1// SPDX-License-Identifier: GPL-2.0
2//
3// regmap based irq_chip
4//
5// Copyright 2011 Wolfson Microelectronics plc
6//
7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9#include <linux/device.h>
10#include <linux/export.h>
11#include <linux/interrupt.h>
12#include <linux/irq.h>
13#include <linux/irqdomain.h>
14#include <linux/pm_runtime.h>
15#include <linux/regmap.h>
16#include <linux/slab.h>
17
18#include "internal.h"
19
20struct regmap_irq_chip_data {
21	struct mutex lock;
22	struct irq_chip irq_chip;
23
24	struct regmap *map;
25	const struct regmap_irq_chip *chip;
26
27	int irq_base;
28	struct irq_domain *domain;
29
30	int irq;
31	int wake_count;
32
33	void *status_reg_buf;
34	unsigned int *main_status_buf;
35	unsigned int *status_buf;
36	unsigned int *mask_buf;
37	unsigned int *mask_buf_def;
38	unsigned int *wake_buf;
39	unsigned int *type_buf;
40	unsigned int *type_buf_def;
41	unsigned int **config_buf;
42
43	unsigned int irq_reg_stride;
44
45	unsigned int (*get_irq_reg)(struct regmap_irq_chip_data *data,
46				    unsigned int base, int index);
47
48	unsigned int clear_status:1;
49};
50
51static inline const
52struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
53				     int irq)
54{
55	return &data->chip->irqs[irq];
56}
57
58static bool regmap_irq_can_bulk_read_status(struct regmap_irq_chip_data *data)
59{
60	struct regmap *map = data->map;
61
62	/*
63	 * While possible that a user-defined ->get_irq_reg() callback might
64	 * be linear enough to support bulk reads, most of the time it won't.
65	 * Therefore only allow them if the default callback is being used.
66	 */
67	return data->irq_reg_stride == 1 && map->reg_stride == 1 &&
68	       data->get_irq_reg == regmap_irq_get_irq_reg_linear &&
69	       !map->use_single_read;
70}
71
72static void regmap_irq_lock(struct irq_data *data)
73{
74	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
75
76	mutex_lock(&d->lock);
77}
78
79static void regmap_irq_sync_unlock(struct irq_data *data)
80{
81	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
82	struct regmap *map = d->map;
83	int i, j, ret;
84	u32 reg;
85	u32 val;
86
87	if (d->chip->runtime_pm) {
88		ret = pm_runtime_get_sync(map->dev);
89		if (ret < 0)
90			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
91				ret);
92	}
93
94	if (d->clear_status) {
95		for (i = 0; i < d->chip->num_regs; i++) {
96			reg = d->get_irq_reg(d, d->chip->status_base, i);
97
98			ret = regmap_read(map, reg, &val);
99			if (ret)
100				dev_err(d->map->dev,
101					"Failed to clear the interrupt status bits\n");
102		}
103
104		d->clear_status = false;
105	}
106
107	/*
108	 * If there's been a change in the mask write it back to the
109	 * hardware.  We rely on the use of the regmap core cache to
110	 * suppress pointless writes.
111	 */
112	for (i = 0; i < d->chip->num_regs; i++) {
113		if (d->chip->handle_mask_sync)
114			d->chip->handle_mask_sync(i, d->mask_buf_def[i],
115						  d->mask_buf[i],
116						  d->chip->irq_drv_data);
117
118		if (d->chip->mask_base && !d->chip->handle_mask_sync) {
119			reg = d->get_irq_reg(d, d->chip->mask_base, i);
120			ret = regmap_update_bits(d->map, reg,
121						 d->mask_buf_def[i],
122						 d->mask_buf[i]);
123			if (ret)
124				dev_err(d->map->dev, "Failed to sync masks in %x\n", reg);
125		}
126
127		if (d->chip->unmask_base && !d->chip->handle_mask_sync) {
128			reg = d->get_irq_reg(d, d->chip->unmask_base, i);
129			ret = regmap_update_bits(d->map, reg,
130					d->mask_buf_def[i], ~d->mask_buf[i]);
131			if (ret)
132				dev_err(d->map->dev, "Failed to sync masks in %x\n",
133					reg);
134		}
135
136		reg = d->get_irq_reg(d, d->chip->wake_base, i);
137		if (d->wake_buf) {
138			if (d->chip->wake_invert)
139				ret = regmap_update_bits(d->map, reg,
140							 d->mask_buf_def[i],
141							 ~d->wake_buf[i]);
142			else
143				ret = regmap_update_bits(d->map, reg,
144							 d->mask_buf_def[i],
145							 d->wake_buf[i]);
146			if (ret != 0)
147				dev_err(d->map->dev,
148					"Failed to sync wakes in %x: %d\n",
149					reg, ret);
150		}
151
152		if (!d->chip->init_ack_masked)
153			continue;
154		/*
155		 * Ack all the masked interrupts unconditionally,
156		 * OR if there is masked interrupt which hasn't been Acked,
157		 * it'll be ignored in irq handler, then may introduce irq storm
158		 */
159		if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
160			reg = d->get_irq_reg(d, d->chip->ack_base, i);
161
162			/* some chips ack by write 0 */
163			if (d->chip->ack_invert)
164				ret = regmap_write(map, reg, ~d->mask_buf[i]);
165			else
166				ret = regmap_write(map, reg, d->mask_buf[i]);
167			if (d->chip->clear_ack) {
168				if (d->chip->ack_invert && !ret)
169					ret = regmap_write(map, reg, UINT_MAX);
170				else if (!ret)
171					ret = regmap_write(map, reg, 0);
172			}
173			if (ret != 0)
174				dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
175					reg, ret);
176		}
177	}
178
179	for (i = 0; i < d->chip->num_config_bases; i++) {
180		for (j = 0; j < d->chip->num_config_regs; j++) {
181			reg = d->get_irq_reg(d, d->chip->config_base[i], j);
182			ret = regmap_write(map, reg, d->config_buf[i][j]);
183			if (ret)
184				dev_err(d->map->dev,
185					"Failed to write config %x: %d\n",
186					reg, ret);
187		}
188	}
189
190	if (d->chip->runtime_pm)
191		pm_runtime_put(map->dev);
192
193	/* If we've changed our wakeup count propagate it to the parent */
194	if (d->wake_count < 0)
195		for (i = d->wake_count; i < 0; i++)
196			irq_set_irq_wake(d->irq, 0);
197	else if (d->wake_count > 0)
198		for (i = 0; i < d->wake_count; i++)
199			irq_set_irq_wake(d->irq, 1);
200
201	d->wake_count = 0;
202
203	mutex_unlock(&d->lock);
204}
205
206static void regmap_irq_enable(struct irq_data *data)
207{
208	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
209	struct regmap *map = d->map;
210	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
211	unsigned int reg = irq_data->reg_offset / map->reg_stride;
212	unsigned int mask;
213
214	/*
215	 * The type_in_mask flag means that the underlying hardware uses
216	 * separate mask bits for each interrupt trigger type, but we want
217	 * to have a single logical interrupt with a configurable type.
218	 *
219	 * If the interrupt we're enabling defines any supported types
220	 * then instead of using the regular mask bits for this interrupt,
221	 * use the value previously written to the type buffer at the
222	 * corresponding offset in regmap_irq_set_type().
223	 */
224	if (d->chip->type_in_mask && irq_data->type.types_supported)
225		mask = d->type_buf[reg] & irq_data->mask;
226	else
227		mask = irq_data->mask;
228
229	if (d->chip->clear_on_unmask)
230		d->clear_status = true;
231
232	d->mask_buf[reg] &= ~mask;
233}
234
235static void regmap_irq_disable(struct irq_data *data)
236{
237	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
238	struct regmap *map = d->map;
239	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
240
241	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
242}
243
244static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
245{
246	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
247	struct regmap *map = d->map;
248	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
249	int reg, ret;
250	const struct regmap_irq_type *t = &irq_data->type;
251
252	if ((t->types_supported & type) != type)
253		return 0;
254
255	reg = t->type_reg_offset / map->reg_stride;
256
257	if (d->chip->type_in_mask) {
258		ret = regmap_irq_set_type_config_simple(&d->type_buf, type,
259							irq_data, reg, d->chip->irq_drv_data);
260		if (ret)
261			return ret;
262	}
263
264	if (d->chip->set_type_config) {
265		ret = d->chip->set_type_config(d->config_buf, type, irq_data,
266					       reg, d->chip->irq_drv_data);
267		if (ret)
268			return ret;
269	}
270
271	return 0;
272}
273
274static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
275{
276	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
277	struct regmap *map = d->map;
278	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
279
280	if (on) {
281		if (d->wake_buf)
282			d->wake_buf[irq_data->reg_offset / map->reg_stride]
283				&= ~irq_data->mask;
284		d->wake_count++;
285	} else {
286		if (d->wake_buf)
287			d->wake_buf[irq_data->reg_offset / map->reg_stride]
288				|= irq_data->mask;
289		d->wake_count--;
290	}
291
292	return 0;
293}
294
295static const struct irq_chip regmap_irq_chip = {
296	.irq_bus_lock		= regmap_irq_lock,
297	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
298	.irq_disable		= regmap_irq_disable,
299	.irq_enable		= regmap_irq_enable,
300	.irq_set_type		= regmap_irq_set_type,
301	.irq_set_wake		= regmap_irq_set_wake,
302};
303
304static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
305					   unsigned int b)
306{
307	const struct regmap_irq_chip *chip = data->chip;
308	struct regmap *map = data->map;
309	struct regmap_irq_sub_irq_map *subreg;
310	unsigned int reg;
311	int i, ret = 0;
312
313	if (!chip->sub_reg_offsets) {
314		reg = data->get_irq_reg(data, chip->status_base, b);
315		ret = regmap_read(map, reg, &data->status_buf[b]);
316	} else {
317		/*
318		 * Note we can't use ->get_irq_reg() here because the offsets
319		 * in 'subreg' are *not* interchangeable with indices.
320		 */
321		subreg = &chip->sub_reg_offsets[b];
322		for (i = 0; i < subreg->num_regs; i++) {
323			unsigned int offset = subreg->offset[i];
324			unsigned int index = offset / map->reg_stride;
325
326			ret = regmap_read(map, chip->status_base + offset,
327					  &data->status_buf[index]);
328			if (ret)
329				break;
330		}
331	}
332	return ret;
333}
334
335static irqreturn_t regmap_irq_thread(int irq, void *d)
336{
337	struct regmap_irq_chip_data *data = d;
338	const struct regmap_irq_chip *chip = data->chip;
339	struct regmap *map = data->map;
340	int ret, i;
341	bool handled = false;
342	u32 reg;
343
344	if (chip->handle_pre_irq)
345		chip->handle_pre_irq(chip->irq_drv_data);
346
347	if (chip->runtime_pm) {
348		ret = pm_runtime_get_sync(map->dev);
349		if (ret < 0) {
350			dev_err(map->dev, "IRQ thread failed to resume: %d\n",
351				ret);
352			goto exit;
353		}
354	}
355
356	/*
357	 * Read only registers with active IRQs if the chip has 'main status
358	 * register'. Else read in the statuses, using a single bulk read if
359	 * possible in order to reduce the I/O overheads.
360	 */
361
362	if (chip->no_status) {
363		/* no status register so default to all active */
364		memset32(data->status_buf, GENMASK(31, 0), chip->num_regs);
365	} else if (chip->num_main_regs) {
366		unsigned int max_main_bits;
367		unsigned long size;
368
369		size = chip->num_regs * sizeof(unsigned int);
370
371		max_main_bits = (chip->num_main_status_bits) ?
372				 chip->num_main_status_bits : chip->num_regs;
373		/* Clear the status buf as we don't read all status regs */
374		memset(data->status_buf, 0, size);
375
376		/* We could support bulk read for main status registers
377		 * but I don't expect to see devices with really many main
378		 * status registers so let's only support single reads for the
379		 * sake of simplicity. and add bulk reads only if needed
380		 */
381		for (i = 0; i < chip->num_main_regs; i++) {
382			reg = data->get_irq_reg(data, chip->main_status, i);
383			ret = regmap_read(map, reg, &data->main_status_buf[i]);
384			if (ret) {
385				dev_err(map->dev,
386					"Failed to read IRQ status %d\n",
387					ret);
388				goto exit;
389			}
390		}
391
392		/* Read sub registers with active IRQs */
393		for (i = 0; i < chip->num_main_regs; i++) {
394			unsigned int b;
395			const unsigned long mreg = data->main_status_buf[i];
396
397			for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
398				if (i * map->format.val_bytes * 8 + b >
399				    max_main_bits)
400					break;
401				ret = read_sub_irq_data(data, b);
402
403				if (ret != 0) {
404					dev_err(map->dev,
405						"Failed to read IRQ status %d\n",
406						ret);
407					goto exit;
408				}
409			}
410
411		}
412	} else if (regmap_irq_can_bulk_read_status(data)) {
413
414		u8 *buf8 = data->status_reg_buf;
415		u16 *buf16 = data->status_reg_buf;
416		u32 *buf32 = data->status_reg_buf;
417
418		BUG_ON(!data->status_reg_buf);
419
420		ret = regmap_bulk_read(map, chip->status_base,
421				       data->status_reg_buf,
422				       chip->num_regs);
423		if (ret != 0) {
424			dev_err(map->dev, "Failed to read IRQ status: %d\n",
425				ret);
426			goto exit;
427		}
428
429		for (i = 0; i < data->chip->num_regs; i++) {
430			switch (map->format.val_bytes) {
431			case 1:
432				data->status_buf[i] = buf8[i];
433				break;
434			case 2:
435				data->status_buf[i] = buf16[i];
436				break;
437			case 4:
438				data->status_buf[i] = buf32[i];
439				break;
440			default:
441				BUG();
442				goto exit;
443			}
444		}
445
446	} else {
447		for (i = 0; i < data->chip->num_regs; i++) {
448			unsigned int reg = data->get_irq_reg(data,
449					data->chip->status_base, i);
450			ret = regmap_read(map, reg, &data->status_buf[i]);
451
452			if (ret != 0) {
453				dev_err(map->dev,
454					"Failed to read IRQ status: %d\n",
455					ret);
456				goto exit;
457			}
458		}
459	}
460
461	if (chip->status_invert)
462		for (i = 0; i < data->chip->num_regs; i++)
463			data->status_buf[i] = ~data->status_buf[i];
464
465	/*
466	 * Ignore masked IRQs and ack if we need to; we ack early so
467	 * there is no race between handling and acknowledging the
468	 * interrupt.  We assume that typically few of the interrupts
469	 * will fire simultaneously so don't worry about overhead from
470	 * doing a write per register.
471	 */
472	for (i = 0; i < data->chip->num_regs; i++) {
473		data->status_buf[i] &= ~data->mask_buf[i];
474
475		if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
476			reg = data->get_irq_reg(data, data->chip->ack_base, i);
477
478			if (chip->ack_invert)
479				ret = regmap_write(map, reg,
480						~data->status_buf[i]);
481			else
482				ret = regmap_write(map, reg,
483						data->status_buf[i]);
484			if (chip->clear_ack) {
485				if (chip->ack_invert && !ret)
486					ret = regmap_write(map, reg, UINT_MAX);
487				else if (!ret)
488					ret = regmap_write(map, reg, 0);
489			}
490			if (ret != 0)
491				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
492					reg, ret);
493		}
494	}
495
496	for (i = 0; i < chip->num_irqs; i++) {
497		if (data->status_buf[chip->irqs[i].reg_offset /
498				     map->reg_stride] & chip->irqs[i].mask) {
499			handle_nested_irq(irq_find_mapping(data->domain, i));
500			handled = true;
501		}
502	}
503
504exit:
505	if (chip->handle_post_irq)
506		chip->handle_post_irq(chip->irq_drv_data);
507
508	if (chip->runtime_pm)
509		pm_runtime_put(map->dev);
510
511	if (handled)
512		return IRQ_HANDLED;
513	else
514		return IRQ_NONE;
515}
516
517static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
518			  irq_hw_number_t hw)
519{
520	struct regmap_irq_chip_data *data = h->host_data;
521
522	irq_set_chip_data(virq, data);
523	irq_set_chip(virq, &data->irq_chip);
524	irq_set_nested_thread(virq, 1);
525	irq_set_parent(virq, data->irq);
526	irq_set_noprobe(virq);
527
528	return 0;
529}
530
531static const struct irq_domain_ops regmap_domain_ops = {
532	.map	= regmap_irq_map,
533	.xlate	= irq_domain_xlate_onetwocell,
534};
535
536/**
537 * regmap_irq_get_irq_reg_linear() - Linear IRQ register mapping callback.
538 * @data: Data for the &struct regmap_irq_chip
539 * @base: Base register
540 * @index: Register index
541 *
542 * Returns the register address corresponding to the given @base and @index
543 * by the formula ``base + index * regmap_stride * irq_reg_stride``.
544 */
545unsigned int regmap_irq_get_irq_reg_linear(struct regmap_irq_chip_data *data,
546					   unsigned int base, int index)
547{
548	struct regmap *map = data->map;
549
550	return base + index * map->reg_stride * data->irq_reg_stride;
551}
552EXPORT_SYMBOL_GPL(regmap_irq_get_irq_reg_linear);
553
554/**
555 * regmap_irq_set_type_config_simple() - Simple IRQ type configuration callback.
556 * @buf: Buffer containing configuration register values, this is a 2D array of
557 *       `num_config_bases` rows, each of `num_config_regs` elements.
558 * @type: The requested IRQ type.
559 * @irq_data: The IRQ being configured.
560 * @idx: Index of the irq's config registers within each array `buf[i]`
561 * @irq_drv_data: Driver specific IRQ data
562 *
563 * This is a &struct regmap_irq_chip->set_type_config callback suitable for
564 * chips with one config register. Register values are updated according to
565 * the &struct regmap_irq_type data associated with an IRQ.
566 */
567int regmap_irq_set_type_config_simple(unsigned int **buf, unsigned int type,
568				      const struct regmap_irq *irq_data,
569				      int idx, void *irq_drv_data)
570{
571	const struct regmap_irq_type *t = &irq_data->type;
572
573	if (t->type_reg_mask)
574		buf[0][idx] &= ~t->type_reg_mask;
575	else
576		buf[0][idx] &= ~(t->type_falling_val |
577				 t->type_rising_val |
578				 t->type_level_low_val |
579				 t->type_level_high_val);
580
581	switch (type) {
582	case IRQ_TYPE_EDGE_FALLING:
583		buf[0][idx] |= t->type_falling_val;
584		break;
585
586	case IRQ_TYPE_EDGE_RISING:
587		buf[0][idx] |= t->type_rising_val;
588		break;
589
590	case IRQ_TYPE_EDGE_BOTH:
591		buf[0][idx] |= (t->type_falling_val |
592				t->type_rising_val);
593		break;
594
595	case IRQ_TYPE_LEVEL_HIGH:
596		buf[0][idx] |= t->type_level_high_val;
597		break;
598
599	case IRQ_TYPE_LEVEL_LOW:
600		buf[0][idx] |= t->type_level_low_val;
601		break;
602
603	default:
604		return -EINVAL;
605	}
606
607	return 0;
608}
609EXPORT_SYMBOL_GPL(regmap_irq_set_type_config_simple);
610
611/**
612 * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling
613 *
614 * @fwnode: The firmware node where the IRQ domain should be added to.
615 * @map: The regmap for the device.
616 * @irq: The IRQ the device uses to signal interrupts.
617 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
618 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
619 * @chip: Configuration for the interrupt controller.
620 * @data: Runtime data structure for the controller, allocated on success.
621 *
622 * Returns 0 on success or an errno on failure.
623 *
624 * In order for this to be efficient the chip really should use a
625 * register cache.  The chip driver is responsible for restoring the
626 * register values used by the IRQ controller over suspend and resume.
627 */
628int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode,
629			       struct regmap *map, int irq,
630			       int irq_flags, int irq_base,
631			       const struct regmap_irq_chip *chip,
632			       struct regmap_irq_chip_data **data)
633{
634	struct regmap_irq_chip_data *d;
635	int i;
636	int ret = -ENOMEM;
637	u32 reg;
638
639	if (chip->num_regs <= 0)
640		return -EINVAL;
641
642	if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
643		return -EINVAL;
644
645	if (chip->mask_base && chip->unmask_base && !chip->mask_unmask_non_inverted)
646		return -EINVAL;
647
648	for (i = 0; i < chip->num_irqs; i++) {
649		if (chip->irqs[i].reg_offset % map->reg_stride)
650			return -EINVAL;
651		if (chip->irqs[i].reg_offset / map->reg_stride >=
652		    chip->num_regs)
653			return -EINVAL;
654	}
655
656	if (irq_base) {
657		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
658		if (irq_base < 0) {
659			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
660				 irq_base);
661			return irq_base;
662		}
663	}
664
665	d = kzalloc(sizeof(*d), GFP_KERNEL);
666	if (!d)
667		return -ENOMEM;
668
669	if (chip->num_main_regs) {
670		d->main_status_buf = kcalloc(chip->num_main_regs,
671					     sizeof(*d->main_status_buf),
672					     GFP_KERNEL);
673
674		if (!d->main_status_buf)
675			goto err_alloc;
676	}
677
678	d->status_buf = kcalloc(chip->num_regs, sizeof(*d->status_buf),
679				GFP_KERNEL);
680	if (!d->status_buf)
681		goto err_alloc;
682
683	d->mask_buf = kcalloc(chip->num_regs, sizeof(*d->mask_buf),
684			      GFP_KERNEL);
685	if (!d->mask_buf)
686		goto err_alloc;
687
688	d->mask_buf_def = kcalloc(chip->num_regs, sizeof(*d->mask_buf_def),
689				  GFP_KERNEL);
690	if (!d->mask_buf_def)
691		goto err_alloc;
692
693	if (chip->wake_base) {
694		d->wake_buf = kcalloc(chip->num_regs, sizeof(*d->wake_buf),
695				      GFP_KERNEL);
696		if (!d->wake_buf)
697			goto err_alloc;
698	}
699
700	if (chip->type_in_mask) {
701		d->type_buf_def = kcalloc(chip->num_regs,
702					  sizeof(*d->type_buf_def), GFP_KERNEL);
703		if (!d->type_buf_def)
704			goto err_alloc;
705
706		d->type_buf = kcalloc(chip->num_regs, sizeof(*d->type_buf), GFP_KERNEL);
707		if (!d->type_buf)
708			goto err_alloc;
709	}
710
711	if (chip->num_config_bases && chip->num_config_regs) {
712		/*
713		 * Create config_buf[num_config_bases][num_config_regs]
714		 */
715		d->config_buf = kcalloc(chip->num_config_bases,
716					sizeof(*d->config_buf), GFP_KERNEL);
717		if (!d->config_buf)
718			goto err_alloc;
719
720		for (i = 0; i < chip->num_config_bases; i++) {
721			d->config_buf[i] = kcalloc(chip->num_config_regs,
722						   sizeof(**d->config_buf),
723						   GFP_KERNEL);
724			if (!d->config_buf[i])
725				goto err_alloc;
726		}
727	}
728
729	d->irq_chip = regmap_irq_chip;
730	d->irq_chip.name = chip->name;
731	d->irq = irq;
732	d->map = map;
733	d->chip = chip;
734	d->irq_base = irq_base;
735
736	if (chip->irq_reg_stride)
737		d->irq_reg_stride = chip->irq_reg_stride;
738	else
739		d->irq_reg_stride = 1;
740
741	if (chip->get_irq_reg)
742		d->get_irq_reg = chip->get_irq_reg;
743	else
744		d->get_irq_reg = regmap_irq_get_irq_reg_linear;
745
746	if (regmap_irq_can_bulk_read_status(d)) {
747		d->status_reg_buf = kmalloc_array(chip->num_regs,
748						  map->format.val_bytes,
749						  GFP_KERNEL);
750		if (!d->status_reg_buf)
751			goto err_alloc;
752	}
753
754	mutex_init(&d->lock);
755
756	for (i = 0; i < chip->num_irqs; i++)
757		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
758			|= chip->irqs[i].mask;
759
760	/* Mask all the interrupts by default */
761	for (i = 0; i < chip->num_regs; i++) {
762		d->mask_buf[i] = d->mask_buf_def[i];
763
764		if (chip->handle_mask_sync) {
765			ret = chip->handle_mask_sync(i, d->mask_buf_def[i],
766						     d->mask_buf[i],
767						     chip->irq_drv_data);
768			if (ret)
769				goto err_alloc;
770		}
771
772		if (chip->mask_base && !chip->handle_mask_sync) {
773			reg = d->get_irq_reg(d, chip->mask_base, i);
774			ret = regmap_update_bits(d->map, reg,
775						 d->mask_buf_def[i],
776						 d->mask_buf[i]);
777			if (ret) {
778				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
779					reg, ret);
780				goto err_alloc;
781			}
782		}
783
784		if (chip->unmask_base && !chip->handle_mask_sync) {
785			reg = d->get_irq_reg(d, chip->unmask_base, i);
786			ret = regmap_update_bits(d->map, reg,
787					d->mask_buf_def[i], ~d->mask_buf[i]);
788			if (ret) {
789				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
790					reg, ret);
791				goto err_alloc;
792			}
793		}
794
795		if (!chip->init_ack_masked)
796			continue;
797
798		/* Ack masked but set interrupts */
799		if (d->chip->no_status) {
800			/* no status register so default to all active */
801			d->status_buf[i] = GENMASK(31, 0);
802		} else {
803			reg = d->get_irq_reg(d, d->chip->status_base, i);
804			ret = regmap_read(map, reg, &d->status_buf[i]);
805			if (ret != 0) {
806				dev_err(map->dev, "Failed to read IRQ status: %d\n",
807					ret);
808				goto err_alloc;
809			}
810		}
811
812		if (chip->status_invert)
813			d->status_buf[i] = ~d->status_buf[i];
814
815		if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
816			reg = d->get_irq_reg(d, d->chip->ack_base, i);
817			if (chip->ack_invert)
818				ret = regmap_write(map, reg,
819					~(d->status_buf[i] & d->mask_buf[i]));
820			else
821				ret = regmap_write(map, reg,
822					d->status_buf[i] & d->mask_buf[i]);
823			if (chip->clear_ack) {
824				if (chip->ack_invert && !ret)
825					ret = regmap_write(map, reg, UINT_MAX);
826				else if (!ret)
827					ret = regmap_write(map, reg, 0);
828			}
829			if (ret != 0) {
830				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
831					reg, ret);
832				goto err_alloc;
833			}
834		}
835	}
836
837	/* Wake is disabled by default */
838	if (d->wake_buf) {
839		for (i = 0; i < chip->num_regs; i++) {
840			d->wake_buf[i] = d->mask_buf_def[i];
841			reg = d->get_irq_reg(d, d->chip->wake_base, i);
842
843			if (chip->wake_invert)
844				ret = regmap_update_bits(d->map, reg,
845							 d->mask_buf_def[i],
846							 0);
847			else
848				ret = regmap_update_bits(d->map, reg,
849							 d->mask_buf_def[i],
850							 d->wake_buf[i]);
851			if (ret != 0) {
852				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
853					reg, ret);
854				goto err_alloc;
855			}
856		}
857	}
858
859	if (irq_base)
860		d->domain = irq_domain_create_legacy(fwnode, chip->num_irqs,
861						     irq_base, 0,
862						     &regmap_domain_ops, d);
863	else
864		d->domain = irq_domain_create_linear(fwnode, chip->num_irqs,
865						     &regmap_domain_ops, d);
866	if (!d->domain) {
867		dev_err(map->dev, "Failed to create IRQ domain\n");
868		ret = -ENOMEM;
869		goto err_alloc;
870	}
871
872	ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
873				   irq_flags | IRQF_ONESHOT,
874				   chip->name, d);
875	if (ret != 0) {
876		dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
877			irq, chip->name, ret);
878		goto err_domain;
879	}
880
881	*data = d;
882
883	return 0;
884
885err_domain:
886	/* Should really dispose of the domain but... */
887err_alloc:
888	kfree(d->type_buf);
889	kfree(d->type_buf_def);
890	kfree(d->wake_buf);
891	kfree(d->mask_buf_def);
892	kfree(d->mask_buf);
893	kfree(d->status_buf);
894	kfree(d->status_reg_buf);
895	if (d->config_buf) {
896		for (i = 0; i < chip->num_config_bases; i++)
897			kfree(d->config_buf[i]);
898		kfree(d->config_buf);
899	}
900	kfree(d);
901	return ret;
902}
903EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode);
904
905/**
906 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
907 *
908 * @map: The regmap for the device.
909 * @irq: The IRQ the device uses to signal interrupts.
910 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
911 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
912 * @chip: Configuration for the interrupt controller.
913 * @data: Runtime data structure for the controller, allocated on success.
914 *
915 * Returns 0 on success or an errno on failure.
916 *
917 * This is the same as regmap_add_irq_chip_fwnode, except that the firmware
918 * node of the regmap is used.
919 */
920int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
921			int irq_base, const struct regmap_irq_chip *chip,
922			struct regmap_irq_chip_data **data)
923{
924	return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq,
925					  irq_flags, irq_base, chip, data);
926}
927EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
928
929/**
930 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
931 *
932 * @irq: Primary IRQ for the device
933 * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
934 *
935 * This function also disposes of all mapped IRQs on the chip.
936 */
937void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
938{
939	unsigned int virq;
940	int i, hwirq;
941
942	if (!d)
943		return;
944
945	free_irq(irq, d);
946
947	/* Dispose all virtual irq from irq domain before removing it */
948	for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
949		/* Ignore hwirq if holes in the IRQ list */
950		if (!d->chip->irqs[hwirq].mask)
951			continue;
952
953		/*
954		 * Find the virtual irq of hwirq on chip and if it is
955		 * there then dispose it
956		 */
957		virq = irq_find_mapping(d->domain, hwirq);
958		if (virq)
959			irq_dispose_mapping(virq);
960	}
961
962	irq_domain_remove(d->domain);
963	kfree(d->type_buf);
964	kfree(d->type_buf_def);
965	kfree(d->wake_buf);
966	kfree(d->mask_buf_def);
967	kfree(d->mask_buf);
968	kfree(d->status_reg_buf);
969	kfree(d->status_buf);
970	if (d->config_buf) {
971		for (i = 0; i < d->chip->num_config_bases; i++)
972			kfree(d->config_buf[i]);
973		kfree(d->config_buf);
974	}
975	kfree(d);
976}
977EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
978
979static void devm_regmap_irq_chip_release(struct device *dev, void *res)
980{
981	struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
982
983	regmap_del_irq_chip(d->irq, d);
984}
985
986static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
987
988{
989	struct regmap_irq_chip_data **r = res;
990
991	if (!r || !*r) {
992		WARN_ON(!r || !*r);
993		return 0;
994	}
995	return *r == data;
996}
997
998/**
999 * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode()
1000 *
1001 * @dev: The device pointer on which irq_chip belongs to.
1002 * @fwnode: The firmware node where the IRQ domain should be added to.
1003 * @map: The regmap for the device.
1004 * @irq: The IRQ the device uses to signal interrupts
1005 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1006 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1007 * @chip: Configuration for the interrupt controller.
1008 * @data: Runtime data structure for the controller, allocated on success
1009 *
1010 * Returns 0 on success or an errno on failure.
1011 *
1012 * The &regmap_irq_chip_data will be automatically released when the device is
1013 * unbound.
1014 */
1015int devm_regmap_add_irq_chip_fwnode(struct device *dev,
1016				    struct fwnode_handle *fwnode,
1017				    struct regmap *map, int irq,
1018				    int irq_flags, int irq_base,
1019				    const struct regmap_irq_chip *chip,
1020				    struct regmap_irq_chip_data **data)
1021{
1022	struct regmap_irq_chip_data **ptr, *d;
1023	int ret;
1024
1025	ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
1026			   GFP_KERNEL);
1027	if (!ptr)
1028		return -ENOMEM;
1029
1030	ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base,
1031					 chip, &d);
1032	if (ret < 0) {
1033		devres_free(ptr);
1034		return ret;
1035	}
1036
1037	*ptr = d;
1038	devres_add(dev, ptr);
1039	*data = d;
1040	return 0;
1041}
1042EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode);
1043
1044/**
1045 * devm_regmap_add_irq_chip() - Resource managed regmap_add_irq_chip()
1046 *
1047 * @dev: The device pointer on which irq_chip belongs to.
1048 * @map: The regmap for the device.
1049 * @irq: The IRQ the device uses to signal interrupts
1050 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1051 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1052 * @chip: Configuration for the interrupt controller.
1053 * @data: Runtime data structure for the controller, allocated on success
1054 *
1055 * Returns 0 on success or an errno on failure.
1056 *
1057 * The &regmap_irq_chip_data will be automatically released when the device is
1058 * unbound.
1059 */
1060int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
1061			     int irq_flags, int irq_base,
1062			     const struct regmap_irq_chip *chip,
1063			     struct regmap_irq_chip_data **data)
1064{
1065	return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map,
1066					       irq, irq_flags, irq_base, chip,
1067					       data);
1068}
1069EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
1070
1071/**
1072 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
1073 *
1074 * @dev: Device for which the resource was allocated.
1075 * @irq: Primary IRQ for the device.
1076 * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
1077 *
1078 * A resource managed version of regmap_del_irq_chip().
1079 */
1080void devm_regmap_del_irq_chip(struct device *dev, int irq,
1081			      struct regmap_irq_chip_data *data)
1082{
1083	int rc;
1084
1085	WARN_ON(irq != data->irq);
1086	rc = devres_release(dev, devm_regmap_irq_chip_release,
1087			    devm_regmap_irq_chip_match, data);
1088
1089	if (rc != 0)
1090		WARN_ON(rc);
1091}
1092EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
1093
1094/**
1095 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
1096 *
1097 * @data: regmap irq controller to operate on.
1098 *
1099 * Useful for drivers to request their own IRQs.
1100 */
1101int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
1102{
1103	WARN_ON(!data->irq_base);
1104	return data->irq_base;
1105}
1106EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
1107
1108/**
1109 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1110 *
1111 * @data: regmap irq controller to operate on.
1112 * @irq: index of the interrupt requested in the chip IRQs.
1113 *
1114 * Useful for drivers to request their own IRQs.
1115 */
1116int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
1117{
1118	/* Handle holes in the IRQ list */
1119	if (!data->chip->irqs[irq].mask)
1120		return -EINVAL;
1121
1122	return irq_create_mapping(data->domain, irq);
1123}
1124EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
1125
1126/**
1127 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
1128 *
1129 * @data: regmap_irq controller to operate on.
1130 *
1131 * Useful for drivers to request their own IRQs and for integration
1132 * with subsystems.  For ease of integration NULL is accepted as a
1133 * domain, allowing devices to just call this even if no domain is
1134 * allocated.
1135 */
1136struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
1137{
1138	if (data)
1139		return data->domain;
1140	else
1141		return NULL;
1142}
1143EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
1144