we've explicitly asked to tear down the loop device,
1239	 * and it has an elevated reference count, set it for auto-teardown when
1240	 * the last reference goes away. This stops $!~#$@ udev from
1241	 * preventing teardown because it decided that it needs to run blkid on
1242	 * the loopback device whenever they appear. xfstests is notorious for
1243	 * failing tests because blkid via udev races with a losetup
1244	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1245	 * command to fail with EBUSY.
1246	 */
1247	if (disk_openers(lo->lo_disk) > 1) {
1248		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1249		loop_global_unlock(lo, true);
1250		return 0;
1251	}
1252	lo->lo_state = Lo_rundown;
1253	loop_global_unlock(lo, true);
1254
1255	__loop_clr_fd(lo, false);
1256	return 0;
1257}
1258
1259static int
1260loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1261{
1262	int err;
1263	int prev_lo_flags;
1264	bool partscan = false;
1265	bool size_changed = false;
1266
1267	err = mutex_lock_killable(&lo->lo_mutex);
1268	if (err)
1269		return err;
1270	if (lo->lo_state != Lo_bound) {
1271		err = -ENXIO;
1272		goto out_unlock;
1273	}
1274
1275	if (lo->lo_offset != info->lo_offset ||
1276	    lo->lo_sizelimit != info->lo_sizelimit) {
1277		size_changed = true;
1278		sync_blockdev(lo->lo_device);
1279		invalidate_bdev(lo->lo_device);
1280	}
1281
1282	/* I/O need to be drained during transfer transition */
1283	blk_mq_freeze_queue(lo->lo_queue);
1284
1285	prev_lo_flags = lo->lo_flags;
1286
1287	err = loop_set_status_from_info(lo, info);
1288	if (err)
1289		goto out_unfreeze;
1290
1291	/* Mask out flags that can't be set using LOOP_SET_STATUS. */
1292	lo->lo_flags &= LOOP_SET_STATUS_SETTABLE_FLAGS;
1293	/* For those flags, use the previous values instead */
1294	lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_SETTABLE_FLAGS;
1295	/* For flags that can't be cleared, use previous values too */
1296	lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_CLEARABLE_FLAGS;
1297
1298	if (size_changed) {
1299		loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit,
1300					   lo->lo_backing_file);
1301		loop_set_size(lo, new_size);
1302	}
1303
1304	loop_config_discard(lo);
1305
1306	/* update dio if lo_offset or transfer is changed */
1307	__loop_update_dio(lo, lo->use_dio);
1308
1309out_unfreeze:
1310	blk_mq_unfreeze_queue(lo->lo_queue);
1311
1312	if (!err && (lo->lo_flags & LO_FLAGS_PARTSCAN) &&
1313	     !(prev_lo_flags & LO_FLAGS_PARTSCAN)) {
1314		clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1315		partscan = true;
1316	}
1317out_unlock:
1318	mutex_unlock(&lo->lo_mutex);
1319	if (partscan)
1320		loop_reread_partitions(lo);
1321
1322	return err;
1323}
1324
1325static int
1326loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1327{
1328	struct path path;
1329	struct kstat stat;
1330	int ret;
1331
1332	ret = mutex_lock_killable(&lo->lo_mutex);
1333	if (ret)
1334		return ret;
1335	if (lo->lo_state != Lo_bound) {
1336		mutex_unlock(&lo->lo_mutex);
1337		return -ENXIO;
1338	}
1339
1340	memset(info, 0, sizeof(*info));
1341	info->lo_number = lo->lo_number;
1342	info->lo_offset = lo->lo_offset;
1343	info->lo_sizelimit = lo->lo_sizelimit;
1344	info->lo_flags = lo->lo_flags;
1345	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1346
1347	/* Drop lo_mutex while we call into the filesystem. */
1348	path = lo->lo_backing_file->f_path;
1349	path_get(&path);
1350	mutex_unlock(&lo->lo_mutex);
1351	ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1352	if (!ret) {
1353		info->lo_device = huge_encode_dev(stat.dev);
1354		info->lo_inode = stat.ino;
1355		info->lo_rdevice = huge_encode_dev(stat.rdev);
1356	}
1357	path_put(&path);
1358	return ret;
1359}
1360
1361static void
1362loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1363{
1364	memset(info64, 0, sizeof(*info64));
1365	info64->lo_number = info->lo_number;
1366	info64->lo_device = info->lo_device;
1367	info64->lo_inode = info->lo_inode;
1368	info64->lo_rdevice = info->lo_rdevice;
1369	info64->lo_offset = info->lo_offset;
1370	info64->lo_sizelimit = 0;
1371	info64->lo_flags = info->lo_flags;
1372	memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1373}
1374
1375static int
1376loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1377{
1378	memset(info, 0, sizeof(*info));
1379	info->lo_number = info64->lo_number;
1380	info->lo_device = info64->lo_device;
1381	info->lo_inode = info64->lo_inode;
1382	info->lo_rdevice = info64->lo_rdevice;
1383	info->lo_offset = info64->lo_offset;
1384	info->lo_flags = info64->lo_flags;
1385	memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1386
1387	/* error in case values were truncated */
1388	if (info->lo_device != info64->lo_device ||
1389	    info->lo_rdevice != info64->lo_rdevice ||
1390	    info->lo_inode != info64->lo_inode ||
1391	    info->lo_offset != info64->lo_offset)
1392		return -EOVERFLOW;
1393
1394	return 0;
1395}
1396
1397static int
1398loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1399{
1400	struct loop_info info;
1401	struct loop_info64 info64;
1402
1403	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1404		return -EFAULT;
1405	loop_info64_from_old(&info, &info64);
1406	return loop_set_status(lo, &info64);
1407}
1408
1409static int
1410loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1411{
1412	struct loop_info64 info64;
1413
1414	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1415		return -EFAULT;
1416	return loop_set_status(lo, &info64);
1417}
1418
1419static int
1420loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1421	struct loop_info info;
1422	struct loop_info64 info64;
1423	int err;
1424
1425	if (!arg)
1426		return -EINVAL;
1427	err = loop_get_status(lo, &info64);
1428	if (!err)
1429		err = loop_info64_to_old(&info64, &info);
1430	if (!err && copy_to_user(arg, &info, sizeof(info)))
1431		err = -EFAULT;
1432
1433	return err;
1434}
1435
1436static int
1437loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1438	struct loop_info64 info64;
1439	int err;
1440
1441	if (!arg)
1442		return -EINVAL;
1443	err = loop_get_status(lo, &info64);
1444	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1445		err = -EFAULT;
1446
1447	return err;
1448}
1449
1450static int loop_set_capacity(struct loop_device *lo)
1451{
1452	loff_t size;
1453
1454	if (unlikely(lo->lo_state != Lo_bound))
1455		return -ENXIO;
1456
1457	size = get_loop_size(lo, lo->lo_backing_file);
1458	loop_set_size(lo, size);
1459
1460	return 0;
1461}
1462
1463static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1464{
1465	int error = -ENXIO;
1466	if (lo->lo_state != Lo_bound)
1467		goto out;
1468
1469	__loop_update_dio(lo, !!arg);
1470	if (lo->use_dio == !!arg)
1471		return 0;
1472	error = -EINVAL;
1473 out:
1474	return error;
1475}
1476
1477static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1478{
1479	int err = 0;
1480
1481	if (lo->lo_state != Lo_bound)
1482		return -ENXIO;
1483
1484	err = blk_validate_block_size(arg);
1485	if (err)
1486		return err;
1487
1488	if (lo->lo_queue->limits.logical_block_size == arg)
1489		return 0;
1490
1491	sync_blockdev(lo->lo_device);
1492	invalidate_bdev(lo->lo_device);
1493
1494	blk_mq_freeze_queue(lo->lo_queue);
1495	blk_queue_logical_block_size(lo->lo_queue, arg);
1496	blk_queue_physical_block_size(lo->lo_queue, arg);
1497	blk_queue_io_min(lo->lo_queue, arg);
1498	loop_update_dio(lo);
1499	blk_mq_unfreeze_queue(lo->lo_queue);
1500
1501	return err;
1502}
1503
1504static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1505			   unsigned long arg)
1506{
1507	int err;
1508
1509	err = mutex_lock_killable(&lo->lo_mutex);
1510	if (err)
1511		return err;
1512	switch (cmd) {
1513	case LOOP_SET_CAPACITY:
1514		err = loop_set_capacity(lo);
1515		break;
1516	case LOOP_SET_DIRECT_IO:
1517		err = loop_set_dio(lo, arg);
1518		break;
1519	case LOOP_SET_BLOCK_SIZE:
1520		err = loop_set_block_size(lo, arg);
1521		break;
1522	default:
1523		err = -EINVAL;
1524	}
1525	mutex_unlock(&lo->lo_mutex);
1526	return err;
1527}
1528
1529static int lo_ioctl(struct block_device *bdev, blk_mode_t mode,
1530	unsigned int cmd, unsigned long arg)
1531{
1532	struct loop_device *lo = bdev->bd_disk->private_data;
1533	void __user *argp = (void __user *) arg;
1534	int err;
1535
1536	switch (cmd) {
1537	case LOOP_SET_FD: {
1538		/*
1539		 * Legacy case - pass in a zeroed out struct loop_config with
1540		 * only the file descriptor set , which corresponds with the
1541		 * default parameters we'd have used otherwise.
1542		 */
1543		struct loop_config config;
1544
1545		memset(&config, 0, sizeof(config));
1546		config.fd = arg;
1547
1548		return loop_configure(lo, mode, bdev, &config);
1549	}
1550	case LOOP_CONFIGURE: {
1551		struct loop_config config;
1552
1553		if (copy_from_user(&config, argp, sizeof(config)))
1554			return -EFAULT;
1555
1556		return loop_configure(lo, mode, bdev, &config);
1557	}
1558	case LOOP_CHANGE_FD:
1559		return loop_change_fd(lo, bdev, arg);
1560	case LOOP_CLR_FD:
1561		return loop_clr_fd(lo);
1562	case LOOP_SET_STATUS:
1563		err = -EPERM;
1564		if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN))
1565			err = loop_set_status_old(lo, argp);
1566		break;
1567	case LOOP_GET_STATUS:
1568		return loop_get_status_old(lo, argp);
1569	case LOOP_SET_STATUS64:
1570		err = -EPERM;
1571		if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN))
1572			err = loop_set_status64(lo, argp);
1573		break;
1574	case LOOP_GET_STATUS64:
1575		return loop_get_status64(lo, argp);
1576	case LOOP_SET_CAPACITY:
1577	case LOOP_SET_DIRECT_IO:
1578	case LOOP_SET_BLOCK_SIZE:
1579		if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN))
1580			return -EPERM;
1581		fallthrough;
1582	default:
1583		err = lo_simple_ioctl(lo, cmd, arg);
1584		break;
1585	}
1586
1587	return err;
1588}
1589
1590#ifdef CONFIG_COMPAT
1591struct compat_loop_info {
1592	compat_int_t	lo_number;      /* ioctl r/o */
1593	compat_dev_t	lo_device;      /* ioctl r/o */
1594	compat_ulong_t	lo_inode;       /* ioctl r/o */
1595	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1596	compat_int_t	lo_offset;
1597	compat_int_t	lo_encrypt_type;        /* obsolete, ignored */
1598	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1599	compat_int_t	lo_flags;       /* ioctl r/o */
1600	char		lo_name[LO_NAME_SIZE];
1601	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1602	compat_ulong_t	lo_init[2];
1603	char		reserved[4];
1604};
1605
1606/*
1607 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1608 * - noinlined to reduce stack space usage in main part of driver
1609 */
1610static noinline int
1611loop_info64_from_compat(const struct compat_loop_info __user *arg,
1612			struct loop_info64 *info64)
1613{
1614	struct compat_loop_info info;
1615
1616	if (copy_from_user(&info, arg, sizeof(info)))
1617		return -EFAULT;
1618
1619	memset(info64, 0, sizeof(*info64));
1620	info64->lo_number = info.lo_number;
1621	info64->lo_device = info.lo_device;
1622	info64->lo_inode = info.lo_inode;
1623	info64->lo_rdevice = info.lo_rdevice;
1624	info64->lo_offset = info.lo_offset;
1625	info64->lo_sizelimit = 0;
1626	info64->lo_flags = info.lo_flags;
1627	memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1628	return 0;
1629}
1630
1631/*
1632 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1633 * - noinlined to reduce stack space usage in main part of driver
1634 */
1635static noinline int
1636loop_info64_to_compat(const struct loop_info64 *info64,
1637		      struct compat_loop_info __user *arg)
1638{
1639	struct compat_loop_info info;
1640
1641	memset(&info, 0, sizeof(info));
1642	info.lo_number = info64->lo_number;
1643	info.lo_device = info64->lo_device;
1644	info.lo_inode = info64->lo_inode;
1645	info.lo_rdevice = info64->lo_rdevice;
1646	info.lo_offset = info64->lo_offset;
1647	info.lo_flags = info64->lo_flags;
1648	memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1649
1650	/* error in case values were truncated */
1651	if (info.lo_device != info64->lo_device ||
1652	    info.lo_rdevice != info64->lo_rdevice ||
1653	    info.lo_inode != info64->lo_inode ||
1654	    info.lo_offset != info64->lo_offset)
1655		return -EOVERFLOW;
1656
1657	if (copy_to_user(arg, &info, sizeof(info)))
1658		return -EFAULT;
1659	return 0;
1660}
1661
1662static int
1663loop_set_status_compat(struct loop_device *lo,
1664		       const struct compat_loop_info __user *arg)
1665{
1666	struct loop_info64 info64;
1667	int ret;
1668
1669	ret = loop_info64_from_compat(arg, &info64);
1670	if (ret < 0)
1671		return ret;
1672	return loop_set_status(lo, &info64);
1673}
1674
1675static int
1676loop_get_status_compat(struct loop_device *lo,
1677		       struct compat_loop_info __user *arg)
1678{
1679	struct loop_info64 info64;
1680	int err;
1681
1682	if (!arg)
1683		return -EINVAL;
1684	err = loop_get_status(lo, &info64);
1685	if (!err)
1686		err = loop_info64_to_compat(&info64, arg);
1687	return err;
1688}
1689
1690static int lo_compat_ioctl(struct block_device *bdev, blk_mode_t mode,
1691			   unsigned int cmd, unsigned long arg)
1692{
1693	struct loop_device *lo = bdev->bd_disk->private_data;
1694	int err;
1695
1696	switch(cmd) {
1697	case LOOP_SET_STATUS:
1698		err = loop_set_status_compat(lo,
1699			     (const struct compat_loop_info __user *)arg);
1700		break;
1701	case LOOP_GET_STATUS:
1702		err = loop_get_status_compat(lo,
1703				     (struct compat_loop_info __user *)arg);
1704		break;
1705	case LOOP_SET_CAPACITY:
1706	case LOOP_CLR_FD:
1707	case LOOP_GET_STATUS64:
1708	case LOOP_SET_STATUS64:
1709	case LOOP_CONFIGURE:
1710		arg = (unsigned long) compat_ptr(arg);
1711		fallthrough;
1712	case LOOP_SET_FD:
1713	case LOOP_CHANGE_FD:
1714	case LOOP_SET_BLOCK_SIZE:
1715	case LOOP_SET_DIRECT_IO:
1716		err = lo_ioctl(bdev, mode, cmd, arg);
1717		break;
1718	default:
1719		err = -ENOIOCTLCMD;
1720		break;
1721	}
1722	return err;
1723}
1724#endif
1725
1726static void lo_release(struct gendisk *disk)
1727{
1728	struct loop_device *lo = disk->private_data;
1729
1730	if (disk_openers(disk) > 0)
1731		return;
1732
1733	mutex_lock(&lo->lo_mutex);
1734	if (lo->lo_state == Lo_bound && (lo->lo_flags & LO_FLAGS_AUTOCLEAR)) {
1735		lo->lo_state = Lo_rundown;
1736		mutex_unlock(&lo->lo_mutex);
1737		/*
1738		 * In autoclear mode, stop the loop thread
1739		 * and remove configuration after last close.
1740		 */
1741		__loop_clr_fd(lo, true);
1742		return;
1743	}
1744	mutex_unlock(&lo->lo_mutex);
1745}
1746
1747static void lo_free_disk(struct gendisk *disk)
1748{
1749	struct loop_device *lo = disk->private_data;
1750
1751	if (lo->workqueue)
1752		destroy_workqueue(lo->workqueue);
1753	loop_free_idle_workers(lo, true);
1754	timer_shutdown_sync(&lo->timer);
1755	mutex_destroy(&lo->lo_mutex);
1756	kfree(lo);
1757}
1758
1759static const struct block_device_operations lo_fops = {
1760	.owner =	THIS_MODULE,
1761	.release =	lo_release,
1762	.ioctl =	lo_ioctl,
1763#ifdef CONFIG_COMPAT
1764	.compat_ioctl =	lo_compat_ioctl,
1765#endif
1766	.free_disk =	lo_free_disk,
1767};
1768
1769/*
1770 * And now the modules code and kernel interface.
1771 */
1772
1773/*
1774 * If max_loop is specified, create that many devices upfront.
1775 * This also becomes a hard limit. If max_loop is not specified,
1776 * the default isn't a hard limit (as before commit 85c50197716c
1777 * changed the default value from 0 for max_loop=0 reasons), just
1778 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1779 * init time. Loop devices can be requested on-demand with the
1780 * /dev/loop-control interface, or be instantiated by accessing
1781 * a 'dead' device node.
1782 */
1783static int max_loop = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1784
1785#ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
1786static bool max_loop_specified;
1787
1788static int max_loop_param_set_int(const char *val,
1789				  const struct kernel_param *kp)
1790{
1791	int ret;
1792
1793	ret = param_set_int(val, kp);
1794	if (ret < 0)
1795		return ret;
1796
1797	max_loop_specified = true;
1798	return 0;
1799}
1800
1801static const struct kernel_param_ops max_loop_param_ops = {
1802	.set = max_loop_param_set_int,
1803	.get = param_get_int,
1804};
1805
1806module_param_cb(max_loop, &max_loop_param_ops, &max_loop, 0444);
1807MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1808#else
1809module_param(max_loop, int, 0444);
1810MODULE_PARM_DESC(max_loop, "Initial number of loop devices");
1811#endif
1812
1813module_param(max_part, int, 0444);
1814MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1815
1816static int hw_queue_depth = LOOP_DEFAULT_HW_Q_DEPTH;
1817
1818static int loop_set_hw_queue_depth(const char *s, const struct kernel_param *p)
1819{
1820	int qd, ret;
1821
1822	ret = kstrtoint(s, 0, &qd);
1823	if (ret < 0)
1824		return ret;
1825	if (qd < 1)
1826		return -EINVAL;
1827	hw_queue_depth = qd;
1828	return 0;
1829}
1830
1831static const struct kernel_param_ops loop_hw_qdepth_param_ops = {
1832	.set	= loop_set_hw_queue_depth,
1833	.get	= param_get_int,
1834};
1835
1836device_param_cb(hw_queue_depth, &loop_hw_qdepth_param_ops, &hw_queue_depth, 0444);
1837MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: " __stringify(LOOP_DEFAULT_HW_Q_DEPTH));
1838
1839MODULE_LICENSE("GPL");
1840MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1841
1842static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1843		const struct blk_mq_queue_data *bd)
1844{
1845	struct request *rq = bd->rq;
1846	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1847	struct loop_device *lo = rq->q->queuedata;
1848
1849	blk_mq_start_request(rq);
1850
1851	if (lo->lo_state != Lo_bound)
1852		return BLK_STS_IOERR;
1853
1854	switch (req_op(rq)) {
1855	case REQ_OP_FLUSH:
1856	case REQ_OP_DISCARD:
1857	case REQ_OP_WRITE_ZEROES:
1858		cmd->use_aio = false;
1859		break;
1860	default:
1861		cmd->use_aio = lo->use_dio;
1862		break;
1863	}
1864
1865	/* always use the first bio's css */
1866	cmd->blkcg_css = NULL;
1867	cmd->memcg_css = NULL;
1868#ifdef CONFIG_BLK_CGROUP
1869	if (rq->bio) {
1870		cmd->blkcg_css = bio_blkcg_css(rq->bio);
1871#ifdef CONFIG_MEMCG
1872		if (cmd->blkcg_css) {
1873			cmd->memcg_css =
1874				cgroup_get_e_css(cmd->blkcg_css->cgroup,
1875						&memory_cgrp_subsys);
1876		}
1877#endif
1878	}
1879#endif
1880	loop_queue_work(lo, cmd);
1881
1882	return BLK_STS_OK;
1883}
1884
1885static void loop_handle_cmd(struct loop_cmd *cmd)
1886{
1887	struct cgroup_subsys_state *cmd_blkcg_css = cmd->blkcg_css;
1888	struct cgroup_subsys_state *cmd_memcg_css = cmd->memcg_css;
1889	struct request *rq = blk_mq_rq_from_pdu(cmd);
1890	const bool write = op_is_write(req_op(rq));
1891	struct loop_device *lo = rq->q->queuedata;
1892	int ret = 0;
1893	struct mem_cgroup *old_memcg = NULL;
1894	const bool use_aio = cmd->use_aio;
1895
1896	if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1897		ret = -EIO;
1898		goto failed;
1899	}
1900
1901	if (cmd_blkcg_css)
1902		kthread_associate_blkcg(cmd_blkcg_css);
1903	if (cmd_memcg_css)
1904		old_memcg = set_active_memcg(
1905			mem_cgroup_from_css(cmd_memcg_css));
1906
1907	/*
1908	 * do_req_filebacked() may call blk_mq_complete_request() synchronously
1909	 * or asynchronously if using aio. Hence, do not touch 'cmd' after
1910	 * do_req_filebacked() has returned unless we are sure that 'cmd' has
1911	 * not yet been completed.
1912	 */
1913	ret = do_req_filebacked(lo, rq);
1914
1915	if (cmd_blkcg_css)
1916		kthread_associate_blkcg(NULL);
1917
1918	if (cmd_memcg_css) {
1919		set_active_memcg(old_memcg);
1920		css_put(cmd_memcg_css);
1921	}
1922 failed:
1923	/* complete non-aio request */
1924	if (!use_aio || ret) {
1925		if (ret == -EOPNOTSUPP)
1926			cmd->ret = ret;
1927		else
1928			cmd->ret = ret ? -EIO : 0;
1929		if (likely(!blk_should_fake_timeout(rq->q)))
1930			blk_mq_complete_request(rq);
1931	}
1932}
1933
1934static void loop_process_work(struct loop_worker *worker,
1935			struct list_head *cmd_list, struct loop_device *lo)
1936{
1937	int orig_flags = current->flags;
1938	struct loop_cmd *cmd;
1939
1940	current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO;
1941	spin_lock_irq(&lo->lo_work_lock);
1942	while (!list_empty(cmd_list)) {
1943		cmd = container_of(
1944			cmd_list->next, struct loop_cmd, list_entry);
1945		list_del(cmd_list->next);
1946		spin_unlock_irq(&lo->lo_work_lock);
1947
1948		loop_handle_cmd(cmd);
1949		cond_resched();
1950
1951		spin_lock_irq(&lo->lo_work_lock);
1952	}
1953
1954	/*
1955	 * We only add to the idle list if there are no pending cmds
1956	 * *and* the worker will not run again which ensures that it
1957	 * is safe to free any worker on the idle list
1958	 */
1959	if (worker && !work_pending(&worker->work)) {
1960		worker->last_ran_at = jiffies;
1961		list_add_tail(&worker->idle_list, &lo->idle_worker_list);
1962		loop_set_timer(lo);
1963	}
1964	spin_unlock_irq(&lo->lo_work_lock);
1965	current->flags = orig_flags;
1966}
1967
1968static void loop_workfn(struct work_struct *work)
1969{
1970	struct loop_worker *worker =
1971		container_of(work, struct loop_worker, work);
1972	loop_process_work(worker, &worker->cmd_list, worker->lo);
1973}
1974
1975static void loop_rootcg_workfn(struct work_struct *work)
1976{
1977	struct loop_device *lo =
1978		container_of(work, struct loop_device, rootcg_work);
1979	loop_process_work(NULL, &lo->rootcg_cmd_list, lo);
1980}
1981
1982static const struct blk_mq_ops loop_mq_ops = {
1983	.queue_rq       = loop_queue_rq,
1984	.complete	= lo_complete_rq,
1985};
1986
1987static int loop_add(int i)
1988{
1989	struct loop_device *lo;
1990	struct gendisk *disk;
1991	int err;
1992
1993	err = -ENOMEM;
1994	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1995	if (!lo)
1996		goto out;
1997	lo->worker_tree = RB_ROOT;
1998	INIT_LIST_HEAD(&lo->idle_worker_list);
1999	timer_setup(&lo->timer, loop_free_idle_workers_timer, TIMER_DEFERRABLE);
2000	lo->lo_state = Lo_unbound;
2001
2002	err = mutex_lock_killable(&loop_ctl_mutex);
2003	if (err)
2004		goto out_free_dev;
2005
2006	/* allocate id, if @id >= 0, we're requesting that specific id */
2007	if (i >= 0) {
2008		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
2009		if (err == -ENOSPC)
2010			err = -EEXIST;
2011	} else {
2012		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
2013	}
2014	mutex_unlock(&loop_ctl_mutex);
2015	if (err < 0)
2016		goto out_free_dev;
2017	i = err;
2018
2019	lo->tag_set.ops = &loop_mq_ops;
2020	lo->tag_set.nr_hw_queues = 1;
2021	lo->tag_set.queue_depth = hw_queue_depth;
2022	lo->tag_set.numa_node = NUMA_NO_NODE;
2023	lo->tag_set.cmd_size = sizeof(struct loop_cmd);
2024	lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_STACKING |
2025		BLK_MQ_F_NO_SCHED_BY_DEFAULT;
2026	lo->tag_set.driver_data = lo;
2027
2028	err = blk_mq_alloc_tag_set(&lo->tag_set);
2029	if (err)
2030		goto out_free_idr;
2031
2032	disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, lo);
2033	if (IS_ERR(disk)) {
2034		err = PTR_ERR(disk);
2035		goto out_cleanup_tags;
2036	}
2037	lo->lo_queue = lo->lo_disk->queue;
2038
2039	blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
2040
2041	/*
2042	 * By default, we do buffer IO, so it doesn't make sense to enable
2043	 * merge because the I/O submitted to backing file is handled page by
2044	 * page. For directio mode, merge does help to dispatch bigger request
2045	 * to underlayer disk. We will enable merge once directio is enabled.
2046	 */
2047	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
2048
2049	/*
2050	 * Disable partition scanning by default. The in-kernel partition
2051	 * scanning can be requested individually per-device during its
2052	 * setup. Userspace can always add and remove partitions from all
2053	 * devices. The needed partition minors are allocated from the
2054	 * extended minor space, the main loop device numbers will continue
2055	 * to match the loop minors, regardless of the number of partitions
2056	 * used.
2057	 *
2058	 * If max_part is given, partition scanning is globally enabled for
2059	 * all loop devices. The minors for the main loop devices will be
2060	 * multiples of max_part.
2061	 *
2062	 * Note: Global-for-all-devices, set-only-at-init, read-only module
2063	 * parameteters like 'max_loop' and 'max_part' make things needlessly
2064	 * complicated, are too static, inflexible and may surprise
2065	 * userspace tools. Parameters like this in general should be avoided.
2066	 */
2067	if (!part_shift)
2068		set_bit(GD_SUPPRESS_PART_SCAN, &disk->state);
2069	mutex_init(&lo->lo_mutex);
2070	lo->lo_number		= i;
2071	spin_lock_init(&lo->lo_lock);
2072	spin_lock_init(&lo->lo_work_lock);
2073	INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn);
2074	INIT_LIST_HEAD(&lo->rootcg_cmd_list);
2075	disk->major		= LOOP_MAJOR;
2076	disk->first_minor	= i << part_shift;
2077	disk->minors		= 1 << part_shift;
2078	disk->fops		= &lo_fops;
2079	disk->private_data	= lo;
2080	disk->queue		= lo->lo_queue;
2081	disk->events		= DISK_EVENT_MEDIA_CHANGE;
2082	disk->event_flags	= DISK_EVENT_FLAG_UEVENT;
2083	sprintf(disk->disk_name, "loop%d", i);
2084	/* Make this loop device reachable from pathname. */
2085	err = add_disk(disk);
2086	if (err)
2087		goto out_cleanup_disk;
2088
2089	/* Show this loop device. */
2090	mutex_lock(&loop_ctl_mutex);
2091	lo->idr_visible = true;
2092	mutex_unlock(&loop_ctl_mutex);
2093
2094	return i;
2095
2096out_cleanup_disk:
2097	put_disk(disk);
2098out_cleanup_tags:
2099	blk_mq_free_tag_set(&lo->tag_set);
2100out_free_idr:
2101	mutex_lock(&loop_ctl_mutex);
2102	idr_remove(&loop_index_idr, i);
2103	mutex_unlock(&loop_ctl_mutex);
2104out_free_dev:
2105	kfree(lo);
2106out:
2107	return err;
2108}
2109
2110static void loop_remove(struct loop_device *lo)
2111{
2112	/* Make this loop device unreachable from pathname. */
2113	del_gendisk(lo->lo_disk);
2114	blk_mq_free_tag_set(&lo->tag_set);
2115
2116	mutex_lock(&loop_ctl_mutex);
2117	idr_remove(&loop_index_idr, lo->lo_number);
2118	mutex_unlock(&loop_ctl_mutex);
2119
2120	put_disk(lo->lo_disk);
2121}
2122
2123#ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
2124static void loop_probe(dev_t dev)
2125{
2126	int idx = MINOR(dev) >> part_shift;
2127
2128	if (max_loop_specified && max_loop && idx >= max_loop)
2129		return;
2130	loop_add(idx);
2131}
2132#else
2133#define loop_probe NULL
2134#endif /* !CONFIG_BLOCK_LEGACY_AUTOLOAD */
2135
2136static int loop_control_remove(int idx)
2137{
2138	struct loop_device *lo;
2139	int ret;
2140
2141	if (idx < 0) {
2142		pr_warn_once("deleting an unspecified loop device is not supported.\n");
2143		return -EINVAL;
2144	}
2145
2146	/* Hide this loop device for serialization. */
2147	ret = mutex_lock_killable(&loop_ctl_mutex);
2148	if (ret)
2149		return ret;
2150	lo = idr_find(&loop_index_idr, idx);
2151	if (!lo || !lo->idr_visible)
2152		ret = -ENODEV;
2153	else
2154		lo->idr_visible = false;
2155	mutex_unlock(&loop_ctl_mutex);
2156	if (ret)
2157		return ret;
2158
2159	/* Check whether this loop device can be removed. */
2160	ret = mutex_lock_killable(&lo->lo_mutex);
2161	if (ret)
2162		goto mark_visible;
2163	if (lo->lo_state != Lo_unbound || disk_openers(lo->lo_disk) > 0) {
2164		mutex_unlock(&lo->lo_mutex);
2165		ret = -EBUSY;
2166		goto mark_visible;
2167	}
2168	/* Mark this loop device as no more bound, but not quite unbound yet */
2169	lo->lo_state = Lo_deleting;
2170	mutex_unlock(&lo->lo_mutex);
2171
2172	loop_remove(lo);
2173	return 0;
2174
2175mark_visible:
2176	/* Show this loop device again. */
2177	mutex_lock(&loop_ctl_mutex);
2178	lo->idr_visible = true;
2179	mutex_unlock(&loop_ctl_mutex);
2180	return ret;
2181}
2182
2183static int loop_control_get_free(int idx)
2184{
2185	struct loop_device *lo;
2186	int id, ret;
2187
2188	ret = mutex_lock_killable(&loop_ctl_mutex);
2189	if (ret)
2190		return ret;
2191	idr_for_each_entry(&loop_index_idr, lo, id) {
2192		/* Hitting a race results in creating a new loop device which is harmless. */
2193		if (lo->idr_visible && data_race(lo->lo_state) == Lo_unbound)
2194			goto found;
2195	}
2196	mutex_unlock(&loop_ctl_mutex);
2197	return loop_add(-1);
2198found:
2199	mutex_unlock(&loop_ctl_mutex);
2200	return id;
2201}
2202
2203static long loop_control_ioctl(struct file *file, unsigned int cmd,
2204			       unsigned long parm)
2205{
2206	switch (cmd) {
2207	case LOOP_CTL_ADD:
2208		return loop_add(parm);
2209	case LOOP_CTL_REMOVE:
2210		return loop_control_remove(parm);
2211	case LOOP_CTL_GET_FREE:
2212		return loop_control_get_free(parm);
2213	default:
2214		return -ENOSYS;
2215	}
2216}
2217
2218static const struct file_operations loop_ctl_fops = {
2219	.open		= nonseekable_open,
2220	.unlocked_ioctl	= loop_control_ioctl,
2221	.compat_ioctl	= loop_control_ioctl,
2222	.owner		= THIS_MODULE,
2223	.llseek		= noop_llseek,
2224};
2225
2226static struct miscdevice loop_misc = {
2227	.minor		= LOOP_CTRL_MINOR,
2228	.name		= "loop-control",
2229	.fops		= &loop_ctl_fops,
2230};
2231
2232MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2233MODULE_ALIAS("devname:loop-control");
2234
2235static int __init loop_init(void)
2236{
2237	int i;
2238	int err;
2239
2240	part_shift = 0;
2241	if (max_part > 0) {
2242		part_shift = fls(max_part);
2243
2244		/*
2245		 * Adjust max_part according to part_shift as it is exported
2246		 * to user space so that user can decide correct minor number
2247		 * if [s]he want to create more devices.
2248		 *
2249		 * Note that -1 is required because partition 0 is reserved
2250		 * for the whole disk.
2251		 */
2252		max_part = (1UL << part_shift) - 1;
2253	}
2254
2255	if ((1UL << part_shift) > DISK_MAX_PARTS) {
2256		err = -EINVAL;
2257		goto err_out;
2258	}
2259
2260	if (max_loop > 1UL << (MINORBITS - part_shift)) {
2261		err = -EINVAL;
2262		goto err_out;
2263	}
2264
2265	err = misc_register(&loop_misc);
2266	if (err < 0)
2267		goto err_out;
2268
2269
2270	if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) {
2271		err = -EIO;
2272		goto misc_out;
2273	}
2274
2275	/* pre-create number of devices given by config or max_loop */
2276	for (i = 0; i < max_loop; i++)
2277		loop_add(i);
2278
2279	printk(KERN_INFO "loop: module loaded\n");
2280	return 0;
2281
2282misc_out:
2283	misc_deregister(&loop_misc);
2284err_out:
2285	return err;
2286}
2287
2288static void __exit loop_exit(void)
2289{
2290	struct loop_device *lo;
2291	int id;
2292
2293	unregister_blkdev(LOOP_MAJOR, "loop");
2294	misc_deregister(&loop_misc);
2295
2296	/*
2297	 * There is no need to use loop_ctl_mutex here, for nobody else can
2298	 * access loop_index_idr when this module is unloading (unless forced
2299	 * module unloading is requested). If this is not a clean unloading,
2300	 * we have no means to avoid kernel crash.
2301	 */
2302	idr_for_each_entry(&loop_index_idr, lo, id)
2303		loop_remove(lo);
2304
2305	idr_destroy(&loop_index_idr);
2306}
2307
2308module_init(loop_init);
2309module_exit(loop_exit);
2310
2311#ifndef MODULE
2312static int __init max_loop_setup(char *str)
2313{
2314	max_loop = simple_strtol(str, NULL, 0);
2315#ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
2316	max_loop_specified = true;
2317#endif
2318	return 1;
2319}
2320
2321__setup("max_loop=", max_loop_setup);
2322#endif
2323