xref: /kernel/linux/linux-6.6/drivers/base/memory.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Memory subsystem support
4 *
5 * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
6 *            Dave Hansen <haveblue@us.ibm.com>
7 *
8 * This file provides the necessary infrastructure to represent
9 * a SPARSEMEM-memory-model system's physical memory in /sysfs.
10 * All arch-independent code that assumes MEMORY_HOTPLUG requires
11 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
12 */
13
14#include <linux/module.h>
15#include <linux/init.h>
16#include <linux/topology.h>
17#include <linux/capability.h>
18#include <linux/device.h>
19#include <linux/memory.h>
20#include <linux/memory_hotplug.h>
21#include <linux/mm.h>
22#include <linux/stat.h>
23#include <linux/slab.h>
24#include <linux/xarray.h>
25
26#include <linux/atomic.h>
27#include <linux/uaccess.h>
28
29#define MEMORY_CLASS_NAME	"memory"
30
31static const char *const online_type_to_str[] = {
32	[MMOP_OFFLINE] = "offline",
33	[MMOP_ONLINE] = "online",
34	[MMOP_ONLINE_KERNEL] = "online_kernel",
35	[MMOP_ONLINE_MOVABLE] = "online_movable",
36};
37
38int mhp_online_type_from_str(const char *str)
39{
40	int i;
41
42	for (i = 0; i < ARRAY_SIZE(online_type_to_str); i++) {
43		if (sysfs_streq(str, online_type_to_str[i]))
44			return i;
45	}
46	return -EINVAL;
47}
48
49#define to_memory_block(dev) container_of(dev, struct memory_block, dev)
50
51static int sections_per_block;
52
53static inline unsigned long memory_block_id(unsigned long section_nr)
54{
55	return section_nr / sections_per_block;
56}
57
58static inline unsigned long pfn_to_block_id(unsigned long pfn)
59{
60	return memory_block_id(pfn_to_section_nr(pfn));
61}
62
63static inline unsigned long phys_to_block_id(unsigned long phys)
64{
65	return pfn_to_block_id(PFN_DOWN(phys));
66}
67
68static int memory_subsys_online(struct device *dev);
69static int memory_subsys_offline(struct device *dev);
70
71static struct bus_type memory_subsys = {
72	.name = MEMORY_CLASS_NAME,
73	.dev_name = MEMORY_CLASS_NAME,
74	.online = memory_subsys_online,
75	.offline = memory_subsys_offline,
76};
77
78/*
79 * Memory blocks are cached in a local radix tree to avoid
80 * a costly linear search for the corresponding device on
81 * the subsystem bus.
82 */
83static DEFINE_XARRAY(memory_blocks);
84
85/*
86 * Memory groups, indexed by memory group id (mgid).
87 */
88static DEFINE_XARRAY_FLAGS(memory_groups, XA_FLAGS_ALLOC);
89#define MEMORY_GROUP_MARK_DYNAMIC	XA_MARK_1
90
91static BLOCKING_NOTIFIER_HEAD(memory_chain);
92
93int register_memory_notifier(struct notifier_block *nb)
94{
95	return blocking_notifier_chain_register(&memory_chain, nb);
96}
97EXPORT_SYMBOL(register_memory_notifier);
98
99void unregister_memory_notifier(struct notifier_block *nb)
100{
101	blocking_notifier_chain_unregister(&memory_chain, nb);
102}
103EXPORT_SYMBOL(unregister_memory_notifier);
104
105static void memory_block_release(struct device *dev)
106{
107	struct memory_block *mem = to_memory_block(dev);
108	/* Verify that the altmap is freed */
109	WARN_ON(mem->altmap);
110	kfree(mem);
111}
112
113unsigned long __weak memory_block_size_bytes(void)
114{
115	return MIN_MEMORY_BLOCK_SIZE;
116}
117EXPORT_SYMBOL_GPL(memory_block_size_bytes);
118
119/* Show the memory block ID, relative to the memory block size */
120static ssize_t phys_index_show(struct device *dev,
121			       struct device_attribute *attr, char *buf)
122{
123	struct memory_block *mem = to_memory_block(dev);
124
125	return sysfs_emit(buf, "%08lx\n", memory_block_id(mem->start_section_nr));
126}
127
128/*
129 * Legacy interface that we cannot remove. Always indicate "removable"
130 * with CONFIG_MEMORY_HOTREMOVE - bad heuristic.
131 */
132static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
133			      char *buf)
134{
135	return sysfs_emit(buf, "%d\n", (int)IS_ENABLED(CONFIG_MEMORY_HOTREMOVE));
136}
137
138/*
139 * online, offline, going offline, etc.
140 */
141static ssize_t state_show(struct device *dev, struct device_attribute *attr,
142			  char *buf)
143{
144	struct memory_block *mem = to_memory_block(dev);
145	const char *output;
146
147	/*
148	 * We can probably put these states in a nice little array
149	 * so that they're not open-coded
150	 */
151	switch (mem->state) {
152	case MEM_ONLINE:
153		output = "online";
154		break;
155	case MEM_OFFLINE:
156		output = "offline";
157		break;
158	case MEM_GOING_OFFLINE:
159		output = "going-offline";
160		break;
161	default:
162		WARN_ON(1);
163		return sysfs_emit(buf, "ERROR-UNKNOWN-%ld\n", mem->state);
164	}
165
166	return sysfs_emit(buf, "%s\n", output);
167}
168
169int memory_notify(unsigned long val, void *v)
170{
171	return blocking_notifier_call_chain(&memory_chain, val, v);
172}
173
174#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
175static unsigned long memblk_nr_poison(struct memory_block *mem);
176#else
177static inline unsigned long memblk_nr_poison(struct memory_block *mem)
178{
179	return 0;
180}
181#endif
182
183/*
184 * Must acquire mem_hotplug_lock in write mode.
185 */
186static int memory_block_online(struct memory_block *mem)
187{
188	unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
189	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
190	unsigned long nr_vmemmap_pages = 0;
191	struct zone *zone;
192	int ret;
193
194	if (memblk_nr_poison(mem))
195		return -EHWPOISON;
196
197	zone = zone_for_pfn_range(mem->online_type, mem->nid, mem->group,
198				  start_pfn, nr_pages);
199
200	/*
201	 * Although vmemmap pages have a different lifecycle than the pages
202	 * they describe (they remain until the memory is unplugged), doing
203	 * their initialization and accounting at memory onlining/offlining
204	 * stage helps to keep accounting easier to follow - e.g vmemmaps
205	 * belong to the same zone as the memory they backed.
206	 */
207	if (mem->altmap)
208		nr_vmemmap_pages = mem->altmap->free;
209
210	mem_hotplug_begin();
211	if (nr_vmemmap_pages) {
212		ret = mhp_init_memmap_on_memory(start_pfn, nr_vmemmap_pages, zone);
213		if (ret)
214			goto out;
215	}
216
217	ret = online_pages(start_pfn + nr_vmemmap_pages,
218			   nr_pages - nr_vmemmap_pages, zone, mem->group);
219	if (ret) {
220		if (nr_vmemmap_pages)
221			mhp_deinit_memmap_on_memory(start_pfn, nr_vmemmap_pages);
222		goto out;
223	}
224
225	/*
226	 * Account once onlining succeeded. If the zone was unpopulated, it is
227	 * now already properly populated.
228	 */
229	if (nr_vmemmap_pages)
230		adjust_present_page_count(pfn_to_page(start_pfn), mem->group,
231					  nr_vmemmap_pages);
232
233	mem->zone = zone;
234out:
235	mem_hotplug_done();
236	return ret;
237}
238
239/*
240 * Must acquire mem_hotplug_lock in write mode.
241 */
242static int memory_block_offline(struct memory_block *mem)
243{
244	unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
245	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
246	unsigned long nr_vmemmap_pages = 0;
247	int ret;
248
249	if (!mem->zone)
250		return -EINVAL;
251
252	/*
253	 * Unaccount before offlining, such that unpopulated zone and kthreads
254	 * can properly be torn down in offline_pages().
255	 */
256	if (mem->altmap)
257		nr_vmemmap_pages = mem->altmap->free;
258
259	mem_hotplug_begin();
260	if (nr_vmemmap_pages)
261		adjust_present_page_count(pfn_to_page(start_pfn), mem->group,
262					  -nr_vmemmap_pages);
263
264	ret = offline_pages(start_pfn + nr_vmemmap_pages,
265			    nr_pages - nr_vmemmap_pages, mem->zone, mem->group);
266	if (ret) {
267		/* offline_pages() failed. Account back. */
268		if (nr_vmemmap_pages)
269			adjust_present_page_count(pfn_to_page(start_pfn),
270						  mem->group, nr_vmemmap_pages);
271		goto out;
272	}
273
274	if (nr_vmemmap_pages)
275		mhp_deinit_memmap_on_memory(start_pfn, nr_vmemmap_pages);
276
277	mem->zone = NULL;
278out:
279	mem_hotplug_done();
280	return ret;
281}
282
283/*
284 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
285 * OK to have direct references to sparsemem variables in here.
286 */
287static int
288memory_block_action(struct memory_block *mem, unsigned long action)
289{
290	int ret;
291
292	switch (action) {
293	case MEM_ONLINE:
294		ret = memory_block_online(mem);
295		break;
296	case MEM_OFFLINE:
297		ret = memory_block_offline(mem);
298		break;
299	default:
300		WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
301		     "%ld\n", __func__, mem->start_section_nr, action, action);
302		ret = -EINVAL;
303	}
304
305	return ret;
306}
307
308static int memory_block_change_state(struct memory_block *mem,
309		unsigned long to_state, unsigned long from_state_req)
310{
311	int ret = 0;
312
313	if (mem->state != from_state_req)
314		return -EINVAL;
315
316	if (to_state == MEM_OFFLINE)
317		mem->state = MEM_GOING_OFFLINE;
318
319	ret = memory_block_action(mem, to_state);
320	mem->state = ret ? from_state_req : to_state;
321
322	return ret;
323}
324
325/* The device lock serializes operations on memory_subsys_[online|offline] */
326static int memory_subsys_online(struct device *dev)
327{
328	struct memory_block *mem = to_memory_block(dev);
329	int ret;
330
331	if (mem->state == MEM_ONLINE)
332		return 0;
333
334	/*
335	 * When called via device_online() without configuring the online_type,
336	 * we want to default to MMOP_ONLINE.
337	 */
338	if (mem->online_type == MMOP_OFFLINE)
339		mem->online_type = MMOP_ONLINE;
340
341	ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
342	mem->online_type = MMOP_OFFLINE;
343
344	return ret;
345}
346
347static int memory_subsys_offline(struct device *dev)
348{
349	struct memory_block *mem = to_memory_block(dev);
350
351	if (mem->state == MEM_OFFLINE)
352		return 0;
353
354	return memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
355}
356
357static ssize_t state_store(struct device *dev, struct device_attribute *attr,
358			   const char *buf, size_t count)
359{
360	const int online_type = mhp_online_type_from_str(buf);
361	struct memory_block *mem = to_memory_block(dev);
362	int ret;
363
364	if (online_type < 0)
365		return -EINVAL;
366
367	ret = lock_device_hotplug_sysfs();
368	if (ret)
369		return ret;
370
371	switch (online_type) {
372	case MMOP_ONLINE_KERNEL:
373	case MMOP_ONLINE_MOVABLE:
374	case MMOP_ONLINE:
375		/* mem->online_type is protected by device_hotplug_lock */
376		mem->online_type = online_type;
377		ret = device_online(&mem->dev);
378		break;
379	case MMOP_OFFLINE:
380		ret = device_offline(&mem->dev);
381		break;
382	default:
383		ret = -EINVAL; /* should never happen */
384	}
385
386	unlock_device_hotplug();
387
388	if (ret < 0)
389		return ret;
390	if (ret)
391		return -EINVAL;
392
393	return count;
394}
395
396/*
397 * Legacy interface that we cannot remove: s390x exposes the storage increment
398 * covered by a memory block, allowing for identifying which memory blocks
399 * comprise a storage increment. Since a memory block spans complete
400 * storage increments nowadays, this interface is basically unused. Other
401 * archs never exposed != 0.
402 */
403static ssize_t phys_device_show(struct device *dev,
404				struct device_attribute *attr, char *buf)
405{
406	struct memory_block *mem = to_memory_block(dev);
407	unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
408
409	return sysfs_emit(buf, "%d\n",
410			  arch_get_memory_phys_device(start_pfn));
411}
412
413#ifdef CONFIG_MEMORY_HOTREMOVE
414static int print_allowed_zone(char *buf, int len, int nid,
415			      struct memory_group *group,
416			      unsigned long start_pfn, unsigned long nr_pages,
417			      int online_type, struct zone *default_zone)
418{
419	struct zone *zone;
420
421	zone = zone_for_pfn_range(online_type, nid, group, start_pfn, nr_pages);
422	if (zone == default_zone)
423		return 0;
424
425	return sysfs_emit_at(buf, len, " %s", zone->name);
426}
427
428static ssize_t valid_zones_show(struct device *dev,
429				struct device_attribute *attr, char *buf)
430{
431	struct memory_block *mem = to_memory_block(dev);
432	unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
433	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
434	struct memory_group *group = mem->group;
435	struct zone *default_zone;
436	int nid = mem->nid;
437	int len = 0;
438
439	/*
440	 * Check the existing zone. Make sure that we do that only on the
441	 * online nodes otherwise the page_zone is not reliable
442	 */
443	if (mem->state == MEM_ONLINE) {
444		/*
445		 * If !mem->zone, the memory block spans multiple zones and
446		 * cannot get offlined.
447		 */
448		default_zone = mem->zone;
449		if (!default_zone)
450			return sysfs_emit(buf, "%s\n", "none");
451		len += sysfs_emit_at(buf, len, "%s", default_zone->name);
452		goto out;
453	}
454
455	default_zone = zone_for_pfn_range(MMOP_ONLINE, nid, group,
456					  start_pfn, nr_pages);
457
458	len += sysfs_emit_at(buf, len, "%s", default_zone->name);
459	len += print_allowed_zone(buf, len, nid, group, start_pfn, nr_pages,
460				  MMOP_ONLINE_KERNEL, default_zone);
461	len += print_allowed_zone(buf, len, nid, group, start_pfn, nr_pages,
462				  MMOP_ONLINE_MOVABLE, default_zone);
463out:
464	len += sysfs_emit_at(buf, len, "\n");
465	return len;
466}
467static DEVICE_ATTR_RO(valid_zones);
468#endif
469
470static DEVICE_ATTR_RO(phys_index);
471static DEVICE_ATTR_RW(state);
472static DEVICE_ATTR_RO(phys_device);
473static DEVICE_ATTR_RO(removable);
474
475/*
476 * Show the memory block size (shared by all memory blocks).
477 */
478static ssize_t block_size_bytes_show(struct device *dev,
479				     struct device_attribute *attr, char *buf)
480{
481	return sysfs_emit(buf, "%lx\n", memory_block_size_bytes());
482}
483
484static DEVICE_ATTR_RO(block_size_bytes);
485
486/*
487 * Memory auto online policy.
488 */
489
490static ssize_t auto_online_blocks_show(struct device *dev,
491				       struct device_attribute *attr, char *buf)
492{
493	return sysfs_emit(buf, "%s\n",
494			  online_type_to_str[mhp_default_online_type]);
495}
496
497static ssize_t auto_online_blocks_store(struct device *dev,
498					struct device_attribute *attr,
499					const char *buf, size_t count)
500{
501	const int online_type = mhp_online_type_from_str(buf);
502
503	if (online_type < 0)
504		return -EINVAL;
505
506	mhp_default_online_type = online_type;
507	return count;
508}
509
510static DEVICE_ATTR_RW(auto_online_blocks);
511
512#ifdef CONFIG_CRASH_HOTPLUG
513#include <linux/kexec.h>
514static ssize_t crash_hotplug_show(struct device *dev,
515				       struct device_attribute *attr, char *buf)
516{
517	return sysfs_emit(buf, "%d\n", crash_hotplug_memory_support());
518}
519static DEVICE_ATTR_RO(crash_hotplug);
520#endif
521
522/*
523 * Some architectures will have custom drivers to do this, and
524 * will not need to do it from userspace.  The fake hot-add code
525 * as well as ppc64 will do all of their discovery in userspace
526 * and will require this interface.
527 */
528#ifdef CONFIG_ARCH_MEMORY_PROBE
529static ssize_t probe_store(struct device *dev, struct device_attribute *attr,
530			   const char *buf, size_t count)
531{
532	u64 phys_addr;
533	int nid, ret;
534	unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
535
536	ret = kstrtoull(buf, 0, &phys_addr);
537	if (ret)
538		return ret;
539
540	if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
541		return -EINVAL;
542
543	ret = lock_device_hotplug_sysfs();
544	if (ret)
545		return ret;
546
547	nid = memory_add_physaddr_to_nid(phys_addr);
548	ret = __add_memory(nid, phys_addr,
549			   MIN_MEMORY_BLOCK_SIZE * sections_per_block,
550			   MHP_NONE);
551
552	if (ret)
553		goto out;
554
555	ret = count;
556out:
557	unlock_device_hotplug();
558	return ret;
559}
560
561static DEVICE_ATTR_WO(probe);
562#endif
563
564#ifdef CONFIG_MEMORY_FAILURE
565/*
566 * Support for offlining pages of memory
567 */
568
569/* Soft offline a page */
570static ssize_t soft_offline_page_store(struct device *dev,
571				       struct device_attribute *attr,
572				       const char *buf, size_t count)
573{
574	int ret;
575	u64 pfn;
576	if (!capable(CAP_SYS_ADMIN))
577		return -EPERM;
578	if (kstrtoull(buf, 0, &pfn) < 0)
579		return -EINVAL;
580	pfn >>= PAGE_SHIFT;
581	ret = soft_offline_page(pfn, 0);
582	return ret == 0 ? count : ret;
583}
584
585/* Forcibly offline a page, including killing processes. */
586static ssize_t hard_offline_page_store(struct device *dev,
587				       struct device_attribute *attr,
588				       const char *buf, size_t count)
589{
590	int ret;
591	u64 pfn;
592	if (!capable(CAP_SYS_ADMIN))
593		return -EPERM;
594	if (kstrtoull(buf, 0, &pfn) < 0)
595		return -EINVAL;
596	pfn >>= PAGE_SHIFT;
597	ret = memory_failure(pfn, MF_SW_SIMULATED);
598	if (ret == -EOPNOTSUPP)
599		ret = 0;
600	return ret ? ret : count;
601}
602
603static DEVICE_ATTR_WO(soft_offline_page);
604static DEVICE_ATTR_WO(hard_offline_page);
605#endif
606
607/* See phys_device_show(). */
608int __weak arch_get_memory_phys_device(unsigned long start_pfn)
609{
610	return 0;
611}
612
613/*
614 * A reference for the returned memory block device is acquired.
615 *
616 * Called under device_hotplug_lock.
617 */
618static struct memory_block *find_memory_block_by_id(unsigned long block_id)
619{
620	struct memory_block *mem;
621
622	mem = xa_load(&memory_blocks, block_id);
623	if (mem)
624		get_device(&mem->dev);
625	return mem;
626}
627
628/*
629 * Called under device_hotplug_lock.
630 */
631struct memory_block *find_memory_block(unsigned long section_nr)
632{
633	unsigned long block_id = memory_block_id(section_nr);
634
635	return find_memory_block_by_id(block_id);
636}
637
638static struct attribute *memory_memblk_attrs[] = {
639	&dev_attr_phys_index.attr,
640	&dev_attr_state.attr,
641	&dev_attr_phys_device.attr,
642	&dev_attr_removable.attr,
643#ifdef CONFIG_MEMORY_HOTREMOVE
644	&dev_attr_valid_zones.attr,
645#endif
646	NULL
647};
648
649static const struct attribute_group memory_memblk_attr_group = {
650	.attrs = memory_memblk_attrs,
651};
652
653static const struct attribute_group *memory_memblk_attr_groups[] = {
654	&memory_memblk_attr_group,
655	NULL,
656};
657
658static int __add_memory_block(struct memory_block *memory)
659{
660	int ret;
661
662	memory->dev.bus = &memory_subsys;
663	memory->dev.id = memory->start_section_nr / sections_per_block;
664	memory->dev.release = memory_block_release;
665	memory->dev.groups = memory_memblk_attr_groups;
666	memory->dev.offline = memory->state == MEM_OFFLINE;
667
668	ret = device_register(&memory->dev);
669	if (ret) {
670		put_device(&memory->dev);
671		return ret;
672	}
673	ret = xa_err(xa_store(&memory_blocks, memory->dev.id, memory,
674			      GFP_KERNEL));
675	if (ret)
676		device_unregister(&memory->dev);
677
678	return ret;
679}
680
681static struct zone *early_node_zone_for_memory_block(struct memory_block *mem,
682						     int nid)
683{
684	const unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
685	const unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
686	struct zone *zone, *matching_zone = NULL;
687	pg_data_t *pgdat = NODE_DATA(nid);
688	int i;
689
690	/*
691	 * This logic only works for early memory, when the applicable zones
692	 * already span the memory block. We don't expect overlapping zones on
693	 * a single node for early memory. So if we're told that some PFNs
694	 * of a node fall into this memory block, we can assume that all node
695	 * zones that intersect with the memory block are actually applicable.
696	 * No need to look at the memmap.
697	 */
698	for (i = 0; i < MAX_NR_ZONES; i++) {
699		zone = pgdat->node_zones + i;
700		if (!populated_zone(zone))
701			continue;
702		if (!zone_intersects(zone, start_pfn, nr_pages))
703			continue;
704		if (!matching_zone) {
705			matching_zone = zone;
706			continue;
707		}
708		/* Spans multiple zones ... */
709		matching_zone = NULL;
710		break;
711	}
712	return matching_zone;
713}
714
715#ifdef CONFIG_NUMA
716/**
717 * memory_block_add_nid() - Indicate that system RAM falling into this memory
718 *			    block device (partially) belongs to the given node.
719 * @mem: The memory block device.
720 * @nid: The node id.
721 * @context: The memory initialization context.
722 *
723 * Indicate that system RAM falling into this memory block (partially) belongs
724 * to the given node. If the context indicates ("early") that we are adding the
725 * node during node device subsystem initialization, this will also properly
726 * set/adjust mem->zone based on the zone ranges of the given node.
727 */
728void memory_block_add_nid(struct memory_block *mem, int nid,
729			  enum meminit_context context)
730{
731	if (context == MEMINIT_EARLY && mem->nid != nid) {
732		/*
733		 * For early memory we have to determine the zone when setting
734		 * the node id and handle multiple nodes spanning a single
735		 * memory block by indicate via zone == NULL that we're not
736		 * dealing with a single zone. So if we're setting the node id
737		 * the first time, determine if there is a single zone. If we're
738		 * setting the node id a second time to a different node,
739		 * invalidate the single detected zone.
740		 */
741		if (mem->nid == NUMA_NO_NODE)
742			mem->zone = early_node_zone_for_memory_block(mem, nid);
743		else
744			mem->zone = NULL;
745	}
746
747	/*
748	 * If this memory block spans multiple nodes, we only indicate
749	 * the last processed node. If we span multiple nodes (not applicable
750	 * to hotplugged memory), zone == NULL will prohibit memory offlining
751	 * and consequently unplug.
752	 */
753	mem->nid = nid;
754}
755#endif
756
757static int add_memory_block(unsigned long block_id, unsigned long state,
758			    struct vmem_altmap *altmap,
759			    struct memory_group *group)
760{
761	struct memory_block *mem;
762	int ret = 0;
763
764	mem = find_memory_block_by_id(block_id);
765	if (mem) {
766		put_device(&mem->dev);
767		return -EEXIST;
768	}
769	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
770	if (!mem)
771		return -ENOMEM;
772
773	mem->start_section_nr = block_id * sections_per_block;
774	mem->state = state;
775	mem->nid = NUMA_NO_NODE;
776	mem->altmap = altmap;
777	INIT_LIST_HEAD(&mem->group_next);
778
779#ifndef CONFIG_NUMA
780	if (state == MEM_ONLINE)
781		/*
782		 * MEM_ONLINE at this point implies early memory. With NUMA,
783		 * we'll determine the zone when setting the node id via
784		 * memory_block_add_nid(). Memory hotplug updated the zone
785		 * manually when memory onlining/offlining succeeds.
786		 */
787		mem->zone = early_node_zone_for_memory_block(mem, NUMA_NO_NODE);
788#endif /* CONFIG_NUMA */
789
790	ret = __add_memory_block(mem);
791	if (ret)
792		return ret;
793
794	if (group) {
795		mem->group = group;
796		list_add(&mem->group_next, &group->memory_blocks);
797	}
798
799	return 0;
800}
801
802static int __init add_boot_memory_block(unsigned long base_section_nr)
803{
804	int section_count = 0;
805	unsigned long nr;
806
807	for (nr = base_section_nr; nr < base_section_nr + sections_per_block;
808	     nr++)
809		if (present_section_nr(nr))
810			section_count++;
811
812	if (section_count == 0)
813		return 0;
814	return add_memory_block(memory_block_id(base_section_nr),
815				MEM_ONLINE, NULL,  NULL);
816}
817
818static int add_hotplug_memory_block(unsigned long block_id,
819				    struct vmem_altmap *altmap,
820				    struct memory_group *group)
821{
822	return add_memory_block(block_id, MEM_OFFLINE, altmap, group);
823}
824
825static void remove_memory_block(struct memory_block *memory)
826{
827	if (WARN_ON_ONCE(memory->dev.bus != &memory_subsys))
828		return;
829
830	WARN_ON(xa_erase(&memory_blocks, memory->dev.id) == NULL);
831
832	if (memory->group) {
833		list_del(&memory->group_next);
834		memory->group = NULL;
835	}
836
837	/* drop the ref. we got via find_memory_block() */
838	put_device(&memory->dev);
839	device_unregister(&memory->dev);
840}
841
842/*
843 * Create memory block devices for the given memory area. Start and size
844 * have to be aligned to memory block granularity. Memory block devices
845 * will be initialized as offline.
846 *
847 * Called under device_hotplug_lock.
848 */
849int create_memory_block_devices(unsigned long start, unsigned long size,
850				struct vmem_altmap *altmap,
851				struct memory_group *group)
852{
853	const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start));
854	unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size));
855	struct memory_block *mem;
856	unsigned long block_id;
857	int ret = 0;
858
859	if (WARN_ON_ONCE(!IS_ALIGNED(start, memory_block_size_bytes()) ||
860			 !IS_ALIGNED(size, memory_block_size_bytes())))
861		return -EINVAL;
862
863	for (block_id = start_block_id; block_id != end_block_id; block_id++) {
864		ret = add_hotplug_memory_block(block_id, altmap, group);
865		if (ret)
866			break;
867	}
868	if (ret) {
869		end_block_id = block_id;
870		for (block_id = start_block_id; block_id != end_block_id;
871		     block_id++) {
872			mem = find_memory_block_by_id(block_id);
873			if (WARN_ON_ONCE(!mem))
874				continue;
875			remove_memory_block(mem);
876		}
877	}
878	return ret;
879}
880
881/*
882 * Remove memory block devices for the given memory area. Start and size
883 * have to be aligned to memory block granularity. Memory block devices
884 * have to be offline.
885 *
886 * Called under device_hotplug_lock.
887 */
888void remove_memory_block_devices(unsigned long start, unsigned long size)
889{
890	const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start));
891	const unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size));
892	struct memory_block *mem;
893	unsigned long block_id;
894
895	if (WARN_ON_ONCE(!IS_ALIGNED(start, memory_block_size_bytes()) ||
896			 !IS_ALIGNED(size, memory_block_size_bytes())))
897		return;
898
899	for (block_id = start_block_id; block_id != end_block_id; block_id++) {
900		mem = find_memory_block_by_id(block_id);
901		if (WARN_ON_ONCE(!mem))
902			continue;
903		num_poisoned_pages_sub(-1UL, memblk_nr_poison(mem));
904		unregister_memory_block_under_nodes(mem);
905		remove_memory_block(mem);
906	}
907}
908
909static struct attribute *memory_root_attrs[] = {
910#ifdef CONFIG_ARCH_MEMORY_PROBE
911	&dev_attr_probe.attr,
912#endif
913
914#ifdef CONFIG_MEMORY_FAILURE
915	&dev_attr_soft_offline_page.attr,
916	&dev_attr_hard_offline_page.attr,
917#endif
918
919	&dev_attr_block_size_bytes.attr,
920	&dev_attr_auto_online_blocks.attr,
921#ifdef CONFIG_CRASH_HOTPLUG
922	&dev_attr_crash_hotplug.attr,
923#endif
924	NULL
925};
926
927static const struct attribute_group memory_root_attr_group = {
928	.attrs = memory_root_attrs,
929};
930
931static const struct attribute_group *memory_root_attr_groups[] = {
932	&memory_root_attr_group,
933	NULL,
934};
935
936/*
937 * Initialize the sysfs support for memory devices. At the time this function
938 * is called, we cannot have concurrent creation/deletion of memory block
939 * devices, the device_hotplug_lock is not needed.
940 */
941void __init memory_dev_init(void)
942{
943	int ret;
944	unsigned long block_sz, nr;
945
946	/* Validate the configured memory block size */
947	block_sz = memory_block_size_bytes();
948	if (!is_power_of_2(block_sz) || block_sz < MIN_MEMORY_BLOCK_SIZE)
949		panic("Memory block size not suitable: 0x%lx\n", block_sz);
950	sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
951
952	ret = subsys_system_register(&memory_subsys, memory_root_attr_groups);
953	if (ret)
954		panic("%s() failed to register subsystem: %d\n", __func__, ret);
955
956	/*
957	 * Create entries for memory sections that were found
958	 * during boot and have been initialized
959	 */
960	for (nr = 0; nr <= __highest_present_section_nr;
961	     nr += sections_per_block) {
962		ret = add_boot_memory_block(nr);
963		if (ret)
964			panic("%s() failed to add memory block: %d\n", __func__,
965			      ret);
966	}
967}
968
969/**
970 * walk_memory_blocks - walk through all present memory blocks overlapped
971 *			by the range [start, start + size)
972 *
973 * @start: start address of the memory range
974 * @size: size of the memory range
975 * @arg: argument passed to func
976 * @func: callback for each memory section walked
977 *
978 * This function walks through all present memory blocks overlapped by the
979 * range [start, start + size), calling func on each memory block.
980 *
981 * In case func() returns an error, walking is aborted and the error is
982 * returned.
983 *
984 * Called under device_hotplug_lock.
985 */
986int walk_memory_blocks(unsigned long start, unsigned long size,
987		       void *arg, walk_memory_blocks_func_t func)
988{
989	const unsigned long start_block_id = phys_to_block_id(start);
990	const unsigned long end_block_id = phys_to_block_id(start + size - 1);
991	struct memory_block *mem;
992	unsigned long block_id;
993	int ret = 0;
994
995	if (!size)
996		return 0;
997
998	for (block_id = start_block_id; block_id <= end_block_id; block_id++) {
999		mem = find_memory_block_by_id(block_id);
1000		if (!mem)
1001			continue;
1002
1003		ret = func(mem, arg);
1004		put_device(&mem->dev);
1005		if (ret)
1006			break;
1007	}
1008	return ret;
1009}
1010
1011struct for_each_memory_block_cb_data {
1012	walk_memory_blocks_func_t func;
1013	void *arg;
1014};
1015
1016static int for_each_memory_block_cb(struct device *dev, void *data)
1017{
1018	struct memory_block *mem = to_memory_block(dev);
1019	struct for_each_memory_block_cb_data *cb_data = data;
1020
1021	return cb_data->func(mem, cb_data->arg);
1022}
1023
1024/**
1025 * for_each_memory_block - walk through all present memory blocks
1026 *
1027 * @arg: argument passed to func
1028 * @func: callback for each memory block walked
1029 *
1030 * This function walks through all present memory blocks, calling func on
1031 * each memory block.
1032 *
1033 * In case func() returns an error, walking is aborted and the error is
1034 * returned.
1035 */
1036int for_each_memory_block(void *arg, walk_memory_blocks_func_t func)
1037{
1038	struct for_each_memory_block_cb_data cb_data = {
1039		.func = func,
1040		.arg = arg,
1041	};
1042
1043	return bus_for_each_dev(&memory_subsys, NULL, &cb_data,
1044				for_each_memory_block_cb);
1045}
1046
1047/*
1048 * This is an internal helper to unify allocation and initialization of
1049 * memory groups. Note that the passed memory group will be copied to a
1050 * dynamically allocated memory group. After this call, the passed
1051 * memory group should no longer be used.
1052 */
1053static int memory_group_register(struct memory_group group)
1054{
1055	struct memory_group *new_group;
1056	uint32_t mgid;
1057	int ret;
1058
1059	if (!node_possible(group.nid))
1060		return -EINVAL;
1061
1062	new_group = kzalloc(sizeof(group), GFP_KERNEL);
1063	if (!new_group)
1064		return -ENOMEM;
1065	*new_group = group;
1066	INIT_LIST_HEAD(&new_group->memory_blocks);
1067
1068	ret = xa_alloc(&memory_groups, &mgid, new_group, xa_limit_31b,
1069		       GFP_KERNEL);
1070	if (ret) {
1071		kfree(new_group);
1072		return ret;
1073	} else if (group.is_dynamic) {
1074		xa_set_mark(&memory_groups, mgid, MEMORY_GROUP_MARK_DYNAMIC);
1075	}
1076	return mgid;
1077}
1078
1079/**
1080 * memory_group_register_static() - Register a static memory group.
1081 * @nid: The node id.
1082 * @max_pages: The maximum number of pages we'll have in this static memory
1083 *	       group.
1084 *
1085 * Register a new static memory group and return the memory group id.
1086 * All memory in the group belongs to a single unit, such as a DIMM. All
1087 * memory belonging to a static memory group is added in one go to be removed
1088 * in one go -- it's static.
1089 *
1090 * Returns an error if out of memory, if the node id is invalid, if no new
1091 * memory groups can be registered, or if max_pages is invalid (0). Otherwise,
1092 * returns the new memory group id.
1093 */
1094int memory_group_register_static(int nid, unsigned long max_pages)
1095{
1096	struct memory_group group = {
1097		.nid = nid,
1098		.s = {
1099			.max_pages = max_pages,
1100		},
1101	};
1102
1103	if (!max_pages)
1104		return -EINVAL;
1105	return memory_group_register(group);
1106}
1107EXPORT_SYMBOL_GPL(memory_group_register_static);
1108
1109/**
1110 * memory_group_register_dynamic() - Register a dynamic memory group.
1111 * @nid: The node id.
1112 * @unit_pages: Unit in pages in which is memory added/removed in this dynamic
1113 *		memory group.
1114 *
1115 * Register a new dynamic memory group and return the memory group id.
1116 * Memory within a dynamic memory group is added/removed dynamically
1117 * in unit_pages.
1118 *
1119 * Returns an error if out of memory, if the node id is invalid, if no new
1120 * memory groups can be registered, or if unit_pages is invalid (0, not a
1121 * power of two, smaller than a single memory block). Otherwise, returns the
1122 * new memory group id.
1123 */
1124int memory_group_register_dynamic(int nid, unsigned long unit_pages)
1125{
1126	struct memory_group group = {
1127		.nid = nid,
1128		.is_dynamic = true,
1129		.d = {
1130			.unit_pages = unit_pages,
1131		},
1132	};
1133
1134	if (!unit_pages || !is_power_of_2(unit_pages) ||
1135	    unit_pages < PHYS_PFN(memory_block_size_bytes()))
1136		return -EINVAL;
1137	return memory_group_register(group);
1138}
1139EXPORT_SYMBOL_GPL(memory_group_register_dynamic);
1140
1141/**
1142 * memory_group_unregister() - Unregister a memory group.
1143 * @mgid: the memory group id
1144 *
1145 * Unregister a memory group. If any memory block still belongs to this
1146 * memory group, unregistering will fail.
1147 *
1148 * Returns -EINVAL if the memory group id is invalid, returns -EBUSY if some
1149 * memory blocks still belong to this memory group and returns 0 if
1150 * unregistering succeeded.
1151 */
1152int memory_group_unregister(int mgid)
1153{
1154	struct memory_group *group;
1155
1156	if (mgid < 0)
1157		return -EINVAL;
1158
1159	group = xa_load(&memory_groups, mgid);
1160	if (!group)
1161		return -EINVAL;
1162	if (!list_empty(&group->memory_blocks))
1163		return -EBUSY;
1164	xa_erase(&memory_groups, mgid);
1165	kfree(group);
1166	return 0;
1167}
1168EXPORT_SYMBOL_GPL(memory_group_unregister);
1169
1170/*
1171 * This is an internal helper only to be used in core memory hotplug code to
1172 * lookup a memory group. We don't care about locking, as we don't expect a
1173 * memory group to get unregistered while adding memory to it -- because
1174 * the group and the memory is managed by the same driver.
1175 */
1176struct memory_group *memory_group_find_by_id(int mgid)
1177{
1178	return xa_load(&memory_groups, mgid);
1179}
1180
1181/*
1182 * This is an internal helper only to be used in core memory hotplug code to
1183 * walk all dynamic memory groups excluding a given memory group, either
1184 * belonging to a specific node, or belonging to any node.
1185 */
1186int walk_dynamic_memory_groups(int nid, walk_memory_groups_func_t func,
1187			       struct memory_group *excluded, void *arg)
1188{
1189	struct memory_group *group;
1190	unsigned long index;
1191	int ret = 0;
1192
1193	xa_for_each_marked(&memory_groups, index, group,
1194			   MEMORY_GROUP_MARK_DYNAMIC) {
1195		if (group == excluded)
1196			continue;
1197#ifdef CONFIG_NUMA
1198		if (nid != NUMA_NO_NODE && group->nid != nid)
1199			continue;
1200#endif /* CONFIG_NUMA */
1201		ret = func(group, arg);
1202		if (ret)
1203			break;
1204	}
1205	return ret;
1206}
1207
1208#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
1209void memblk_nr_poison_inc(unsigned long pfn)
1210{
1211	const unsigned long block_id = pfn_to_block_id(pfn);
1212	struct memory_block *mem = find_memory_block_by_id(block_id);
1213
1214	if (mem)
1215		atomic_long_inc(&mem->nr_hwpoison);
1216}
1217
1218void memblk_nr_poison_sub(unsigned long pfn, long i)
1219{
1220	const unsigned long block_id = pfn_to_block_id(pfn);
1221	struct memory_block *mem = find_memory_block_by_id(block_id);
1222
1223	if (mem)
1224		atomic_long_sub(i, &mem->nr_hwpoison);
1225}
1226
1227static unsigned long memblk_nr_poison(struct memory_block *mem)
1228{
1229	return atomic_long_read(&mem->nr_hwpoison);
1230}
1231#endif
1232