xref: /kernel/linux/linux-6.6/drivers/acpi/osl.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
4 *
5 *  Copyright (C) 2000       Andrew Henroid
6 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
7 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8 *  Copyright (c) 2008 Intel Corporation
9 *   Author: Matthew Wilcox <willy@linux.intel.com>
10 */
11
12#define pr_fmt(fmt) "ACPI: OSL: " fmt
13
14#include <linux/module.h>
15#include <linux/kernel.h>
16#include <linux/slab.h>
17#include <linux/mm.h>
18#include <linux/highmem.h>
19#include <linux/lockdep.h>
20#include <linux/pci.h>
21#include <linux/interrupt.h>
22#include <linux/kmod.h>
23#include <linux/delay.h>
24#include <linux/workqueue.h>
25#include <linux/nmi.h>
26#include <linux/acpi.h>
27#include <linux/efi.h>
28#include <linux/ioport.h>
29#include <linux/list.h>
30#include <linux/jiffies.h>
31#include <linux/semaphore.h>
32#include <linux/security.h>
33
34#include <asm/io.h>
35#include <linux/uaccess.h>
36#include <linux/io-64-nonatomic-lo-hi.h>
37
38#include "acpica/accommon.h"
39#include "internal.h"
40
41/* Definitions for ACPI_DEBUG_PRINT() */
42#define _COMPONENT		ACPI_OS_SERVICES
43ACPI_MODULE_NAME("osl");
44
45struct acpi_os_dpc {
46	acpi_osd_exec_callback function;
47	void *context;
48	struct work_struct work;
49};
50
51#ifdef ENABLE_DEBUGGER
52#include <linux/kdb.h>
53
54/* stuff for debugger support */
55int acpi_in_debugger;
56EXPORT_SYMBOL(acpi_in_debugger);
57#endif				/*ENABLE_DEBUGGER */
58
59static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
60				      u32 pm1b_ctrl);
61static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
62				      u32 val_b);
63
64static acpi_osd_handler acpi_irq_handler;
65static void *acpi_irq_context;
66static struct workqueue_struct *kacpid_wq;
67static struct workqueue_struct *kacpi_notify_wq;
68static struct workqueue_struct *kacpi_hotplug_wq;
69static bool acpi_os_initialized;
70unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
71bool acpi_permanent_mmap = false;
72
73/*
74 * This list of permanent mappings is for memory that may be accessed from
75 * interrupt context, where we can't do the ioremap().
76 */
77struct acpi_ioremap {
78	struct list_head list;
79	void __iomem *virt;
80	acpi_physical_address phys;
81	acpi_size size;
82	union {
83		unsigned long refcount;
84		struct rcu_work rwork;
85	} track;
86};
87
88static LIST_HEAD(acpi_ioremaps);
89static DEFINE_MUTEX(acpi_ioremap_lock);
90#define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
91
92static void __init acpi_request_region (struct acpi_generic_address *gas,
93	unsigned int length, char *desc)
94{
95	u64 addr;
96
97	/* Handle possible alignment issues */
98	memcpy(&addr, &gas->address, sizeof(addr));
99	if (!addr || !length)
100		return;
101
102	/* Resources are never freed */
103	if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
104		request_region(addr, length, desc);
105	else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
106		request_mem_region(addr, length, desc);
107}
108
109static int __init acpi_reserve_resources(void)
110{
111	acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
112		"ACPI PM1a_EVT_BLK");
113
114	acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
115		"ACPI PM1b_EVT_BLK");
116
117	acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
118		"ACPI PM1a_CNT_BLK");
119
120	acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
121		"ACPI PM1b_CNT_BLK");
122
123	if (acpi_gbl_FADT.pm_timer_length == 4)
124		acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
125
126	acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
127		"ACPI PM2_CNT_BLK");
128
129	/* Length of GPE blocks must be a non-negative multiple of 2 */
130
131	if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
132		acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
133			       acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
134
135	if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
136		acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
137			       acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
138
139	return 0;
140}
141fs_initcall_sync(acpi_reserve_resources);
142
143void acpi_os_printf(const char *fmt, ...)
144{
145	va_list args;
146	va_start(args, fmt);
147	acpi_os_vprintf(fmt, args);
148	va_end(args);
149}
150EXPORT_SYMBOL(acpi_os_printf);
151
152void acpi_os_vprintf(const char *fmt, va_list args)
153{
154	static char buffer[512];
155
156	vsprintf(buffer, fmt, args);
157
158#ifdef ENABLE_DEBUGGER
159	if (acpi_in_debugger) {
160		kdb_printf("%s", buffer);
161	} else {
162		if (printk_get_level(buffer))
163			printk("%s", buffer);
164		else
165			printk(KERN_CONT "%s", buffer);
166	}
167#else
168	if (acpi_debugger_write_log(buffer) < 0) {
169		if (printk_get_level(buffer))
170			printk("%s", buffer);
171		else
172			printk(KERN_CONT "%s", buffer);
173	}
174#endif
175}
176
177#ifdef CONFIG_KEXEC
178static unsigned long acpi_rsdp;
179static int __init setup_acpi_rsdp(char *arg)
180{
181	return kstrtoul(arg, 16, &acpi_rsdp);
182}
183early_param("acpi_rsdp", setup_acpi_rsdp);
184#endif
185
186acpi_physical_address __init acpi_os_get_root_pointer(void)
187{
188	acpi_physical_address pa;
189
190#ifdef CONFIG_KEXEC
191	/*
192	 * We may have been provided with an RSDP on the command line,
193	 * but if a malicious user has done so they may be pointing us
194	 * at modified ACPI tables that could alter kernel behaviour -
195	 * so, we check the lockdown status before making use of
196	 * it. If we trust it then also stash it in an architecture
197	 * specific location (if appropriate) so it can be carried
198	 * over further kexec()s.
199	 */
200	if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
201		acpi_arch_set_root_pointer(acpi_rsdp);
202		return acpi_rsdp;
203	}
204#endif
205	pa = acpi_arch_get_root_pointer();
206	if (pa)
207		return pa;
208
209	if (efi_enabled(EFI_CONFIG_TABLES)) {
210		if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
211			return efi.acpi20;
212		if (efi.acpi != EFI_INVALID_TABLE_ADDR)
213			return efi.acpi;
214		pr_err("System description tables not found\n");
215	} else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
216		acpi_find_root_pointer(&pa);
217	}
218
219	return pa;
220}
221
222/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
223static struct acpi_ioremap *
224acpi_map_lookup(acpi_physical_address phys, acpi_size size)
225{
226	struct acpi_ioremap *map;
227
228	list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
229		if (map->phys <= phys &&
230		    phys + size <= map->phys + map->size)
231			return map;
232
233	return NULL;
234}
235
236/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
237static void __iomem *
238acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
239{
240	struct acpi_ioremap *map;
241
242	map = acpi_map_lookup(phys, size);
243	if (map)
244		return map->virt + (phys - map->phys);
245
246	return NULL;
247}
248
249void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
250{
251	struct acpi_ioremap *map;
252	void __iomem *virt = NULL;
253
254	mutex_lock(&acpi_ioremap_lock);
255	map = acpi_map_lookup(phys, size);
256	if (map) {
257		virt = map->virt + (phys - map->phys);
258		map->track.refcount++;
259	}
260	mutex_unlock(&acpi_ioremap_lock);
261	return virt;
262}
263EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
264
265/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
266static struct acpi_ioremap *
267acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
268{
269	struct acpi_ioremap *map;
270
271	list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
272		if (map->virt <= virt &&
273		    virt + size <= map->virt + map->size)
274			return map;
275
276	return NULL;
277}
278
279#if defined(CONFIG_IA64) || defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
280/* ioremap will take care of cache attributes */
281#define should_use_kmap(pfn)   0
282#else
283#define should_use_kmap(pfn)   page_is_ram(pfn)
284#endif
285
286static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
287{
288	unsigned long pfn;
289
290	pfn = pg_off >> PAGE_SHIFT;
291	if (should_use_kmap(pfn)) {
292		if (pg_sz > PAGE_SIZE)
293			return NULL;
294		return (void __iomem __force *)kmap(pfn_to_page(pfn));
295	} else
296		return acpi_os_ioremap(pg_off, pg_sz);
297}
298
299static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
300{
301	unsigned long pfn;
302
303	pfn = pg_off >> PAGE_SHIFT;
304	if (should_use_kmap(pfn))
305		kunmap(pfn_to_page(pfn));
306	else
307		iounmap(vaddr);
308}
309
310/**
311 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
312 * @phys: Start of the physical address range to map.
313 * @size: Size of the physical address range to map.
314 *
315 * Look up the given physical address range in the list of existing ACPI memory
316 * mappings.  If found, get a reference to it and return a pointer to it (its
317 * virtual address).  If not found, map it, add it to that list and return a
318 * pointer to it.
319 *
320 * During early init (when acpi_permanent_mmap has not been set yet) this
321 * routine simply calls __acpi_map_table() to get the job done.
322 */
323void __iomem __ref
324*acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
325{
326	struct acpi_ioremap *map;
327	void __iomem *virt;
328	acpi_physical_address pg_off;
329	acpi_size pg_sz;
330
331	if (phys > ULONG_MAX) {
332		pr_err("Cannot map memory that high: 0x%llx\n", phys);
333		return NULL;
334	}
335
336	if (!acpi_permanent_mmap)
337		return __acpi_map_table((unsigned long)phys, size);
338
339	mutex_lock(&acpi_ioremap_lock);
340	/* Check if there's a suitable mapping already. */
341	map = acpi_map_lookup(phys, size);
342	if (map) {
343		map->track.refcount++;
344		goto out;
345	}
346
347	map = kzalloc(sizeof(*map), GFP_KERNEL);
348	if (!map) {
349		mutex_unlock(&acpi_ioremap_lock);
350		return NULL;
351	}
352
353	pg_off = round_down(phys, PAGE_SIZE);
354	pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
355	virt = acpi_map(phys, size);
356	if (!virt) {
357		mutex_unlock(&acpi_ioremap_lock);
358		kfree(map);
359		return NULL;
360	}
361
362	INIT_LIST_HEAD(&map->list);
363	map->virt = (void __iomem __force *)((unsigned long)virt & PAGE_MASK);
364	map->phys = pg_off;
365	map->size = pg_sz;
366	map->track.refcount = 1;
367
368	list_add_tail_rcu(&map->list, &acpi_ioremaps);
369
370out:
371	mutex_unlock(&acpi_ioremap_lock);
372	return map->virt + (phys - map->phys);
373}
374EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
375
376void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
377{
378	return (void *)acpi_os_map_iomem(phys, size);
379}
380EXPORT_SYMBOL_GPL(acpi_os_map_memory);
381
382static void acpi_os_map_remove(struct work_struct *work)
383{
384	struct acpi_ioremap *map = container_of(to_rcu_work(work),
385						struct acpi_ioremap,
386						track.rwork);
387
388	acpi_unmap(map->phys, map->virt);
389	kfree(map);
390}
391
392/* Must be called with mutex_lock(&acpi_ioremap_lock) */
393static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
394{
395	if (--map->track.refcount)
396		return;
397
398	list_del_rcu(&map->list);
399
400	INIT_RCU_WORK(&map->track.rwork, acpi_os_map_remove);
401	queue_rcu_work(system_wq, &map->track.rwork);
402}
403
404/**
405 * acpi_os_unmap_iomem - Drop a memory mapping reference.
406 * @virt: Start of the address range to drop a reference to.
407 * @size: Size of the address range to drop a reference to.
408 *
409 * Look up the given virtual address range in the list of existing ACPI memory
410 * mappings, drop a reference to it and if there are no more active references
411 * to it, queue it up for later removal.
412 *
413 * During early init (when acpi_permanent_mmap has not been set yet) this
414 * routine simply calls __acpi_unmap_table() to get the job done.  Since
415 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
416 * here.
417 */
418void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
419{
420	struct acpi_ioremap *map;
421
422	if (!acpi_permanent_mmap) {
423		__acpi_unmap_table(virt, size);
424		return;
425	}
426
427	mutex_lock(&acpi_ioremap_lock);
428
429	map = acpi_map_lookup_virt(virt, size);
430	if (!map) {
431		mutex_unlock(&acpi_ioremap_lock);
432		WARN(true, "ACPI: %s: bad address %p\n", __func__, virt);
433		return;
434	}
435	acpi_os_drop_map_ref(map);
436
437	mutex_unlock(&acpi_ioremap_lock);
438}
439EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
440
441/**
442 * acpi_os_unmap_memory - Drop a memory mapping reference.
443 * @virt: Start of the address range to drop a reference to.
444 * @size: Size of the address range to drop a reference to.
445 */
446void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
447{
448	acpi_os_unmap_iomem((void __iomem *)virt, size);
449}
450EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
451
452void __iomem *acpi_os_map_generic_address(struct acpi_generic_address *gas)
453{
454	u64 addr;
455
456	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
457		return NULL;
458
459	/* Handle possible alignment issues */
460	memcpy(&addr, &gas->address, sizeof(addr));
461	if (!addr || !gas->bit_width)
462		return NULL;
463
464	return acpi_os_map_iomem(addr, gas->bit_width / 8);
465}
466EXPORT_SYMBOL(acpi_os_map_generic_address);
467
468void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
469{
470	u64 addr;
471	struct acpi_ioremap *map;
472
473	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
474		return;
475
476	/* Handle possible alignment issues */
477	memcpy(&addr, &gas->address, sizeof(addr));
478	if (!addr || !gas->bit_width)
479		return;
480
481	mutex_lock(&acpi_ioremap_lock);
482
483	map = acpi_map_lookup(addr, gas->bit_width / 8);
484	if (!map) {
485		mutex_unlock(&acpi_ioremap_lock);
486		return;
487	}
488	acpi_os_drop_map_ref(map);
489
490	mutex_unlock(&acpi_ioremap_lock);
491}
492EXPORT_SYMBOL(acpi_os_unmap_generic_address);
493
494#ifdef ACPI_FUTURE_USAGE
495acpi_status
496acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
497{
498	if (!phys || !virt)
499		return AE_BAD_PARAMETER;
500
501	*phys = virt_to_phys(virt);
502
503	return AE_OK;
504}
505#endif
506
507#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
508static bool acpi_rev_override;
509
510int __init acpi_rev_override_setup(char *str)
511{
512	acpi_rev_override = true;
513	return 1;
514}
515__setup("acpi_rev_override", acpi_rev_override_setup);
516#else
517#define acpi_rev_override	false
518#endif
519
520#define ACPI_MAX_OVERRIDE_LEN 100
521
522static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
523
524acpi_status
525acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
526			    acpi_string *new_val)
527{
528	if (!init_val || !new_val)
529		return AE_BAD_PARAMETER;
530
531	*new_val = NULL;
532	if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
533		pr_info("Overriding _OS definition to '%s'\n", acpi_os_name);
534		*new_val = acpi_os_name;
535	}
536
537	if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
538		pr_info("Overriding _REV return value to 5\n");
539		*new_val = (char *)5;
540	}
541
542	return AE_OK;
543}
544
545static irqreturn_t acpi_irq(int irq, void *dev_id)
546{
547	u32 handled;
548
549	handled = (*acpi_irq_handler) (acpi_irq_context);
550
551	if (handled) {
552		acpi_irq_handled++;
553		return IRQ_HANDLED;
554	} else {
555		acpi_irq_not_handled++;
556		return IRQ_NONE;
557	}
558}
559
560acpi_status
561acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
562				  void *context)
563{
564	unsigned int irq;
565
566	acpi_irq_stats_init();
567
568	/*
569	 * ACPI interrupts different from the SCI in our copy of the FADT are
570	 * not supported.
571	 */
572	if (gsi != acpi_gbl_FADT.sci_interrupt)
573		return AE_BAD_PARAMETER;
574
575	if (acpi_irq_handler)
576		return AE_ALREADY_ACQUIRED;
577
578	if (acpi_gsi_to_irq(gsi, &irq) < 0) {
579		pr_err("SCI (ACPI GSI %d) not registered\n", gsi);
580		return AE_OK;
581	}
582
583	acpi_irq_handler = handler;
584	acpi_irq_context = context;
585	if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
586		pr_err("SCI (IRQ%d) allocation failed\n", irq);
587		acpi_irq_handler = NULL;
588		return AE_NOT_ACQUIRED;
589	}
590	acpi_sci_irq = irq;
591
592	return AE_OK;
593}
594
595acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
596{
597	if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
598		return AE_BAD_PARAMETER;
599
600	free_irq(acpi_sci_irq, acpi_irq);
601	acpi_irq_handler = NULL;
602	acpi_sci_irq = INVALID_ACPI_IRQ;
603
604	return AE_OK;
605}
606
607/*
608 * Running in interpreter thread context, safe to sleep
609 */
610
611void acpi_os_sleep(u64 ms)
612{
613	msleep(ms);
614}
615
616void acpi_os_stall(u32 us)
617{
618	while (us) {
619		u32 delay = 1000;
620
621		if (delay > us)
622			delay = us;
623		udelay(delay);
624		touch_nmi_watchdog();
625		us -= delay;
626	}
627}
628
629/*
630 * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
631 * monotonically increasing timer with 100ns granularity. Do not use
632 * ktime_get() to implement this function because this function may get
633 * called after timekeeping has been suspended. Note: calling this function
634 * after timekeeping has been suspended may lead to unexpected results
635 * because when timekeeping is suspended the jiffies counter is not
636 * incremented. See also timekeeping_suspend().
637 */
638u64 acpi_os_get_timer(void)
639{
640	return (get_jiffies_64() - INITIAL_JIFFIES) *
641		(ACPI_100NSEC_PER_SEC / HZ);
642}
643
644acpi_status acpi_os_read_port(acpi_io_address port, u32 *value, u32 width)
645{
646	u32 dummy;
647
648	if (value)
649		*value = 0;
650	else
651		value = &dummy;
652
653	if (width <= 8) {
654		*value = inb(port);
655	} else if (width <= 16) {
656		*value = inw(port);
657	} else if (width <= 32) {
658		*value = inl(port);
659	} else {
660		pr_debug("%s: Access width %d not supported\n", __func__, width);
661		return AE_BAD_PARAMETER;
662	}
663
664	return AE_OK;
665}
666
667EXPORT_SYMBOL(acpi_os_read_port);
668
669acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
670{
671	if (width <= 8) {
672		outb(value, port);
673	} else if (width <= 16) {
674		outw(value, port);
675	} else if (width <= 32) {
676		outl(value, port);
677	} else {
678		pr_debug("%s: Access width %d not supported\n", __func__, width);
679		return AE_BAD_PARAMETER;
680	}
681
682	return AE_OK;
683}
684
685EXPORT_SYMBOL(acpi_os_write_port);
686
687int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
688{
689
690	switch (width) {
691	case 8:
692		*(u8 *) value = readb(virt_addr);
693		break;
694	case 16:
695		*(u16 *) value = readw(virt_addr);
696		break;
697	case 32:
698		*(u32 *) value = readl(virt_addr);
699		break;
700	case 64:
701		*(u64 *) value = readq(virt_addr);
702		break;
703	default:
704		return -EINVAL;
705	}
706
707	return 0;
708}
709
710acpi_status
711acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
712{
713	void __iomem *virt_addr;
714	unsigned int size = width / 8;
715	bool unmap = false;
716	u64 dummy;
717	int error;
718
719	rcu_read_lock();
720	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
721	if (!virt_addr) {
722		rcu_read_unlock();
723		virt_addr = acpi_os_ioremap(phys_addr, size);
724		if (!virt_addr)
725			return AE_BAD_ADDRESS;
726		unmap = true;
727	}
728
729	if (!value)
730		value = &dummy;
731
732	error = acpi_os_read_iomem(virt_addr, value, width);
733	BUG_ON(error);
734
735	if (unmap)
736		iounmap(virt_addr);
737	else
738		rcu_read_unlock();
739
740	return AE_OK;
741}
742
743acpi_status
744acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
745{
746	void __iomem *virt_addr;
747	unsigned int size = width / 8;
748	bool unmap = false;
749
750	rcu_read_lock();
751	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
752	if (!virt_addr) {
753		rcu_read_unlock();
754		virt_addr = acpi_os_ioremap(phys_addr, size);
755		if (!virt_addr)
756			return AE_BAD_ADDRESS;
757		unmap = true;
758	}
759
760	switch (width) {
761	case 8:
762		writeb(value, virt_addr);
763		break;
764	case 16:
765		writew(value, virt_addr);
766		break;
767	case 32:
768		writel(value, virt_addr);
769		break;
770	case 64:
771		writeq(value, virt_addr);
772		break;
773	default:
774		BUG();
775	}
776
777	if (unmap)
778		iounmap(virt_addr);
779	else
780		rcu_read_unlock();
781
782	return AE_OK;
783}
784
785#ifdef CONFIG_PCI
786acpi_status
787acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
788			       u64 *value, u32 width)
789{
790	int result, size;
791	u32 value32;
792
793	if (!value)
794		return AE_BAD_PARAMETER;
795
796	switch (width) {
797	case 8:
798		size = 1;
799		break;
800	case 16:
801		size = 2;
802		break;
803	case 32:
804		size = 4;
805		break;
806	default:
807		return AE_ERROR;
808	}
809
810	result = raw_pci_read(pci_id->segment, pci_id->bus,
811				PCI_DEVFN(pci_id->device, pci_id->function),
812				reg, size, &value32);
813	*value = value32;
814
815	return (result ? AE_ERROR : AE_OK);
816}
817
818acpi_status
819acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
820				u64 value, u32 width)
821{
822	int result, size;
823
824	switch (width) {
825	case 8:
826		size = 1;
827		break;
828	case 16:
829		size = 2;
830		break;
831	case 32:
832		size = 4;
833		break;
834	default:
835		return AE_ERROR;
836	}
837
838	result = raw_pci_write(pci_id->segment, pci_id->bus,
839				PCI_DEVFN(pci_id->device, pci_id->function),
840				reg, size, value);
841
842	return (result ? AE_ERROR : AE_OK);
843}
844#endif
845
846static void acpi_os_execute_deferred(struct work_struct *work)
847{
848	struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
849
850	dpc->function(dpc->context);
851	kfree(dpc);
852}
853
854#ifdef CONFIG_ACPI_DEBUGGER
855static struct acpi_debugger acpi_debugger;
856static bool acpi_debugger_initialized;
857
858int acpi_register_debugger(struct module *owner,
859			   const struct acpi_debugger_ops *ops)
860{
861	int ret = 0;
862
863	mutex_lock(&acpi_debugger.lock);
864	if (acpi_debugger.ops) {
865		ret = -EBUSY;
866		goto err_lock;
867	}
868
869	acpi_debugger.owner = owner;
870	acpi_debugger.ops = ops;
871
872err_lock:
873	mutex_unlock(&acpi_debugger.lock);
874	return ret;
875}
876EXPORT_SYMBOL(acpi_register_debugger);
877
878void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
879{
880	mutex_lock(&acpi_debugger.lock);
881	if (ops == acpi_debugger.ops) {
882		acpi_debugger.ops = NULL;
883		acpi_debugger.owner = NULL;
884	}
885	mutex_unlock(&acpi_debugger.lock);
886}
887EXPORT_SYMBOL(acpi_unregister_debugger);
888
889int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
890{
891	int ret;
892	int (*func)(acpi_osd_exec_callback, void *);
893	struct module *owner;
894
895	if (!acpi_debugger_initialized)
896		return -ENODEV;
897	mutex_lock(&acpi_debugger.lock);
898	if (!acpi_debugger.ops) {
899		ret = -ENODEV;
900		goto err_lock;
901	}
902	if (!try_module_get(acpi_debugger.owner)) {
903		ret = -ENODEV;
904		goto err_lock;
905	}
906	func = acpi_debugger.ops->create_thread;
907	owner = acpi_debugger.owner;
908	mutex_unlock(&acpi_debugger.lock);
909
910	ret = func(function, context);
911
912	mutex_lock(&acpi_debugger.lock);
913	module_put(owner);
914err_lock:
915	mutex_unlock(&acpi_debugger.lock);
916	return ret;
917}
918
919ssize_t acpi_debugger_write_log(const char *msg)
920{
921	ssize_t ret;
922	ssize_t (*func)(const char *);
923	struct module *owner;
924
925	if (!acpi_debugger_initialized)
926		return -ENODEV;
927	mutex_lock(&acpi_debugger.lock);
928	if (!acpi_debugger.ops) {
929		ret = -ENODEV;
930		goto err_lock;
931	}
932	if (!try_module_get(acpi_debugger.owner)) {
933		ret = -ENODEV;
934		goto err_lock;
935	}
936	func = acpi_debugger.ops->write_log;
937	owner = acpi_debugger.owner;
938	mutex_unlock(&acpi_debugger.lock);
939
940	ret = func(msg);
941
942	mutex_lock(&acpi_debugger.lock);
943	module_put(owner);
944err_lock:
945	mutex_unlock(&acpi_debugger.lock);
946	return ret;
947}
948
949ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
950{
951	ssize_t ret;
952	ssize_t (*func)(char *, size_t);
953	struct module *owner;
954
955	if (!acpi_debugger_initialized)
956		return -ENODEV;
957	mutex_lock(&acpi_debugger.lock);
958	if (!acpi_debugger.ops) {
959		ret = -ENODEV;
960		goto err_lock;
961	}
962	if (!try_module_get(acpi_debugger.owner)) {
963		ret = -ENODEV;
964		goto err_lock;
965	}
966	func = acpi_debugger.ops->read_cmd;
967	owner = acpi_debugger.owner;
968	mutex_unlock(&acpi_debugger.lock);
969
970	ret = func(buffer, buffer_length);
971
972	mutex_lock(&acpi_debugger.lock);
973	module_put(owner);
974err_lock:
975	mutex_unlock(&acpi_debugger.lock);
976	return ret;
977}
978
979int acpi_debugger_wait_command_ready(void)
980{
981	int ret;
982	int (*func)(bool, char *, size_t);
983	struct module *owner;
984
985	if (!acpi_debugger_initialized)
986		return -ENODEV;
987	mutex_lock(&acpi_debugger.lock);
988	if (!acpi_debugger.ops) {
989		ret = -ENODEV;
990		goto err_lock;
991	}
992	if (!try_module_get(acpi_debugger.owner)) {
993		ret = -ENODEV;
994		goto err_lock;
995	}
996	func = acpi_debugger.ops->wait_command_ready;
997	owner = acpi_debugger.owner;
998	mutex_unlock(&acpi_debugger.lock);
999
1000	ret = func(acpi_gbl_method_executing,
1001		   acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
1002
1003	mutex_lock(&acpi_debugger.lock);
1004	module_put(owner);
1005err_lock:
1006	mutex_unlock(&acpi_debugger.lock);
1007	return ret;
1008}
1009
1010int acpi_debugger_notify_command_complete(void)
1011{
1012	int ret;
1013	int (*func)(void);
1014	struct module *owner;
1015
1016	if (!acpi_debugger_initialized)
1017		return -ENODEV;
1018	mutex_lock(&acpi_debugger.lock);
1019	if (!acpi_debugger.ops) {
1020		ret = -ENODEV;
1021		goto err_lock;
1022	}
1023	if (!try_module_get(acpi_debugger.owner)) {
1024		ret = -ENODEV;
1025		goto err_lock;
1026	}
1027	func = acpi_debugger.ops->notify_command_complete;
1028	owner = acpi_debugger.owner;
1029	mutex_unlock(&acpi_debugger.lock);
1030
1031	ret = func();
1032
1033	mutex_lock(&acpi_debugger.lock);
1034	module_put(owner);
1035err_lock:
1036	mutex_unlock(&acpi_debugger.lock);
1037	return ret;
1038}
1039
1040int __init acpi_debugger_init(void)
1041{
1042	mutex_init(&acpi_debugger.lock);
1043	acpi_debugger_initialized = true;
1044	return 0;
1045}
1046#endif
1047
1048/*******************************************************************************
1049 *
1050 * FUNCTION:    acpi_os_execute
1051 *
1052 * PARAMETERS:  Type               - Type of the callback
1053 *              Function           - Function to be executed
1054 *              Context            - Function parameters
1055 *
1056 * RETURN:      Status
1057 *
1058 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1059 *              immediately executes function on a separate thread.
1060 *
1061 ******************************************************************************/
1062
1063acpi_status acpi_os_execute(acpi_execute_type type,
1064			    acpi_osd_exec_callback function, void *context)
1065{
1066	acpi_status status = AE_OK;
1067	struct acpi_os_dpc *dpc;
1068	struct workqueue_struct *queue;
1069	int ret;
1070	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1071			  "Scheduling function [%p(%p)] for deferred execution.\n",
1072			  function, context));
1073
1074	if (type == OSL_DEBUGGER_MAIN_THREAD) {
1075		ret = acpi_debugger_create_thread(function, context);
1076		if (ret) {
1077			pr_err("Kernel thread creation failed\n");
1078			status = AE_ERROR;
1079		}
1080		goto out_thread;
1081	}
1082
1083	/*
1084	 * Allocate/initialize DPC structure.  Note that this memory will be
1085	 * freed by the callee.  The kernel handles the work_struct list  in a
1086	 * way that allows us to also free its memory inside the callee.
1087	 * Because we may want to schedule several tasks with different
1088	 * parameters we can't use the approach some kernel code uses of
1089	 * having a static work_struct.
1090	 */
1091
1092	dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1093	if (!dpc)
1094		return AE_NO_MEMORY;
1095
1096	dpc->function = function;
1097	dpc->context = context;
1098
1099	/*
1100	 * To prevent lockdep from complaining unnecessarily, make sure that
1101	 * there is a different static lockdep key for each workqueue by using
1102	 * INIT_WORK() for each of them separately.
1103	 */
1104	if (type == OSL_NOTIFY_HANDLER) {
1105		queue = kacpi_notify_wq;
1106		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1107	} else if (type == OSL_GPE_HANDLER) {
1108		queue = kacpid_wq;
1109		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1110	} else {
1111		pr_err("Unsupported os_execute type %d.\n", type);
1112		status = AE_ERROR;
1113	}
1114
1115	if (ACPI_FAILURE(status))
1116		goto err_workqueue;
1117
1118	/*
1119	 * On some machines, a software-initiated SMI causes corruption unless
1120	 * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
1121	 * typically it's done in GPE-related methods that are run via
1122	 * workqueues, so we can avoid the known corruption cases by always
1123	 * queueing on CPU 0.
1124	 */
1125	ret = queue_work_on(0, queue, &dpc->work);
1126	if (!ret) {
1127		pr_err("Unable to queue work\n");
1128		status = AE_ERROR;
1129	}
1130err_workqueue:
1131	if (ACPI_FAILURE(status))
1132		kfree(dpc);
1133out_thread:
1134	return status;
1135}
1136EXPORT_SYMBOL(acpi_os_execute);
1137
1138void acpi_os_wait_events_complete(void)
1139{
1140	/*
1141	 * Make sure the GPE handler or the fixed event handler is not used
1142	 * on another CPU after removal.
1143	 */
1144	if (acpi_sci_irq_valid())
1145		synchronize_hardirq(acpi_sci_irq);
1146	flush_workqueue(kacpid_wq);
1147	flush_workqueue(kacpi_notify_wq);
1148}
1149EXPORT_SYMBOL(acpi_os_wait_events_complete);
1150
1151struct acpi_hp_work {
1152	struct work_struct work;
1153	struct acpi_device *adev;
1154	u32 src;
1155};
1156
1157static void acpi_hotplug_work_fn(struct work_struct *work)
1158{
1159	struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1160
1161	acpi_os_wait_events_complete();
1162	acpi_device_hotplug(hpw->adev, hpw->src);
1163	kfree(hpw);
1164}
1165
1166acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1167{
1168	struct acpi_hp_work *hpw;
1169
1170	acpi_handle_debug(adev->handle,
1171			  "Scheduling hotplug event %u for deferred handling\n",
1172			   src);
1173
1174	hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1175	if (!hpw)
1176		return AE_NO_MEMORY;
1177
1178	INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1179	hpw->adev = adev;
1180	hpw->src = src;
1181	/*
1182	 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1183	 * the hotplug code may call driver .remove() functions, which may
1184	 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1185	 * these workqueues.
1186	 */
1187	if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1188		kfree(hpw);
1189		return AE_ERROR;
1190	}
1191	return AE_OK;
1192}
1193
1194bool acpi_queue_hotplug_work(struct work_struct *work)
1195{
1196	return queue_work(kacpi_hotplug_wq, work);
1197}
1198
1199acpi_status
1200acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1201{
1202	struct semaphore *sem = NULL;
1203
1204	sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1205	if (!sem)
1206		return AE_NO_MEMORY;
1207
1208	sema_init(sem, initial_units);
1209
1210	*handle = (acpi_handle *) sem;
1211
1212	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1213			  *handle, initial_units));
1214
1215	return AE_OK;
1216}
1217
1218/*
1219 * TODO: A better way to delete semaphores?  Linux doesn't have a
1220 * 'delete_semaphore()' function -- may result in an invalid
1221 * pointer dereference for non-synchronized consumers.	Should
1222 * we at least check for blocked threads and signal/cancel them?
1223 */
1224
1225acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1226{
1227	struct semaphore *sem = (struct semaphore *)handle;
1228
1229	if (!sem)
1230		return AE_BAD_PARAMETER;
1231
1232	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1233
1234	BUG_ON(!list_empty(&sem->wait_list));
1235	kfree(sem);
1236	sem = NULL;
1237
1238	return AE_OK;
1239}
1240
1241/*
1242 * TODO: Support for units > 1?
1243 */
1244acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1245{
1246	acpi_status status = AE_OK;
1247	struct semaphore *sem = (struct semaphore *)handle;
1248	long jiffies;
1249	int ret = 0;
1250
1251	if (!acpi_os_initialized)
1252		return AE_OK;
1253
1254	if (!sem || (units < 1))
1255		return AE_BAD_PARAMETER;
1256
1257	if (units > 1)
1258		return AE_SUPPORT;
1259
1260	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1261			  handle, units, timeout));
1262
1263	if (timeout == ACPI_WAIT_FOREVER)
1264		jiffies = MAX_SCHEDULE_TIMEOUT;
1265	else
1266		jiffies = msecs_to_jiffies(timeout);
1267
1268	ret = down_timeout(sem, jiffies);
1269	if (ret)
1270		status = AE_TIME;
1271
1272	if (ACPI_FAILURE(status)) {
1273		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1274				  "Failed to acquire semaphore[%p|%d|%d], %s",
1275				  handle, units, timeout,
1276				  acpi_format_exception(status)));
1277	} else {
1278		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1279				  "Acquired semaphore[%p|%d|%d]", handle,
1280				  units, timeout));
1281	}
1282
1283	return status;
1284}
1285
1286/*
1287 * TODO: Support for units > 1?
1288 */
1289acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1290{
1291	struct semaphore *sem = (struct semaphore *)handle;
1292
1293	if (!acpi_os_initialized)
1294		return AE_OK;
1295
1296	if (!sem || (units < 1))
1297		return AE_BAD_PARAMETER;
1298
1299	if (units > 1)
1300		return AE_SUPPORT;
1301
1302	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1303			  units));
1304
1305	up(sem);
1306
1307	return AE_OK;
1308}
1309
1310acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1311{
1312#ifdef ENABLE_DEBUGGER
1313	if (acpi_in_debugger) {
1314		u32 chars;
1315
1316		kdb_read(buffer, buffer_length);
1317
1318		/* remove the CR kdb includes */
1319		chars = strlen(buffer) - 1;
1320		buffer[chars] = '\0';
1321	}
1322#else
1323	int ret;
1324
1325	ret = acpi_debugger_read_cmd(buffer, buffer_length);
1326	if (ret < 0)
1327		return AE_ERROR;
1328	if (bytes_read)
1329		*bytes_read = ret;
1330#endif
1331
1332	return AE_OK;
1333}
1334EXPORT_SYMBOL(acpi_os_get_line);
1335
1336acpi_status acpi_os_wait_command_ready(void)
1337{
1338	int ret;
1339
1340	ret = acpi_debugger_wait_command_ready();
1341	if (ret < 0)
1342		return AE_ERROR;
1343	return AE_OK;
1344}
1345
1346acpi_status acpi_os_notify_command_complete(void)
1347{
1348	int ret;
1349
1350	ret = acpi_debugger_notify_command_complete();
1351	if (ret < 0)
1352		return AE_ERROR;
1353	return AE_OK;
1354}
1355
1356acpi_status acpi_os_signal(u32 function, void *info)
1357{
1358	switch (function) {
1359	case ACPI_SIGNAL_FATAL:
1360		pr_err("Fatal opcode executed\n");
1361		break;
1362	case ACPI_SIGNAL_BREAKPOINT:
1363		/*
1364		 * AML Breakpoint
1365		 * ACPI spec. says to treat it as a NOP unless
1366		 * you are debugging.  So if/when we integrate
1367		 * AML debugger into the kernel debugger its
1368		 * hook will go here.  But until then it is
1369		 * not useful to print anything on breakpoints.
1370		 */
1371		break;
1372	default:
1373		break;
1374	}
1375
1376	return AE_OK;
1377}
1378
1379static int __init acpi_os_name_setup(char *str)
1380{
1381	char *p = acpi_os_name;
1382	int count = ACPI_MAX_OVERRIDE_LEN - 1;
1383
1384	if (!str || !*str)
1385		return 0;
1386
1387	for (; count-- && *str; str++) {
1388		if (isalnum(*str) || *str == ' ' || *str == ':')
1389			*p++ = *str;
1390		else if (*str == '\'' || *str == '"')
1391			continue;
1392		else
1393			break;
1394	}
1395	*p = 0;
1396
1397	return 1;
1398
1399}
1400
1401__setup("acpi_os_name=", acpi_os_name_setup);
1402
1403/*
1404 * Disable the auto-serialization of named objects creation methods.
1405 *
1406 * This feature is enabled by default.  It marks the AML control methods
1407 * that contain the opcodes to create named objects as "Serialized".
1408 */
1409static int __init acpi_no_auto_serialize_setup(char *str)
1410{
1411	acpi_gbl_auto_serialize_methods = FALSE;
1412	pr_info("Auto-serialization disabled\n");
1413
1414	return 1;
1415}
1416
1417__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1418
1419/* Check of resource interference between native drivers and ACPI
1420 * OperationRegions (SystemIO and System Memory only).
1421 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1422 * in arbitrary AML code and can interfere with legacy drivers.
1423 * acpi_enforce_resources= can be set to:
1424 *
1425 *   - strict (default) (2)
1426 *     -> further driver trying to access the resources will not load
1427 *   - lax              (1)
1428 *     -> further driver trying to access the resources will load, but you
1429 *     get a system message that something might go wrong...
1430 *
1431 *   - no               (0)
1432 *     -> ACPI Operation Region resources will not be registered
1433 *
1434 */
1435#define ENFORCE_RESOURCES_STRICT 2
1436#define ENFORCE_RESOURCES_LAX    1
1437#define ENFORCE_RESOURCES_NO     0
1438
1439static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1440
1441static int __init acpi_enforce_resources_setup(char *str)
1442{
1443	if (str == NULL || *str == '\0')
1444		return 0;
1445
1446	if (!strcmp("strict", str))
1447		acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1448	else if (!strcmp("lax", str))
1449		acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1450	else if (!strcmp("no", str))
1451		acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1452
1453	return 1;
1454}
1455
1456__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1457
1458/* Check for resource conflicts between ACPI OperationRegions and native
1459 * drivers */
1460int acpi_check_resource_conflict(const struct resource *res)
1461{
1462	acpi_adr_space_type space_id;
1463
1464	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1465		return 0;
1466
1467	if (res->flags & IORESOURCE_IO)
1468		space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1469	else if (res->flags & IORESOURCE_MEM)
1470		space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1471	else
1472		return 0;
1473
1474	if (!acpi_check_address_range(space_id, res->start, resource_size(res), 1))
1475		return 0;
1476
1477	pr_info("Resource conflict; ACPI support missing from driver?\n");
1478
1479	if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1480		return -EBUSY;
1481
1482	if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1483		pr_notice("Resource conflict: System may be unstable or behave erratically\n");
1484
1485	return 0;
1486}
1487EXPORT_SYMBOL(acpi_check_resource_conflict);
1488
1489int acpi_check_region(resource_size_t start, resource_size_t n,
1490		      const char *name)
1491{
1492	struct resource res = DEFINE_RES_IO_NAMED(start, n, name);
1493
1494	return acpi_check_resource_conflict(&res);
1495}
1496EXPORT_SYMBOL(acpi_check_region);
1497
1498/*
1499 * Let drivers know whether the resource checks are effective
1500 */
1501int acpi_resources_are_enforced(void)
1502{
1503	return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1504}
1505EXPORT_SYMBOL(acpi_resources_are_enforced);
1506
1507/*
1508 * Deallocate the memory for a spinlock.
1509 */
1510void acpi_os_delete_lock(acpi_spinlock handle)
1511{
1512	ACPI_FREE(handle);
1513}
1514
1515/*
1516 * Acquire a spinlock.
1517 *
1518 * handle is a pointer to the spinlock_t.
1519 */
1520
1521acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1522	__acquires(lockp)
1523{
1524	acpi_cpu_flags flags;
1525	spin_lock_irqsave(lockp, flags);
1526	return flags;
1527}
1528
1529/*
1530 * Release a spinlock. See above.
1531 */
1532
1533void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1534	__releases(lockp)
1535{
1536	spin_unlock_irqrestore(lockp, flags);
1537}
1538
1539#ifndef ACPI_USE_LOCAL_CACHE
1540
1541/*******************************************************************************
1542 *
1543 * FUNCTION:    acpi_os_create_cache
1544 *
1545 * PARAMETERS:  name      - Ascii name for the cache
1546 *              size      - Size of each cached object
1547 *              depth     - Maximum depth of the cache (in objects) <ignored>
1548 *              cache     - Where the new cache object is returned
1549 *
1550 * RETURN:      status
1551 *
1552 * DESCRIPTION: Create a cache object
1553 *
1554 ******************************************************************************/
1555
1556acpi_status
1557acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1558{
1559	*cache = kmem_cache_create(name, size, 0, 0, NULL);
1560	if (*cache == NULL)
1561		return AE_ERROR;
1562	else
1563		return AE_OK;
1564}
1565
1566/*******************************************************************************
1567 *
1568 * FUNCTION:    acpi_os_purge_cache
1569 *
1570 * PARAMETERS:  Cache           - Handle to cache object
1571 *
1572 * RETURN:      Status
1573 *
1574 * DESCRIPTION: Free all objects within the requested cache.
1575 *
1576 ******************************************************************************/
1577
1578acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1579{
1580	kmem_cache_shrink(cache);
1581	return (AE_OK);
1582}
1583
1584/*******************************************************************************
1585 *
1586 * FUNCTION:    acpi_os_delete_cache
1587 *
1588 * PARAMETERS:  Cache           - Handle to cache object
1589 *
1590 * RETURN:      Status
1591 *
1592 * DESCRIPTION: Free all objects within the requested cache and delete the
1593 *              cache object.
1594 *
1595 ******************************************************************************/
1596
1597acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1598{
1599	kmem_cache_destroy(cache);
1600	return (AE_OK);
1601}
1602
1603/*******************************************************************************
1604 *
1605 * FUNCTION:    acpi_os_release_object
1606 *
1607 * PARAMETERS:  Cache       - Handle to cache object
1608 *              Object      - The object to be released
1609 *
1610 * RETURN:      None
1611 *
1612 * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1613 *              the object is deleted.
1614 *
1615 ******************************************************************************/
1616
1617acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1618{
1619	kmem_cache_free(cache, object);
1620	return (AE_OK);
1621}
1622#endif
1623
1624static int __init acpi_no_static_ssdt_setup(char *s)
1625{
1626	acpi_gbl_disable_ssdt_table_install = TRUE;
1627	pr_info("Static SSDT installation disabled\n");
1628
1629	return 0;
1630}
1631
1632early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1633
1634static int __init acpi_disable_return_repair(char *s)
1635{
1636	pr_notice("Predefined validation mechanism disabled\n");
1637	acpi_gbl_disable_auto_repair = TRUE;
1638
1639	return 1;
1640}
1641
1642__setup("acpica_no_return_repair", acpi_disable_return_repair);
1643
1644acpi_status __init acpi_os_initialize(void)
1645{
1646	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1647	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1648
1649	acpi_gbl_xgpe0_block_logical_address =
1650		(unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1651	acpi_gbl_xgpe1_block_logical_address =
1652		(unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1653
1654	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1655		/*
1656		 * Use acpi_os_map_generic_address to pre-map the reset
1657		 * register if it's in system memory.
1658		 */
1659		void *rv;
1660
1661		rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1662		pr_debug("%s: Reset register mapping %s\n", __func__,
1663			 rv ? "successful" : "failed");
1664	}
1665	acpi_os_initialized = true;
1666
1667	return AE_OK;
1668}
1669
1670acpi_status __init acpi_os_initialize1(void)
1671{
1672	kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1673	kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1674	kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1675	BUG_ON(!kacpid_wq);
1676	BUG_ON(!kacpi_notify_wq);
1677	BUG_ON(!kacpi_hotplug_wq);
1678	acpi_osi_init();
1679	return AE_OK;
1680}
1681
1682acpi_status acpi_os_terminate(void)
1683{
1684	if (acpi_irq_handler) {
1685		acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1686						 acpi_irq_handler);
1687	}
1688
1689	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1690	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1691	acpi_gbl_xgpe0_block_logical_address = 0UL;
1692	acpi_gbl_xgpe1_block_logical_address = 0UL;
1693
1694	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1695	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1696
1697	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1698		acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1699
1700	destroy_workqueue(kacpid_wq);
1701	destroy_workqueue(kacpi_notify_wq);
1702	destroy_workqueue(kacpi_hotplug_wq);
1703
1704	return AE_OK;
1705}
1706
1707acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1708				  u32 pm1b_control)
1709{
1710	int rc = 0;
1711	if (__acpi_os_prepare_sleep)
1712		rc = __acpi_os_prepare_sleep(sleep_state,
1713					     pm1a_control, pm1b_control);
1714	if (rc < 0)
1715		return AE_ERROR;
1716	else if (rc > 0)
1717		return AE_CTRL_TERMINATE;
1718
1719	return AE_OK;
1720}
1721
1722void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1723			       u32 pm1a_ctrl, u32 pm1b_ctrl))
1724{
1725	__acpi_os_prepare_sleep = func;
1726}
1727
1728#if (ACPI_REDUCED_HARDWARE)
1729acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1730				  u32 val_b)
1731{
1732	int rc = 0;
1733	if (__acpi_os_prepare_extended_sleep)
1734		rc = __acpi_os_prepare_extended_sleep(sleep_state,
1735					     val_a, val_b);
1736	if (rc < 0)
1737		return AE_ERROR;
1738	else if (rc > 0)
1739		return AE_CTRL_TERMINATE;
1740
1741	return AE_OK;
1742}
1743#else
1744acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1745				  u32 val_b)
1746{
1747	return AE_OK;
1748}
1749#endif
1750
1751void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1752			       u32 val_a, u32 val_b))
1753{
1754	__acpi_os_prepare_extended_sleep = func;
1755}
1756
1757acpi_status acpi_os_enter_sleep(u8 sleep_state,
1758				u32 reg_a_value, u32 reg_b_value)
1759{
1760	acpi_status status;
1761
1762	if (acpi_gbl_reduced_hardware)
1763		status = acpi_os_prepare_extended_sleep(sleep_state,
1764							reg_a_value,
1765							reg_b_value);
1766	else
1767		status = acpi_os_prepare_sleep(sleep_state,
1768					       reg_a_value, reg_b_value);
1769	return status;
1770}
1771