1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *  libata-core.c - helper library for ATA
4 *
5 *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
6 *  Copyright 2003-2004 Jeff Garzik
7 *
8 *  libata documentation is available via 'make {ps|pdf}docs',
9 *  as Documentation/driver-api/libata.rst
10 *
11 *  Hardware documentation available from http://www.t13.org/ and
12 *  http://www.sata-io.org/
13 *
14 *  Standards documents from:
15 *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
16 *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
17 *	http://www.sata-io.org (SATA)
18 *	http://www.compactflash.org (CF)
19 *	http://www.qic.org (QIC157 - Tape and DSC)
20 *	http://www.ce-ata.org (CE-ATA: not supported)
21 *
22 * libata is essentially a library of internal helper functions for
23 * low-level ATA host controller drivers.  As such, the API/ABI is
24 * likely to change as new drivers are added and updated.
25 * Do not depend on ABI/API stability.
26 */
27
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/pci.h>
31#include <linux/init.h>
32#include <linux/list.h>
33#include <linux/mm.h>
34#include <linux/spinlock.h>
35#include <linux/blkdev.h>
36#include <linux/delay.h>
37#include <linux/timer.h>
38#include <linux/time.h>
39#include <linux/interrupt.h>
40#include <linux/completion.h>
41#include <linux/suspend.h>
42#include <linux/workqueue.h>
43#include <linux/scatterlist.h>
44#include <linux/io.h>
45#include <linux/log2.h>
46#include <linux/slab.h>
47#include <linux/glob.h>
48#include <scsi/scsi.h>
49#include <scsi/scsi_cmnd.h>
50#include <scsi/scsi_host.h>
51#include <linux/libata.h>
52#include <asm/byteorder.h>
53#include <asm/unaligned.h>
54#include <linux/cdrom.h>
55#include <linux/ratelimit.h>
56#include <linux/leds.h>
57#include <linux/pm_runtime.h>
58#include <linux/platform_device.h>
59#include <asm/setup.h>
60
61#define CREATE_TRACE_POINTS
62#include <trace/events/libata.h>
63
64#include "libata.h"
65#include "libata-transport.h"
66
67const struct ata_port_operations ata_base_port_ops = {
68	.prereset		= ata_std_prereset,
69	.postreset		= ata_std_postreset,
70	.error_handler		= ata_std_error_handler,
71	.sched_eh		= ata_std_sched_eh,
72	.end_eh			= ata_std_end_eh,
73};
74
75const struct ata_port_operations sata_port_ops = {
76	.inherits		= &ata_base_port_ops,
77
78	.qc_defer		= ata_std_qc_defer,
79	.hardreset		= sata_std_hardreset,
80};
81EXPORT_SYMBOL_GPL(sata_port_ops);
82
83static unsigned int ata_dev_init_params(struct ata_device *dev,
84					u16 heads, u16 sectors);
85static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
86static void ata_dev_xfermask(struct ata_device *dev);
87static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
88
89atomic_t ata_print_id = ATOMIC_INIT(0);
90
91#ifdef CONFIG_ATA_FORCE
92struct ata_force_param {
93	const char	*name;
94	u8		cbl;
95	u8		spd_limit;
96	unsigned int	xfer_mask;
97	unsigned int	horkage_on;
98	unsigned int	horkage_off;
99	u16		lflags_on;
100	u16		lflags_off;
101};
102
103struct ata_force_ent {
104	int			port;
105	int			device;
106	struct ata_force_param	param;
107};
108
109static struct ata_force_ent *ata_force_tbl;
110static int ata_force_tbl_size;
111
112static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata;
113/* param_buf is thrown away after initialization, disallow read */
114module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
115MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
116#endif
117
118static int atapi_enabled = 1;
119module_param(atapi_enabled, int, 0444);
120MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
121
122static int atapi_dmadir = 0;
123module_param(atapi_dmadir, int, 0444);
124MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
125
126int atapi_passthru16 = 1;
127module_param(atapi_passthru16, int, 0444);
128MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
129
130int libata_fua = 0;
131module_param_named(fua, libata_fua, int, 0444);
132MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
133
134static int ata_ignore_hpa;
135module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
136MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
137
138static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
139module_param_named(dma, libata_dma_mask, int, 0444);
140MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
141
142static int ata_probe_timeout;
143module_param(ata_probe_timeout, int, 0444);
144MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
145
146int libata_noacpi = 0;
147module_param_named(noacpi, libata_noacpi, int, 0444);
148MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
149
150int libata_allow_tpm = 0;
151module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
152MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
153
154static int atapi_an;
155module_param(atapi_an, int, 0444);
156MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
157
158MODULE_AUTHOR("Jeff Garzik");
159MODULE_DESCRIPTION("Library module for ATA devices");
160MODULE_LICENSE("GPL");
161MODULE_VERSION(DRV_VERSION);
162
163static inline bool ata_dev_print_info(struct ata_device *dev)
164{
165	struct ata_eh_context *ehc = &dev->link->eh_context;
166
167	return ehc->i.flags & ATA_EHI_PRINTINFO;
168}
169
170static bool ata_sstatus_online(u32 sstatus)
171{
172	return (sstatus & 0xf) == 0x3;
173}
174
175/**
176 *	ata_link_next - link iteration helper
177 *	@link: the previous link, NULL to start
178 *	@ap: ATA port containing links to iterate
179 *	@mode: iteration mode, one of ATA_LITER_*
180 *
181 *	LOCKING:
182 *	Host lock or EH context.
183 *
184 *	RETURNS:
185 *	Pointer to the next link.
186 */
187struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
188			       enum ata_link_iter_mode mode)
189{
190	BUG_ON(mode != ATA_LITER_EDGE &&
191	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
192
193	/* NULL link indicates start of iteration */
194	if (!link)
195		switch (mode) {
196		case ATA_LITER_EDGE:
197		case ATA_LITER_PMP_FIRST:
198			if (sata_pmp_attached(ap))
199				return ap->pmp_link;
200			fallthrough;
201		case ATA_LITER_HOST_FIRST:
202			return &ap->link;
203		}
204
205	/* we just iterated over the host link, what's next? */
206	if (link == &ap->link)
207		switch (mode) {
208		case ATA_LITER_HOST_FIRST:
209			if (sata_pmp_attached(ap))
210				return ap->pmp_link;
211			fallthrough;
212		case ATA_LITER_PMP_FIRST:
213			if (unlikely(ap->slave_link))
214				return ap->slave_link;
215			fallthrough;
216		case ATA_LITER_EDGE:
217			return NULL;
218		}
219
220	/* slave_link excludes PMP */
221	if (unlikely(link == ap->slave_link))
222		return NULL;
223
224	/* we were over a PMP link */
225	if (++link < ap->pmp_link + ap->nr_pmp_links)
226		return link;
227
228	if (mode == ATA_LITER_PMP_FIRST)
229		return &ap->link;
230
231	return NULL;
232}
233EXPORT_SYMBOL_GPL(ata_link_next);
234
235/**
236 *	ata_dev_next - device iteration helper
237 *	@dev: the previous device, NULL to start
238 *	@link: ATA link containing devices to iterate
239 *	@mode: iteration mode, one of ATA_DITER_*
240 *
241 *	LOCKING:
242 *	Host lock or EH context.
243 *
244 *	RETURNS:
245 *	Pointer to the next device.
246 */
247struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
248				enum ata_dev_iter_mode mode)
249{
250	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
251	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
252
253	/* NULL dev indicates start of iteration */
254	if (!dev)
255		switch (mode) {
256		case ATA_DITER_ENABLED:
257		case ATA_DITER_ALL:
258			dev = link->device;
259			goto check;
260		case ATA_DITER_ENABLED_REVERSE:
261		case ATA_DITER_ALL_REVERSE:
262			dev = link->device + ata_link_max_devices(link) - 1;
263			goto check;
264		}
265
266 next:
267	/* move to the next one */
268	switch (mode) {
269	case ATA_DITER_ENABLED:
270	case ATA_DITER_ALL:
271		if (++dev < link->device + ata_link_max_devices(link))
272			goto check;
273		return NULL;
274	case ATA_DITER_ENABLED_REVERSE:
275	case ATA_DITER_ALL_REVERSE:
276		if (--dev >= link->device)
277			goto check;
278		return NULL;
279	}
280
281 check:
282	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
283	    !ata_dev_enabled(dev))
284		goto next;
285	return dev;
286}
287EXPORT_SYMBOL_GPL(ata_dev_next);
288
289/**
290 *	ata_dev_phys_link - find physical link for a device
291 *	@dev: ATA device to look up physical link for
292 *
293 *	Look up physical link which @dev is attached to.  Note that
294 *	this is different from @dev->link only when @dev is on slave
295 *	link.  For all other cases, it's the same as @dev->link.
296 *
297 *	LOCKING:
298 *	Don't care.
299 *
300 *	RETURNS:
301 *	Pointer to the found physical link.
302 */
303struct ata_link *ata_dev_phys_link(struct ata_device *dev)
304{
305	struct ata_port *ap = dev->link->ap;
306
307	if (!ap->slave_link)
308		return dev->link;
309	if (!dev->devno)
310		return &ap->link;
311	return ap->slave_link;
312}
313
314#ifdef CONFIG_ATA_FORCE
315/**
316 *	ata_force_cbl - force cable type according to libata.force
317 *	@ap: ATA port of interest
318 *
319 *	Force cable type according to libata.force and whine about it.
320 *	The last entry which has matching port number is used, so it
321 *	can be specified as part of device force parameters.  For
322 *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
323 *	same effect.
324 *
325 *	LOCKING:
326 *	EH context.
327 */
328void ata_force_cbl(struct ata_port *ap)
329{
330	int i;
331
332	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
333		const struct ata_force_ent *fe = &ata_force_tbl[i];
334
335		if (fe->port != -1 && fe->port != ap->print_id)
336			continue;
337
338		if (fe->param.cbl == ATA_CBL_NONE)
339			continue;
340
341		ap->cbl = fe->param.cbl;
342		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
343		return;
344	}
345}
346
347/**
348 *	ata_force_link_limits - force link limits according to libata.force
349 *	@link: ATA link of interest
350 *
351 *	Force link flags and SATA spd limit according to libata.force
352 *	and whine about it.  When only the port part is specified
353 *	(e.g. 1:), the limit applies to all links connected to both
354 *	the host link and all fan-out ports connected via PMP.  If the
355 *	device part is specified as 0 (e.g. 1.00:), it specifies the
356 *	first fan-out link not the host link.  Device number 15 always
357 *	points to the host link whether PMP is attached or not.  If the
358 *	controller has slave link, device number 16 points to it.
359 *
360 *	LOCKING:
361 *	EH context.
362 */
363static void ata_force_link_limits(struct ata_link *link)
364{
365	bool did_spd = false;
366	int linkno = link->pmp;
367	int i;
368
369	if (ata_is_host_link(link))
370		linkno += 15;
371
372	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
373		const struct ata_force_ent *fe = &ata_force_tbl[i];
374
375		if (fe->port != -1 && fe->port != link->ap->print_id)
376			continue;
377
378		if (fe->device != -1 && fe->device != linkno)
379			continue;
380
381		/* only honor the first spd limit */
382		if (!did_spd && fe->param.spd_limit) {
383			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
384			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
385					fe->param.name);
386			did_spd = true;
387		}
388
389		/* let lflags stack */
390		if (fe->param.lflags_on) {
391			link->flags |= fe->param.lflags_on;
392			ata_link_notice(link,
393					"FORCE: link flag 0x%x forced -> 0x%x\n",
394					fe->param.lflags_on, link->flags);
395		}
396		if (fe->param.lflags_off) {
397			link->flags &= ~fe->param.lflags_off;
398			ata_link_notice(link,
399				"FORCE: link flag 0x%x cleared -> 0x%x\n",
400				fe->param.lflags_off, link->flags);
401		}
402	}
403}
404
405/**
406 *	ata_force_xfermask - force xfermask according to libata.force
407 *	@dev: ATA device of interest
408 *
409 *	Force xfer_mask according to libata.force and whine about it.
410 *	For consistency with link selection, device number 15 selects
411 *	the first device connected to the host link.
412 *
413 *	LOCKING:
414 *	EH context.
415 */
416static void ata_force_xfermask(struct ata_device *dev)
417{
418	int devno = dev->link->pmp + dev->devno;
419	int alt_devno = devno;
420	int i;
421
422	/* allow n.15/16 for devices attached to host port */
423	if (ata_is_host_link(dev->link))
424		alt_devno += 15;
425
426	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
427		const struct ata_force_ent *fe = &ata_force_tbl[i];
428		unsigned int pio_mask, mwdma_mask, udma_mask;
429
430		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
431			continue;
432
433		if (fe->device != -1 && fe->device != devno &&
434		    fe->device != alt_devno)
435			continue;
436
437		if (!fe->param.xfer_mask)
438			continue;
439
440		ata_unpack_xfermask(fe->param.xfer_mask,
441				    &pio_mask, &mwdma_mask, &udma_mask);
442		if (udma_mask)
443			dev->udma_mask = udma_mask;
444		else if (mwdma_mask) {
445			dev->udma_mask = 0;
446			dev->mwdma_mask = mwdma_mask;
447		} else {
448			dev->udma_mask = 0;
449			dev->mwdma_mask = 0;
450			dev->pio_mask = pio_mask;
451		}
452
453		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
454			       fe->param.name);
455		return;
456	}
457}
458
459/**
460 *	ata_force_horkage - force horkage according to libata.force
461 *	@dev: ATA device of interest
462 *
463 *	Force horkage according to libata.force and whine about it.
464 *	For consistency with link selection, device number 15 selects
465 *	the first device connected to the host link.
466 *
467 *	LOCKING:
468 *	EH context.
469 */
470static void ata_force_horkage(struct ata_device *dev)
471{
472	int devno = dev->link->pmp + dev->devno;
473	int alt_devno = devno;
474	int i;
475
476	/* allow n.15/16 for devices attached to host port */
477	if (ata_is_host_link(dev->link))
478		alt_devno += 15;
479
480	for (i = 0; i < ata_force_tbl_size; i++) {
481		const struct ata_force_ent *fe = &ata_force_tbl[i];
482
483		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
484			continue;
485
486		if (fe->device != -1 && fe->device != devno &&
487		    fe->device != alt_devno)
488			continue;
489
490		if (!(~dev->horkage & fe->param.horkage_on) &&
491		    !(dev->horkage & fe->param.horkage_off))
492			continue;
493
494		dev->horkage |= fe->param.horkage_on;
495		dev->horkage &= ~fe->param.horkage_off;
496
497		ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
498			       fe->param.name);
499	}
500}
501#else
502static inline void ata_force_link_limits(struct ata_link *link) { }
503static inline void ata_force_xfermask(struct ata_device *dev) { }
504static inline void ata_force_horkage(struct ata_device *dev) { }
505#endif
506
507/**
508 *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
509 *	@opcode: SCSI opcode
510 *
511 *	Determine ATAPI command type from @opcode.
512 *
513 *	LOCKING:
514 *	None.
515 *
516 *	RETURNS:
517 *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
518 */
519int atapi_cmd_type(u8 opcode)
520{
521	switch (opcode) {
522	case GPCMD_READ_10:
523	case GPCMD_READ_12:
524		return ATAPI_READ;
525
526	case GPCMD_WRITE_10:
527	case GPCMD_WRITE_12:
528	case GPCMD_WRITE_AND_VERIFY_10:
529		return ATAPI_WRITE;
530
531	case GPCMD_READ_CD:
532	case GPCMD_READ_CD_MSF:
533		return ATAPI_READ_CD;
534
535	case ATA_16:
536	case ATA_12:
537		if (atapi_passthru16)
538			return ATAPI_PASS_THRU;
539		fallthrough;
540	default:
541		return ATAPI_MISC;
542	}
543}
544EXPORT_SYMBOL_GPL(atapi_cmd_type);
545
546static const u8 ata_rw_cmds[] = {
547	/* pio multi */
548	ATA_CMD_READ_MULTI,
549	ATA_CMD_WRITE_MULTI,
550	ATA_CMD_READ_MULTI_EXT,
551	ATA_CMD_WRITE_MULTI_EXT,
552	0,
553	0,
554	0,
555	0,
556	/* pio */
557	ATA_CMD_PIO_READ,
558	ATA_CMD_PIO_WRITE,
559	ATA_CMD_PIO_READ_EXT,
560	ATA_CMD_PIO_WRITE_EXT,
561	0,
562	0,
563	0,
564	0,
565	/* dma */
566	ATA_CMD_READ,
567	ATA_CMD_WRITE,
568	ATA_CMD_READ_EXT,
569	ATA_CMD_WRITE_EXT,
570	0,
571	0,
572	0,
573	ATA_CMD_WRITE_FUA_EXT
574};
575
576/**
577 *	ata_set_rwcmd_protocol - set taskfile r/w command and protocol
578 *	@dev: target device for the taskfile
579 *	@tf: taskfile to examine and configure
580 *
581 *	Examine the device configuration and tf->flags to determine
582 *	the proper read/write command and protocol to use for @tf.
583 *
584 *	LOCKING:
585 *	caller.
586 */
587static bool ata_set_rwcmd_protocol(struct ata_device *dev,
588				   struct ata_taskfile *tf)
589{
590	u8 cmd;
591
592	int index, fua, lba48, write;
593
594	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
595	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
596	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
597
598	if (dev->flags & ATA_DFLAG_PIO) {
599		tf->protocol = ATA_PROT_PIO;
600		index = dev->multi_count ? 0 : 8;
601	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
602		/* Unable to use DMA due to host limitation */
603		tf->protocol = ATA_PROT_PIO;
604		index = dev->multi_count ? 0 : 8;
605	} else {
606		tf->protocol = ATA_PROT_DMA;
607		index = 16;
608	}
609
610	cmd = ata_rw_cmds[index + fua + lba48 + write];
611	if (!cmd)
612		return false;
613
614	tf->command = cmd;
615
616	return true;
617}
618
619/**
620 *	ata_tf_read_block - Read block address from ATA taskfile
621 *	@tf: ATA taskfile of interest
622 *	@dev: ATA device @tf belongs to
623 *
624 *	LOCKING:
625 *	None.
626 *
627 *	Read block address from @tf.  This function can handle all
628 *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
629 *	flags select the address format to use.
630 *
631 *	RETURNS:
632 *	Block address read from @tf.
633 */
634u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
635{
636	u64 block = 0;
637
638	if (tf->flags & ATA_TFLAG_LBA) {
639		if (tf->flags & ATA_TFLAG_LBA48) {
640			block |= (u64)tf->hob_lbah << 40;
641			block |= (u64)tf->hob_lbam << 32;
642			block |= (u64)tf->hob_lbal << 24;
643		} else
644			block |= (tf->device & 0xf) << 24;
645
646		block |= tf->lbah << 16;
647		block |= tf->lbam << 8;
648		block |= tf->lbal;
649	} else {
650		u32 cyl, head, sect;
651
652		cyl = tf->lbam | (tf->lbah << 8);
653		head = tf->device & 0xf;
654		sect = tf->lbal;
655
656		if (!sect) {
657			ata_dev_warn(dev,
658				     "device reported invalid CHS sector 0\n");
659			return U64_MAX;
660		}
661
662		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
663	}
664
665	return block;
666}
667
668/*
669 * Set a taskfile command duration limit index.
670 */
671static inline void ata_set_tf_cdl(struct ata_queued_cmd *qc, int cdl)
672{
673	struct ata_taskfile *tf = &qc->tf;
674
675	if (tf->protocol == ATA_PROT_NCQ)
676		tf->auxiliary |= cdl;
677	else
678		tf->feature |= cdl;
679
680	/*
681	 * Mark this command as having a CDL and request the result
682	 * task file so that we can inspect the sense data available
683	 * bit on completion.
684	 */
685	qc->flags |= ATA_QCFLAG_HAS_CDL | ATA_QCFLAG_RESULT_TF;
686}
687
688/**
689 *	ata_build_rw_tf - Build ATA taskfile for given read/write request
690 *	@qc: Metadata associated with the taskfile to build
691 *	@block: Block address
692 *	@n_block: Number of blocks
693 *	@tf_flags: RW/FUA etc...
694 *	@cdl: Command duration limit index
695 *	@class: IO priority class
696 *
697 *	LOCKING:
698 *	None.
699 *
700 *	Build ATA taskfile for the command @qc for read/write request described
701 *	by @block, @n_block, @tf_flags and @class.
702 *
703 *	RETURNS:
704 *
705 *	0 on success, -ERANGE if the request is too large for @dev,
706 *	-EINVAL if the request is invalid.
707 */
708int ata_build_rw_tf(struct ata_queued_cmd *qc, u64 block, u32 n_block,
709		    unsigned int tf_flags, int cdl, int class)
710{
711	struct ata_taskfile *tf = &qc->tf;
712	struct ata_device *dev = qc->dev;
713
714	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
715	tf->flags |= tf_flags;
716
717	if (ata_ncq_enabled(dev)) {
718		/* yay, NCQ */
719		if (!lba_48_ok(block, n_block))
720			return -ERANGE;
721
722		tf->protocol = ATA_PROT_NCQ;
723		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
724
725		if (tf->flags & ATA_TFLAG_WRITE)
726			tf->command = ATA_CMD_FPDMA_WRITE;
727		else
728			tf->command = ATA_CMD_FPDMA_READ;
729
730		tf->nsect = qc->hw_tag << 3;
731		tf->hob_feature = (n_block >> 8) & 0xff;
732		tf->feature = n_block & 0xff;
733
734		tf->hob_lbah = (block >> 40) & 0xff;
735		tf->hob_lbam = (block >> 32) & 0xff;
736		tf->hob_lbal = (block >> 24) & 0xff;
737		tf->lbah = (block >> 16) & 0xff;
738		tf->lbam = (block >> 8) & 0xff;
739		tf->lbal = block & 0xff;
740
741		tf->device = ATA_LBA;
742		if (tf->flags & ATA_TFLAG_FUA)
743			tf->device |= 1 << 7;
744
745		if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLED &&
746		    class == IOPRIO_CLASS_RT)
747			tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO;
748
749		if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl)
750			ata_set_tf_cdl(qc, cdl);
751
752	} else if (dev->flags & ATA_DFLAG_LBA) {
753		tf->flags |= ATA_TFLAG_LBA;
754
755		if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl)
756			ata_set_tf_cdl(qc, cdl);
757
758		/* Both FUA writes and a CDL index require 48-bit commands */
759		if (!(tf->flags & ATA_TFLAG_FUA) &&
760		    !(qc->flags & ATA_QCFLAG_HAS_CDL) &&
761		    lba_28_ok(block, n_block)) {
762			/* use LBA28 */
763			tf->device |= (block >> 24) & 0xf;
764		} else if (lba_48_ok(block, n_block)) {
765			if (!(dev->flags & ATA_DFLAG_LBA48))
766				return -ERANGE;
767
768			/* use LBA48 */
769			tf->flags |= ATA_TFLAG_LBA48;
770
771			tf->hob_nsect = (n_block >> 8) & 0xff;
772
773			tf->hob_lbah = (block >> 40) & 0xff;
774			tf->hob_lbam = (block >> 32) & 0xff;
775			tf->hob_lbal = (block >> 24) & 0xff;
776		} else {
777			/* request too large even for LBA48 */
778			return -ERANGE;
779		}
780
781		if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
782			return -EINVAL;
783
784		tf->nsect = n_block & 0xff;
785
786		tf->lbah = (block >> 16) & 0xff;
787		tf->lbam = (block >> 8) & 0xff;
788		tf->lbal = block & 0xff;
789
790		tf->device |= ATA_LBA;
791	} else {
792		/* CHS */
793		u32 sect, head, cyl, track;
794
795		/* The request -may- be too large for CHS addressing. */
796		if (!lba_28_ok(block, n_block))
797			return -ERANGE;
798
799		if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
800			return -EINVAL;
801
802		/* Convert LBA to CHS */
803		track = (u32)block / dev->sectors;
804		cyl   = track / dev->heads;
805		head  = track % dev->heads;
806		sect  = (u32)block % dev->sectors + 1;
807
808		/* Check whether the converted CHS can fit.
809		   Cylinder: 0-65535
810		   Head: 0-15
811		   Sector: 1-255*/
812		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
813			return -ERANGE;
814
815		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
816		tf->lbal = sect;
817		tf->lbam = cyl;
818		tf->lbah = cyl >> 8;
819		tf->device |= head;
820	}
821
822	return 0;
823}
824
825/**
826 *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
827 *	@pio_mask: pio_mask
828 *	@mwdma_mask: mwdma_mask
829 *	@udma_mask: udma_mask
830 *
831 *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
832 *	unsigned int xfer_mask.
833 *
834 *	LOCKING:
835 *	None.
836 *
837 *	RETURNS:
838 *	Packed xfer_mask.
839 */
840unsigned int ata_pack_xfermask(unsigned int pio_mask,
841			       unsigned int mwdma_mask,
842			       unsigned int udma_mask)
843{
844	return	((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
845		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
846		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
847}
848EXPORT_SYMBOL_GPL(ata_pack_xfermask);
849
850/**
851 *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
852 *	@xfer_mask: xfer_mask to unpack
853 *	@pio_mask: resulting pio_mask
854 *	@mwdma_mask: resulting mwdma_mask
855 *	@udma_mask: resulting udma_mask
856 *
857 *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
858 *	Any NULL destination masks will be ignored.
859 */
860void ata_unpack_xfermask(unsigned int xfer_mask, unsigned int *pio_mask,
861			 unsigned int *mwdma_mask, unsigned int *udma_mask)
862{
863	if (pio_mask)
864		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
865	if (mwdma_mask)
866		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
867	if (udma_mask)
868		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
869}
870
871static const struct ata_xfer_ent {
872	int shift, bits;
873	u8 base;
874} ata_xfer_tbl[] = {
875	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
876	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
877	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
878	{ -1, },
879};
880
881/**
882 *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
883 *	@xfer_mask: xfer_mask of interest
884 *
885 *	Return matching XFER_* value for @xfer_mask.  Only the highest
886 *	bit of @xfer_mask is considered.
887 *
888 *	LOCKING:
889 *	None.
890 *
891 *	RETURNS:
892 *	Matching XFER_* value, 0xff if no match found.
893 */
894u8 ata_xfer_mask2mode(unsigned int xfer_mask)
895{
896	int highbit = fls(xfer_mask) - 1;
897	const struct ata_xfer_ent *ent;
898
899	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
900		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
901			return ent->base + highbit - ent->shift;
902	return 0xff;
903}
904EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
905
906/**
907 *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
908 *	@xfer_mode: XFER_* of interest
909 *
910 *	Return matching xfer_mask for @xfer_mode.
911 *
912 *	LOCKING:
913 *	None.
914 *
915 *	RETURNS:
916 *	Matching xfer_mask, 0 if no match found.
917 */
918unsigned int ata_xfer_mode2mask(u8 xfer_mode)
919{
920	const struct ata_xfer_ent *ent;
921
922	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
923		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
924			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
925				& ~((1 << ent->shift) - 1);
926	return 0;
927}
928EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
929
930/**
931 *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
932 *	@xfer_mode: XFER_* of interest
933 *
934 *	Return matching xfer_shift for @xfer_mode.
935 *
936 *	LOCKING:
937 *	None.
938 *
939 *	RETURNS:
940 *	Matching xfer_shift, -1 if no match found.
941 */
942int ata_xfer_mode2shift(u8 xfer_mode)
943{
944	const struct ata_xfer_ent *ent;
945
946	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
947		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
948			return ent->shift;
949	return -1;
950}
951EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
952
953/**
954 *	ata_mode_string - convert xfer_mask to string
955 *	@xfer_mask: mask of bits supported; only highest bit counts.
956 *
957 *	Determine string which represents the highest speed
958 *	(highest bit in @modemask).
959 *
960 *	LOCKING:
961 *	None.
962 *
963 *	RETURNS:
964 *	Constant C string representing highest speed listed in
965 *	@mode_mask, or the constant C string "<n/a>".
966 */
967const char *ata_mode_string(unsigned int xfer_mask)
968{
969	static const char * const xfer_mode_str[] = {
970		"PIO0",
971		"PIO1",
972		"PIO2",
973		"PIO3",
974		"PIO4",
975		"PIO5",
976		"PIO6",
977		"MWDMA0",
978		"MWDMA1",
979		"MWDMA2",
980		"MWDMA3",
981		"MWDMA4",
982		"UDMA/16",
983		"UDMA/25",
984		"UDMA/33",
985		"UDMA/44",
986		"UDMA/66",
987		"UDMA/100",
988		"UDMA/133",
989		"UDMA7",
990	};
991	int highbit;
992
993	highbit = fls(xfer_mask) - 1;
994	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
995		return xfer_mode_str[highbit];
996	return "<n/a>";
997}
998EXPORT_SYMBOL_GPL(ata_mode_string);
999
1000const char *sata_spd_string(unsigned int spd)
1001{
1002	static const char * const spd_str[] = {
1003		"1.5 Gbps",
1004		"3.0 Gbps",
1005		"6.0 Gbps",
1006	};
1007
1008	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1009		return "<unknown>";
1010	return spd_str[spd - 1];
1011}
1012
1013/**
1014 *	ata_dev_classify - determine device type based on ATA-spec signature
1015 *	@tf: ATA taskfile register set for device to be identified
1016 *
1017 *	Determine from taskfile register contents whether a device is
1018 *	ATA or ATAPI, as per "Signature and persistence" section
1019 *	of ATA/PI spec (volume 1, sect 5.14).
1020 *
1021 *	LOCKING:
1022 *	None.
1023 *
1024 *	RETURNS:
1025 *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1026 *	%ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1027 */
1028unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1029{
1030	/* Apple's open source Darwin code hints that some devices only
1031	 * put a proper signature into the LBA mid/high registers,
1032	 * So, we only check those.  It's sufficient for uniqueness.
1033	 *
1034	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1035	 * signatures for ATA and ATAPI devices attached on SerialATA,
1036	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1037	 * spec has never mentioned about using different signatures
1038	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1039	 * Multiplier specification began to use 0x69/0x96 to identify
1040	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1041	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1042	 * 0x69/0x96 shortly and described them as reserved for
1043	 * SerialATA.
1044	 *
1045	 * We follow the current spec and consider that 0x69/0x96
1046	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1047	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1048	 * SEMB signature.  This is worked around in
1049	 * ata_dev_read_id().
1050	 */
1051	if (tf->lbam == 0 && tf->lbah == 0)
1052		return ATA_DEV_ATA;
1053
1054	if (tf->lbam == 0x14 && tf->lbah == 0xeb)
1055		return ATA_DEV_ATAPI;
1056
1057	if (tf->lbam == 0x69 && tf->lbah == 0x96)
1058		return ATA_DEV_PMP;
1059
1060	if (tf->lbam == 0x3c && tf->lbah == 0xc3)
1061		return ATA_DEV_SEMB;
1062
1063	if (tf->lbam == 0xcd && tf->lbah == 0xab)
1064		return ATA_DEV_ZAC;
1065
1066	return ATA_DEV_UNKNOWN;
1067}
1068EXPORT_SYMBOL_GPL(ata_dev_classify);
1069
1070/**
1071 *	ata_id_string - Convert IDENTIFY DEVICE page into string
1072 *	@id: IDENTIFY DEVICE results we will examine
1073 *	@s: string into which data is output
1074 *	@ofs: offset into identify device page
1075 *	@len: length of string to return. must be an even number.
1076 *
1077 *	The strings in the IDENTIFY DEVICE page are broken up into
1078 *	16-bit chunks.  Run through the string, and output each
1079 *	8-bit chunk linearly, regardless of platform.
1080 *
1081 *	LOCKING:
1082 *	caller.
1083 */
1084
1085void ata_id_string(const u16 *id, unsigned char *s,
1086		   unsigned int ofs, unsigned int len)
1087{
1088	unsigned int c;
1089
1090	BUG_ON(len & 1);
1091
1092	while (len > 0) {
1093		c = id[ofs] >> 8;
1094		*s = c;
1095		s++;
1096
1097		c = id[ofs] & 0xff;
1098		*s = c;
1099		s++;
1100
1101		ofs++;
1102		len -= 2;
1103	}
1104}
1105EXPORT_SYMBOL_GPL(ata_id_string);
1106
1107/**
1108 *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1109 *	@id: IDENTIFY DEVICE results we will examine
1110 *	@s: string into which data is output
1111 *	@ofs: offset into identify device page
1112 *	@len: length of string to return. must be an odd number.
1113 *
1114 *	This function is identical to ata_id_string except that it
1115 *	trims trailing spaces and terminates the resulting string with
1116 *	null.  @len must be actual maximum length (even number) + 1.
1117 *
1118 *	LOCKING:
1119 *	caller.
1120 */
1121void ata_id_c_string(const u16 *id, unsigned char *s,
1122		     unsigned int ofs, unsigned int len)
1123{
1124	unsigned char *p;
1125
1126	ata_id_string(id, s, ofs, len - 1);
1127
1128	p = s + strnlen(s, len - 1);
1129	while (p > s && p[-1] == ' ')
1130		p--;
1131	*p = '\0';
1132}
1133EXPORT_SYMBOL_GPL(ata_id_c_string);
1134
1135static u64 ata_id_n_sectors(const u16 *id)
1136{
1137	if (ata_id_has_lba(id)) {
1138		if (ata_id_has_lba48(id))
1139			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1140
1141		return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1142	}
1143
1144	if (ata_id_current_chs_valid(id))
1145		return (u32)id[ATA_ID_CUR_CYLS] * (u32)id[ATA_ID_CUR_HEADS] *
1146		       (u32)id[ATA_ID_CUR_SECTORS];
1147
1148	return (u32)id[ATA_ID_CYLS] * (u32)id[ATA_ID_HEADS] *
1149	       (u32)id[ATA_ID_SECTORS];
1150}
1151
1152u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1153{
1154	u64 sectors = 0;
1155
1156	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1157	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1158	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1159	sectors |= (tf->lbah & 0xff) << 16;
1160	sectors |= (tf->lbam & 0xff) << 8;
1161	sectors |= (tf->lbal & 0xff);
1162
1163	return sectors;
1164}
1165
1166u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1167{
1168	u64 sectors = 0;
1169
1170	sectors |= (tf->device & 0x0f) << 24;
1171	sectors |= (tf->lbah & 0xff) << 16;
1172	sectors |= (tf->lbam & 0xff) << 8;
1173	sectors |= (tf->lbal & 0xff);
1174
1175	return sectors;
1176}
1177
1178/**
1179 *	ata_read_native_max_address - Read native max address
1180 *	@dev: target device
1181 *	@max_sectors: out parameter for the result native max address
1182 *
1183 *	Perform an LBA48 or LBA28 native size query upon the device in
1184 *	question.
1185 *
1186 *	RETURNS:
1187 *	0 on success, -EACCES if command is aborted by the drive.
1188 *	-EIO on other errors.
1189 */
1190static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1191{
1192	unsigned int err_mask;
1193	struct ata_taskfile tf;
1194	int lba48 = ata_id_has_lba48(dev->id);
1195
1196	ata_tf_init(dev, &tf);
1197
1198	/* always clear all address registers */
1199	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1200
1201	if (lba48) {
1202		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1203		tf.flags |= ATA_TFLAG_LBA48;
1204	} else
1205		tf.command = ATA_CMD_READ_NATIVE_MAX;
1206
1207	tf.protocol = ATA_PROT_NODATA;
1208	tf.device |= ATA_LBA;
1209
1210	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1211	if (err_mask) {
1212		ata_dev_warn(dev,
1213			     "failed to read native max address (err_mask=0x%x)\n",
1214			     err_mask);
1215		if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
1216			return -EACCES;
1217		return -EIO;
1218	}
1219
1220	if (lba48)
1221		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1222	else
1223		*max_sectors = ata_tf_to_lba(&tf) + 1;
1224	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1225		(*max_sectors)--;
1226	return 0;
1227}
1228
1229/**
1230 *	ata_set_max_sectors - Set max sectors
1231 *	@dev: target device
1232 *	@new_sectors: new max sectors value to set for the device
1233 *
1234 *	Set max sectors of @dev to @new_sectors.
1235 *
1236 *	RETURNS:
1237 *	0 on success, -EACCES if command is aborted or denied (due to
1238 *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1239 *	errors.
1240 */
1241static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1242{
1243	unsigned int err_mask;
1244	struct ata_taskfile tf;
1245	int lba48 = ata_id_has_lba48(dev->id);
1246
1247	new_sectors--;
1248
1249	ata_tf_init(dev, &tf);
1250
1251	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1252
1253	if (lba48) {
1254		tf.command = ATA_CMD_SET_MAX_EXT;
1255		tf.flags |= ATA_TFLAG_LBA48;
1256
1257		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1258		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1259		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1260	} else {
1261		tf.command = ATA_CMD_SET_MAX;
1262
1263		tf.device |= (new_sectors >> 24) & 0xf;
1264	}
1265
1266	tf.protocol = ATA_PROT_NODATA;
1267	tf.device |= ATA_LBA;
1268
1269	tf.lbal = (new_sectors >> 0) & 0xff;
1270	tf.lbam = (new_sectors >> 8) & 0xff;
1271	tf.lbah = (new_sectors >> 16) & 0xff;
1272
1273	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1274	if (err_mask) {
1275		ata_dev_warn(dev,
1276			     "failed to set max address (err_mask=0x%x)\n",
1277			     err_mask);
1278		if (err_mask == AC_ERR_DEV &&
1279		    (tf.error & (ATA_ABORTED | ATA_IDNF)))
1280			return -EACCES;
1281		return -EIO;
1282	}
1283
1284	return 0;
1285}
1286
1287/**
1288 *	ata_hpa_resize		-	Resize a device with an HPA set
1289 *	@dev: Device to resize
1290 *
1291 *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1292 *	it if required to the full size of the media. The caller must check
1293 *	the drive has the HPA feature set enabled.
1294 *
1295 *	RETURNS:
1296 *	0 on success, -errno on failure.
1297 */
1298static int ata_hpa_resize(struct ata_device *dev)
1299{
1300	bool print_info = ata_dev_print_info(dev);
1301	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1302	u64 sectors = ata_id_n_sectors(dev->id);
1303	u64 native_sectors;
1304	int rc;
1305
1306	/* do we need to do it? */
1307	if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1308	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1309	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1310		return 0;
1311
1312	/* read native max address */
1313	rc = ata_read_native_max_address(dev, &native_sectors);
1314	if (rc) {
1315		/* If device aborted the command or HPA isn't going to
1316		 * be unlocked, skip HPA resizing.
1317		 */
1318		if (rc == -EACCES || !unlock_hpa) {
1319			ata_dev_warn(dev,
1320				     "HPA support seems broken, skipping HPA handling\n");
1321			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1322
1323			/* we can continue if device aborted the command */
1324			if (rc == -EACCES)
1325				rc = 0;
1326		}
1327
1328		return rc;
1329	}
1330	dev->n_native_sectors = native_sectors;
1331
1332	/* nothing to do? */
1333	if (native_sectors <= sectors || !unlock_hpa) {
1334		if (!print_info || native_sectors == sectors)
1335			return 0;
1336
1337		if (native_sectors > sectors)
1338			ata_dev_info(dev,
1339				"HPA detected: current %llu, native %llu\n",
1340				(unsigned long long)sectors,
1341				(unsigned long long)native_sectors);
1342		else if (native_sectors < sectors)
1343			ata_dev_warn(dev,
1344				"native sectors (%llu) is smaller than sectors (%llu)\n",
1345				(unsigned long long)native_sectors,
1346				(unsigned long long)sectors);
1347		return 0;
1348	}
1349
1350	/* let's unlock HPA */
1351	rc = ata_set_max_sectors(dev, native_sectors);
1352	if (rc == -EACCES) {
1353		/* if device aborted the command, skip HPA resizing */
1354		ata_dev_warn(dev,
1355			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1356			     (unsigned long long)sectors,
1357			     (unsigned long long)native_sectors);
1358		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1359		return 0;
1360	} else if (rc)
1361		return rc;
1362
1363	/* re-read IDENTIFY data */
1364	rc = ata_dev_reread_id(dev, 0);
1365	if (rc) {
1366		ata_dev_err(dev,
1367			    "failed to re-read IDENTIFY data after HPA resizing\n");
1368		return rc;
1369	}
1370
1371	if (print_info) {
1372		u64 new_sectors = ata_id_n_sectors(dev->id);
1373		ata_dev_info(dev,
1374			"HPA unlocked: %llu -> %llu, native %llu\n",
1375			(unsigned long long)sectors,
1376			(unsigned long long)new_sectors,
1377			(unsigned long long)native_sectors);
1378	}
1379
1380	return 0;
1381}
1382
1383/**
1384 *	ata_dump_id - IDENTIFY DEVICE info debugging output
1385 *	@dev: device from which the information is fetched
1386 *	@id: IDENTIFY DEVICE page to dump
1387 *
1388 *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1389 *	page.
1390 *
1391 *	LOCKING:
1392 *	caller.
1393 */
1394
1395static inline void ata_dump_id(struct ata_device *dev, const u16 *id)
1396{
1397	ata_dev_dbg(dev,
1398		"49==0x%04x  53==0x%04x  63==0x%04x  64==0x%04x  75==0x%04x\n"
1399		"80==0x%04x  81==0x%04x  82==0x%04x  83==0x%04x  84==0x%04x\n"
1400		"88==0x%04x  93==0x%04x\n",
1401		id[49], id[53], id[63], id[64], id[75], id[80],
1402		id[81], id[82], id[83], id[84], id[88], id[93]);
1403}
1404
1405/**
1406 *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1407 *	@id: IDENTIFY data to compute xfer mask from
1408 *
1409 *	Compute the xfermask for this device. This is not as trivial
1410 *	as it seems if we must consider early devices correctly.
1411 *
1412 *	FIXME: pre IDE drive timing (do we care ?).
1413 *
1414 *	LOCKING:
1415 *	None.
1416 *
1417 *	RETURNS:
1418 *	Computed xfermask
1419 */
1420unsigned int ata_id_xfermask(const u16 *id)
1421{
1422	unsigned int pio_mask, mwdma_mask, udma_mask;
1423
1424	/* Usual case. Word 53 indicates word 64 is valid */
1425	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1426		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1427		pio_mask <<= 3;
1428		pio_mask |= 0x7;
1429	} else {
1430		/* If word 64 isn't valid then Word 51 high byte holds
1431		 * the PIO timing number for the maximum. Turn it into
1432		 * a mask.
1433		 */
1434		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1435		if (mode < 5)	/* Valid PIO range */
1436			pio_mask = (2 << mode) - 1;
1437		else
1438			pio_mask = 1;
1439
1440		/* But wait.. there's more. Design your standards by
1441		 * committee and you too can get a free iordy field to
1442		 * process. However it is the speeds not the modes that
1443		 * are supported... Note drivers using the timing API
1444		 * will get this right anyway
1445		 */
1446	}
1447
1448	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1449
1450	if (ata_id_is_cfa(id)) {
1451		/*
1452		 *	Process compact flash extended modes
1453		 */
1454		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1455		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1456
1457		if (pio)
1458			pio_mask |= (1 << 5);
1459		if (pio > 1)
1460			pio_mask |= (1 << 6);
1461		if (dma)
1462			mwdma_mask |= (1 << 3);
1463		if (dma > 1)
1464			mwdma_mask |= (1 << 4);
1465	}
1466
1467	udma_mask = 0;
1468	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1469		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1470
1471	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1472}
1473EXPORT_SYMBOL_GPL(ata_id_xfermask);
1474
1475static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1476{
1477	struct completion *waiting = qc->private_data;
1478
1479	complete(waiting);
1480}
1481
1482/**
1483 *	ata_exec_internal_sg - execute libata internal command
1484 *	@dev: Device to which the command is sent
1485 *	@tf: Taskfile registers for the command and the result
1486 *	@cdb: CDB for packet command
1487 *	@dma_dir: Data transfer direction of the command
1488 *	@sgl: sg list for the data buffer of the command
1489 *	@n_elem: Number of sg entries
1490 *	@timeout: Timeout in msecs (0 for default)
1491 *
1492 *	Executes libata internal command with timeout.  @tf contains
1493 *	command on entry and result on return.  Timeout and error
1494 *	conditions are reported via return value.  No recovery action
1495 *	is taken after a command times out.  It's caller's duty to
1496 *	clean up after timeout.
1497 *
1498 *	LOCKING:
1499 *	None.  Should be called with kernel context, might sleep.
1500 *
1501 *	RETURNS:
1502 *	Zero on success, AC_ERR_* mask on failure
1503 */
1504static unsigned ata_exec_internal_sg(struct ata_device *dev,
1505				     struct ata_taskfile *tf, const u8 *cdb,
1506				     int dma_dir, struct scatterlist *sgl,
1507				     unsigned int n_elem, unsigned int timeout)
1508{
1509	struct ata_link *link = dev->link;
1510	struct ata_port *ap = link->ap;
1511	u8 command = tf->command;
1512	int auto_timeout = 0;
1513	struct ata_queued_cmd *qc;
1514	unsigned int preempted_tag;
1515	u32 preempted_sactive;
1516	u64 preempted_qc_active;
1517	int preempted_nr_active_links;
1518	DECLARE_COMPLETION_ONSTACK(wait);
1519	unsigned long flags;
1520	unsigned int err_mask;
1521	int rc;
1522
1523	spin_lock_irqsave(ap->lock, flags);
1524
1525	/* no internal command while frozen */
1526	if (ata_port_is_frozen(ap)) {
1527		spin_unlock_irqrestore(ap->lock, flags);
1528		return AC_ERR_SYSTEM;
1529	}
1530
1531	/* initialize internal qc */
1532	qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1533
1534	qc->tag = ATA_TAG_INTERNAL;
1535	qc->hw_tag = 0;
1536	qc->scsicmd = NULL;
1537	qc->ap = ap;
1538	qc->dev = dev;
1539	ata_qc_reinit(qc);
1540
1541	preempted_tag = link->active_tag;
1542	preempted_sactive = link->sactive;
1543	preempted_qc_active = ap->qc_active;
1544	preempted_nr_active_links = ap->nr_active_links;
1545	link->active_tag = ATA_TAG_POISON;
1546	link->sactive = 0;
1547	ap->qc_active = 0;
1548	ap->nr_active_links = 0;
1549
1550	/* prepare & issue qc */
1551	qc->tf = *tf;
1552	if (cdb)
1553		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1554
1555	/* some SATA bridges need us to indicate data xfer direction */
1556	if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1557	    dma_dir == DMA_FROM_DEVICE)
1558		qc->tf.feature |= ATAPI_DMADIR;
1559
1560	qc->flags |= ATA_QCFLAG_RESULT_TF;
1561	qc->dma_dir = dma_dir;
1562	if (dma_dir != DMA_NONE) {
1563		unsigned int i, buflen = 0;
1564		struct scatterlist *sg;
1565
1566		for_each_sg(sgl, sg, n_elem, i)
1567			buflen += sg->length;
1568
1569		ata_sg_init(qc, sgl, n_elem);
1570		qc->nbytes = buflen;
1571	}
1572
1573	qc->private_data = &wait;
1574	qc->complete_fn = ata_qc_complete_internal;
1575
1576	ata_qc_issue(qc);
1577
1578	spin_unlock_irqrestore(ap->lock, flags);
1579
1580	if (!timeout) {
1581		if (ata_probe_timeout)
1582			timeout = ata_probe_timeout * 1000;
1583		else {
1584			timeout = ata_internal_cmd_timeout(dev, command);
1585			auto_timeout = 1;
1586		}
1587	}
1588
1589	ata_eh_release(ap);
1590
1591	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1592
1593	ata_eh_acquire(ap);
1594
1595	ata_sff_flush_pio_task(ap);
1596
1597	if (!rc) {
1598		spin_lock_irqsave(ap->lock, flags);
1599
1600		/* We're racing with irq here.  If we lose, the
1601		 * following test prevents us from completing the qc
1602		 * twice.  If we win, the port is frozen and will be
1603		 * cleaned up by ->post_internal_cmd().
1604		 */
1605		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1606			qc->err_mask |= AC_ERR_TIMEOUT;
1607
1608			ata_port_freeze(ap);
1609
1610			ata_dev_warn(dev, "qc timeout after %u msecs (cmd 0x%x)\n",
1611				     timeout, command);
1612		}
1613
1614		spin_unlock_irqrestore(ap->lock, flags);
1615	}
1616
1617	/* do post_internal_cmd */
1618	if (ap->ops->post_internal_cmd)
1619		ap->ops->post_internal_cmd(qc);
1620
1621	/* perform minimal error analysis */
1622	if (qc->flags & ATA_QCFLAG_EH) {
1623		if (qc->result_tf.status & (ATA_ERR | ATA_DF))
1624			qc->err_mask |= AC_ERR_DEV;
1625
1626		if (!qc->err_mask)
1627			qc->err_mask |= AC_ERR_OTHER;
1628
1629		if (qc->err_mask & ~AC_ERR_OTHER)
1630			qc->err_mask &= ~AC_ERR_OTHER;
1631	} else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1632		qc->result_tf.status |= ATA_SENSE;
1633	}
1634
1635	/* finish up */
1636	spin_lock_irqsave(ap->lock, flags);
1637
1638	*tf = qc->result_tf;
1639	err_mask = qc->err_mask;
1640
1641	ata_qc_free(qc);
1642	link->active_tag = preempted_tag;
1643	link->sactive = preempted_sactive;
1644	ap->qc_active = preempted_qc_active;
1645	ap->nr_active_links = preempted_nr_active_links;
1646
1647	spin_unlock_irqrestore(ap->lock, flags);
1648
1649	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1650		ata_internal_cmd_timed_out(dev, command);
1651
1652	return err_mask;
1653}
1654
1655/**
1656 *	ata_exec_internal - execute libata internal command
1657 *	@dev: Device to which the command is sent
1658 *	@tf: Taskfile registers for the command and the result
1659 *	@cdb: CDB for packet command
1660 *	@dma_dir: Data transfer direction of the command
1661 *	@buf: Data buffer of the command
1662 *	@buflen: Length of data buffer
1663 *	@timeout: Timeout in msecs (0 for default)
1664 *
1665 *	Wrapper around ata_exec_internal_sg() which takes simple
1666 *	buffer instead of sg list.
1667 *
1668 *	LOCKING:
1669 *	None.  Should be called with kernel context, might sleep.
1670 *
1671 *	RETURNS:
1672 *	Zero on success, AC_ERR_* mask on failure
1673 */
1674unsigned ata_exec_internal(struct ata_device *dev,
1675			   struct ata_taskfile *tf, const u8 *cdb,
1676			   int dma_dir, void *buf, unsigned int buflen,
1677			   unsigned int timeout)
1678{
1679	struct scatterlist *psg = NULL, sg;
1680	unsigned int n_elem = 0;
1681
1682	if (dma_dir != DMA_NONE) {
1683		WARN_ON(!buf);
1684		sg_init_one(&sg, buf, buflen);
1685		psg = &sg;
1686		n_elem++;
1687	}
1688
1689	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1690				    timeout);
1691}
1692
1693/**
1694 *	ata_pio_need_iordy	-	check if iordy needed
1695 *	@adev: ATA device
1696 *
1697 *	Check if the current speed of the device requires IORDY. Used
1698 *	by various controllers for chip configuration.
1699 */
1700unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1701{
1702	/* Don't set IORDY if we're preparing for reset.  IORDY may
1703	 * lead to controller lock up on certain controllers if the
1704	 * port is not occupied.  See bko#11703 for details.
1705	 */
1706	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1707		return 0;
1708	/* Controller doesn't support IORDY.  Probably a pointless
1709	 * check as the caller should know this.
1710	 */
1711	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1712		return 0;
1713	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1714	if (ata_id_is_cfa(adev->id)
1715	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1716		return 0;
1717	/* PIO3 and higher it is mandatory */
1718	if (adev->pio_mode > XFER_PIO_2)
1719		return 1;
1720	/* We turn it on when possible */
1721	if (ata_id_has_iordy(adev->id))
1722		return 1;
1723	return 0;
1724}
1725EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
1726
1727/**
1728 *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1729 *	@adev: ATA device
1730 *
1731 *	Compute the highest mode possible if we are not using iordy. Return
1732 *	-1 if no iordy mode is available.
1733 */
1734static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1735{
1736	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1737	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1738		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1739		/* Is the speed faster than the drive allows non IORDY ? */
1740		if (pio) {
1741			/* This is cycle times not frequency - watch the logic! */
1742			if (pio > 240)	/* PIO2 is 240nS per cycle */
1743				return 3 << ATA_SHIFT_PIO;
1744			return 7 << ATA_SHIFT_PIO;
1745		}
1746	}
1747	return 3 << ATA_SHIFT_PIO;
1748}
1749
1750/**
1751 *	ata_do_dev_read_id		-	default ID read method
1752 *	@dev: device
1753 *	@tf: proposed taskfile
1754 *	@id: data buffer
1755 *
1756 *	Issue the identify taskfile and hand back the buffer containing
1757 *	identify data. For some RAID controllers and for pre ATA devices
1758 *	this function is wrapped or replaced by the driver
1759 */
1760unsigned int ata_do_dev_read_id(struct ata_device *dev,
1761				struct ata_taskfile *tf, __le16 *id)
1762{
1763	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1764				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1765}
1766EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1767
1768/**
1769 *	ata_dev_read_id - Read ID data from the specified device
1770 *	@dev: target device
1771 *	@p_class: pointer to class of the target device (may be changed)
1772 *	@flags: ATA_READID_* flags
1773 *	@id: buffer to read IDENTIFY data into
1774 *
1775 *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1776 *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1777 *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1778 *	for pre-ATA4 drives.
1779 *
1780 *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1781 *	now we abort if we hit that case.
1782 *
1783 *	LOCKING:
1784 *	Kernel thread context (may sleep)
1785 *
1786 *	RETURNS:
1787 *	0 on success, -errno otherwise.
1788 */
1789int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1790		    unsigned int flags, u16 *id)
1791{
1792	struct ata_port *ap = dev->link->ap;
1793	unsigned int class = *p_class;
1794	struct ata_taskfile tf;
1795	unsigned int err_mask = 0;
1796	const char *reason;
1797	bool is_semb = class == ATA_DEV_SEMB;
1798	int may_fallback = 1, tried_spinup = 0;
1799	int rc;
1800
1801retry:
1802	ata_tf_init(dev, &tf);
1803
1804	switch (class) {
1805	case ATA_DEV_SEMB:
1806		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
1807		fallthrough;
1808	case ATA_DEV_ATA:
1809	case ATA_DEV_ZAC:
1810		tf.command = ATA_CMD_ID_ATA;
1811		break;
1812	case ATA_DEV_ATAPI:
1813		tf.command = ATA_CMD_ID_ATAPI;
1814		break;
1815	default:
1816		rc = -ENODEV;
1817		reason = "unsupported class";
1818		goto err_out;
1819	}
1820
1821	tf.protocol = ATA_PROT_PIO;
1822
1823	/* Some devices choke if TF registers contain garbage.  Make
1824	 * sure those are properly initialized.
1825	 */
1826	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1827
1828	/* Device presence detection is unreliable on some
1829	 * controllers.  Always poll IDENTIFY if available.
1830	 */
1831	tf.flags |= ATA_TFLAG_POLLING;
1832
1833	if (ap->ops->read_id)
1834		err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id);
1835	else
1836		err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id);
1837
1838	if (err_mask) {
1839		if (err_mask & AC_ERR_NODEV_HINT) {
1840			ata_dev_dbg(dev, "NODEV after polling detection\n");
1841			return -ENOENT;
1842		}
1843
1844		if (is_semb) {
1845			ata_dev_info(dev,
1846		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1847			/* SEMB is not supported yet */
1848			*p_class = ATA_DEV_SEMB_UNSUP;
1849			return 0;
1850		}
1851
1852		if ((err_mask == AC_ERR_DEV) && (tf.error & ATA_ABORTED)) {
1853			/* Device or controller might have reported
1854			 * the wrong device class.  Give a shot at the
1855			 * other IDENTIFY if the current one is
1856			 * aborted by the device.
1857			 */
1858			if (may_fallback) {
1859				may_fallback = 0;
1860
1861				if (class == ATA_DEV_ATA)
1862					class = ATA_DEV_ATAPI;
1863				else
1864					class = ATA_DEV_ATA;
1865				goto retry;
1866			}
1867
1868			/* Control reaches here iff the device aborted
1869			 * both flavors of IDENTIFYs which happens
1870			 * sometimes with phantom devices.
1871			 */
1872			ata_dev_dbg(dev,
1873				    "both IDENTIFYs aborted, assuming NODEV\n");
1874			return -ENOENT;
1875		}
1876
1877		rc = -EIO;
1878		reason = "I/O error";
1879		goto err_out;
1880	}
1881
1882	if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1883		ata_dev_info(dev, "dumping IDENTIFY data, "
1884			    "class=%d may_fallback=%d tried_spinup=%d\n",
1885			    class, may_fallback, tried_spinup);
1886		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET,
1887			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1888	}
1889
1890	/* Falling back doesn't make sense if ID data was read
1891	 * successfully at least once.
1892	 */
1893	may_fallback = 0;
1894
1895	swap_buf_le16(id, ATA_ID_WORDS);
1896
1897	/* sanity check */
1898	rc = -EINVAL;
1899	reason = "device reports invalid type";
1900
1901	if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1902		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1903			goto err_out;
1904		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1905							ata_id_is_ata(id)) {
1906			ata_dev_dbg(dev,
1907				"host indicates ignore ATA devices, ignored\n");
1908			return -ENOENT;
1909		}
1910	} else {
1911		if (ata_id_is_ata(id))
1912			goto err_out;
1913	}
1914
1915	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1916		tried_spinup = 1;
1917		/*
1918		 * Drive powered-up in standby mode, and requires a specific
1919		 * SET_FEATURES spin-up subcommand before it will accept
1920		 * anything other than the original IDENTIFY command.
1921		 */
1922		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1923		if (err_mask && id[2] != 0x738c) {
1924			rc = -EIO;
1925			reason = "SPINUP failed";
1926			goto err_out;
1927		}
1928		/*
1929		 * If the drive initially returned incomplete IDENTIFY info,
1930		 * we now must reissue the IDENTIFY command.
1931		 */
1932		if (id[2] == 0x37c8)
1933			goto retry;
1934	}
1935
1936	if ((flags & ATA_READID_POSTRESET) &&
1937	    (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1938		/*
1939		 * The exact sequence expected by certain pre-ATA4 drives is:
1940		 * SRST RESET
1941		 * IDENTIFY (optional in early ATA)
1942		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1943		 * anything else..
1944		 * Some drives were very specific about that exact sequence.
1945		 *
1946		 * Note that ATA4 says lba is mandatory so the second check
1947		 * should never trigger.
1948		 */
1949		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1950			err_mask = ata_dev_init_params(dev, id[3], id[6]);
1951			if (err_mask) {
1952				rc = -EIO;
1953				reason = "INIT_DEV_PARAMS failed";
1954				goto err_out;
1955			}
1956
1957			/* current CHS translation info (id[53-58]) might be
1958			 * changed. reread the identify device info.
1959			 */
1960			flags &= ~ATA_READID_POSTRESET;
1961			goto retry;
1962		}
1963	}
1964
1965	*p_class = class;
1966
1967	return 0;
1968
1969 err_out:
1970	ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
1971		     reason, err_mask);
1972	return rc;
1973}
1974
1975/**
1976 *	ata_dev_power_set_standby - Set a device power mode to standby
1977 *	@dev: target device
1978 *
1979 *	Issue a STANDBY IMMEDIATE command to set a device power mode to standby.
1980 *	For an HDD device, this spins down the disks.
1981 *
1982 *	LOCKING:
1983 *	Kernel thread context (may sleep).
1984 */
1985void ata_dev_power_set_standby(struct ata_device *dev)
1986{
1987	unsigned long ap_flags = dev->link->ap->flags;
1988	struct ata_taskfile tf;
1989	unsigned int err_mask;
1990
1991	/* Issue STANDBY IMMEDIATE command only if supported by the device */
1992	if (dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC)
1993		return;
1994
1995	/*
1996	 * Some odd clown BIOSes issue spindown on power off (ACPI S4 or S5)
1997	 * causing some drives to spin up and down again. For these, do nothing
1998	 * if we are being called on shutdown.
1999	 */
2000	if ((ap_flags & ATA_FLAG_NO_POWEROFF_SPINDOWN) &&
2001	    system_state == SYSTEM_POWER_OFF)
2002		return;
2003
2004	if ((ap_flags & ATA_FLAG_NO_HIBERNATE_SPINDOWN) &&
2005	    system_entering_hibernation())
2006		return;
2007
2008	ata_tf_init(dev, &tf);
2009	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
2010	tf.protocol = ATA_PROT_NODATA;
2011	tf.command = ATA_CMD_STANDBYNOW1;
2012
2013	ata_dev_notice(dev, "Entering standby power mode\n");
2014
2015	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2016	if (err_mask)
2017		ata_dev_err(dev, "STANDBY IMMEDIATE failed (err_mask=0x%x)\n",
2018			    err_mask);
2019}
2020
2021/**
2022 *	ata_dev_power_set_active -  Set a device power mode to active
2023 *	@dev: target device
2024 *
2025 *	Issue a VERIFY command to enter to ensure that the device is in the
2026 *	active power mode. For a spun-down HDD (standby or idle power mode),
2027 *	the VERIFY command will complete after the disk spins up.
2028 *
2029 *	LOCKING:
2030 *	Kernel thread context (may sleep).
2031 */
2032void ata_dev_power_set_active(struct ata_device *dev)
2033{
2034	struct ata_taskfile tf;
2035	unsigned int err_mask;
2036
2037	/* If the device is already sleeping, do nothing. */
2038	if (dev->flags & ATA_DFLAG_SLEEPING)
2039		return;
2040
2041	/*
2042	 * Issue READ VERIFY SECTORS command for 1 sector at lba=0 only
2043	 * if supported by the device.
2044	 */
2045	if (dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC)
2046		return;
2047
2048	ata_tf_init(dev, &tf);
2049	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
2050	tf.protocol = ATA_PROT_NODATA;
2051	tf.command = ATA_CMD_VERIFY;
2052	tf.nsect = 1;
2053	if (dev->flags & ATA_DFLAG_LBA) {
2054		tf.flags |= ATA_TFLAG_LBA;
2055		tf.device |= ATA_LBA;
2056	} else {
2057		/* CHS */
2058		tf.lbal = 0x1; /* sect */
2059	}
2060
2061	ata_dev_notice(dev, "Entering active power mode\n");
2062
2063	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2064	if (err_mask)
2065		ata_dev_err(dev, "VERIFY failed (err_mask=0x%x)\n",
2066			    err_mask);
2067}
2068
2069/**
2070 *	ata_read_log_page - read a specific log page
2071 *	@dev: target device
2072 *	@log: log to read
2073 *	@page: page to read
2074 *	@buf: buffer to store read page
2075 *	@sectors: number of sectors to read
2076 *
2077 *	Read log page using READ_LOG_EXT command.
2078 *
2079 *	LOCKING:
2080 *	Kernel thread context (may sleep).
2081 *
2082 *	RETURNS:
2083 *	0 on success, AC_ERR_* mask otherwise.
2084 */
2085unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
2086			       u8 page, void *buf, unsigned int sectors)
2087{
2088	unsigned long ap_flags = dev->link->ap->flags;
2089	struct ata_taskfile tf;
2090	unsigned int err_mask;
2091	bool dma = false;
2092
2093	ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page);
2094
2095	/*
2096	 * Return error without actually issuing the command on controllers
2097	 * which e.g. lockup on a read log page.
2098	 */
2099	if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2100		return AC_ERR_DEV;
2101
2102retry:
2103	ata_tf_init(dev, &tf);
2104	if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) &&
2105	    !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
2106		tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2107		tf.protocol = ATA_PROT_DMA;
2108		dma = true;
2109	} else {
2110		tf.command = ATA_CMD_READ_LOG_EXT;
2111		tf.protocol = ATA_PROT_PIO;
2112		dma = false;
2113	}
2114	tf.lbal = log;
2115	tf.lbam = page;
2116	tf.nsect = sectors;
2117	tf.hob_nsect = sectors >> 8;
2118	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2119
2120	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2121				     buf, sectors * ATA_SECT_SIZE, 0);
2122
2123	if (err_mask) {
2124		if (dma) {
2125			dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2126			if (!ata_port_is_frozen(dev->link->ap))
2127				goto retry;
2128		}
2129		ata_dev_err(dev,
2130			    "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n",
2131			    (unsigned int)log, (unsigned int)page, err_mask);
2132	}
2133
2134	return err_mask;
2135}
2136
2137static int ata_log_supported(struct ata_device *dev, u8 log)
2138{
2139	struct ata_port *ap = dev->link->ap;
2140
2141	if (dev->horkage & ATA_HORKAGE_NO_LOG_DIR)
2142		return 0;
2143
2144	if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2145		return 0;
2146	return get_unaligned_le16(&ap->sector_buf[log * 2]);
2147}
2148
2149static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2150{
2151	struct ata_port *ap = dev->link->ap;
2152	unsigned int err, i;
2153
2154	if (dev->horkage & ATA_HORKAGE_NO_ID_DEV_LOG)
2155		return false;
2156
2157	if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2158		/*
2159		 * IDENTIFY DEVICE data log is defined as mandatory starting
2160		 * with ACS-3 (ATA version 10). Warn about the missing log
2161		 * for drives which implement this ATA level or above.
2162		 */
2163		if (ata_id_major_version(dev->id) >= 10)
2164			ata_dev_warn(dev,
2165				"ATA Identify Device Log not supported\n");
2166		dev->horkage |= ATA_HORKAGE_NO_ID_DEV_LOG;
2167		return false;
2168	}
2169
2170	/*
2171	 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2172	 * supported.
2173	 */
2174	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2175				1);
2176	if (err)
2177		return false;
2178
2179	for (i = 0; i < ap->sector_buf[8]; i++) {
2180		if (ap->sector_buf[9 + i] == page)
2181			return true;
2182	}
2183
2184	return false;
2185}
2186
2187static int ata_do_link_spd_horkage(struct ata_device *dev)
2188{
2189	struct ata_link *plink = ata_dev_phys_link(dev);
2190	u32 target, target_limit;
2191
2192	if (!sata_scr_valid(plink))
2193		return 0;
2194
2195	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2196		target = 1;
2197	else
2198		return 0;
2199
2200	target_limit = (1 << target) - 1;
2201
2202	/* if already on stricter limit, no need to push further */
2203	if (plink->sata_spd_limit <= target_limit)
2204		return 0;
2205
2206	plink->sata_spd_limit = target_limit;
2207
2208	/* Request another EH round by returning -EAGAIN if link is
2209	 * going faster than the target speed.  Forward progress is
2210	 * guaranteed by setting sata_spd_limit to target_limit above.
2211	 */
2212	if (plink->sata_spd > target) {
2213		ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2214			     sata_spd_string(target));
2215		return -EAGAIN;
2216	}
2217	return 0;
2218}
2219
2220static inline u8 ata_dev_knobble(struct ata_device *dev)
2221{
2222	struct ata_port *ap = dev->link->ap;
2223
2224	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2225		return 0;
2226
2227	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2228}
2229
2230static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2231{
2232	struct ata_port *ap = dev->link->ap;
2233	unsigned int err_mask;
2234
2235	if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2236		ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2237		return;
2238	}
2239	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2240				     0, ap->sector_buf, 1);
2241	if (!err_mask) {
2242		u8 *cmds = dev->ncq_send_recv_cmds;
2243
2244		dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2245		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2246
2247		if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2248			ata_dev_dbg(dev, "disabling queued TRIM support\n");
2249			cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2250				~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2251		}
2252	}
2253}
2254
2255static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2256{
2257	struct ata_port *ap = dev->link->ap;
2258	unsigned int err_mask;
2259
2260	if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2261		ata_dev_warn(dev,
2262			     "NCQ Send/Recv Log not supported\n");
2263		return;
2264	}
2265	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2266				     0, ap->sector_buf, 1);
2267	if (!err_mask) {
2268		u8 *cmds = dev->ncq_non_data_cmds;
2269
2270		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2271	}
2272}
2273
2274static void ata_dev_config_ncq_prio(struct ata_device *dev)
2275{
2276	struct ata_port *ap = dev->link->ap;
2277	unsigned int err_mask;
2278
2279	if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2280		return;
2281
2282	err_mask = ata_read_log_page(dev,
2283				     ATA_LOG_IDENTIFY_DEVICE,
2284				     ATA_LOG_SATA_SETTINGS,
2285				     ap->sector_buf,
2286				     1);
2287	if (err_mask)
2288		goto not_supported;
2289
2290	if (!(ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)))
2291		goto not_supported;
2292
2293	dev->flags |= ATA_DFLAG_NCQ_PRIO;
2294
2295	return;
2296
2297not_supported:
2298	dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLED;
2299	dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2300}
2301
2302static bool ata_dev_check_adapter(struct ata_device *dev,
2303				  unsigned short vendor_id)
2304{
2305	struct pci_dev *pcidev = NULL;
2306	struct device *parent_dev = NULL;
2307
2308	for (parent_dev = dev->tdev.parent; parent_dev != NULL;
2309	     parent_dev = parent_dev->parent) {
2310		if (dev_is_pci(parent_dev)) {
2311			pcidev = to_pci_dev(parent_dev);
2312			if (pcidev->vendor == vendor_id)
2313				return true;
2314			break;
2315		}
2316	}
2317
2318	return false;
2319}
2320
2321static int ata_dev_config_ncq(struct ata_device *dev,
2322			       char *desc, size_t desc_sz)
2323{
2324	struct ata_port *ap = dev->link->ap;
2325	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2326	unsigned int err_mask;
2327	char *aa_desc = "";
2328
2329	if (!ata_id_has_ncq(dev->id)) {
2330		desc[0] = '\0';
2331		return 0;
2332	}
2333	if (!IS_ENABLED(CONFIG_SATA_HOST))
2334		return 0;
2335	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2336		snprintf(desc, desc_sz, "NCQ (not used)");
2337		return 0;
2338	}
2339
2340	if (dev->horkage & ATA_HORKAGE_NO_NCQ_ON_ATI &&
2341	    ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) {
2342		snprintf(desc, desc_sz, "NCQ (not used)");
2343		return 0;
2344	}
2345
2346	if (ap->flags & ATA_FLAG_NCQ) {
2347		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2348		dev->flags |= ATA_DFLAG_NCQ;
2349	}
2350
2351	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2352		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2353		ata_id_has_fpdma_aa(dev->id)) {
2354		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2355			SATA_FPDMA_AA);
2356		if (err_mask) {
2357			ata_dev_err(dev,
2358				    "failed to enable AA (error_mask=0x%x)\n",
2359				    err_mask);
2360			if (err_mask != AC_ERR_DEV) {
2361				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2362				return -EIO;
2363			}
2364		} else
2365			aa_desc = ", AA";
2366	}
2367
2368	if (hdepth >= ddepth)
2369		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2370	else
2371		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2372			ddepth, aa_desc);
2373
2374	if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2375		if (ata_id_has_ncq_send_and_recv(dev->id))
2376			ata_dev_config_ncq_send_recv(dev);
2377		if (ata_id_has_ncq_non_data(dev->id))
2378			ata_dev_config_ncq_non_data(dev);
2379		if (ata_id_has_ncq_prio(dev->id))
2380			ata_dev_config_ncq_prio(dev);
2381	}
2382
2383	return 0;
2384}
2385
2386static void ata_dev_config_sense_reporting(struct ata_device *dev)
2387{
2388	unsigned int err_mask;
2389
2390	if (!ata_id_has_sense_reporting(dev->id))
2391		return;
2392
2393	if (ata_id_sense_reporting_enabled(dev->id))
2394		return;
2395
2396	err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2397	if (err_mask) {
2398		ata_dev_dbg(dev,
2399			    "failed to enable Sense Data Reporting, Emask 0x%x\n",
2400			    err_mask);
2401	}
2402}
2403
2404static void ata_dev_config_zac(struct ata_device *dev)
2405{
2406	struct ata_port *ap = dev->link->ap;
2407	unsigned int err_mask;
2408	u8 *identify_buf = ap->sector_buf;
2409
2410	dev->zac_zones_optimal_open = U32_MAX;
2411	dev->zac_zones_optimal_nonseq = U32_MAX;
2412	dev->zac_zones_max_open = U32_MAX;
2413
2414	/*
2415	 * Always set the 'ZAC' flag for Host-managed devices.
2416	 */
2417	if (dev->class == ATA_DEV_ZAC)
2418		dev->flags |= ATA_DFLAG_ZAC;
2419	else if (ata_id_zoned_cap(dev->id) == 0x01)
2420		/*
2421		 * Check for host-aware devices.
2422		 */
2423		dev->flags |= ATA_DFLAG_ZAC;
2424
2425	if (!(dev->flags & ATA_DFLAG_ZAC))
2426		return;
2427
2428	if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2429		ata_dev_warn(dev,
2430			     "ATA Zoned Information Log not supported\n");
2431		return;
2432	}
2433
2434	/*
2435	 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2436	 */
2437	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2438				     ATA_LOG_ZONED_INFORMATION,
2439				     identify_buf, 1);
2440	if (!err_mask) {
2441		u64 zoned_cap, opt_open, opt_nonseq, max_open;
2442
2443		zoned_cap = get_unaligned_le64(&identify_buf[8]);
2444		if ((zoned_cap >> 63))
2445			dev->zac_zoned_cap = (zoned_cap & 1);
2446		opt_open = get_unaligned_le64(&identify_buf[24]);
2447		if ((opt_open >> 63))
2448			dev->zac_zones_optimal_open = (u32)opt_open;
2449		opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2450		if ((opt_nonseq >> 63))
2451			dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2452		max_open = get_unaligned_le64(&identify_buf[40]);
2453		if ((max_open >> 63))
2454			dev->zac_zones_max_open = (u32)max_open;
2455	}
2456}
2457
2458static void ata_dev_config_trusted(struct ata_device *dev)
2459{
2460	struct ata_port *ap = dev->link->ap;
2461	u64 trusted_cap;
2462	unsigned int err;
2463
2464	if (!ata_id_has_trusted(dev->id))
2465		return;
2466
2467	if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2468		ata_dev_warn(dev,
2469			     "Security Log not supported\n");
2470		return;
2471	}
2472
2473	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2474			ap->sector_buf, 1);
2475	if (err)
2476		return;
2477
2478	trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2479	if (!(trusted_cap & (1ULL << 63))) {
2480		ata_dev_dbg(dev,
2481			    "Trusted Computing capability qword not valid!\n");
2482		return;
2483	}
2484
2485	if (trusted_cap & (1 << 0))
2486		dev->flags |= ATA_DFLAG_TRUSTED;
2487}
2488
2489static void ata_dev_config_cdl(struct ata_device *dev)
2490{
2491	struct ata_port *ap = dev->link->ap;
2492	unsigned int err_mask;
2493	bool cdl_enabled;
2494	u64 val;
2495
2496	if (ata_id_major_version(dev->id) < 12)
2497		goto not_supported;
2498
2499	if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE) ||
2500	    !ata_identify_page_supported(dev, ATA_LOG_SUPPORTED_CAPABILITIES) ||
2501	    !ata_identify_page_supported(dev, ATA_LOG_CURRENT_SETTINGS))
2502		goto not_supported;
2503
2504	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2505				     ATA_LOG_SUPPORTED_CAPABILITIES,
2506				     ap->sector_buf, 1);
2507	if (err_mask)
2508		goto not_supported;
2509
2510	/* Check Command Duration Limit Supported bits */
2511	val = get_unaligned_le64(&ap->sector_buf[168]);
2512	if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(0)))
2513		goto not_supported;
2514
2515	/* Warn the user if command duration guideline is not supported */
2516	if (!(val & BIT_ULL(1)))
2517		ata_dev_warn(dev,
2518			"Command duration guideline is not supported\n");
2519
2520	/*
2521	 * We must have support for the sense data for successful NCQ commands
2522	 * log indicated by the successful NCQ command sense data supported bit.
2523	 */
2524	val = get_unaligned_le64(&ap->sector_buf[8]);
2525	if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(47))) {
2526		ata_dev_warn(dev,
2527			"CDL supported but Successful NCQ Command Sense Data is not supported\n");
2528		goto not_supported;
2529	}
2530
2531	/* Without NCQ autosense, the successful NCQ commands log is useless. */
2532	if (!ata_id_has_ncq_autosense(dev->id)) {
2533		ata_dev_warn(dev,
2534			"CDL supported but NCQ autosense is not supported\n");
2535		goto not_supported;
2536	}
2537
2538	/*
2539	 * If CDL is marked as enabled, make sure the feature is enabled too.
2540	 * Conversely, if CDL is disabled, make sure the feature is turned off.
2541	 */
2542	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2543				     ATA_LOG_CURRENT_SETTINGS,
2544				     ap->sector_buf, 1);
2545	if (err_mask)
2546		goto not_supported;
2547
2548	val = get_unaligned_le64(&ap->sector_buf[8]);
2549	cdl_enabled = val & BIT_ULL(63) && val & BIT_ULL(21);
2550	if (dev->flags & ATA_DFLAG_CDL_ENABLED) {
2551		if (!cdl_enabled) {
2552			/* Enable CDL on the device */
2553			err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 1);
2554			if (err_mask) {
2555				ata_dev_err(dev,
2556					    "Enable CDL feature failed\n");
2557				goto not_supported;
2558			}
2559		}
2560	} else {
2561		if (cdl_enabled) {
2562			/* Disable CDL on the device */
2563			err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 0);
2564			if (err_mask) {
2565				ata_dev_err(dev,
2566					    "Disable CDL feature failed\n");
2567				goto not_supported;
2568			}
2569		}
2570	}
2571
2572	/*
2573	 * While CDL itself has to be enabled using sysfs, CDL requires that
2574	 * sense data for successful NCQ commands is enabled to work properly.
2575	 * Just like ata_dev_config_sense_reporting(), enable it unconditionally
2576	 * if supported.
2577	 */
2578	if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(18))) {
2579		err_mask = ata_dev_set_feature(dev,
2580					SETFEATURE_SENSE_DATA_SUCC_NCQ, 0x1);
2581		if (err_mask) {
2582			ata_dev_warn(dev,
2583				     "failed to enable Sense Data for successful NCQ commands, Emask 0x%x\n",
2584				     err_mask);
2585			goto not_supported;
2586		}
2587	}
2588
2589	/*
2590	 * Allocate a buffer to handle reading the sense data for successful
2591	 * NCQ Commands log page for commands using a CDL with one of the limit
2592	 * policy set to 0xD (successful completion with sense data available
2593	 * bit set).
2594	 */
2595	if (!ap->ncq_sense_buf) {
2596		ap->ncq_sense_buf = kmalloc(ATA_LOG_SENSE_NCQ_SIZE, GFP_KERNEL);
2597		if (!ap->ncq_sense_buf)
2598			goto not_supported;
2599	}
2600
2601	/*
2602	 * Command duration limits is supported: cache the CDL log page 18h
2603	 * (command duration descriptors).
2604	 */
2605	err_mask = ata_read_log_page(dev, ATA_LOG_CDL, 0, ap->sector_buf, 1);
2606	if (err_mask) {
2607		ata_dev_warn(dev, "Read Command Duration Limits log failed\n");
2608		goto not_supported;
2609	}
2610
2611	memcpy(dev->cdl, ap->sector_buf, ATA_LOG_CDL_SIZE);
2612	dev->flags |= ATA_DFLAG_CDL;
2613
2614	return;
2615
2616not_supported:
2617	dev->flags &= ~(ATA_DFLAG_CDL | ATA_DFLAG_CDL_ENABLED);
2618	kfree(ap->ncq_sense_buf);
2619	ap->ncq_sense_buf = NULL;
2620}
2621
2622static int ata_dev_config_lba(struct ata_device *dev)
2623{
2624	const u16 *id = dev->id;
2625	const char *lba_desc;
2626	char ncq_desc[32];
2627	int ret;
2628
2629	dev->flags |= ATA_DFLAG_LBA;
2630
2631	if (ata_id_has_lba48(id)) {
2632		lba_desc = "LBA48";
2633		dev->flags |= ATA_DFLAG_LBA48;
2634		if (dev->n_sectors >= (1UL << 28) &&
2635		    ata_id_has_flush_ext(id))
2636			dev->flags |= ATA_DFLAG_FLUSH_EXT;
2637	} else {
2638		lba_desc = "LBA";
2639	}
2640
2641	/* config NCQ */
2642	ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2643
2644	/* print device info to dmesg */
2645	if (ata_dev_print_info(dev))
2646		ata_dev_info(dev,
2647			     "%llu sectors, multi %u: %s %s\n",
2648			     (unsigned long long)dev->n_sectors,
2649			     dev->multi_count, lba_desc, ncq_desc);
2650
2651	return ret;
2652}
2653
2654static void ata_dev_config_chs(struct ata_device *dev)
2655{
2656	const u16 *id = dev->id;
2657
2658	if (ata_id_current_chs_valid(id)) {
2659		/* Current CHS translation is valid. */
2660		dev->cylinders = id[54];
2661		dev->heads     = id[55];
2662		dev->sectors   = id[56];
2663	} else {
2664		/* Default translation */
2665		dev->cylinders	= id[1];
2666		dev->heads	= id[3];
2667		dev->sectors	= id[6];
2668	}
2669
2670	/* print device info to dmesg */
2671	if (ata_dev_print_info(dev))
2672		ata_dev_info(dev,
2673			     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2674			     (unsigned long long)dev->n_sectors,
2675			     dev->multi_count, dev->cylinders,
2676			     dev->heads, dev->sectors);
2677}
2678
2679static void ata_dev_config_fua(struct ata_device *dev)
2680{
2681	/* Ignore FUA support if its use is disabled globally */
2682	if (!libata_fua)
2683		goto nofua;
2684
2685	/* Ignore devices without support for WRITE DMA FUA EXT */
2686	if (!(dev->flags & ATA_DFLAG_LBA48) || !ata_id_has_fua(dev->id))
2687		goto nofua;
2688
2689	/* Ignore known bad devices and devices that lack NCQ support */
2690	if (!ata_ncq_supported(dev) || (dev->horkage & ATA_HORKAGE_NO_FUA))
2691		goto nofua;
2692
2693	dev->flags |= ATA_DFLAG_FUA;
2694
2695	return;
2696
2697nofua:
2698	dev->flags &= ~ATA_DFLAG_FUA;
2699}
2700
2701static void ata_dev_config_devslp(struct ata_device *dev)
2702{
2703	u8 *sata_setting = dev->link->ap->sector_buf;
2704	unsigned int err_mask;
2705	int i, j;
2706
2707	/*
2708	 * Check device sleep capability. Get DevSlp timing variables
2709	 * from SATA Settings page of Identify Device Data Log.
2710	 */
2711	if (!ata_id_has_devslp(dev->id) ||
2712	    !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2713		return;
2714
2715	err_mask = ata_read_log_page(dev,
2716				     ATA_LOG_IDENTIFY_DEVICE,
2717				     ATA_LOG_SATA_SETTINGS,
2718				     sata_setting, 1);
2719	if (err_mask)
2720		return;
2721
2722	dev->flags |= ATA_DFLAG_DEVSLP;
2723	for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2724		j = ATA_LOG_DEVSLP_OFFSET + i;
2725		dev->devslp_timing[i] = sata_setting[j];
2726	}
2727}
2728
2729static void ata_dev_config_cpr(struct ata_device *dev)
2730{
2731	unsigned int err_mask;
2732	size_t buf_len;
2733	int i, nr_cpr = 0;
2734	struct ata_cpr_log *cpr_log = NULL;
2735	u8 *desc, *buf = NULL;
2736
2737	if (ata_id_major_version(dev->id) < 11)
2738		goto out;
2739
2740	buf_len = ata_log_supported(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES);
2741	if (buf_len == 0)
2742		goto out;
2743
2744	/*
2745	 * Read the concurrent positioning ranges log (0x47). We can have at
2746	 * most 255 32B range descriptors plus a 64B header. This log varies in
2747	 * size, so use the size reported in the GPL directory. Reading beyond
2748	 * the supported length will result in an error.
2749	 */
2750	buf_len <<= 9;
2751	buf = kzalloc(buf_len, GFP_KERNEL);
2752	if (!buf)
2753		goto out;
2754
2755	err_mask = ata_read_log_page(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES,
2756				     0, buf, buf_len >> 9);
2757	if (err_mask)
2758		goto out;
2759
2760	nr_cpr = buf[0];
2761	if (!nr_cpr)
2762		goto out;
2763
2764	cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL);
2765	if (!cpr_log)
2766		goto out;
2767
2768	cpr_log->nr_cpr = nr_cpr;
2769	desc = &buf[64];
2770	for (i = 0; i < nr_cpr; i++, desc += 32) {
2771		cpr_log->cpr[i].num = desc[0];
2772		cpr_log->cpr[i].num_storage_elements = desc[1];
2773		cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]);
2774		cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]);
2775	}
2776
2777out:
2778	swap(dev->cpr_log, cpr_log);
2779	kfree(cpr_log);
2780	kfree(buf);
2781}
2782
2783static void ata_dev_print_features(struct ata_device *dev)
2784{
2785	if (!(dev->flags & ATA_DFLAG_FEATURES_MASK))
2786		return;
2787
2788	ata_dev_info(dev,
2789		     "Features:%s%s%s%s%s%s%s%s\n",
2790		     dev->flags & ATA_DFLAG_FUA ? " FUA" : "",
2791		     dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "",
2792		     dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "",
2793		     dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "",
2794		     dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "",
2795		     dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "",
2796		     dev->flags & ATA_DFLAG_CDL ? " CDL" : "",
2797		     dev->cpr_log ? " CPR" : "");
2798}
2799
2800/**
2801 *	ata_dev_configure - Configure the specified ATA/ATAPI device
2802 *	@dev: Target device to configure
2803 *
2804 *	Configure @dev according to @dev->id.  Generic and low-level
2805 *	driver specific fixups are also applied.
2806 *
2807 *	LOCKING:
2808 *	Kernel thread context (may sleep)
2809 *
2810 *	RETURNS:
2811 *	0 on success, -errno otherwise
2812 */
2813int ata_dev_configure(struct ata_device *dev)
2814{
2815	struct ata_port *ap = dev->link->ap;
2816	bool print_info = ata_dev_print_info(dev);
2817	const u16 *id = dev->id;
2818	unsigned int xfer_mask;
2819	unsigned int err_mask;
2820	char revbuf[7];		/* XYZ-99\0 */
2821	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2822	char modelbuf[ATA_ID_PROD_LEN+1];
2823	int rc;
2824
2825	if (!ata_dev_enabled(dev)) {
2826		ata_dev_dbg(dev, "no device\n");
2827		return 0;
2828	}
2829
2830	/* set horkage */
2831	dev->horkage |= ata_dev_blacklisted(dev);
2832	ata_force_horkage(dev);
2833
2834	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2835		ata_dev_info(dev, "unsupported device, disabling\n");
2836		ata_dev_disable(dev);
2837		return 0;
2838	}
2839
2840	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2841	    dev->class == ATA_DEV_ATAPI) {
2842		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2843			     atapi_enabled ? "not supported with this driver"
2844			     : "disabled");
2845		ata_dev_disable(dev);
2846		return 0;
2847	}
2848
2849	rc = ata_do_link_spd_horkage(dev);
2850	if (rc)
2851		return rc;
2852
2853	/* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2854	if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2855	    (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2856		dev->horkage |= ATA_HORKAGE_NOLPM;
2857
2858	if (ap->flags & ATA_FLAG_NO_LPM)
2859		dev->horkage |= ATA_HORKAGE_NOLPM;
2860
2861	if (dev->horkage & ATA_HORKAGE_NOLPM) {
2862		ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2863		dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2864	}
2865
2866	/* let ACPI work its magic */
2867	rc = ata_acpi_on_devcfg(dev);
2868	if (rc)
2869		return rc;
2870
2871	/* massage HPA, do it early as it might change IDENTIFY data */
2872	rc = ata_hpa_resize(dev);
2873	if (rc)
2874		return rc;
2875
2876	/* print device capabilities */
2877	ata_dev_dbg(dev,
2878		    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2879		    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2880		    __func__,
2881		    id[49], id[82], id[83], id[84],
2882		    id[85], id[86], id[87], id[88]);
2883
2884	/* initialize to-be-configured parameters */
2885	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2886	dev->max_sectors = 0;
2887	dev->cdb_len = 0;
2888	dev->n_sectors = 0;
2889	dev->cylinders = 0;
2890	dev->heads = 0;
2891	dev->sectors = 0;
2892	dev->multi_count = 0;
2893
2894	/*
2895	 * common ATA, ATAPI feature tests
2896	 */
2897
2898	/* find max transfer mode; for printk only */
2899	xfer_mask = ata_id_xfermask(id);
2900
2901	ata_dump_id(dev, id);
2902
2903	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2904	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2905			sizeof(fwrevbuf));
2906
2907	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2908			sizeof(modelbuf));
2909
2910	/* ATA-specific feature tests */
2911	if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2912		if (ata_id_is_cfa(id)) {
2913			/* CPRM may make this media unusable */
2914			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2915				ata_dev_warn(dev,
2916	"supports DRM functions and may not be fully accessible\n");
2917			snprintf(revbuf, 7, "CFA");
2918		} else {
2919			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2920			/* Warn the user if the device has TPM extensions */
2921			if (ata_id_has_tpm(id))
2922				ata_dev_warn(dev,
2923	"supports DRM functions and may not be fully accessible\n");
2924		}
2925
2926		dev->n_sectors = ata_id_n_sectors(id);
2927
2928		/* get current R/W Multiple count setting */
2929		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2930			unsigned int max = dev->id[47] & 0xff;
2931			unsigned int cnt = dev->id[59] & 0xff;
2932			/* only recognize/allow powers of two here */
2933			if (is_power_of_2(max) && is_power_of_2(cnt))
2934				if (cnt <= max)
2935					dev->multi_count = cnt;
2936		}
2937
2938		/* print device info to dmesg */
2939		if (print_info)
2940			ata_dev_info(dev, "%s: %s, %s, max %s\n",
2941				     revbuf, modelbuf, fwrevbuf,
2942				     ata_mode_string(xfer_mask));
2943
2944		if (ata_id_has_lba(id)) {
2945			rc = ata_dev_config_lba(dev);
2946			if (rc)
2947				return rc;
2948		} else {
2949			ata_dev_config_chs(dev);
2950		}
2951
2952		ata_dev_config_fua(dev);
2953		ata_dev_config_devslp(dev);
2954		ata_dev_config_sense_reporting(dev);
2955		ata_dev_config_zac(dev);
2956		ata_dev_config_trusted(dev);
2957		ata_dev_config_cpr(dev);
2958		ata_dev_config_cdl(dev);
2959		dev->cdb_len = 32;
2960
2961		if (print_info)
2962			ata_dev_print_features(dev);
2963	}
2964
2965	/* ATAPI-specific feature tests */
2966	else if (dev->class == ATA_DEV_ATAPI) {
2967		const char *cdb_intr_string = "";
2968		const char *atapi_an_string = "";
2969		const char *dma_dir_string = "";
2970		u32 sntf;
2971
2972		rc = atapi_cdb_len(id);
2973		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2974			ata_dev_warn(dev, "unsupported CDB len %d\n", rc);
2975			rc = -EINVAL;
2976			goto err_out_nosup;
2977		}
2978		dev->cdb_len = (unsigned int) rc;
2979
2980		/* Enable ATAPI AN if both the host and device have
2981		 * the support.  If PMP is attached, SNTF is required
2982		 * to enable ATAPI AN to discern between PHY status
2983		 * changed notifications and ATAPI ANs.
2984		 */
2985		if (atapi_an &&
2986		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2987		    (!sata_pmp_attached(ap) ||
2988		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2989			/* issue SET feature command to turn this on */
2990			err_mask = ata_dev_set_feature(dev,
2991					SETFEATURES_SATA_ENABLE, SATA_AN);
2992			if (err_mask)
2993				ata_dev_err(dev,
2994					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
2995					    err_mask);
2996			else {
2997				dev->flags |= ATA_DFLAG_AN;
2998				atapi_an_string = ", ATAPI AN";
2999			}
3000		}
3001
3002		if (ata_id_cdb_intr(dev->id)) {
3003			dev->flags |= ATA_DFLAG_CDB_INTR;
3004			cdb_intr_string = ", CDB intr";
3005		}
3006
3007		if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
3008			dev->flags |= ATA_DFLAG_DMADIR;
3009			dma_dir_string = ", DMADIR";
3010		}
3011
3012		if (ata_id_has_da(dev->id)) {
3013			dev->flags |= ATA_DFLAG_DA;
3014			zpodd_init(dev);
3015		}
3016
3017		/* print device info to dmesg */
3018		if (print_info)
3019			ata_dev_info(dev,
3020				     "ATAPI: %s, %s, max %s%s%s%s\n",
3021				     modelbuf, fwrevbuf,
3022				     ata_mode_string(xfer_mask),
3023				     cdb_intr_string, atapi_an_string,
3024				     dma_dir_string);
3025	}
3026
3027	/* determine max_sectors */
3028	dev->max_sectors = ATA_MAX_SECTORS;
3029	if (dev->flags & ATA_DFLAG_LBA48)
3030		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
3031
3032	/* Limit PATA drive on SATA cable bridge transfers to udma5,
3033	   200 sectors */
3034	if (ata_dev_knobble(dev)) {
3035		if (print_info)
3036			ata_dev_info(dev, "applying bridge limits\n");
3037		dev->udma_mask &= ATA_UDMA5;
3038		dev->max_sectors = ATA_MAX_SECTORS;
3039	}
3040
3041	if ((dev->class == ATA_DEV_ATAPI) &&
3042	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
3043		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
3044		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
3045	}
3046
3047	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
3048		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
3049					 dev->max_sectors);
3050
3051	if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
3052		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
3053					 dev->max_sectors);
3054
3055	if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
3056		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
3057
3058	if (ap->ops->dev_config)
3059		ap->ops->dev_config(dev);
3060
3061	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
3062		/* Let the user know. We don't want to disallow opens for
3063		   rescue purposes, or in case the vendor is just a blithering
3064		   idiot. Do this after the dev_config call as some controllers
3065		   with buggy firmware may want to avoid reporting false device
3066		   bugs */
3067
3068		if (print_info) {
3069			ata_dev_warn(dev,
3070"Drive reports diagnostics failure. This may indicate a drive\n");
3071			ata_dev_warn(dev,
3072"fault or invalid emulation. Contact drive vendor for information.\n");
3073		}
3074	}
3075
3076	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
3077		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
3078		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
3079	}
3080
3081	return 0;
3082
3083err_out_nosup:
3084	return rc;
3085}
3086
3087/**
3088 *	ata_cable_40wire	-	return 40 wire cable type
3089 *	@ap: port
3090 *
3091 *	Helper method for drivers which want to hardwire 40 wire cable
3092 *	detection.
3093 */
3094
3095int ata_cable_40wire(struct ata_port *ap)
3096{
3097	return ATA_CBL_PATA40;
3098}
3099EXPORT_SYMBOL_GPL(ata_cable_40wire);
3100
3101/**
3102 *	ata_cable_80wire	-	return 80 wire cable type
3103 *	@ap: port
3104 *
3105 *	Helper method for drivers which want to hardwire 80 wire cable
3106 *	detection.
3107 */
3108
3109int ata_cable_80wire(struct ata_port *ap)
3110{
3111	return ATA_CBL_PATA80;
3112}
3113EXPORT_SYMBOL_GPL(ata_cable_80wire);
3114
3115/**
3116 *	ata_cable_unknown	-	return unknown PATA cable.
3117 *	@ap: port
3118 *
3119 *	Helper method for drivers which have no PATA cable detection.
3120 */
3121
3122int ata_cable_unknown(struct ata_port *ap)
3123{
3124	return ATA_CBL_PATA_UNK;
3125}
3126EXPORT_SYMBOL_GPL(ata_cable_unknown);
3127
3128/**
3129 *	ata_cable_ignore	-	return ignored PATA cable.
3130 *	@ap: port
3131 *
3132 *	Helper method for drivers which don't use cable type to limit
3133 *	transfer mode.
3134 */
3135int ata_cable_ignore(struct ata_port *ap)
3136{
3137	return ATA_CBL_PATA_IGN;
3138}
3139EXPORT_SYMBOL_GPL(ata_cable_ignore);
3140
3141/**
3142 *	ata_cable_sata	-	return SATA cable type
3143 *	@ap: port
3144 *
3145 *	Helper method for drivers which have SATA cables
3146 */
3147
3148int ata_cable_sata(struct ata_port *ap)
3149{
3150	return ATA_CBL_SATA;
3151}
3152EXPORT_SYMBOL_GPL(ata_cable_sata);
3153
3154/**
3155 *	sata_print_link_status - Print SATA link status
3156 *	@link: SATA link to printk link status about
3157 *
3158 *	This function prints link speed and status of a SATA link.
3159 *
3160 *	LOCKING:
3161 *	None.
3162 */
3163static void sata_print_link_status(struct ata_link *link)
3164{
3165	u32 sstatus, scontrol, tmp;
3166
3167	if (sata_scr_read(link, SCR_STATUS, &sstatus))
3168		return;
3169	if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3170		return;
3171
3172	if (ata_phys_link_online(link)) {
3173		tmp = (sstatus >> 4) & 0xf;
3174		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3175			      sata_spd_string(tmp), sstatus, scontrol);
3176	} else {
3177		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3178			      sstatus, scontrol);
3179	}
3180}
3181
3182/**
3183 *	ata_dev_pair		-	return other device on cable
3184 *	@adev: device
3185 *
3186 *	Obtain the other device on the same cable, or if none is
3187 *	present NULL is returned
3188 */
3189
3190struct ata_device *ata_dev_pair(struct ata_device *adev)
3191{
3192	struct ata_link *link = adev->link;
3193	struct ata_device *pair = &link->device[1 - adev->devno];
3194	if (!ata_dev_enabled(pair))
3195		return NULL;
3196	return pair;
3197}
3198EXPORT_SYMBOL_GPL(ata_dev_pair);
3199
3200/**
3201 *	sata_down_spd_limit - adjust SATA spd limit downward
3202 *	@link: Link to adjust SATA spd limit for
3203 *	@spd_limit: Additional limit
3204 *
3205 *	Adjust SATA spd limit of @link downward.  Note that this
3206 *	function only adjusts the limit.  The change must be applied
3207 *	using sata_set_spd().
3208 *
3209 *	If @spd_limit is non-zero, the speed is limited to equal to or
3210 *	lower than @spd_limit if such speed is supported.  If
3211 *	@spd_limit is slower than any supported speed, only the lowest
3212 *	supported speed is allowed.
3213 *
3214 *	LOCKING:
3215 *	Inherited from caller.
3216 *
3217 *	RETURNS:
3218 *	0 on success, negative errno on failure
3219 */
3220int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3221{
3222	u32 sstatus, spd, mask;
3223	int rc, bit;
3224
3225	if (!sata_scr_valid(link))
3226		return -EOPNOTSUPP;
3227
3228	/* If SCR can be read, use it to determine the current SPD.
3229	 * If not, use cached value in link->sata_spd.
3230	 */
3231	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3232	if (rc == 0 && ata_sstatus_online(sstatus))
3233		spd = (sstatus >> 4) & 0xf;
3234	else
3235		spd = link->sata_spd;
3236
3237	mask = link->sata_spd_limit;
3238	if (mask <= 1)
3239		return -EINVAL;
3240
3241	/* unconditionally mask off the highest bit */
3242	bit = fls(mask) - 1;
3243	mask &= ~(1 << bit);
3244
3245	/*
3246	 * Mask off all speeds higher than or equal to the current one.  At
3247	 * this point, if current SPD is not available and we previously
3248	 * recorded the link speed from SStatus, the driver has already
3249	 * masked off the highest bit so mask should already be 1 or 0.
3250	 * Otherwise, we should not force 1.5Gbps on a link where we have
3251	 * not previously recorded speed from SStatus.  Just return in this
3252	 * case.
3253	 */
3254	if (spd > 1)
3255		mask &= (1 << (spd - 1)) - 1;
3256	else if (link->sata_spd)
3257		return -EINVAL;
3258
3259	/* were we already at the bottom? */
3260	if (!mask)
3261		return -EINVAL;
3262
3263	if (spd_limit) {
3264		if (mask & ((1 << spd_limit) - 1))
3265			mask &= (1 << spd_limit) - 1;
3266		else {
3267			bit = ffs(mask) - 1;
3268			mask = 1 << bit;
3269		}
3270	}
3271
3272	link->sata_spd_limit = mask;
3273
3274	ata_link_warn(link, "limiting SATA link speed to %s\n",
3275		      sata_spd_string(fls(mask)));
3276
3277	return 0;
3278}
3279
3280#ifdef CONFIG_ATA_ACPI
3281/**
3282 *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3283 *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3284 *	@cycle: cycle duration in ns
3285 *
3286 *	Return matching xfer mode for @cycle.  The returned mode is of
3287 *	the transfer type specified by @xfer_shift.  If @cycle is too
3288 *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3289 *	than the fastest known mode, the fasted mode is returned.
3290 *
3291 *	LOCKING:
3292 *	None.
3293 *
3294 *	RETURNS:
3295 *	Matching xfer_mode, 0xff if no match found.
3296 */
3297u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3298{
3299	u8 base_mode = 0xff, last_mode = 0xff;
3300	const struct ata_xfer_ent *ent;
3301	const struct ata_timing *t;
3302
3303	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3304		if (ent->shift == xfer_shift)
3305			base_mode = ent->base;
3306
3307	for (t = ata_timing_find_mode(base_mode);
3308	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3309		unsigned short this_cycle;
3310
3311		switch (xfer_shift) {
3312		case ATA_SHIFT_PIO:
3313		case ATA_SHIFT_MWDMA:
3314			this_cycle = t->cycle;
3315			break;
3316		case ATA_SHIFT_UDMA:
3317			this_cycle = t->udma;
3318			break;
3319		default:
3320			return 0xff;
3321		}
3322
3323		if (cycle > this_cycle)
3324			break;
3325
3326		last_mode = t->mode;
3327	}
3328
3329	return last_mode;
3330}
3331#endif
3332
3333/**
3334 *	ata_down_xfermask_limit - adjust dev xfer masks downward
3335 *	@dev: Device to adjust xfer masks
3336 *	@sel: ATA_DNXFER_* selector
3337 *
3338 *	Adjust xfer masks of @dev downward.  Note that this function
3339 *	does not apply the change.  Invoking ata_set_mode() afterwards
3340 *	will apply the limit.
3341 *
3342 *	LOCKING:
3343 *	Inherited from caller.
3344 *
3345 *	RETURNS:
3346 *	0 on success, negative errno on failure
3347 */
3348int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3349{
3350	char buf[32];
3351	unsigned int orig_mask, xfer_mask;
3352	unsigned int pio_mask, mwdma_mask, udma_mask;
3353	int quiet, highbit;
3354
3355	quiet = !!(sel & ATA_DNXFER_QUIET);
3356	sel &= ~ATA_DNXFER_QUIET;
3357
3358	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3359						  dev->mwdma_mask,
3360						  dev->udma_mask);
3361	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3362
3363	switch (sel) {
3364	case ATA_DNXFER_PIO:
3365		highbit = fls(pio_mask) - 1;
3366		pio_mask &= ~(1 << highbit);
3367		break;
3368
3369	case ATA_DNXFER_DMA:
3370		if (udma_mask) {
3371			highbit = fls(udma_mask) - 1;
3372			udma_mask &= ~(1 << highbit);
3373			if (!udma_mask)
3374				return -ENOENT;
3375		} else if (mwdma_mask) {
3376			highbit = fls(mwdma_mask) - 1;
3377			mwdma_mask &= ~(1 << highbit);
3378			if (!mwdma_mask)
3379				return -ENOENT;
3380		}
3381		break;
3382
3383	case ATA_DNXFER_40C:
3384		udma_mask &= ATA_UDMA_MASK_40C;
3385		break;
3386
3387	case ATA_DNXFER_FORCE_PIO0:
3388		pio_mask &= 1;
3389		fallthrough;
3390	case ATA_DNXFER_FORCE_PIO:
3391		mwdma_mask = 0;
3392		udma_mask = 0;
3393		break;
3394
3395	default:
3396		BUG();
3397	}
3398
3399	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3400
3401	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3402		return -ENOENT;
3403
3404	if (!quiet) {
3405		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3406			snprintf(buf, sizeof(buf), "%s:%s",
3407				 ata_mode_string(xfer_mask),
3408				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3409		else
3410			snprintf(buf, sizeof(buf), "%s",
3411				 ata_mode_string(xfer_mask));
3412
3413		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3414	}
3415
3416	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3417			    &dev->udma_mask);
3418
3419	return 0;
3420}
3421
3422static int ata_dev_set_mode(struct ata_device *dev)
3423{
3424	struct ata_port *ap = dev->link->ap;
3425	struct ata_eh_context *ehc = &dev->link->eh_context;
3426	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3427	const char *dev_err_whine = "";
3428	int ign_dev_err = 0;
3429	unsigned int err_mask = 0;
3430	int rc;
3431
3432	dev->flags &= ~ATA_DFLAG_PIO;
3433	if (dev->xfer_shift == ATA_SHIFT_PIO)
3434		dev->flags |= ATA_DFLAG_PIO;
3435
3436	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3437		dev_err_whine = " (SET_XFERMODE skipped)";
3438	else {
3439		if (nosetxfer)
3440			ata_dev_warn(dev,
3441				     "NOSETXFER but PATA detected - can't "
3442				     "skip SETXFER, might malfunction\n");
3443		err_mask = ata_dev_set_xfermode(dev);
3444	}
3445
3446	if (err_mask & ~AC_ERR_DEV)
3447		goto fail;
3448
3449	/* revalidate */
3450	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3451	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3452	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3453	if (rc)
3454		return rc;
3455
3456	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3457		/* Old CFA may refuse this command, which is just fine */
3458		if (ata_id_is_cfa(dev->id))
3459			ign_dev_err = 1;
3460		/* Catch several broken garbage emulations plus some pre
3461		   ATA devices */
3462		if (ata_id_major_version(dev->id) == 0 &&
3463					dev->pio_mode <= XFER_PIO_2)
3464			ign_dev_err = 1;
3465		/* Some very old devices and some bad newer ones fail
3466		   any kind of SET_XFERMODE request but support PIO0-2
3467		   timings and no IORDY */
3468		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3469			ign_dev_err = 1;
3470	}
3471	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3472	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3473	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3474	    dev->dma_mode == XFER_MW_DMA_0 &&
3475	    (dev->id[63] >> 8) & 1)
3476		ign_dev_err = 1;
3477
3478	/* if the device is actually configured correctly, ignore dev err */
3479	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3480		ign_dev_err = 1;
3481
3482	if (err_mask & AC_ERR_DEV) {
3483		if (!ign_dev_err)
3484			goto fail;
3485		else
3486			dev_err_whine = " (device error ignored)";
3487	}
3488
3489	ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n",
3490		    dev->xfer_shift, (int)dev->xfer_mode);
3491
3492	if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3493	    ehc->i.flags & ATA_EHI_DID_HARDRESET)
3494		ata_dev_info(dev, "configured for %s%s\n",
3495			     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3496			     dev_err_whine);
3497
3498	return 0;
3499
3500 fail:
3501	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3502	return -EIO;
3503}
3504
3505/**
3506 *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3507 *	@link: link on which timings will be programmed
3508 *	@r_failed_dev: out parameter for failed device
3509 *
3510 *	Standard implementation of the function used to tune and set
3511 *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3512 *	ata_dev_set_mode() fails, pointer to the failing device is
3513 *	returned in @r_failed_dev.
3514 *
3515 *	LOCKING:
3516 *	PCI/etc. bus probe sem.
3517 *
3518 *	RETURNS:
3519 *	0 on success, negative errno otherwise
3520 */
3521
3522int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3523{
3524	struct ata_port *ap = link->ap;
3525	struct ata_device *dev;
3526	int rc = 0, used_dma = 0, found = 0;
3527
3528	/* step 1: calculate xfer_mask */
3529	ata_for_each_dev(dev, link, ENABLED) {
3530		unsigned int pio_mask, dma_mask;
3531		unsigned int mode_mask;
3532
3533		mode_mask = ATA_DMA_MASK_ATA;
3534		if (dev->class == ATA_DEV_ATAPI)
3535			mode_mask = ATA_DMA_MASK_ATAPI;
3536		else if (ata_id_is_cfa(dev->id))
3537			mode_mask = ATA_DMA_MASK_CFA;
3538
3539		ata_dev_xfermask(dev);
3540		ata_force_xfermask(dev);
3541
3542		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3543
3544		if (libata_dma_mask & mode_mask)
3545			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3546						     dev->udma_mask);
3547		else
3548			dma_mask = 0;
3549
3550		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3551		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3552
3553		found = 1;
3554		if (ata_dma_enabled(dev))
3555			used_dma = 1;
3556	}
3557	if (!found)
3558		goto out;
3559
3560	/* step 2: always set host PIO timings */
3561	ata_for_each_dev(dev, link, ENABLED) {
3562		if (dev->pio_mode == 0xff) {
3563			ata_dev_warn(dev, "no PIO support\n");
3564			rc = -EINVAL;
3565			goto out;
3566		}
3567
3568		dev->xfer_mode = dev->pio_mode;
3569		dev->xfer_shift = ATA_SHIFT_PIO;
3570		if (ap->ops->set_piomode)
3571			ap->ops->set_piomode(ap, dev);
3572	}
3573
3574	/* step 3: set host DMA timings */
3575	ata_for_each_dev(dev, link, ENABLED) {
3576		if (!ata_dma_enabled(dev))
3577			continue;
3578
3579		dev->xfer_mode = dev->dma_mode;
3580		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3581		if (ap->ops->set_dmamode)
3582			ap->ops->set_dmamode(ap, dev);
3583	}
3584
3585	/* step 4: update devices' xfer mode */
3586	ata_for_each_dev(dev, link, ENABLED) {
3587		rc = ata_dev_set_mode(dev);
3588		if (rc)
3589			goto out;
3590	}
3591
3592	/* Record simplex status. If we selected DMA then the other
3593	 * host channels are not permitted to do so.
3594	 */
3595	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3596		ap->host->simplex_claimed = ap;
3597
3598 out:
3599	if (rc)
3600		*r_failed_dev = dev;
3601	return rc;
3602}
3603EXPORT_SYMBOL_GPL(ata_do_set_mode);
3604
3605/**
3606 *	ata_wait_ready - wait for link to become ready
3607 *	@link: link to be waited on
3608 *	@deadline: deadline jiffies for the operation
3609 *	@check_ready: callback to check link readiness
3610 *
3611 *	Wait for @link to become ready.  @check_ready should return
3612 *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3613 *	link doesn't seem to be occupied, other errno for other error
3614 *	conditions.
3615 *
3616 *	Transient -ENODEV conditions are allowed for
3617 *	ATA_TMOUT_FF_WAIT.
3618 *
3619 *	LOCKING:
3620 *	EH context.
3621 *
3622 *	RETURNS:
3623 *	0 if @link is ready before @deadline; otherwise, -errno.
3624 */
3625int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3626		   int (*check_ready)(struct ata_link *link))
3627{
3628	unsigned long start = jiffies;
3629	unsigned long nodev_deadline;
3630	int warned = 0;
3631
3632	/* choose which 0xff timeout to use, read comment in libata.h */
3633	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3634		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3635	else
3636		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3637
3638	/* Slave readiness can't be tested separately from master.  On
3639	 * M/S emulation configuration, this function should be called
3640	 * only on the master and it will handle both master and slave.
3641	 */
3642	WARN_ON(link == link->ap->slave_link);
3643
3644	if (time_after(nodev_deadline, deadline))
3645		nodev_deadline = deadline;
3646
3647	while (1) {
3648		unsigned long now = jiffies;
3649		int ready, tmp;
3650
3651		ready = tmp = check_ready(link);
3652		if (ready > 0)
3653			return 0;
3654
3655		/*
3656		 * -ENODEV could be transient.  Ignore -ENODEV if link
3657		 * is online.  Also, some SATA devices take a long
3658		 * time to clear 0xff after reset.  Wait for
3659		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3660		 * offline.
3661		 *
3662		 * Note that some PATA controllers (pata_ali) explode
3663		 * if status register is read more than once when
3664		 * there's no device attached.
3665		 */
3666		if (ready == -ENODEV) {
3667			if (ata_link_online(link))
3668				ready = 0;
3669			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3670				 !ata_link_offline(link) &&
3671				 time_before(now, nodev_deadline))
3672				ready = 0;
3673		}
3674
3675		if (ready)
3676			return ready;
3677		if (time_after(now, deadline))
3678			return -EBUSY;
3679
3680		if (!warned && time_after(now, start + 5 * HZ) &&
3681		    (deadline - now > 3 * HZ)) {
3682			ata_link_warn(link,
3683				"link is slow to respond, please be patient "
3684				"(ready=%d)\n", tmp);
3685			warned = 1;
3686		}
3687
3688		ata_msleep(link->ap, 50);
3689	}
3690}
3691
3692/**
3693 *	ata_wait_after_reset - wait for link to become ready after reset
3694 *	@link: link to be waited on
3695 *	@deadline: deadline jiffies for the operation
3696 *	@check_ready: callback to check link readiness
3697 *
3698 *	Wait for @link to become ready after reset.
3699 *
3700 *	LOCKING:
3701 *	EH context.
3702 *
3703 *	RETURNS:
3704 *	0 if @link is ready before @deadline; otherwise, -errno.
3705 */
3706int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3707				int (*check_ready)(struct ata_link *link))
3708{
3709	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3710
3711	return ata_wait_ready(link, deadline, check_ready);
3712}
3713EXPORT_SYMBOL_GPL(ata_wait_after_reset);
3714
3715/**
3716 *	ata_std_prereset - prepare for reset
3717 *	@link: ATA link to be reset
3718 *	@deadline: deadline jiffies for the operation
3719 *
3720 *	@link is about to be reset.  Initialize it.  Failure from
3721 *	prereset makes libata abort whole reset sequence and give up
3722 *	that port, so prereset should be best-effort.  It does its
3723 *	best to prepare for reset sequence but if things go wrong, it
3724 *	should just whine, not fail.
3725 *
3726 *	LOCKING:
3727 *	Kernel thread context (may sleep)
3728 *
3729 *	RETURNS:
3730 *	Always 0.
3731 */
3732int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3733{
3734	struct ata_port *ap = link->ap;
3735	struct ata_eh_context *ehc = &link->eh_context;
3736	const unsigned int *timing = sata_ehc_deb_timing(ehc);
3737	int rc;
3738
3739	/* if we're about to do hardreset, nothing more to do */
3740	if (ehc->i.action & ATA_EH_HARDRESET)
3741		return 0;
3742
3743	/* if SATA, resume link */
3744	if (ap->flags & ATA_FLAG_SATA) {
3745		rc = sata_link_resume(link, timing, deadline);
3746		/* whine about phy resume failure but proceed */
3747		if (rc && rc != -EOPNOTSUPP)
3748			ata_link_warn(link,
3749				      "failed to resume link for reset (errno=%d)\n",
3750				      rc);
3751	}
3752
3753	/* no point in trying softreset on offline link */
3754	if (ata_phys_link_offline(link))
3755		ehc->i.action &= ~ATA_EH_SOFTRESET;
3756
3757	return 0;
3758}
3759EXPORT_SYMBOL_GPL(ata_std_prereset);
3760
3761/**
3762 *	sata_std_hardreset - COMRESET w/o waiting or classification
3763 *	@link: link to reset
3764 *	@class: resulting class of attached device
3765 *	@deadline: deadline jiffies for the operation
3766 *
3767 *	Standard SATA COMRESET w/o waiting or classification.
3768 *
3769 *	LOCKING:
3770 *	Kernel thread context (may sleep)
3771 *
3772 *	RETURNS:
3773 *	0 if link offline, -EAGAIN if link online, -errno on errors.
3774 */
3775int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3776		       unsigned long deadline)
3777{
3778	const unsigned int *timing = sata_ehc_deb_timing(&link->eh_context);
3779	bool online;
3780	int rc;
3781
3782	/* do hardreset */
3783	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3784	return online ? -EAGAIN : rc;
3785}
3786EXPORT_SYMBOL_GPL(sata_std_hardreset);
3787
3788/**
3789 *	ata_std_postreset - standard postreset callback
3790 *	@link: the target ata_link
3791 *	@classes: classes of attached devices
3792 *
3793 *	This function is invoked after a successful reset.  Note that
3794 *	the device might have been reset more than once using
3795 *	different reset methods before postreset is invoked.
3796 *
3797 *	LOCKING:
3798 *	Kernel thread context (may sleep)
3799 */
3800void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3801{
3802	u32 serror;
3803
3804	/* reset complete, clear SError */
3805	if (!sata_scr_read(link, SCR_ERROR, &serror))
3806		sata_scr_write(link, SCR_ERROR, serror);
3807
3808	/* print link status */
3809	sata_print_link_status(link);
3810}
3811EXPORT_SYMBOL_GPL(ata_std_postreset);
3812
3813/**
3814 *	ata_dev_same_device - Determine whether new ID matches configured device
3815 *	@dev: device to compare against
3816 *	@new_class: class of the new device
3817 *	@new_id: IDENTIFY page of the new device
3818 *
3819 *	Compare @new_class and @new_id against @dev and determine
3820 *	whether @dev is the device indicated by @new_class and
3821 *	@new_id.
3822 *
3823 *	LOCKING:
3824 *	None.
3825 *
3826 *	RETURNS:
3827 *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3828 */
3829static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3830			       const u16 *new_id)
3831{
3832	const u16 *old_id = dev->id;
3833	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3834	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3835
3836	if (dev->class != new_class) {
3837		ata_dev_info(dev, "class mismatch %d != %d\n",
3838			     dev->class, new_class);
3839		return 0;
3840	}
3841
3842	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3843	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3844	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3845	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3846
3847	if (strcmp(model[0], model[1])) {
3848		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3849			     model[0], model[1]);
3850		return 0;
3851	}
3852
3853	if (strcmp(serial[0], serial[1])) {
3854		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3855			     serial[0], serial[1]);
3856		return 0;
3857	}
3858
3859	return 1;
3860}
3861
3862/**
3863 *	ata_dev_reread_id - Re-read IDENTIFY data
3864 *	@dev: target ATA device
3865 *	@readid_flags: read ID flags
3866 *
3867 *	Re-read IDENTIFY page and make sure @dev is still attached to
3868 *	the port.
3869 *
3870 *	LOCKING:
3871 *	Kernel thread context (may sleep)
3872 *
3873 *	RETURNS:
3874 *	0 on success, negative errno otherwise
3875 */
3876int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3877{
3878	unsigned int class = dev->class;
3879	u16 *id = (void *)dev->link->ap->sector_buf;
3880	int rc;
3881
3882	/* read ID data */
3883	rc = ata_dev_read_id(dev, &class, readid_flags, id);
3884	if (rc)
3885		return rc;
3886
3887	/* is the device still there? */
3888	if (!ata_dev_same_device(dev, class, id))
3889		return -ENODEV;
3890
3891	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3892	return 0;
3893}
3894
3895/**
3896 *	ata_dev_revalidate - Revalidate ATA device
3897 *	@dev: device to revalidate
3898 *	@new_class: new class code
3899 *	@readid_flags: read ID flags
3900 *
3901 *	Re-read IDENTIFY page, make sure @dev is still attached to the
3902 *	port and reconfigure it according to the new IDENTIFY page.
3903 *
3904 *	LOCKING:
3905 *	Kernel thread context (may sleep)
3906 *
3907 *	RETURNS:
3908 *	0 on success, negative errno otherwise
3909 */
3910int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3911		       unsigned int readid_flags)
3912{
3913	u64 n_sectors = dev->n_sectors;
3914	u64 n_native_sectors = dev->n_native_sectors;
3915	int rc;
3916
3917	if (!ata_dev_enabled(dev))
3918		return -ENODEV;
3919
3920	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3921	if (ata_class_enabled(new_class) && new_class == ATA_DEV_PMP) {
3922		ata_dev_info(dev, "class mismatch %u != %u\n",
3923			     dev->class, new_class);
3924		rc = -ENODEV;
3925		goto fail;
3926	}
3927
3928	/* re-read ID */
3929	rc = ata_dev_reread_id(dev, readid_flags);
3930	if (rc)
3931		goto fail;
3932
3933	/* configure device according to the new ID */
3934	rc = ata_dev_configure(dev);
3935	if (rc)
3936		goto fail;
3937
3938	/* verify n_sectors hasn't changed */
3939	if (dev->class != ATA_DEV_ATA || !n_sectors ||
3940	    dev->n_sectors == n_sectors)
3941		return 0;
3942
3943	/* n_sectors has changed */
3944	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3945		     (unsigned long long)n_sectors,
3946		     (unsigned long long)dev->n_sectors);
3947
3948	/*
3949	 * Something could have caused HPA to be unlocked
3950	 * involuntarily.  If n_native_sectors hasn't changed and the
3951	 * new size matches it, keep the device.
3952	 */
3953	if (dev->n_native_sectors == n_native_sectors &&
3954	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3955		ata_dev_warn(dev,
3956			     "new n_sectors matches native, probably "
3957			     "late HPA unlock, n_sectors updated\n");
3958		/* use the larger n_sectors */
3959		return 0;
3960	}
3961
3962	/*
3963	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
3964	 * unlocking HPA in those cases.
3965	 *
3966	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
3967	 */
3968	if (dev->n_native_sectors == n_native_sectors &&
3969	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
3970	    !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
3971		ata_dev_warn(dev,
3972			     "old n_sectors matches native, probably "
3973			     "late HPA lock, will try to unlock HPA\n");
3974		/* try unlocking HPA */
3975		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
3976		rc = -EIO;
3977	} else
3978		rc = -ENODEV;
3979
3980	/* restore original n_[native_]sectors and fail */
3981	dev->n_native_sectors = n_native_sectors;
3982	dev->n_sectors = n_sectors;
3983 fail:
3984	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
3985	return rc;
3986}
3987
3988struct ata_blacklist_entry {
3989	const char *model_num;
3990	const char *model_rev;
3991	unsigned long horkage;
3992};
3993
3994static const struct ata_blacklist_entry ata_device_blacklist [] = {
3995	/* Devices with DMA related problems under Linux */
3996	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
3997	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
3998	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
3999	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
4000	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
4001	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
4002	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
4003	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
4004	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
4005	{ "CRD-848[02]B",	NULL,		ATA_HORKAGE_NODMA },
4006	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
4007	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
4008	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
4009	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
4010	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
4011	{ "HITACHI CDR-8[34]35",NULL,		ATA_HORKAGE_NODMA },
4012	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
4013	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
4014	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
4015	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
4016	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
4017	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
4018	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
4019	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
4020	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4021	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
4022	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
4023	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
4024	{ " 2GB ATA Flash Disk", "ADMA428M",	ATA_HORKAGE_NODMA },
4025	{ "VRFDFC22048UCHC-TE*", NULL,		ATA_HORKAGE_NODMA },
4026	/* Odd clown on sil3726/4726 PMPs */
4027	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
4028	/* Similar story with ASMedia 1092 */
4029	{ "ASMT109x- Config",	NULL,		ATA_HORKAGE_DISABLE },
4030
4031	/* Weird ATAPI devices */
4032	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
4033	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
4034	{ "Slimtype DVD A  DS8A8SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
4035	{ "Slimtype DVD A  DS8A9SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
4036
4037	/*
4038	 * Causes silent data corruption with higher max sects.
4039	 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4040	 */
4041	{ "ST380013AS",		"3.20",		ATA_HORKAGE_MAX_SEC_1024 },
4042
4043	/*
4044	 * These devices time out with higher max sects.
4045	 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4046	 */
4047	{ "LITEON CX1-JB*-HP",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
4048	{ "LITEON EP1-*",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
4049
4050	/* Devices we expect to fail diagnostics */
4051
4052	/* Devices where NCQ should be avoided */
4053	/* NCQ is slow */
4054	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
4055	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ },
4056	/* http://thread.gmane.org/gmane.linux.ide/14907 */
4057	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
4058	/* NCQ is broken */
4059	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
4060	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
4061	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
4062	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
4063	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
4064
4065	/* Seagate NCQ + FLUSH CACHE firmware bug */
4066	{ "ST31500341AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4067						ATA_HORKAGE_FIRMWARE_WARN },
4068
4069	{ "ST31000333AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4070						ATA_HORKAGE_FIRMWARE_WARN },
4071
4072	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4073						ATA_HORKAGE_FIRMWARE_WARN },
4074
4075	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4076						ATA_HORKAGE_FIRMWARE_WARN },
4077
4078	/* drives which fail FPDMA_AA activation (some may freeze afterwards)
4079	   the ST disks also have LPM issues */
4080	{ "ST1000LM024 HN-M101MBB", NULL,	ATA_HORKAGE_BROKEN_FPDMA_AA |
4081						ATA_HORKAGE_NOLPM },
4082	{ "VB0250EAVER",	"HPG7",		ATA_HORKAGE_BROKEN_FPDMA_AA },
4083
4084	/* Blacklist entries taken from Silicon Image 3124/3132
4085	   Windows driver .inf file - also several Linux problem reports */
4086	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ },
4087	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ },
4088	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ },
4089
4090	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4091	{ "C300-CTFDDAC128MAG",	"0001",		ATA_HORKAGE_NONCQ },
4092
4093	/* Sandisk SD7/8/9s lock up hard on large trims */
4094	{ "SanDisk SD[789]*",	NULL,		ATA_HORKAGE_MAX_TRIM_128M },
4095
4096	/* devices which puke on READ_NATIVE_MAX */
4097	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA },
4098	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4099	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4100	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
4101
4102	/* this one allows HPA unlocking but fails IOs on the area */
4103	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA },
4104
4105	/* Devices which report 1 sector over size HPA */
4106	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE },
4107	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE },
4108	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE },
4109
4110	/* Devices which get the IVB wrong */
4111	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB },
4112	/* Maybe we should just blacklist TSSTcorp... */
4113	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB },
4114
4115	/* Devices that do not need bridging limits applied */
4116	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK },
4117	{ "BUFFALO HD-QSU2/R5",		NULL,	ATA_HORKAGE_BRIDGE_OK },
4118
4119	/* Devices which aren't very happy with higher link speeds */
4120	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS },
4121	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_HORKAGE_1_5_GBPS },
4122
4123	/*
4124	 * Devices which choke on SETXFER.  Applies only if both the
4125	 * device and controller are SATA.
4126	 */
4127	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_HORKAGE_NOSETXFER },
4128	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_HORKAGE_NOSETXFER },
4129	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_HORKAGE_NOSETXFER },
4130	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_HORKAGE_NOSETXFER },
4131	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_HORKAGE_NOSETXFER },
4132
4133	/* These specific Pioneer models have LPM issues */
4134	{ "PIONEER BD-RW   BDR-207M",	NULL,	ATA_HORKAGE_NOLPM },
4135	{ "PIONEER BD-RW   BDR-205",	NULL,	ATA_HORKAGE_NOLPM },
4136
4137	/* Crucial BX100 SSD 500GB has broken LPM support */
4138	{ "CT500BX100SSD1",		NULL,	ATA_HORKAGE_NOLPM },
4139
4140	/* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4141	{ "Crucial_CT512MX100*",	"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4142						ATA_HORKAGE_ZERO_AFTER_TRIM |
4143						ATA_HORKAGE_NOLPM },
4144	/* 512GB MX100 with newer firmware has only LPM issues */
4145	{ "Crucial_CT512MX100*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM |
4146						ATA_HORKAGE_NOLPM },
4147
4148	/* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4149	{ "Crucial_CT480M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4150						ATA_HORKAGE_ZERO_AFTER_TRIM |
4151						ATA_HORKAGE_NOLPM },
4152	{ "Crucial_CT960M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4153						ATA_HORKAGE_ZERO_AFTER_TRIM |
4154						ATA_HORKAGE_NOLPM },
4155
4156	/* These specific Samsung models/firmware-revs do not handle LPM well */
4157	{ "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM },
4158	{ "SAMSUNG SSD PM830 mSATA *",  "CXM13D1Q", ATA_HORKAGE_NOLPM },
4159	{ "SAMSUNG MZ7TD256HAFV-000L9", NULL,       ATA_HORKAGE_NOLPM },
4160	{ "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM },
4161
4162	/* devices that don't properly handle queued TRIM commands */
4163	{ "Micron_M500IT_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4164						ATA_HORKAGE_ZERO_AFTER_TRIM },
4165	{ "Micron_M500_*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4166						ATA_HORKAGE_ZERO_AFTER_TRIM },
4167	{ "Micron_M5[15]0_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4168						ATA_HORKAGE_ZERO_AFTER_TRIM },
4169	{ "Micron_1100_*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4170						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4171	{ "Crucial_CT*M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4172						ATA_HORKAGE_ZERO_AFTER_TRIM },
4173	{ "Crucial_CT*M550*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4174						ATA_HORKAGE_ZERO_AFTER_TRIM },
4175	{ "Crucial_CT*MX100*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4176						ATA_HORKAGE_ZERO_AFTER_TRIM },
4177	{ "Samsung SSD 840 EVO*",	NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4178						ATA_HORKAGE_NO_DMA_LOG |
4179						ATA_HORKAGE_ZERO_AFTER_TRIM },
4180	{ "Samsung SSD 840*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4181						ATA_HORKAGE_ZERO_AFTER_TRIM },
4182	{ "Samsung SSD 850*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4183						ATA_HORKAGE_ZERO_AFTER_TRIM },
4184	{ "Samsung SSD 860*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4185						ATA_HORKAGE_ZERO_AFTER_TRIM |
4186						ATA_HORKAGE_NO_NCQ_ON_ATI },
4187	{ "Samsung SSD 870*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4188						ATA_HORKAGE_ZERO_AFTER_TRIM |
4189						ATA_HORKAGE_NO_NCQ_ON_ATI },
4190	{ "SAMSUNG*MZ7LH*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4191						ATA_HORKAGE_ZERO_AFTER_TRIM |
4192						ATA_HORKAGE_NO_NCQ_ON_ATI, },
4193	{ "FCCT*M500*",			NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4194						ATA_HORKAGE_ZERO_AFTER_TRIM },
4195
4196	/* devices that don't properly handle TRIM commands */
4197	{ "SuperSSpeed S238*",		NULL,	ATA_HORKAGE_NOTRIM },
4198	{ "M88V29*",			NULL,	ATA_HORKAGE_NOTRIM },
4199
4200	/*
4201	 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4202	 * (Return Zero After Trim) flags in the ATA Command Set are
4203	 * unreliable in the sense that they only define what happens if
4204	 * the device successfully executed the DSM TRIM command. TRIM
4205	 * is only advisory, however, and the device is free to silently
4206	 * ignore all or parts of the request.
4207	 *
4208	 * Whitelist drives that are known to reliably return zeroes
4209	 * after TRIM.
4210	 */
4211
4212	/*
4213	 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4214	 * that model before whitelisting all other intel SSDs.
4215	 */
4216	{ "INTEL*SSDSC2MH*",		NULL,	0 },
4217
4218	{ "Micron*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4219	{ "Crucial*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4220	{ "INTEL*SSD*", 		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4221	{ "SSD*INTEL*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4222	{ "Samsung*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4223	{ "SAMSUNG*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4224	{ "SAMSUNG*MZ7KM*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4225	{ "ST[1248][0248]0[FH]*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4226
4227	/*
4228	 * Some WD SATA-I drives spin up and down erratically when the link
4229	 * is put into the slumber mode.  We don't have full list of the
4230	 * affected devices.  Disable LPM if the device matches one of the
4231	 * known prefixes and is SATA-1.  As a side effect LPM partial is
4232	 * lost too.
4233	 *
4234	 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4235	 */
4236	{ "WDC WD800JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4237	{ "WDC WD1200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4238	{ "WDC WD1600JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4239	{ "WDC WD2000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4240	{ "WDC WD2500JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4241	{ "WDC WD3000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4242	{ "WDC WD3200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4243
4244	/*
4245	 * This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY
4246	 * log page is accessed. Ensure we never ask for this log page with
4247	 * these devices.
4248	 */
4249	{ "SATADOM-ML 3ME",		NULL,	ATA_HORKAGE_NO_LOG_DIR },
4250
4251	/* Buggy FUA */
4252	{ "Maxtor",		"BANC1G10",	ATA_HORKAGE_NO_FUA },
4253	{ "WDC*WD2500J*",	NULL,		ATA_HORKAGE_NO_FUA },
4254	{ "OCZ-VERTEX*",	NULL,		ATA_HORKAGE_NO_FUA },
4255	{ "INTEL*SSDSC2CT*",	NULL,		ATA_HORKAGE_NO_FUA },
4256
4257	/* End Marker */
4258	{ }
4259};
4260
4261static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4262{
4263	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4264	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4265	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4266
4267	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4268	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4269
4270	while (ad->model_num) {
4271		if (glob_match(ad->model_num, model_num)) {
4272			if (ad->model_rev == NULL)
4273				return ad->horkage;
4274			if (glob_match(ad->model_rev, model_rev))
4275				return ad->horkage;
4276		}
4277		ad++;
4278	}
4279	return 0;
4280}
4281
4282static int ata_dma_blacklisted(const struct ata_device *dev)
4283{
4284	/* We don't support polling DMA.
4285	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4286	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4287	 */
4288	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4289	    (dev->flags & ATA_DFLAG_CDB_INTR))
4290		return 1;
4291	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4292}
4293
4294/**
4295 *	ata_is_40wire		-	check drive side detection
4296 *	@dev: device
4297 *
4298 *	Perform drive side detection decoding, allowing for device vendors
4299 *	who can't follow the documentation.
4300 */
4301
4302static int ata_is_40wire(struct ata_device *dev)
4303{
4304	if (dev->horkage & ATA_HORKAGE_IVB)
4305		return ata_drive_40wire_relaxed(dev->id);
4306	return ata_drive_40wire(dev->id);
4307}
4308
4309/**
4310 *	cable_is_40wire		-	40/80/SATA decider
4311 *	@ap: port to consider
4312 *
4313 *	This function encapsulates the policy for speed management
4314 *	in one place. At the moment we don't cache the result but
4315 *	there is a good case for setting ap->cbl to the result when
4316 *	we are called with unknown cables (and figuring out if it
4317 *	impacts hotplug at all).
4318 *
4319 *	Return 1 if the cable appears to be 40 wire.
4320 */
4321
4322static int cable_is_40wire(struct ata_port *ap)
4323{
4324	struct ata_link *link;
4325	struct ata_device *dev;
4326
4327	/* If the controller thinks we are 40 wire, we are. */
4328	if (ap->cbl == ATA_CBL_PATA40)
4329		return 1;
4330
4331	/* If the controller thinks we are 80 wire, we are. */
4332	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4333		return 0;
4334
4335	/* If the system is known to be 40 wire short cable (eg
4336	 * laptop), then we allow 80 wire modes even if the drive
4337	 * isn't sure.
4338	 */
4339	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4340		return 0;
4341
4342	/* If the controller doesn't know, we scan.
4343	 *
4344	 * Note: We look for all 40 wire detects at this point.  Any
4345	 *       80 wire detect is taken to be 80 wire cable because
4346	 * - in many setups only the one drive (slave if present) will
4347	 *   give a valid detect
4348	 * - if you have a non detect capable drive you don't want it
4349	 *   to colour the choice
4350	 */
4351	ata_for_each_link(link, ap, EDGE) {
4352		ata_for_each_dev(dev, link, ENABLED) {
4353			if (!ata_is_40wire(dev))
4354				return 0;
4355		}
4356	}
4357	return 1;
4358}
4359
4360/**
4361 *	ata_dev_xfermask - Compute supported xfermask of the given device
4362 *	@dev: Device to compute xfermask for
4363 *
4364 *	Compute supported xfermask of @dev and store it in
4365 *	dev->*_mask.  This function is responsible for applying all
4366 *	known limits including host controller limits, device
4367 *	blacklist, etc...
4368 *
4369 *	LOCKING:
4370 *	None.
4371 */
4372static void ata_dev_xfermask(struct ata_device *dev)
4373{
4374	struct ata_link *link = dev->link;
4375	struct ata_port *ap = link->ap;
4376	struct ata_host *host = ap->host;
4377	unsigned int xfer_mask;
4378
4379	/* controller modes available */
4380	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4381				      ap->mwdma_mask, ap->udma_mask);
4382
4383	/* drive modes available */
4384	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4385				       dev->mwdma_mask, dev->udma_mask);
4386	xfer_mask &= ata_id_xfermask(dev->id);
4387
4388	/*
4389	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4390	 *	cable
4391	 */
4392	if (ata_dev_pair(dev)) {
4393		/* No PIO5 or PIO6 */
4394		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4395		/* No MWDMA3 or MWDMA 4 */
4396		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4397	}
4398
4399	if (ata_dma_blacklisted(dev)) {
4400		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4401		ata_dev_warn(dev,
4402			     "device is on DMA blacklist, disabling DMA\n");
4403	}
4404
4405	if ((host->flags & ATA_HOST_SIMPLEX) &&
4406	    host->simplex_claimed && host->simplex_claimed != ap) {
4407		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4408		ata_dev_warn(dev,
4409			     "simplex DMA is claimed by other device, disabling DMA\n");
4410	}
4411
4412	if (ap->flags & ATA_FLAG_NO_IORDY)
4413		xfer_mask &= ata_pio_mask_no_iordy(dev);
4414
4415	if (ap->ops->mode_filter)
4416		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4417
4418	/* Apply cable rule here.  Don't apply it early because when
4419	 * we handle hot plug the cable type can itself change.
4420	 * Check this last so that we know if the transfer rate was
4421	 * solely limited by the cable.
4422	 * Unknown or 80 wire cables reported host side are checked
4423	 * drive side as well. Cases where we know a 40wire cable
4424	 * is used safely for 80 are not checked here.
4425	 */
4426	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4427		/* UDMA/44 or higher would be available */
4428		if (cable_is_40wire(ap)) {
4429			ata_dev_warn(dev,
4430				     "limited to UDMA/33 due to 40-wire cable\n");
4431			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4432		}
4433
4434	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4435			    &dev->mwdma_mask, &dev->udma_mask);
4436}
4437
4438/**
4439 *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4440 *	@dev: Device to which command will be sent
4441 *
4442 *	Issue SET FEATURES - XFER MODE command to device @dev
4443 *	on port @ap.
4444 *
4445 *	LOCKING:
4446 *	PCI/etc. bus probe sem.
4447 *
4448 *	RETURNS:
4449 *	0 on success, AC_ERR_* mask otherwise.
4450 */
4451
4452static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4453{
4454	struct ata_taskfile tf;
4455
4456	/* set up set-features taskfile */
4457	ata_dev_dbg(dev, "set features - xfer mode\n");
4458
4459	/* Some controllers and ATAPI devices show flaky interrupt
4460	 * behavior after setting xfer mode.  Use polling instead.
4461	 */
4462	ata_tf_init(dev, &tf);
4463	tf.command = ATA_CMD_SET_FEATURES;
4464	tf.feature = SETFEATURES_XFER;
4465	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4466	tf.protocol = ATA_PROT_NODATA;
4467	/* If we are using IORDY we must send the mode setting command */
4468	if (ata_pio_need_iordy(dev))
4469		tf.nsect = dev->xfer_mode;
4470	/* If the device has IORDY and the controller does not - turn it off */
4471 	else if (ata_id_has_iordy(dev->id))
4472		tf.nsect = 0x01;
4473	else /* In the ancient relic department - skip all of this */
4474		return 0;
4475
4476	/*
4477	 * On some disks, this command causes spin-up, so we need longer
4478	 * timeout.
4479	 */
4480	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4481}
4482
4483/**
4484 *	ata_dev_set_feature - Issue SET FEATURES
4485 *	@dev: Device to which command will be sent
4486 *	@subcmd: The SET FEATURES subcommand to be sent
4487 *	@action: The sector count represents a subcommand specific action
4488 *
4489 *	Issue SET FEATURES command to device @dev on port @ap with sector count
4490 *
4491 *	LOCKING:
4492 *	PCI/etc. bus probe sem.
4493 *
4494 *	RETURNS:
4495 *	0 on success, AC_ERR_* mask otherwise.
4496 */
4497unsigned int ata_dev_set_feature(struct ata_device *dev, u8 subcmd, u8 action)
4498{
4499	struct ata_taskfile tf;
4500	unsigned int timeout = 0;
4501
4502	/* set up set-features taskfile */
4503	ata_dev_dbg(dev, "set features\n");
4504
4505	ata_tf_init(dev, &tf);
4506	tf.command = ATA_CMD_SET_FEATURES;
4507	tf.feature = subcmd;
4508	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4509	tf.protocol = ATA_PROT_NODATA;
4510	tf.nsect = action;
4511
4512	if (subcmd == SETFEATURES_SPINUP)
4513		timeout = ata_probe_timeout ?
4514			  ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4515
4516	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4517}
4518EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4519
4520/**
4521 *	ata_dev_init_params - Issue INIT DEV PARAMS command
4522 *	@dev: Device to which command will be sent
4523 *	@heads: Number of heads (taskfile parameter)
4524 *	@sectors: Number of sectors (taskfile parameter)
4525 *
4526 *	LOCKING:
4527 *	Kernel thread context (may sleep)
4528 *
4529 *	RETURNS:
4530 *	0 on success, AC_ERR_* mask otherwise.
4531 */
4532static unsigned int ata_dev_init_params(struct ata_device *dev,
4533					u16 heads, u16 sectors)
4534{
4535	struct ata_taskfile tf;
4536	unsigned int err_mask;
4537
4538	/* Number of sectors per track 1-255. Number of heads 1-16 */
4539	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4540		return AC_ERR_INVALID;
4541
4542	/* set up init dev params taskfile */
4543	ata_dev_dbg(dev, "init dev params \n");
4544
4545	ata_tf_init(dev, &tf);
4546	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4547	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4548	tf.protocol = ATA_PROT_NODATA;
4549	tf.nsect = sectors;
4550	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4551
4552	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4553	/* A clean abort indicates an original or just out of spec drive
4554	   and we should continue as we issue the setup based on the
4555	   drive reported working geometry */
4556	if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
4557		err_mask = 0;
4558
4559	return err_mask;
4560}
4561
4562/**
4563 *	atapi_check_dma - Check whether ATAPI DMA can be supported
4564 *	@qc: Metadata associated with taskfile to check
4565 *
4566 *	Allow low-level driver to filter ATA PACKET commands, returning
4567 *	a status indicating whether or not it is OK to use DMA for the
4568 *	supplied PACKET command.
4569 *
4570 *	LOCKING:
4571 *	spin_lock_irqsave(host lock)
4572 *
4573 *	RETURNS: 0 when ATAPI DMA can be used
4574 *               nonzero otherwise
4575 */
4576int atapi_check_dma(struct ata_queued_cmd *qc)
4577{
4578	struct ata_port *ap = qc->ap;
4579
4580	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4581	 * few ATAPI devices choke on such DMA requests.
4582	 */
4583	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4584	    unlikely(qc->nbytes & 15))
4585		return 1;
4586
4587	if (ap->ops->check_atapi_dma)
4588		return ap->ops->check_atapi_dma(qc);
4589
4590	return 0;
4591}
4592
4593/**
4594 *	ata_std_qc_defer - Check whether a qc needs to be deferred
4595 *	@qc: ATA command in question
4596 *
4597 *	Non-NCQ commands cannot run with any other command, NCQ or
4598 *	not.  As upper layer only knows the queue depth, we are
4599 *	responsible for maintaining exclusion.  This function checks
4600 *	whether a new command @qc can be issued.
4601 *
4602 *	LOCKING:
4603 *	spin_lock_irqsave(host lock)
4604 *
4605 *	RETURNS:
4606 *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4607 */
4608int ata_std_qc_defer(struct ata_queued_cmd *qc)
4609{
4610	struct ata_link *link = qc->dev->link;
4611
4612	if (ata_is_ncq(qc->tf.protocol)) {
4613		if (!ata_tag_valid(link->active_tag))
4614			return 0;
4615	} else {
4616		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4617			return 0;
4618	}
4619
4620	return ATA_DEFER_LINK;
4621}
4622EXPORT_SYMBOL_GPL(ata_std_qc_defer);
4623
4624enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc)
4625{
4626	return AC_ERR_OK;
4627}
4628EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
4629
4630/**
4631 *	ata_sg_init - Associate command with scatter-gather table.
4632 *	@qc: Command to be associated
4633 *	@sg: Scatter-gather table.
4634 *	@n_elem: Number of elements in s/g table.
4635 *
4636 *	Initialize the data-related elements of queued_cmd @qc
4637 *	to point to a scatter-gather table @sg, containing @n_elem
4638 *	elements.
4639 *
4640 *	LOCKING:
4641 *	spin_lock_irqsave(host lock)
4642 */
4643void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4644		 unsigned int n_elem)
4645{
4646	qc->sg = sg;
4647	qc->n_elem = n_elem;
4648	qc->cursg = qc->sg;
4649}
4650
4651#ifdef CONFIG_HAS_DMA
4652
4653/**
4654 *	ata_sg_clean - Unmap DMA memory associated with command
4655 *	@qc: Command containing DMA memory to be released
4656 *
4657 *	Unmap all mapped DMA memory associated with this command.
4658 *
4659 *	LOCKING:
4660 *	spin_lock_irqsave(host lock)
4661 */
4662static void ata_sg_clean(struct ata_queued_cmd *qc)
4663{
4664	struct ata_port *ap = qc->ap;
4665	struct scatterlist *sg = qc->sg;
4666	int dir = qc->dma_dir;
4667
4668	WARN_ON_ONCE(sg == NULL);
4669
4670	if (qc->n_elem)
4671		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4672
4673	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4674	qc->sg = NULL;
4675}
4676
4677/**
4678 *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4679 *	@qc: Command with scatter-gather table to be mapped.
4680 *
4681 *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4682 *
4683 *	LOCKING:
4684 *	spin_lock_irqsave(host lock)
4685 *
4686 *	RETURNS:
4687 *	Zero on success, negative on error.
4688 *
4689 */
4690static int ata_sg_setup(struct ata_queued_cmd *qc)
4691{
4692	struct ata_port *ap = qc->ap;
4693	unsigned int n_elem;
4694
4695	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4696	if (n_elem < 1)
4697		return -1;
4698
4699	qc->orig_n_elem = qc->n_elem;
4700	qc->n_elem = n_elem;
4701	qc->flags |= ATA_QCFLAG_DMAMAP;
4702
4703	return 0;
4704}
4705
4706#else /* !CONFIG_HAS_DMA */
4707
4708static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
4709static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4710
4711#endif /* !CONFIG_HAS_DMA */
4712
4713/**
4714 *	swap_buf_le16 - swap halves of 16-bit words in place
4715 *	@buf:  Buffer to swap
4716 *	@buf_words:  Number of 16-bit words in buffer.
4717 *
4718 *	Swap halves of 16-bit words if needed to convert from
4719 *	little-endian byte order to native cpu byte order, or
4720 *	vice-versa.
4721 *
4722 *	LOCKING:
4723 *	Inherited from caller.
4724 */
4725void swap_buf_le16(u16 *buf, unsigned int buf_words)
4726{
4727#ifdef __BIG_ENDIAN
4728	unsigned int i;
4729
4730	for (i = 0; i < buf_words; i++)
4731		buf[i] = le16_to_cpu(buf[i]);
4732#endif /* __BIG_ENDIAN */
4733}
4734
4735/**
4736 *	ata_qc_free - free unused ata_queued_cmd
4737 *	@qc: Command to complete
4738 *
4739 *	Designed to free unused ata_queued_cmd object
4740 *	in case something prevents using it.
4741 *
4742 *	LOCKING:
4743 *	spin_lock_irqsave(host lock)
4744 */
4745void ata_qc_free(struct ata_queued_cmd *qc)
4746{
4747	qc->flags = 0;
4748	if (ata_tag_valid(qc->tag))
4749		qc->tag = ATA_TAG_POISON;
4750}
4751
4752void __ata_qc_complete(struct ata_queued_cmd *qc)
4753{
4754	struct ata_port *ap;
4755	struct ata_link *link;
4756
4757	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4758	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4759	ap = qc->ap;
4760	link = qc->dev->link;
4761
4762	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4763		ata_sg_clean(qc);
4764
4765	/* command should be marked inactive atomically with qc completion */
4766	if (ata_is_ncq(qc->tf.protocol)) {
4767		link->sactive &= ~(1 << qc->hw_tag);
4768		if (!link->sactive)
4769			ap->nr_active_links--;
4770	} else {
4771		link->active_tag = ATA_TAG_POISON;
4772		ap->nr_active_links--;
4773	}
4774
4775	/* clear exclusive status */
4776	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4777		     ap->excl_link == link))
4778		ap->excl_link = NULL;
4779
4780	/* atapi: mark qc as inactive to prevent the interrupt handler
4781	 * from completing the command twice later, before the error handler
4782	 * is called. (when rc != 0 and atapi request sense is needed)
4783	 */
4784	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4785	ap->qc_active &= ~(1ULL << qc->tag);
4786
4787	/* call completion callback */
4788	qc->complete_fn(qc);
4789}
4790
4791static void fill_result_tf(struct ata_queued_cmd *qc)
4792{
4793	struct ata_port *ap = qc->ap;
4794
4795	qc->result_tf.flags = qc->tf.flags;
4796	ap->ops->qc_fill_rtf(qc);
4797}
4798
4799static void ata_verify_xfer(struct ata_queued_cmd *qc)
4800{
4801	struct ata_device *dev = qc->dev;
4802
4803	if (!ata_is_data(qc->tf.protocol))
4804		return;
4805
4806	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4807		return;
4808
4809	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4810}
4811
4812/**
4813 *	ata_qc_complete - Complete an active ATA command
4814 *	@qc: Command to complete
4815 *
4816 *	Indicate to the mid and upper layers that an ATA command has
4817 *	completed, with either an ok or not-ok status.
4818 *
4819 *	Refrain from calling this function multiple times when
4820 *	successfully completing multiple NCQ commands.
4821 *	ata_qc_complete_multiple() should be used instead, which will
4822 *	properly update IRQ expect state.
4823 *
4824 *	LOCKING:
4825 *	spin_lock_irqsave(host lock)
4826 */
4827void ata_qc_complete(struct ata_queued_cmd *qc)
4828{
4829	struct ata_port *ap = qc->ap;
4830	struct ata_device *dev = qc->dev;
4831	struct ata_eh_info *ehi = &dev->link->eh_info;
4832
4833	/* Trigger the LED (if available) */
4834	ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
4835
4836	/*
4837	 * In order to synchronize EH with the regular execution path, a qc that
4838	 * is owned by EH is marked with ATA_QCFLAG_EH.
4839	 *
4840	 * The normal execution path is responsible for not accessing a qc owned
4841	 * by EH.  libata core enforces the rule by returning NULL from
4842	 * ata_qc_from_tag() for qcs owned by EH.
4843	 */
4844	if (unlikely(qc->err_mask))
4845		qc->flags |= ATA_QCFLAG_EH;
4846
4847	/*
4848	 * Finish internal commands without any further processing and always
4849	 * with the result TF filled.
4850	 */
4851	if (unlikely(ata_tag_internal(qc->tag))) {
4852		fill_result_tf(qc);
4853		trace_ata_qc_complete_internal(qc);
4854		__ata_qc_complete(qc);
4855		return;
4856	}
4857
4858	/* Non-internal qc has failed.  Fill the result TF and summon EH. */
4859	if (unlikely(qc->flags & ATA_QCFLAG_EH)) {
4860		fill_result_tf(qc);
4861		trace_ata_qc_complete_failed(qc);
4862		ata_qc_schedule_eh(qc);
4863		return;
4864	}
4865
4866	WARN_ON_ONCE(ata_port_is_frozen(ap));
4867
4868	/* read result TF if requested */
4869	if (qc->flags & ATA_QCFLAG_RESULT_TF)
4870		fill_result_tf(qc);
4871
4872	trace_ata_qc_complete_done(qc);
4873
4874	/*
4875	 * For CDL commands that completed without an error, check if we have
4876	 * sense data (ATA_SENSE is set). If we do, then the command may have
4877	 * been aborted by the device due to a limit timeout using the policy
4878	 * 0xD. For these commands, invoke EH to get the command sense data.
4879	 */
4880	if (qc->flags & ATA_QCFLAG_HAS_CDL &&
4881	    qc->result_tf.status & ATA_SENSE) {
4882		/*
4883		 * Tell SCSI EH to not overwrite scmd->result even if this
4884		 * command is finished with result SAM_STAT_GOOD.
4885		 */
4886		qc->scsicmd->flags |= SCMD_FORCE_EH_SUCCESS;
4887		qc->flags |= ATA_QCFLAG_EH_SUCCESS_CMD;
4888		ehi->dev_action[dev->devno] |= ATA_EH_GET_SUCCESS_SENSE;
4889
4890		/*
4891		 * set pending so that ata_qc_schedule_eh() does not trigger
4892		 * fast drain, and freeze the port.
4893		 */
4894		ap->pflags |= ATA_PFLAG_EH_PENDING;
4895		ata_qc_schedule_eh(qc);
4896		return;
4897	}
4898
4899	/* Some commands need post-processing after successful completion. */
4900	switch (qc->tf.command) {
4901	case ATA_CMD_SET_FEATURES:
4902		if (qc->tf.feature != SETFEATURES_WC_ON &&
4903		    qc->tf.feature != SETFEATURES_WC_OFF &&
4904		    qc->tf.feature != SETFEATURES_RA_ON &&
4905		    qc->tf.feature != SETFEATURES_RA_OFF)
4906			break;
4907		fallthrough;
4908	case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4909	case ATA_CMD_SET_MULTI: /* multi_count changed */
4910		/* revalidate device */
4911		ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4912		ata_port_schedule_eh(ap);
4913		break;
4914
4915	case ATA_CMD_SLEEP:
4916		dev->flags |= ATA_DFLAG_SLEEPING;
4917		break;
4918	}
4919
4920	if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4921		ata_verify_xfer(qc);
4922
4923	__ata_qc_complete(qc);
4924}
4925EXPORT_SYMBOL_GPL(ata_qc_complete);
4926
4927/**
4928 *	ata_qc_get_active - get bitmask of active qcs
4929 *	@ap: port in question
4930 *
4931 *	LOCKING:
4932 *	spin_lock_irqsave(host lock)
4933 *
4934 *	RETURNS:
4935 *	Bitmask of active qcs
4936 */
4937u64 ata_qc_get_active(struct ata_port *ap)
4938{
4939	u64 qc_active = ap->qc_active;
4940
4941	/* ATA_TAG_INTERNAL is sent to hw as tag 0 */
4942	if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
4943		qc_active |= (1 << 0);
4944		qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
4945	}
4946
4947	return qc_active;
4948}
4949EXPORT_SYMBOL_GPL(ata_qc_get_active);
4950
4951/**
4952 *	ata_qc_issue - issue taskfile to device
4953 *	@qc: command to issue to device
4954 *
4955 *	Prepare an ATA command to submission to device.
4956 *	This includes mapping the data into a DMA-able
4957 *	area, filling in the S/G table, and finally
4958 *	writing the taskfile to hardware, starting the command.
4959 *
4960 *	LOCKING:
4961 *	spin_lock_irqsave(host lock)
4962 */
4963void ata_qc_issue(struct ata_queued_cmd *qc)
4964{
4965	struct ata_port *ap = qc->ap;
4966	struct ata_link *link = qc->dev->link;
4967	u8 prot = qc->tf.protocol;
4968
4969	/* Make sure only one non-NCQ command is outstanding. */
4970	WARN_ON_ONCE(ata_tag_valid(link->active_tag));
4971
4972	if (ata_is_ncq(prot)) {
4973		WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
4974
4975		if (!link->sactive)
4976			ap->nr_active_links++;
4977		link->sactive |= 1 << qc->hw_tag;
4978	} else {
4979		WARN_ON_ONCE(link->sactive);
4980
4981		ap->nr_active_links++;
4982		link->active_tag = qc->tag;
4983	}
4984
4985	qc->flags |= ATA_QCFLAG_ACTIVE;
4986	ap->qc_active |= 1ULL << qc->tag;
4987
4988	/*
4989	 * We guarantee to LLDs that they will have at least one
4990	 * non-zero sg if the command is a data command.
4991	 */
4992	if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
4993		goto sys_err;
4994
4995	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
4996				 (ap->flags & ATA_FLAG_PIO_DMA)))
4997		if (ata_sg_setup(qc))
4998			goto sys_err;
4999
5000	/* if device is sleeping, schedule reset and abort the link */
5001	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5002		link->eh_info.action |= ATA_EH_RESET;
5003		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5004		ata_link_abort(link);
5005		return;
5006	}
5007
5008	trace_ata_qc_prep(qc);
5009	qc->err_mask |= ap->ops->qc_prep(qc);
5010	if (unlikely(qc->err_mask))
5011		goto err;
5012	trace_ata_qc_issue(qc);
5013	qc->err_mask |= ap->ops->qc_issue(qc);
5014	if (unlikely(qc->err_mask))
5015		goto err;
5016	return;
5017
5018sys_err:
5019	qc->err_mask |= AC_ERR_SYSTEM;
5020err:
5021	ata_qc_complete(qc);
5022}
5023
5024/**
5025 *	ata_phys_link_online - test whether the given link is online
5026 *	@link: ATA link to test
5027 *
5028 *	Test whether @link is online.  Note that this function returns
5029 *	0 if online status of @link cannot be obtained, so
5030 *	ata_link_online(link) != !ata_link_offline(link).
5031 *
5032 *	LOCKING:
5033 *	None.
5034 *
5035 *	RETURNS:
5036 *	True if the port online status is available and online.
5037 */
5038bool ata_phys_link_online(struct ata_link *link)
5039{
5040	u32 sstatus;
5041
5042	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5043	    ata_sstatus_online(sstatus))
5044		return true;
5045	return false;
5046}
5047
5048/**
5049 *	ata_phys_link_offline - test whether the given link is offline
5050 *	@link: ATA link to test
5051 *
5052 *	Test whether @link is offline.  Note that this function
5053 *	returns 0 if offline status of @link cannot be obtained, so
5054 *	ata_link_online(link) != !ata_link_offline(link).
5055 *
5056 *	LOCKING:
5057 *	None.
5058 *
5059 *	RETURNS:
5060 *	True if the port offline status is available and offline.
5061 */
5062bool ata_phys_link_offline(struct ata_link *link)
5063{
5064	u32 sstatus;
5065
5066	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5067	    !ata_sstatus_online(sstatus))
5068		return true;
5069	return false;
5070}
5071
5072/**
5073 *	ata_link_online - test whether the given link is online
5074 *	@link: ATA link to test
5075 *
5076 *	Test whether @link is online.  This is identical to
5077 *	ata_phys_link_online() when there's no slave link.  When
5078 *	there's a slave link, this function should only be called on
5079 *	the master link and will return true if any of M/S links is
5080 *	online.
5081 *
5082 *	LOCKING:
5083 *	None.
5084 *
5085 *	RETURNS:
5086 *	True if the port online status is available and online.
5087 */
5088bool ata_link_online(struct ata_link *link)
5089{
5090	struct ata_link *slave = link->ap->slave_link;
5091
5092	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5093
5094	return ata_phys_link_online(link) ||
5095		(slave && ata_phys_link_online(slave));
5096}
5097EXPORT_SYMBOL_GPL(ata_link_online);
5098
5099/**
5100 *	ata_link_offline - test whether the given link is offline
5101 *	@link: ATA link to test
5102 *
5103 *	Test whether @link is offline.  This is identical to
5104 *	ata_phys_link_offline() when there's no slave link.  When
5105 *	there's a slave link, this function should only be called on
5106 *	the master link and will return true if both M/S links are
5107 *	offline.
5108 *
5109 *	LOCKING:
5110 *	None.
5111 *
5112 *	RETURNS:
5113 *	True if the port offline status is available and offline.
5114 */
5115bool ata_link_offline(struct ata_link *link)
5116{
5117	struct ata_link *slave = link->ap->slave_link;
5118
5119	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5120
5121	return ata_phys_link_offline(link) &&
5122		(!slave || ata_phys_link_offline(slave));
5123}
5124EXPORT_SYMBOL_GPL(ata_link_offline);
5125
5126#ifdef CONFIG_PM
5127static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5128				unsigned int action, unsigned int ehi_flags,
5129				bool async)
5130{
5131	struct ata_link *link;
5132	unsigned long flags;
5133
5134	spin_lock_irqsave(ap->lock, flags);
5135
5136	/*
5137	 * A previous PM operation might still be in progress. Wait for
5138	 * ATA_PFLAG_PM_PENDING to clear.
5139	 */
5140	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5141		spin_unlock_irqrestore(ap->lock, flags);
5142		ata_port_wait_eh(ap);
5143		spin_lock_irqsave(ap->lock, flags);
5144	}
5145
5146	/* Request PM operation to EH */
5147	ap->pm_mesg = mesg;
5148	ap->pflags |= ATA_PFLAG_PM_PENDING;
5149	ata_for_each_link(link, ap, HOST_FIRST) {
5150		link->eh_info.action |= action;
5151		link->eh_info.flags |= ehi_flags;
5152	}
5153
5154	ata_port_schedule_eh(ap);
5155
5156	spin_unlock_irqrestore(ap->lock, flags);
5157
5158	if (!async)
5159		ata_port_wait_eh(ap);
5160}
5161
5162/*
5163 * On some hardware, device fails to respond after spun down for suspend.  As
5164 * the device won't be used before being resumed, we don't need to touch the
5165 * device.  Ask EH to skip the usual stuff and proceed directly to suspend.
5166 *
5167 * http://thread.gmane.org/gmane.linux.ide/46764
5168 */
5169static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5170						 | ATA_EHI_NO_AUTOPSY
5171						 | ATA_EHI_NO_RECOVERY;
5172
5173static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5174{
5175	/*
5176	 * We are about to suspend the port, so we do not care about
5177	 * scsi_rescan_device() calls scheduled by previous resume operations.
5178	 * The next resume will schedule the rescan again. So cancel any rescan
5179	 * that is not done yet.
5180	 */
5181	cancel_delayed_work_sync(&ap->scsi_rescan_task);
5182
5183	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5184}
5185
5186static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5187{
5188	/*
5189	 * We are about to suspend the port, so we do not care about
5190	 * scsi_rescan_device() calls scheduled by previous resume operations.
5191	 * The next resume will schedule the rescan again. So cancel any rescan
5192	 * that is not done yet.
5193	 */
5194	cancel_delayed_work_sync(&ap->scsi_rescan_task);
5195
5196	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5197}
5198
5199static int ata_port_pm_suspend(struct device *dev)
5200{
5201	struct ata_port *ap = to_ata_port(dev);
5202
5203	if (pm_runtime_suspended(dev))
5204		return 0;
5205
5206	ata_port_suspend(ap, PMSG_SUSPEND);
5207	return 0;
5208}
5209
5210static int ata_port_pm_freeze(struct device *dev)
5211{
5212	struct ata_port *ap = to_ata_port(dev);
5213
5214	if (pm_runtime_suspended(dev))
5215		return 0;
5216
5217	ata_port_suspend(ap, PMSG_FREEZE);
5218	return 0;
5219}
5220
5221static int ata_port_pm_poweroff(struct device *dev)
5222{
5223	ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5224	return 0;
5225}
5226
5227static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5228						| ATA_EHI_QUIET;
5229
5230static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5231{
5232	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5233}
5234
5235static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5236{
5237	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5238}
5239
5240static int ata_port_pm_resume(struct device *dev)
5241{
5242	ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5243	pm_runtime_disable(dev);
5244	pm_runtime_set_active(dev);
5245	pm_runtime_enable(dev);
5246	return 0;
5247}
5248
5249/*
5250 * For ODDs, the upper layer will poll for media change every few seconds,
5251 * which will make it enter and leave suspend state every few seconds. And
5252 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5253 * is very little and the ODD may malfunction after constantly being reset.
5254 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5255 * ODD is attached to the port.
5256 */
5257static int ata_port_runtime_idle(struct device *dev)
5258{
5259	struct ata_port *ap = to_ata_port(dev);
5260	struct ata_link *link;
5261	struct ata_device *adev;
5262
5263	ata_for_each_link(link, ap, HOST_FIRST) {
5264		ata_for_each_dev(adev, link, ENABLED)
5265			if (adev->class == ATA_DEV_ATAPI &&
5266			    !zpodd_dev_enabled(adev))
5267				return -EBUSY;
5268	}
5269
5270	return 0;
5271}
5272
5273static int ata_port_runtime_suspend(struct device *dev)
5274{
5275	ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5276	return 0;
5277}
5278
5279static int ata_port_runtime_resume(struct device *dev)
5280{
5281	ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5282	return 0;
5283}
5284
5285static const struct dev_pm_ops ata_port_pm_ops = {
5286	.suspend = ata_port_pm_suspend,
5287	.resume = ata_port_pm_resume,
5288	.freeze = ata_port_pm_freeze,
5289	.thaw = ata_port_pm_resume,
5290	.poweroff = ata_port_pm_poweroff,
5291	.restore = ata_port_pm_resume,
5292
5293	.runtime_suspend = ata_port_runtime_suspend,
5294	.runtime_resume = ata_port_runtime_resume,
5295	.runtime_idle = ata_port_runtime_idle,
5296};
5297
5298/* sas ports don't participate in pm runtime management of ata_ports,
5299 * and need to resume ata devices at the domain level, not the per-port
5300 * level. sas suspend/resume is async to allow parallel port recovery
5301 * since sas has multiple ata_port instances per Scsi_Host.
5302 */
5303void ata_sas_port_suspend(struct ata_port *ap)
5304{
5305	ata_port_suspend_async(ap, PMSG_SUSPEND);
5306}
5307EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5308
5309void ata_sas_port_resume(struct ata_port *ap)
5310{
5311	ata_port_resume_async(ap, PMSG_RESUME);
5312}
5313EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5314
5315/**
5316 *	ata_host_suspend - suspend host
5317 *	@host: host to suspend
5318 *	@mesg: PM message
5319 *
5320 *	Suspend @host.  Actual operation is performed by port suspend.
5321 */
5322void ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5323{
5324	host->dev->power.power_state = mesg;
5325}
5326EXPORT_SYMBOL_GPL(ata_host_suspend);
5327
5328/**
5329 *	ata_host_resume - resume host
5330 *	@host: host to resume
5331 *
5332 *	Resume @host.  Actual operation is performed by port resume.
5333 */
5334void ata_host_resume(struct ata_host *host)
5335{
5336	host->dev->power.power_state = PMSG_ON;
5337}
5338EXPORT_SYMBOL_GPL(ata_host_resume);
5339#endif
5340
5341const struct device_type ata_port_type = {
5342	.name = ATA_PORT_TYPE_NAME,
5343#ifdef CONFIG_PM
5344	.pm = &ata_port_pm_ops,
5345#endif
5346};
5347
5348/**
5349 *	ata_dev_init - Initialize an ata_device structure
5350 *	@dev: Device structure to initialize
5351 *
5352 *	Initialize @dev in preparation for probing.
5353 *
5354 *	LOCKING:
5355 *	Inherited from caller.
5356 */
5357void ata_dev_init(struct ata_device *dev)
5358{
5359	struct ata_link *link = ata_dev_phys_link(dev);
5360	struct ata_port *ap = link->ap;
5361	unsigned long flags;
5362
5363	/* SATA spd limit is bound to the attached device, reset together */
5364	link->sata_spd_limit = link->hw_sata_spd_limit;
5365	link->sata_spd = 0;
5366
5367	/* High bits of dev->flags are used to record warm plug
5368	 * requests which occur asynchronously.  Synchronize using
5369	 * host lock.
5370	 */
5371	spin_lock_irqsave(ap->lock, flags);
5372	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5373	dev->horkage = 0;
5374	spin_unlock_irqrestore(ap->lock, flags);
5375
5376	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5377	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5378	dev->pio_mask = UINT_MAX;
5379	dev->mwdma_mask = UINT_MAX;
5380	dev->udma_mask = UINT_MAX;
5381}
5382
5383/**
5384 *	ata_link_init - Initialize an ata_link structure
5385 *	@ap: ATA port link is attached to
5386 *	@link: Link structure to initialize
5387 *	@pmp: Port multiplier port number
5388 *
5389 *	Initialize @link.
5390 *
5391 *	LOCKING:
5392 *	Kernel thread context (may sleep)
5393 */
5394void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5395{
5396	int i;
5397
5398	/* clear everything except for devices */
5399	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5400	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5401
5402	link->ap = ap;
5403	link->pmp = pmp;
5404	link->active_tag = ATA_TAG_POISON;
5405	link->hw_sata_spd_limit = UINT_MAX;
5406
5407	/* can't use iterator, ap isn't initialized yet */
5408	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5409		struct ata_device *dev = &link->device[i];
5410
5411		dev->link = link;
5412		dev->devno = dev - link->device;
5413#ifdef CONFIG_ATA_ACPI
5414		dev->gtf_filter = ata_acpi_gtf_filter;
5415#endif
5416		ata_dev_init(dev);
5417	}
5418}
5419
5420/**
5421 *	sata_link_init_spd - Initialize link->sata_spd_limit
5422 *	@link: Link to configure sata_spd_limit for
5423 *
5424 *	Initialize ``link->[hw_]sata_spd_limit`` to the currently
5425 *	configured value.
5426 *
5427 *	LOCKING:
5428 *	Kernel thread context (may sleep).
5429 *
5430 *	RETURNS:
5431 *	0 on success, -errno on failure.
5432 */
5433int sata_link_init_spd(struct ata_link *link)
5434{
5435	u8 spd;
5436	int rc;
5437
5438	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5439	if (rc)
5440		return rc;
5441
5442	spd = (link->saved_scontrol >> 4) & 0xf;
5443	if (spd)
5444		link->hw_sata_spd_limit &= (1 << spd) - 1;
5445
5446	ata_force_link_limits(link);
5447
5448	link->sata_spd_limit = link->hw_sata_spd_limit;
5449
5450	return 0;
5451}
5452
5453/**
5454 *	ata_port_alloc - allocate and initialize basic ATA port resources
5455 *	@host: ATA host this allocated port belongs to
5456 *
5457 *	Allocate and initialize basic ATA port resources.
5458 *
5459 *	RETURNS:
5460 *	Allocate ATA port on success, NULL on failure.
5461 *
5462 *	LOCKING:
5463 *	Inherited from calling layer (may sleep).
5464 */
5465struct ata_port *ata_port_alloc(struct ata_host *host)
5466{
5467	struct ata_port *ap;
5468
5469	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5470	if (!ap)
5471		return NULL;
5472
5473	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5474	ap->lock = &host->lock;
5475	ap->print_id = -1;
5476	ap->local_port_no = -1;
5477	ap->host = host;
5478	ap->dev = host->dev;
5479
5480	mutex_init(&ap->scsi_scan_mutex);
5481	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5482	INIT_DELAYED_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5483	INIT_LIST_HEAD(&ap->eh_done_q);
5484	init_waitqueue_head(&ap->eh_wait_q);
5485	init_completion(&ap->park_req_pending);
5486	timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5487		    TIMER_DEFERRABLE);
5488
5489	ap->cbl = ATA_CBL_NONE;
5490
5491	ata_link_init(ap, &ap->link, 0);
5492
5493#ifdef ATA_IRQ_TRAP
5494	ap->stats.unhandled_irq = 1;
5495	ap->stats.idle_irq = 1;
5496#endif
5497	ata_sff_port_init(ap);
5498
5499	return ap;
5500}
5501
5502static void ata_devres_release(struct device *gendev, void *res)
5503{
5504	struct ata_host *host = dev_get_drvdata(gendev);
5505	int i;
5506
5507	for (i = 0; i < host->n_ports; i++) {
5508		struct ata_port *ap = host->ports[i];
5509
5510		if (!ap)
5511			continue;
5512
5513		if (ap->scsi_host)
5514			scsi_host_put(ap->scsi_host);
5515
5516	}
5517
5518	dev_set_drvdata(gendev, NULL);
5519	ata_host_put(host);
5520}
5521
5522static void ata_host_release(struct kref *kref)
5523{
5524	struct ata_host *host = container_of(kref, struct ata_host, kref);
5525	int i;
5526
5527	for (i = 0; i < host->n_ports; i++) {
5528		struct ata_port *ap = host->ports[i];
5529
5530		kfree(ap->pmp_link);
5531		kfree(ap->slave_link);
5532		kfree(ap->ncq_sense_buf);
5533		kfree(ap);
5534		host->ports[i] = NULL;
5535	}
5536	kfree(host);
5537}
5538
5539void ata_host_get(struct ata_host *host)
5540{
5541	kref_get(&host->kref);
5542}
5543
5544void ata_host_put(struct ata_host *host)
5545{
5546	kref_put(&host->kref, ata_host_release);
5547}
5548EXPORT_SYMBOL_GPL(ata_host_put);
5549
5550/**
5551 *	ata_host_alloc - allocate and init basic ATA host resources
5552 *	@dev: generic device this host is associated with
5553 *	@max_ports: maximum number of ATA ports associated with this host
5554 *
5555 *	Allocate and initialize basic ATA host resources.  LLD calls
5556 *	this function to allocate a host, initializes it fully and
5557 *	attaches it using ata_host_register().
5558 *
5559 *	@max_ports ports are allocated and host->n_ports is
5560 *	initialized to @max_ports.  The caller is allowed to decrease
5561 *	host->n_ports before calling ata_host_register().  The unused
5562 *	ports will be automatically freed on registration.
5563 *
5564 *	RETURNS:
5565 *	Allocate ATA host on success, NULL on failure.
5566 *
5567 *	LOCKING:
5568 *	Inherited from calling layer (may sleep).
5569 */
5570struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5571{
5572	struct ata_host *host;
5573	size_t sz;
5574	int i;
5575	void *dr;
5576
5577	/* alloc a container for our list of ATA ports (buses) */
5578	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5579	host = kzalloc(sz, GFP_KERNEL);
5580	if (!host)
5581		return NULL;
5582
5583	if (!devres_open_group(dev, NULL, GFP_KERNEL))
5584		goto err_free;
5585
5586	dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
5587	if (!dr)
5588		goto err_out;
5589
5590	devres_add(dev, dr);
5591	dev_set_drvdata(dev, host);
5592
5593	spin_lock_init(&host->lock);
5594	mutex_init(&host->eh_mutex);
5595	host->dev = dev;
5596	host->n_ports = max_ports;
5597	kref_init(&host->kref);
5598
5599	/* allocate ports bound to this host */
5600	for (i = 0; i < max_ports; i++) {
5601		struct ata_port *ap;
5602
5603		ap = ata_port_alloc(host);
5604		if (!ap)
5605			goto err_out;
5606
5607		ap->port_no = i;
5608		host->ports[i] = ap;
5609	}
5610
5611	devres_remove_group(dev, NULL);
5612	return host;
5613
5614 err_out:
5615	devres_release_group(dev, NULL);
5616 err_free:
5617	kfree(host);
5618	return NULL;
5619}
5620EXPORT_SYMBOL_GPL(ata_host_alloc);
5621
5622/**
5623 *	ata_host_alloc_pinfo - alloc host and init with port_info array
5624 *	@dev: generic device this host is associated with
5625 *	@ppi: array of ATA port_info to initialize host with
5626 *	@n_ports: number of ATA ports attached to this host
5627 *
5628 *	Allocate ATA host and initialize with info from @ppi.  If NULL
5629 *	terminated, @ppi may contain fewer entries than @n_ports.  The
5630 *	last entry will be used for the remaining ports.
5631 *
5632 *	RETURNS:
5633 *	Allocate ATA host on success, NULL on failure.
5634 *
5635 *	LOCKING:
5636 *	Inherited from calling layer (may sleep).
5637 */
5638struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5639				      const struct ata_port_info * const * ppi,
5640				      int n_ports)
5641{
5642	const struct ata_port_info *pi = &ata_dummy_port_info;
5643	struct ata_host *host;
5644	int i, j;
5645
5646	host = ata_host_alloc(dev, n_ports);
5647	if (!host)
5648		return NULL;
5649
5650	for (i = 0, j = 0; i < host->n_ports; i++) {
5651		struct ata_port *ap = host->ports[i];
5652
5653		if (ppi[j])
5654			pi = ppi[j++];
5655
5656		ap->pio_mask = pi->pio_mask;
5657		ap->mwdma_mask = pi->mwdma_mask;
5658		ap->udma_mask = pi->udma_mask;
5659		ap->flags |= pi->flags;
5660		ap->link.flags |= pi->link_flags;
5661		ap->ops = pi->port_ops;
5662
5663		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5664			host->ops = pi->port_ops;
5665	}
5666
5667	return host;
5668}
5669EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
5670
5671static void ata_host_stop(struct device *gendev, void *res)
5672{
5673	struct ata_host *host = dev_get_drvdata(gendev);
5674	int i;
5675
5676	WARN_ON(!(host->flags & ATA_HOST_STARTED));
5677
5678	for (i = 0; i < host->n_ports; i++) {
5679		struct ata_port *ap = host->ports[i];
5680
5681		if (ap->ops->port_stop)
5682			ap->ops->port_stop(ap);
5683	}
5684
5685	if (host->ops->host_stop)
5686		host->ops->host_stop(host);
5687}
5688
5689/**
5690 *	ata_finalize_port_ops - finalize ata_port_operations
5691 *	@ops: ata_port_operations to finalize
5692 *
5693 *	An ata_port_operations can inherit from another ops and that
5694 *	ops can again inherit from another.  This can go on as many
5695 *	times as necessary as long as there is no loop in the
5696 *	inheritance chain.
5697 *
5698 *	Ops tables are finalized when the host is started.  NULL or
5699 *	unspecified entries are inherited from the closet ancestor
5700 *	which has the method and the entry is populated with it.
5701 *	After finalization, the ops table directly points to all the
5702 *	methods and ->inherits is no longer necessary and cleared.
5703 *
5704 *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5705 *
5706 *	LOCKING:
5707 *	None.
5708 */
5709static void ata_finalize_port_ops(struct ata_port_operations *ops)
5710{
5711	static DEFINE_SPINLOCK(lock);
5712	const struct ata_port_operations *cur;
5713	void **begin = (void **)ops;
5714	void **end = (void **)&ops->inherits;
5715	void **pp;
5716
5717	if (!ops || !ops->inherits)
5718		return;
5719
5720	spin_lock(&lock);
5721
5722	for (cur = ops->inherits; cur; cur = cur->inherits) {
5723		void **inherit = (void **)cur;
5724
5725		for (pp = begin; pp < end; pp++, inherit++)
5726			if (!*pp)
5727				*pp = *inherit;
5728	}
5729
5730	for (pp = begin; pp < end; pp++)
5731		if (IS_ERR(*pp))
5732			*pp = NULL;
5733
5734	ops->inherits = NULL;
5735
5736	spin_unlock(&lock);
5737}
5738
5739/**
5740 *	ata_host_start - start and freeze ports of an ATA host
5741 *	@host: ATA host to start ports for
5742 *
5743 *	Start and then freeze ports of @host.  Started status is
5744 *	recorded in host->flags, so this function can be called
5745 *	multiple times.  Ports are guaranteed to get started only
5746 *	once.  If host->ops is not initialized yet, it is set to the
5747 *	first non-dummy port ops.
5748 *
5749 *	LOCKING:
5750 *	Inherited from calling layer (may sleep).
5751 *
5752 *	RETURNS:
5753 *	0 if all ports are started successfully, -errno otherwise.
5754 */
5755int ata_host_start(struct ata_host *host)
5756{
5757	int have_stop = 0;
5758	void *start_dr = NULL;
5759	int i, rc;
5760
5761	if (host->flags & ATA_HOST_STARTED)
5762		return 0;
5763
5764	ata_finalize_port_ops(host->ops);
5765
5766	for (i = 0; i < host->n_ports; i++) {
5767		struct ata_port *ap = host->ports[i];
5768
5769		ata_finalize_port_ops(ap->ops);
5770
5771		if (!host->ops && !ata_port_is_dummy(ap))
5772			host->ops = ap->ops;
5773
5774		if (ap->ops->port_stop)
5775			have_stop = 1;
5776	}
5777
5778	if (host->ops && host->ops->host_stop)
5779		have_stop = 1;
5780
5781	if (have_stop) {
5782		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5783		if (!start_dr)
5784			return -ENOMEM;
5785	}
5786
5787	for (i = 0; i < host->n_ports; i++) {
5788		struct ata_port *ap = host->ports[i];
5789
5790		if (ap->ops->port_start) {
5791			rc = ap->ops->port_start(ap);
5792			if (rc) {
5793				if (rc != -ENODEV)
5794					dev_err(host->dev,
5795						"failed to start port %d (errno=%d)\n",
5796						i, rc);
5797				goto err_out;
5798			}
5799		}
5800		ata_eh_freeze_port(ap);
5801	}
5802
5803	if (start_dr)
5804		devres_add(host->dev, start_dr);
5805	host->flags |= ATA_HOST_STARTED;
5806	return 0;
5807
5808 err_out:
5809	while (--i >= 0) {
5810		struct ata_port *ap = host->ports[i];
5811
5812		if (ap->ops->port_stop)
5813			ap->ops->port_stop(ap);
5814	}
5815	devres_free(start_dr);
5816	return rc;
5817}
5818EXPORT_SYMBOL_GPL(ata_host_start);
5819
5820/**
5821 *	ata_host_init - Initialize a host struct for sas (ipr, libsas)
5822 *	@host:	host to initialize
5823 *	@dev:	device host is attached to
5824 *	@ops:	port_ops
5825 *
5826 */
5827void ata_host_init(struct ata_host *host, struct device *dev,
5828		   struct ata_port_operations *ops)
5829{
5830	spin_lock_init(&host->lock);
5831	mutex_init(&host->eh_mutex);
5832	host->n_tags = ATA_MAX_QUEUE;
5833	host->dev = dev;
5834	host->ops = ops;
5835	kref_init(&host->kref);
5836}
5837EXPORT_SYMBOL_GPL(ata_host_init);
5838
5839void ata_port_probe(struct ata_port *ap)
5840{
5841	struct ata_eh_info *ehi = &ap->link.eh_info;
5842	unsigned long flags;
5843
5844	/* kick EH for boot probing */
5845	spin_lock_irqsave(ap->lock, flags);
5846
5847	ehi->probe_mask |= ATA_ALL_DEVICES;
5848	ehi->action |= ATA_EH_RESET;
5849	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5850
5851	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5852	ap->pflags |= ATA_PFLAG_LOADING;
5853	ata_port_schedule_eh(ap);
5854
5855	spin_unlock_irqrestore(ap->lock, flags);
5856}
5857EXPORT_SYMBOL_GPL(ata_port_probe);
5858
5859static void async_port_probe(void *data, async_cookie_t cookie)
5860{
5861	struct ata_port *ap = data;
5862
5863	/*
5864	 * If we're not allowed to scan this host in parallel,
5865	 * we need to wait until all previous scans have completed
5866	 * before going further.
5867	 * Jeff Garzik says this is only within a controller, so we
5868	 * don't need to wait for port 0, only for later ports.
5869	 */
5870	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5871		async_synchronize_cookie(cookie);
5872
5873	ata_port_probe(ap);
5874	ata_port_wait_eh(ap);
5875
5876	/* in order to keep device order, we need to synchronize at this point */
5877	async_synchronize_cookie(cookie);
5878
5879	ata_scsi_scan_host(ap, 1);
5880}
5881
5882/**
5883 *	ata_host_register - register initialized ATA host
5884 *	@host: ATA host to register
5885 *	@sht: template for SCSI host
5886 *
5887 *	Register initialized ATA host.  @host is allocated using
5888 *	ata_host_alloc() and fully initialized by LLD.  This function
5889 *	starts ports, registers @host with ATA and SCSI layers and
5890 *	probe registered devices.
5891 *
5892 *	LOCKING:
5893 *	Inherited from calling layer (may sleep).
5894 *
5895 *	RETURNS:
5896 *	0 on success, -errno otherwise.
5897 */
5898int ata_host_register(struct ata_host *host, const struct scsi_host_template *sht)
5899{
5900	int i, rc;
5901
5902	host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
5903
5904	/* host must have been started */
5905	if (!(host->flags & ATA_HOST_STARTED)) {
5906		dev_err(host->dev, "BUG: trying to register unstarted host\n");
5907		WARN_ON(1);
5908		return -EINVAL;
5909	}
5910
5911	/* Blow away unused ports.  This happens when LLD can't
5912	 * determine the exact number of ports to allocate at
5913	 * allocation time.
5914	 */
5915	for (i = host->n_ports; host->ports[i]; i++)
5916		kfree(host->ports[i]);
5917
5918	/* give ports names and add SCSI hosts */
5919	for (i = 0; i < host->n_ports; i++) {
5920		host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
5921		host->ports[i]->local_port_no = i + 1;
5922	}
5923
5924	/* Create associated sysfs transport objects  */
5925	for (i = 0; i < host->n_ports; i++) {
5926		rc = ata_tport_add(host->dev,host->ports[i]);
5927		if (rc) {
5928			goto err_tadd;
5929		}
5930	}
5931
5932	rc = ata_scsi_add_hosts(host, sht);
5933	if (rc)
5934		goto err_tadd;
5935
5936	/* set cable, sata_spd_limit and report */
5937	for (i = 0; i < host->n_ports; i++) {
5938		struct ata_port *ap = host->ports[i];
5939		unsigned int xfer_mask;
5940
5941		/* set SATA cable type if still unset */
5942		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5943			ap->cbl = ATA_CBL_SATA;
5944
5945		/* init sata_spd_limit to the current value */
5946		sata_link_init_spd(&ap->link);
5947		if (ap->slave_link)
5948			sata_link_init_spd(ap->slave_link);
5949
5950		/* print per-port info to dmesg */
5951		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5952					      ap->udma_mask);
5953
5954		if (!ata_port_is_dummy(ap)) {
5955			ata_port_info(ap, "%cATA max %s %s\n",
5956				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5957				      ata_mode_string(xfer_mask),
5958				      ap->link.eh_info.desc);
5959			ata_ehi_clear_desc(&ap->link.eh_info);
5960		} else
5961			ata_port_info(ap, "DUMMY\n");
5962	}
5963
5964	/* perform each probe asynchronously */
5965	for (i = 0; i < host->n_ports; i++) {
5966		struct ata_port *ap = host->ports[i];
5967		ap->cookie = async_schedule(async_port_probe, ap);
5968	}
5969
5970	return 0;
5971
5972 err_tadd:
5973	while (--i >= 0) {
5974		ata_tport_delete(host->ports[i]);
5975	}
5976	return rc;
5977
5978}
5979EXPORT_SYMBOL_GPL(ata_host_register);
5980
5981/**
5982 *	ata_host_activate - start host, request IRQ and register it
5983 *	@host: target ATA host
5984 *	@irq: IRQ to request
5985 *	@irq_handler: irq_handler used when requesting IRQ
5986 *	@irq_flags: irq_flags used when requesting IRQ
5987 *	@sht: scsi_host_template to use when registering the host
5988 *
5989 *	After allocating an ATA host and initializing it, most libata
5990 *	LLDs perform three steps to activate the host - start host,
5991 *	request IRQ and register it.  This helper takes necessary
5992 *	arguments and performs the three steps in one go.
5993 *
5994 *	An invalid IRQ skips the IRQ registration and expects the host to
5995 *	have set polling mode on the port. In this case, @irq_handler
5996 *	should be NULL.
5997 *
5998 *	LOCKING:
5999 *	Inherited from calling layer (may sleep).
6000 *
6001 *	RETURNS:
6002 *	0 on success, -errno otherwise.
6003 */
6004int ata_host_activate(struct ata_host *host, int irq,
6005		      irq_handler_t irq_handler, unsigned long irq_flags,
6006		      const struct scsi_host_template *sht)
6007{
6008	int i, rc;
6009	char *irq_desc;
6010
6011	rc = ata_host_start(host);
6012	if (rc)
6013		return rc;
6014
6015	/* Special case for polling mode */
6016	if (!irq) {
6017		WARN_ON(irq_handler);
6018		return ata_host_register(host, sht);
6019	}
6020
6021	irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6022				  dev_driver_string(host->dev),
6023				  dev_name(host->dev));
6024	if (!irq_desc)
6025		return -ENOMEM;
6026
6027	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6028			      irq_desc, host);
6029	if (rc)
6030		return rc;
6031
6032	for (i = 0; i < host->n_ports; i++)
6033		ata_port_desc(host->ports[i], "irq %d", irq);
6034
6035	rc = ata_host_register(host, sht);
6036	/* if failed, just free the IRQ and leave ports alone */
6037	if (rc)
6038		devm_free_irq(host->dev, irq, host);
6039
6040	return rc;
6041}
6042EXPORT_SYMBOL_GPL(ata_host_activate);
6043
6044/**
6045 *	ata_port_detach - Detach ATA port in preparation of device removal
6046 *	@ap: ATA port to be detached
6047 *
6048 *	Detach all ATA devices and the associated SCSI devices of @ap;
6049 *	then, remove the associated SCSI host.  @ap is guaranteed to
6050 *	be quiescent on return from this function.
6051 *
6052 *	LOCKING:
6053 *	Kernel thread context (may sleep).
6054 */
6055static void ata_port_detach(struct ata_port *ap)
6056{
6057	unsigned long flags;
6058	struct ata_link *link;
6059	struct ata_device *dev;
6060
6061	/* Wait for any ongoing EH */
6062	ata_port_wait_eh(ap);
6063
6064	mutex_lock(&ap->scsi_scan_mutex);
6065	spin_lock_irqsave(ap->lock, flags);
6066
6067	/* Remove scsi devices */
6068	ata_for_each_link(link, ap, HOST_FIRST) {
6069		ata_for_each_dev(dev, link, ALL) {
6070			if (dev->sdev) {
6071				spin_unlock_irqrestore(ap->lock, flags);
6072				scsi_remove_device(dev->sdev);
6073				spin_lock_irqsave(ap->lock, flags);
6074				dev->sdev = NULL;
6075			}
6076		}
6077	}
6078
6079	/* Tell EH to disable all devices */
6080	ap->pflags |= ATA_PFLAG_UNLOADING;
6081	ata_port_schedule_eh(ap);
6082
6083	spin_unlock_irqrestore(ap->lock, flags);
6084	mutex_unlock(&ap->scsi_scan_mutex);
6085
6086	/* wait till EH commits suicide */
6087	ata_port_wait_eh(ap);
6088
6089	/* it better be dead now */
6090	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6091
6092	cancel_delayed_work_sync(&ap->hotplug_task);
6093	cancel_delayed_work_sync(&ap->scsi_rescan_task);
6094
6095	/* clean up zpodd on port removal */
6096	ata_for_each_link(link, ap, HOST_FIRST) {
6097		ata_for_each_dev(dev, link, ALL) {
6098			if (zpodd_dev_enabled(dev))
6099				zpodd_exit(dev);
6100		}
6101	}
6102	if (ap->pmp_link) {
6103		int i;
6104		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6105			ata_tlink_delete(&ap->pmp_link[i]);
6106	}
6107	/* remove the associated SCSI host */
6108	scsi_remove_host(ap->scsi_host);
6109	ata_tport_delete(ap);
6110}
6111
6112/**
6113 *	ata_host_detach - Detach all ports of an ATA host
6114 *	@host: Host to detach
6115 *
6116 *	Detach all ports of @host.
6117 *
6118 *	LOCKING:
6119 *	Kernel thread context (may sleep).
6120 */
6121void ata_host_detach(struct ata_host *host)
6122{
6123	int i;
6124
6125	for (i = 0; i < host->n_ports; i++) {
6126		/* Ensure ata_port probe has completed */
6127		async_synchronize_cookie(host->ports[i]->cookie + 1);
6128		ata_port_detach(host->ports[i]);
6129	}
6130
6131	/* the host is dead now, dissociate ACPI */
6132	ata_acpi_dissociate(host);
6133}
6134EXPORT_SYMBOL_GPL(ata_host_detach);
6135
6136#ifdef CONFIG_PCI
6137
6138/**
6139 *	ata_pci_remove_one - PCI layer callback for device removal
6140 *	@pdev: PCI device that was removed
6141 *
6142 *	PCI layer indicates to libata via this hook that hot-unplug or
6143 *	module unload event has occurred.  Detach all ports.  Resource
6144 *	release is handled via devres.
6145 *
6146 *	LOCKING:
6147 *	Inherited from PCI layer (may sleep).
6148 */
6149void ata_pci_remove_one(struct pci_dev *pdev)
6150{
6151	struct ata_host *host = pci_get_drvdata(pdev);
6152
6153	ata_host_detach(host);
6154}
6155EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6156
6157void ata_pci_shutdown_one(struct pci_dev *pdev)
6158{
6159	struct ata_host *host = pci_get_drvdata(pdev);
6160	int i;
6161
6162	for (i = 0; i < host->n_ports; i++) {
6163		struct ata_port *ap = host->ports[i];
6164
6165		ap->pflags |= ATA_PFLAG_FROZEN;
6166
6167		/* Disable port interrupts */
6168		if (ap->ops->freeze)
6169			ap->ops->freeze(ap);
6170
6171		/* Stop the port DMA engines */
6172		if (ap->ops->port_stop)
6173			ap->ops->port_stop(ap);
6174	}
6175}
6176EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
6177
6178/* move to PCI subsystem */
6179int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6180{
6181	unsigned long tmp = 0;
6182
6183	switch (bits->width) {
6184	case 1: {
6185		u8 tmp8 = 0;
6186		pci_read_config_byte(pdev, bits->reg, &tmp8);
6187		tmp = tmp8;
6188		break;
6189	}
6190	case 2: {
6191		u16 tmp16 = 0;
6192		pci_read_config_word(pdev, bits->reg, &tmp16);
6193		tmp = tmp16;
6194		break;
6195	}
6196	case 4: {
6197		u32 tmp32 = 0;
6198		pci_read_config_dword(pdev, bits->reg, &tmp32);
6199		tmp = tmp32;
6200		break;
6201	}
6202
6203	default:
6204		return -EINVAL;
6205	}
6206
6207	tmp &= bits->mask;
6208
6209	return (tmp == bits->val) ? 1 : 0;
6210}
6211EXPORT_SYMBOL_GPL(pci_test_config_bits);
6212
6213#ifdef CONFIG_PM
6214void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6215{
6216	pci_save_state(pdev);
6217	pci_disable_device(pdev);
6218
6219	if (mesg.event & PM_EVENT_SLEEP)
6220		pci_set_power_state(pdev, PCI_D3hot);
6221}
6222EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6223
6224int ata_pci_device_do_resume(struct pci_dev *pdev)
6225{
6226	int rc;
6227
6228	pci_set_power_state(pdev, PCI_D0);
6229	pci_restore_state(pdev);
6230
6231	rc = pcim_enable_device(pdev);
6232	if (rc) {
6233		dev_err(&pdev->dev,
6234			"failed to enable device after resume (%d)\n", rc);
6235		return rc;
6236	}
6237
6238	pci_set_master(pdev);
6239	return 0;
6240}
6241EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6242
6243int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6244{
6245	struct ata_host *host = pci_get_drvdata(pdev);
6246
6247	ata_host_suspend(host, mesg);
6248
6249	ata_pci_device_do_suspend(pdev, mesg);
6250
6251	return 0;
6252}
6253EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6254
6255int ata_pci_device_resume(struct pci_dev *pdev)
6256{
6257	struct ata_host *host = pci_get_drvdata(pdev);
6258	int rc;
6259
6260	rc = ata_pci_device_do_resume(pdev);
6261	if (rc == 0)
6262		ata_host_resume(host);
6263	return rc;
6264}
6265EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6266#endif /* CONFIG_PM */
6267#endif /* CONFIG_PCI */
6268
6269/**
6270 *	ata_platform_remove_one - Platform layer callback for device removal
6271 *	@pdev: Platform device that was removed
6272 *
6273 *	Platform layer indicates to libata via this hook that hot-unplug or
6274 *	module unload event has occurred.  Detach all ports.  Resource
6275 *	release is handled via devres.
6276 *
6277 *	LOCKING:
6278 *	Inherited from platform layer (may sleep).
6279 */
6280void ata_platform_remove_one(struct platform_device *pdev)
6281{
6282	struct ata_host *host = platform_get_drvdata(pdev);
6283
6284	ata_host_detach(host);
6285}
6286EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6287
6288#ifdef CONFIG_ATA_FORCE
6289
6290#define force_cbl(name, flag)				\
6291	{ #name,	.cbl		= (flag) }
6292
6293#define force_spd_limit(spd, val)			\
6294	{ #spd,	.spd_limit		= (val) }
6295
6296#define force_xfer(mode, shift)				\
6297	{ #mode,	.xfer_mask	= (1UL << (shift)) }
6298
6299#define force_lflag_on(name, flags)			\
6300	{ #name,	.lflags_on	= (flags) }
6301
6302#define force_lflag_onoff(name, flags)			\
6303	{ "no" #name,	.lflags_on	= (flags) },	\
6304	{ #name,	.lflags_off	= (flags) }
6305
6306#define force_horkage_on(name, flag)			\
6307	{ #name,	.horkage_on	= (flag) }
6308
6309#define force_horkage_onoff(name, flag)			\
6310	{ "no" #name,	.horkage_on	= (flag) },	\
6311	{ #name,	.horkage_off	= (flag) }
6312
6313static const struct ata_force_param force_tbl[] __initconst = {
6314	force_cbl(40c,			ATA_CBL_PATA40),
6315	force_cbl(80c,			ATA_CBL_PATA80),
6316	force_cbl(short40c,		ATA_CBL_PATA40_SHORT),
6317	force_cbl(unk,			ATA_CBL_PATA_UNK),
6318	force_cbl(ign,			ATA_CBL_PATA_IGN),
6319	force_cbl(sata,			ATA_CBL_SATA),
6320
6321	force_spd_limit(1.5Gbps,	1),
6322	force_spd_limit(3.0Gbps,	2),
6323
6324	force_xfer(pio0,		ATA_SHIFT_PIO + 0),
6325	force_xfer(pio1,		ATA_SHIFT_PIO + 1),
6326	force_xfer(pio2,		ATA_SHIFT_PIO + 2),
6327	force_xfer(pio3,		ATA_SHIFT_PIO + 3),
6328	force_xfer(pio4,		ATA_SHIFT_PIO + 4),
6329	force_xfer(pio5,		ATA_SHIFT_PIO + 5),
6330	force_xfer(pio6,		ATA_SHIFT_PIO + 6),
6331	force_xfer(mwdma0,		ATA_SHIFT_MWDMA + 0),
6332	force_xfer(mwdma1,		ATA_SHIFT_MWDMA + 1),
6333	force_xfer(mwdma2,		ATA_SHIFT_MWDMA + 2),
6334	force_xfer(mwdma3,		ATA_SHIFT_MWDMA + 3),
6335	force_xfer(mwdma4,		ATA_SHIFT_MWDMA + 4),
6336	force_xfer(udma0,		ATA_SHIFT_UDMA + 0),
6337	force_xfer(udma16,		ATA_SHIFT_UDMA + 0),
6338	force_xfer(udma/16,		ATA_SHIFT_UDMA + 0),
6339	force_xfer(udma1,		ATA_SHIFT_UDMA + 1),
6340	force_xfer(udma25,		ATA_SHIFT_UDMA + 1),
6341	force_xfer(udma/25,		ATA_SHIFT_UDMA + 1),
6342	force_xfer(udma2,		ATA_SHIFT_UDMA + 2),
6343	force_xfer(udma33,		ATA_SHIFT_UDMA + 2),
6344	force_xfer(udma/33,		ATA_SHIFT_UDMA + 2),
6345	force_xfer(udma3,		ATA_SHIFT_UDMA + 3),
6346	force_xfer(udma44,		ATA_SHIFT_UDMA + 3),
6347	force_xfer(udma/44,		ATA_SHIFT_UDMA + 3),
6348	force_xfer(udma4,		ATA_SHIFT_UDMA + 4),
6349	force_xfer(udma66,		ATA_SHIFT_UDMA + 4),
6350	force_xfer(udma/66,		ATA_SHIFT_UDMA + 4),
6351	force_xfer(udma5,		ATA_SHIFT_UDMA + 5),
6352	force_xfer(udma100,		ATA_SHIFT_UDMA + 5),
6353	force_xfer(udma/100,		ATA_SHIFT_UDMA + 5),
6354	force_xfer(udma6,		ATA_SHIFT_UDMA + 6),
6355	force_xfer(udma133,		ATA_SHIFT_UDMA + 6),
6356	force_xfer(udma/133,		ATA_SHIFT_UDMA + 6),
6357	force_xfer(udma7,		ATA_SHIFT_UDMA + 7),
6358
6359	force_lflag_on(nohrst,		ATA_LFLAG_NO_HRST),
6360	force_lflag_on(nosrst,		ATA_LFLAG_NO_SRST),
6361	force_lflag_on(norst,		ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST),
6362	force_lflag_on(rstonce,		ATA_LFLAG_RST_ONCE),
6363	force_lflag_onoff(dbdelay,	ATA_LFLAG_NO_DEBOUNCE_DELAY),
6364
6365	force_horkage_onoff(ncq,	ATA_HORKAGE_NONCQ),
6366	force_horkage_onoff(ncqtrim,	ATA_HORKAGE_NO_NCQ_TRIM),
6367	force_horkage_onoff(ncqati,	ATA_HORKAGE_NO_NCQ_ON_ATI),
6368
6369	force_horkage_onoff(trim,	ATA_HORKAGE_NOTRIM),
6370	force_horkage_on(trim_zero,	ATA_HORKAGE_ZERO_AFTER_TRIM),
6371	force_horkage_on(max_trim_128m, ATA_HORKAGE_MAX_TRIM_128M),
6372
6373	force_horkage_onoff(dma,	ATA_HORKAGE_NODMA),
6374	force_horkage_on(atapi_dmadir,	ATA_HORKAGE_ATAPI_DMADIR),
6375	force_horkage_on(atapi_mod16_dma, ATA_HORKAGE_ATAPI_MOD16_DMA),
6376
6377	force_horkage_onoff(dmalog,	ATA_HORKAGE_NO_DMA_LOG),
6378	force_horkage_onoff(iddevlog,	ATA_HORKAGE_NO_ID_DEV_LOG),
6379	force_horkage_onoff(logdir,	ATA_HORKAGE_NO_LOG_DIR),
6380
6381	force_horkage_on(max_sec_128,	ATA_HORKAGE_MAX_SEC_128),
6382	force_horkage_on(max_sec_1024,	ATA_HORKAGE_MAX_SEC_1024),
6383	force_horkage_on(max_sec_lba48,	ATA_HORKAGE_MAX_SEC_LBA48),
6384
6385	force_horkage_onoff(lpm,	ATA_HORKAGE_NOLPM),
6386	force_horkage_onoff(setxfer,	ATA_HORKAGE_NOSETXFER),
6387	force_horkage_on(dump_id,	ATA_HORKAGE_DUMP_ID),
6388	force_horkage_onoff(fua,	ATA_HORKAGE_NO_FUA),
6389
6390	force_horkage_on(disable,	ATA_HORKAGE_DISABLE),
6391};
6392
6393static int __init ata_parse_force_one(char **cur,
6394				      struct ata_force_ent *force_ent,
6395				      const char **reason)
6396{
6397	char *start = *cur, *p = *cur;
6398	char *id, *val, *endp;
6399	const struct ata_force_param *match_fp = NULL;
6400	int nr_matches = 0, i;
6401
6402	/* find where this param ends and update *cur */
6403	while (*p != '\0' && *p != ',')
6404		p++;
6405
6406	if (*p == '\0')
6407		*cur = p;
6408	else
6409		*cur = p + 1;
6410
6411	*p = '\0';
6412
6413	/* parse */
6414	p = strchr(start, ':');
6415	if (!p) {
6416		val = strstrip(start);
6417		goto parse_val;
6418	}
6419	*p = '\0';
6420
6421	id = strstrip(start);
6422	val = strstrip(p + 1);
6423
6424	/* parse id */
6425	p = strchr(id, '.');
6426	if (p) {
6427		*p++ = '\0';
6428		force_ent->device = simple_strtoul(p, &endp, 10);
6429		if (p == endp || *endp != '\0') {
6430			*reason = "invalid device";
6431			return -EINVAL;
6432		}
6433	}
6434
6435	force_ent->port = simple_strtoul(id, &endp, 10);
6436	if (id == endp || *endp != '\0') {
6437		*reason = "invalid port/link";
6438		return -EINVAL;
6439	}
6440
6441 parse_val:
6442	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6443	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6444		const struct ata_force_param *fp = &force_tbl[i];
6445
6446		if (strncasecmp(val, fp->name, strlen(val)))
6447			continue;
6448
6449		nr_matches++;
6450		match_fp = fp;
6451
6452		if (strcasecmp(val, fp->name) == 0) {
6453			nr_matches = 1;
6454			break;
6455		}
6456	}
6457
6458	if (!nr_matches) {
6459		*reason = "unknown value";
6460		return -EINVAL;
6461	}
6462	if (nr_matches > 1) {
6463		*reason = "ambiguous value";
6464		return -EINVAL;
6465	}
6466
6467	force_ent->param = *match_fp;
6468
6469	return 0;
6470}
6471
6472static void __init ata_parse_force_param(void)
6473{
6474	int idx = 0, size = 1;
6475	int last_port = -1, last_device = -1;
6476	char *p, *cur, *next;
6477
6478	/* Calculate maximum number of params and allocate ata_force_tbl */
6479	for (p = ata_force_param_buf; *p; p++)
6480		if (*p == ',')
6481			size++;
6482
6483	ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6484	if (!ata_force_tbl) {
6485		printk(KERN_WARNING "ata: failed to extend force table, "
6486		       "libata.force ignored\n");
6487		return;
6488	}
6489
6490	/* parse and populate the table */
6491	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6492		const char *reason = "";
6493		struct ata_force_ent te = { .port = -1, .device = -1 };
6494
6495		next = cur;
6496		if (ata_parse_force_one(&next, &te, &reason)) {
6497			printk(KERN_WARNING "ata: failed to parse force "
6498			       "parameter \"%s\" (%s)\n",
6499			       cur, reason);
6500			continue;
6501		}
6502
6503		if (te.port == -1) {
6504			te.port = last_port;
6505			te.device = last_device;
6506		}
6507
6508		ata_force_tbl[idx++] = te;
6509
6510		last_port = te.port;
6511		last_device = te.device;
6512	}
6513
6514	ata_force_tbl_size = idx;
6515}
6516
6517static void ata_free_force_param(void)
6518{
6519	kfree(ata_force_tbl);
6520}
6521#else
6522static inline void ata_parse_force_param(void) { }
6523static inline void ata_free_force_param(void) { }
6524#endif
6525
6526static int __init ata_init(void)
6527{
6528	int rc;
6529
6530	ata_parse_force_param();
6531
6532	rc = ata_sff_init();
6533	if (rc) {
6534		ata_free_force_param();
6535		return rc;
6536	}
6537
6538	libata_transport_init();
6539	ata_scsi_transport_template = ata_attach_transport();
6540	if (!ata_scsi_transport_template) {
6541		ata_sff_exit();
6542		rc = -ENOMEM;
6543		goto err_out;
6544	}
6545
6546	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6547	return 0;
6548
6549err_out:
6550	return rc;
6551}
6552
6553static void __exit ata_exit(void)
6554{
6555	ata_release_transport(ata_scsi_transport_template);
6556	libata_transport_exit();
6557	ata_sff_exit();
6558	ata_free_force_param();
6559}
6560
6561subsys_initcall(ata_init);
6562module_exit(ata_exit);
6563
6564static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6565
6566int ata_ratelimit(void)
6567{
6568	return __ratelimit(&ratelimit);
6569}
6570EXPORT_SYMBOL_GPL(ata_ratelimit);
6571
6572/**
6573 *	ata_msleep - ATA EH owner aware msleep
6574 *	@ap: ATA port to attribute the sleep to
6575 *	@msecs: duration to sleep in milliseconds
6576 *
6577 *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
6578 *	ownership is released before going to sleep and reacquired
6579 *	after the sleep is complete.  IOW, other ports sharing the
6580 *	@ap->host will be allowed to own the EH while this task is
6581 *	sleeping.
6582 *
6583 *	LOCKING:
6584 *	Might sleep.
6585 */
6586void ata_msleep(struct ata_port *ap, unsigned int msecs)
6587{
6588	bool owns_eh = ap && ap->host->eh_owner == current;
6589
6590	if (owns_eh)
6591		ata_eh_release(ap);
6592
6593	if (msecs < 20) {
6594		unsigned long usecs = msecs * USEC_PER_MSEC;
6595		usleep_range(usecs, usecs + 50);
6596	} else {
6597		msleep(msecs);
6598	}
6599
6600	if (owns_eh)
6601		ata_eh_acquire(ap);
6602}
6603EXPORT_SYMBOL_GPL(ata_msleep);
6604
6605/**
6606 *	ata_wait_register - wait until register value changes
6607 *	@ap: ATA port to wait register for, can be NULL
6608 *	@reg: IO-mapped register
6609 *	@mask: Mask to apply to read register value
6610 *	@val: Wait condition
6611 *	@interval: polling interval in milliseconds
6612 *	@timeout: timeout in milliseconds
6613 *
6614 *	Waiting for some bits of register to change is a common
6615 *	operation for ATA controllers.  This function reads 32bit LE
6616 *	IO-mapped register @reg and tests for the following condition.
6617 *
6618 *	(*@reg & mask) != val
6619 *
6620 *	If the condition is met, it returns; otherwise, the process is
6621 *	repeated after @interval_msec until timeout.
6622 *
6623 *	LOCKING:
6624 *	Kernel thread context (may sleep)
6625 *
6626 *	RETURNS:
6627 *	The final register value.
6628 */
6629u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6630		      unsigned int interval, unsigned int timeout)
6631{
6632	unsigned long deadline;
6633	u32 tmp;
6634
6635	tmp = ioread32(reg);
6636
6637	/* Calculate timeout _after_ the first read to make sure
6638	 * preceding writes reach the controller before starting to
6639	 * eat away the timeout.
6640	 */
6641	deadline = ata_deadline(jiffies, timeout);
6642
6643	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6644		ata_msleep(ap, interval);
6645		tmp = ioread32(reg);
6646	}
6647
6648	return tmp;
6649}
6650EXPORT_SYMBOL_GPL(ata_wait_register);
6651
6652/*
6653 * Dummy port_ops
6654 */
6655static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6656{
6657	return AC_ERR_SYSTEM;
6658}
6659
6660static void ata_dummy_error_handler(struct ata_port *ap)
6661{
6662	/* truly dummy */
6663}
6664
6665struct ata_port_operations ata_dummy_port_ops = {
6666	.qc_prep		= ata_noop_qc_prep,
6667	.qc_issue		= ata_dummy_qc_issue,
6668	.error_handler		= ata_dummy_error_handler,
6669	.sched_eh		= ata_std_sched_eh,
6670	.end_eh			= ata_std_end_eh,
6671};
6672EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6673
6674const struct ata_port_info ata_dummy_port_info = {
6675	.port_ops		= &ata_dummy_port_ops,
6676};
6677EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6678
6679void ata_print_version(const struct device *dev, const char *version)
6680{
6681	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6682}
6683EXPORT_SYMBOL(ata_print_version);
6684
6685EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load);
6686EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command);
6687EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup);
6688EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start);
6689EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status);
6690