xref: /kernel/linux/linux-6.6/drivers/acpi/nfit/core.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
4 */
5#include <linux/list_sort.h>
6#include <linux/libnvdimm.h>
7#include <linux/module.h>
8#include <linux/nospec.h>
9#include <linux/mutex.h>
10#include <linux/ndctl.h>
11#include <linux/sysfs.h>
12#include <linux/delay.h>
13#include <linux/list.h>
14#include <linux/acpi.h>
15#include <linux/sort.h>
16#include <linux/io.h>
17#include <linux/nd.h>
18#include <asm/cacheflush.h>
19#include <acpi/nfit.h>
20#include "intel.h"
21#include "nfit.h"
22
23/*
24 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
25 * irrelevant.
26 */
27#include <linux/io-64-nonatomic-hi-lo.h>
28
29static bool force_enable_dimms;
30module_param(force_enable_dimms, bool, S_IRUGO|S_IWUSR);
31MODULE_PARM_DESC(force_enable_dimms, "Ignore _STA (ACPI DIMM device) status");
32
33static bool disable_vendor_specific;
34module_param(disable_vendor_specific, bool, S_IRUGO);
35MODULE_PARM_DESC(disable_vendor_specific,
36		"Limit commands to the publicly specified set");
37
38static unsigned long override_dsm_mask;
39module_param(override_dsm_mask, ulong, S_IRUGO);
40MODULE_PARM_DESC(override_dsm_mask, "Bitmask of allowed NVDIMM DSM functions");
41
42static int default_dsm_family = -1;
43module_param(default_dsm_family, int, S_IRUGO);
44MODULE_PARM_DESC(default_dsm_family,
45		"Try this DSM type first when identifying NVDIMM family");
46
47static bool no_init_ars;
48module_param(no_init_ars, bool, 0644);
49MODULE_PARM_DESC(no_init_ars, "Skip ARS run at nfit init time");
50
51static bool force_labels;
52module_param(force_labels, bool, 0444);
53MODULE_PARM_DESC(force_labels, "Opt-in to labels despite missing methods");
54
55LIST_HEAD(acpi_descs);
56DEFINE_MUTEX(acpi_desc_lock);
57
58static struct workqueue_struct *nfit_wq;
59
60struct nfit_table_prev {
61	struct list_head spas;
62	struct list_head memdevs;
63	struct list_head dcrs;
64	struct list_head bdws;
65	struct list_head idts;
66	struct list_head flushes;
67};
68
69static guid_t nfit_uuid[NFIT_UUID_MAX];
70
71const guid_t *to_nfit_uuid(enum nfit_uuids id)
72{
73	return &nfit_uuid[id];
74}
75EXPORT_SYMBOL(to_nfit_uuid);
76
77static const guid_t *to_nfit_bus_uuid(int family)
78{
79	if (WARN_ONCE(family == NVDIMM_BUS_FAMILY_NFIT,
80			"only secondary bus families can be translated\n"))
81		return NULL;
82	/*
83	 * The index of bus UUIDs starts immediately following the last
84	 * NVDIMM/leaf family.
85	 */
86	return to_nfit_uuid(family + NVDIMM_FAMILY_MAX);
87}
88
89static struct acpi_device *to_acpi_dev(struct acpi_nfit_desc *acpi_desc)
90{
91	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
92
93	/*
94	 * If provider == 'ACPI.NFIT' we can assume 'dev' is a struct
95	 * acpi_device.
96	 */
97	if (!nd_desc->provider_name
98			|| strcmp(nd_desc->provider_name, "ACPI.NFIT") != 0)
99		return NULL;
100
101	return to_acpi_device(acpi_desc->dev);
102}
103
104static int xlat_bus_status(void *buf, unsigned int cmd, u32 status)
105{
106	struct nd_cmd_clear_error *clear_err;
107	struct nd_cmd_ars_status *ars_status;
108	u16 flags;
109
110	switch (cmd) {
111	case ND_CMD_ARS_CAP:
112		if ((status & 0xffff) == NFIT_ARS_CAP_NONE)
113			return -ENOTTY;
114
115		/* Command failed */
116		if (status & 0xffff)
117			return -EIO;
118
119		/* No supported scan types for this range */
120		flags = ND_ARS_PERSISTENT | ND_ARS_VOLATILE;
121		if ((status >> 16 & flags) == 0)
122			return -ENOTTY;
123		return 0;
124	case ND_CMD_ARS_START:
125		/* ARS is in progress */
126		if ((status & 0xffff) == NFIT_ARS_START_BUSY)
127			return -EBUSY;
128
129		/* Command failed */
130		if (status & 0xffff)
131			return -EIO;
132		return 0;
133	case ND_CMD_ARS_STATUS:
134		ars_status = buf;
135		/* Command failed */
136		if (status & 0xffff)
137			return -EIO;
138		/* Check extended status (Upper two bytes) */
139		if (status == NFIT_ARS_STATUS_DONE)
140			return 0;
141
142		/* ARS is in progress */
143		if (status == NFIT_ARS_STATUS_BUSY)
144			return -EBUSY;
145
146		/* No ARS performed for the current boot */
147		if (status == NFIT_ARS_STATUS_NONE)
148			return -EAGAIN;
149
150		/*
151		 * ARS interrupted, either we overflowed or some other
152		 * agent wants the scan to stop.  If we didn't overflow
153		 * then just continue with the returned results.
154		 */
155		if (status == NFIT_ARS_STATUS_INTR) {
156			if (ars_status->out_length >= 40 && (ars_status->flags
157						& NFIT_ARS_F_OVERFLOW))
158				return -ENOSPC;
159			return 0;
160		}
161
162		/* Unknown status */
163		if (status >> 16)
164			return -EIO;
165		return 0;
166	case ND_CMD_CLEAR_ERROR:
167		clear_err = buf;
168		if (status & 0xffff)
169			return -EIO;
170		if (!clear_err->cleared)
171			return -EIO;
172		if (clear_err->length > clear_err->cleared)
173			return clear_err->cleared;
174		return 0;
175	default:
176		break;
177	}
178
179	/* all other non-zero status results in an error */
180	if (status)
181		return -EIO;
182	return 0;
183}
184
185#define ACPI_LABELS_LOCKED 3
186
187static int xlat_nvdimm_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
188		u32 status)
189{
190	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
191
192	switch (cmd) {
193	case ND_CMD_GET_CONFIG_SIZE:
194		/*
195		 * In the _LSI, _LSR, _LSW case the locked status is
196		 * communicated via the read/write commands
197		 */
198		if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags))
199			break;
200
201		if (status >> 16 & ND_CONFIG_LOCKED)
202			return -EACCES;
203		break;
204	case ND_CMD_GET_CONFIG_DATA:
205		if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)
206				&& status == ACPI_LABELS_LOCKED)
207			return -EACCES;
208		break;
209	case ND_CMD_SET_CONFIG_DATA:
210		if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags)
211				&& status == ACPI_LABELS_LOCKED)
212			return -EACCES;
213		break;
214	default:
215		break;
216	}
217
218	/* all other non-zero status results in an error */
219	if (status)
220		return -EIO;
221	return 0;
222}
223
224static int xlat_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
225		u32 status)
226{
227	if (!nvdimm)
228		return xlat_bus_status(buf, cmd, status);
229	return xlat_nvdimm_status(nvdimm, buf, cmd, status);
230}
231
232/* convert _LS{I,R} packages to the buffer object acpi_nfit_ctl expects */
233static union acpi_object *pkg_to_buf(union acpi_object *pkg)
234{
235	int i;
236	void *dst;
237	size_t size = 0;
238	union acpi_object *buf = NULL;
239
240	if (pkg->type != ACPI_TYPE_PACKAGE) {
241		WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
242				pkg->type);
243		goto err;
244	}
245
246	for (i = 0; i < pkg->package.count; i++) {
247		union acpi_object *obj = &pkg->package.elements[i];
248
249		if (obj->type == ACPI_TYPE_INTEGER)
250			size += 4;
251		else if (obj->type == ACPI_TYPE_BUFFER)
252			size += obj->buffer.length;
253		else {
254			WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
255					obj->type);
256			goto err;
257		}
258	}
259
260	buf = ACPI_ALLOCATE(sizeof(*buf) + size);
261	if (!buf)
262		goto err;
263
264	dst = buf + 1;
265	buf->type = ACPI_TYPE_BUFFER;
266	buf->buffer.length = size;
267	buf->buffer.pointer = dst;
268	for (i = 0; i < pkg->package.count; i++) {
269		union acpi_object *obj = &pkg->package.elements[i];
270
271		if (obj->type == ACPI_TYPE_INTEGER) {
272			memcpy(dst, &obj->integer.value, 4);
273			dst += 4;
274		} else if (obj->type == ACPI_TYPE_BUFFER) {
275			memcpy(dst, obj->buffer.pointer, obj->buffer.length);
276			dst += obj->buffer.length;
277		}
278	}
279err:
280	ACPI_FREE(pkg);
281	return buf;
282}
283
284static union acpi_object *int_to_buf(union acpi_object *integer)
285{
286	union acpi_object *buf = NULL;
287	void *dst = NULL;
288
289	if (integer->type != ACPI_TYPE_INTEGER) {
290		WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
291				integer->type);
292		goto err;
293	}
294
295	buf = ACPI_ALLOCATE(sizeof(*buf) + 4);
296	if (!buf)
297		goto err;
298
299	dst = buf + 1;
300	buf->type = ACPI_TYPE_BUFFER;
301	buf->buffer.length = 4;
302	buf->buffer.pointer = dst;
303	memcpy(dst, &integer->integer.value, 4);
304err:
305	ACPI_FREE(integer);
306	return buf;
307}
308
309static union acpi_object *acpi_label_write(acpi_handle handle, u32 offset,
310		u32 len, void *data)
311{
312	acpi_status rc;
313	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
314	struct acpi_object_list input = {
315		.count = 3,
316		.pointer = (union acpi_object []) {
317			[0] = {
318				.integer.type = ACPI_TYPE_INTEGER,
319				.integer.value = offset,
320			},
321			[1] = {
322				.integer.type = ACPI_TYPE_INTEGER,
323				.integer.value = len,
324			},
325			[2] = {
326				.buffer.type = ACPI_TYPE_BUFFER,
327				.buffer.pointer = data,
328				.buffer.length = len,
329			},
330		},
331	};
332
333	rc = acpi_evaluate_object(handle, "_LSW", &input, &buf);
334	if (ACPI_FAILURE(rc))
335		return NULL;
336	return int_to_buf(buf.pointer);
337}
338
339static union acpi_object *acpi_label_read(acpi_handle handle, u32 offset,
340		u32 len)
341{
342	acpi_status rc;
343	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
344	struct acpi_object_list input = {
345		.count = 2,
346		.pointer = (union acpi_object []) {
347			[0] = {
348				.integer.type = ACPI_TYPE_INTEGER,
349				.integer.value = offset,
350			},
351			[1] = {
352				.integer.type = ACPI_TYPE_INTEGER,
353				.integer.value = len,
354			},
355		},
356	};
357
358	rc = acpi_evaluate_object(handle, "_LSR", &input, &buf);
359	if (ACPI_FAILURE(rc))
360		return NULL;
361	return pkg_to_buf(buf.pointer);
362}
363
364static union acpi_object *acpi_label_info(acpi_handle handle)
365{
366	acpi_status rc;
367	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
368
369	rc = acpi_evaluate_object(handle, "_LSI", NULL, &buf);
370	if (ACPI_FAILURE(rc))
371		return NULL;
372	return pkg_to_buf(buf.pointer);
373}
374
375static u8 nfit_dsm_revid(unsigned family, unsigned func)
376{
377	static const u8 revid_table[NVDIMM_FAMILY_MAX+1][NVDIMM_CMD_MAX+1] = {
378		[NVDIMM_FAMILY_INTEL] = {
379			[NVDIMM_INTEL_GET_MODES ...
380				NVDIMM_INTEL_FW_ACTIVATE_ARM] = 2,
381		},
382	};
383	u8 id;
384
385	if (family > NVDIMM_FAMILY_MAX)
386		return 0;
387	if (func > NVDIMM_CMD_MAX)
388		return 0;
389	id = revid_table[family][func];
390	if (id == 0)
391		return 1; /* default */
392	return id;
393}
394
395static bool payload_dumpable(struct nvdimm *nvdimm, unsigned int func)
396{
397	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
398
399	if (nfit_mem && nfit_mem->family == NVDIMM_FAMILY_INTEL
400			&& func >= NVDIMM_INTEL_GET_SECURITY_STATE
401			&& func <= NVDIMM_INTEL_MASTER_SECURE_ERASE)
402		return IS_ENABLED(CONFIG_NFIT_SECURITY_DEBUG);
403	return true;
404}
405
406static int cmd_to_func(struct nfit_mem *nfit_mem, unsigned int cmd,
407		struct nd_cmd_pkg *call_pkg, int *family)
408{
409	if (call_pkg) {
410		int i;
411
412		if (nfit_mem && nfit_mem->family != call_pkg->nd_family)
413			return -ENOTTY;
414
415		for (i = 0; i < ARRAY_SIZE(call_pkg->nd_reserved2); i++)
416			if (call_pkg->nd_reserved2[i])
417				return -EINVAL;
418		*family = call_pkg->nd_family;
419		return call_pkg->nd_command;
420	}
421
422	/* In the !call_pkg case, bus commands == bus functions */
423	if (!nfit_mem)
424		return cmd;
425
426	/* Linux ND commands == NVDIMM_FAMILY_INTEL function numbers */
427	if (nfit_mem->family == NVDIMM_FAMILY_INTEL)
428		return cmd;
429
430	/*
431	 * Force function number validation to fail since 0 is never
432	 * published as a valid function in dsm_mask.
433	 */
434	return 0;
435}
436
437int acpi_nfit_ctl(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm,
438		unsigned int cmd, void *buf, unsigned int buf_len, int *cmd_rc)
439{
440	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
441	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
442	union acpi_object in_obj, in_buf, *out_obj;
443	const struct nd_cmd_desc *desc = NULL;
444	struct device *dev = acpi_desc->dev;
445	struct nd_cmd_pkg *call_pkg = NULL;
446	const char *cmd_name, *dimm_name;
447	unsigned long cmd_mask, dsm_mask;
448	u32 offset, fw_status = 0;
449	acpi_handle handle;
450	const guid_t *guid;
451	int func, rc, i;
452	int family = 0;
453
454	if (cmd_rc)
455		*cmd_rc = -EINVAL;
456
457	if (cmd == ND_CMD_CALL)
458		call_pkg = buf;
459	func = cmd_to_func(nfit_mem, cmd, call_pkg, &family);
460	if (func < 0)
461		return func;
462
463	if (nvdimm) {
464		struct acpi_device *adev = nfit_mem->adev;
465
466		if (!adev)
467			return -ENOTTY;
468
469		dimm_name = nvdimm_name(nvdimm);
470		cmd_name = nvdimm_cmd_name(cmd);
471		cmd_mask = nvdimm_cmd_mask(nvdimm);
472		dsm_mask = nfit_mem->dsm_mask;
473		desc = nd_cmd_dimm_desc(cmd);
474		guid = to_nfit_uuid(nfit_mem->family);
475		handle = adev->handle;
476	} else {
477		struct acpi_device *adev = to_acpi_dev(acpi_desc);
478
479		cmd_name = nvdimm_bus_cmd_name(cmd);
480		cmd_mask = nd_desc->cmd_mask;
481		if (cmd == ND_CMD_CALL && call_pkg->nd_family) {
482			family = call_pkg->nd_family;
483			if (family > NVDIMM_BUS_FAMILY_MAX ||
484			    !test_bit(family, &nd_desc->bus_family_mask))
485				return -EINVAL;
486			family = array_index_nospec(family,
487						    NVDIMM_BUS_FAMILY_MAX + 1);
488			dsm_mask = acpi_desc->family_dsm_mask[family];
489			guid = to_nfit_bus_uuid(family);
490		} else {
491			dsm_mask = acpi_desc->bus_dsm_mask;
492			guid = to_nfit_uuid(NFIT_DEV_BUS);
493		}
494		desc = nd_cmd_bus_desc(cmd);
495		handle = adev->handle;
496		dimm_name = "bus";
497	}
498
499	if (!desc || (cmd && (desc->out_num + desc->in_num == 0)))
500		return -ENOTTY;
501
502	/*
503	 * Check for a valid command.  For ND_CMD_CALL, we also have to
504	 * make sure that the DSM function is supported.
505	 */
506	if (cmd == ND_CMD_CALL &&
507	    (func > NVDIMM_CMD_MAX || !test_bit(func, &dsm_mask)))
508		return -ENOTTY;
509	else if (!test_bit(cmd, &cmd_mask))
510		return -ENOTTY;
511
512	in_obj.type = ACPI_TYPE_PACKAGE;
513	in_obj.package.count = 1;
514	in_obj.package.elements = &in_buf;
515	in_buf.type = ACPI_TYPE_BUFFER;
516	in_buf.buffer.pointer = buf;
517	in_buf.buffer.length = 0;
518
519	/* libnvdimm has already validated the input envelope */
520	for (i = 0; i < desc->in_num; i++)
521		in_buf.buffer.length += nd_cmd_in_size(nvdimm, cmd, desc,
522				i, buf);
523
524	if (call_pkg) {
525		/* skip over package wrapper */
526		in_buf.buffer.pointer = (void *) &call_pkg->nd_payload;
527		in_buf.buffer.length = call_pkg->nd_size_in;
528	}
529
530	dev_dbg(dev, "%s cmd: %d: family: %d func: %d input length: %d\n",
531		dimm_name, cmd, family, func, in_buf.buffer.length);
532	if (payload_dumpable(nvdimm, func))
533		print_hex_dump_debug("nvdimm in  ", DUMP_PREFIX_OFFSET, 4, 4,
534				in_buf.buffer.pointer,
535				min_t(u32, 256, in_buf.buffer.length), true);
536
537	/* call the BIOS, prefer the named methods over _DSM if available */
538	if (nvdimm && cmd == ND_CMD_GET_CONFIG_SIZE
539			&& test_bit(NFIT_MEM_LSR, &nfit_mem->flags))
540		out_obj = acpi_label_info(handle);
541	else if (nvdimm && cmd == ND_CMD_GET_CONFIG_DATA
542			&& test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) {
543		struct nd_cmd_get_config_data_hdr *p = buf;
544
545		out_obj = acpi_label_read(handle, p->in_offset, p->in_length);
546	} else if (nvdimm && cmd == ND_CMD_SET_CONFIG_DATA
547			&& test_bit(NFIT_MEM_LSW, &nfit_mem->flags)) {
548		struct nd_cmd_set_config_hdr *p = buf;
549
550		out_obj = acpi_label_write(handle, p->in_offset, p->in_length,
551				p->in_buf);
552	} else {
553		u8 revid;
554
555		if (nvdimm)
556			revid = nfit_dsm_revid(nfit_mem->family, func);
557		else
558			revid = 1;
559		out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj);
560	}
561
562	if (!out_obj) {
563		dev_dbg(dev, "%s _DSM failed cmd: %s\n", dimm_name, cmd_name);
564		return -EINVAL;
565	}
566
567	if (out_obj->type != ACPI_TYPE_BUFFER) {
568		dev_dbg(dev, "%s unexpected output object type cmd: %s type: %d\n",
569				dimm_name, cmd_name, out_obj->type);
570		rc = -EINVAL;
571		goto out;
572	}
573
574	dev_dbg(dev, "%s cmd: %s output length: %d\n", dimm_name,
575			cmd_name, out_obj->buffer.length);
576	print_hex_dump_debug(cmd_name, DUMP_PREFIX_OFFSET, 4, 4,
577			out_obj->buffer.pointer,
578			min_t(u32, 128, out_obj->buffer.length), true);
579
580	if (call_pkg) {
581		call_pkg->nd_fw_size = out_obj->buffer.length;
582		memcpy(call_pkg->nd_payload + call_pkg->nd_size_in,
583			out_obj->buffer.pointer,
584			min(call_pkg->nd_fw_size, call_pkg->nd_size_out));
585
586		ACPI_FREE(out_obj);
587		/*
588		 * Need to support FW function w/o known size in advance.
589		 * Caller can determine required size based upon nd_fw_size.
590		 * If we return an error (like elsewhere) then caller wouldn't
591		 * be able to rely upon data returned to make calculation.
592		 */
593		if (cmd_rc)
594			*cmd_rc = 0;
595		return 0;
596	}
597
598	for (i = 0, offset = 0; i < desc->out_num; i++) {
599		u32 out_size = nd_cmd_out_size(nvdimm, cmd, desc, i, buf,
600				(u32 *) out_obj->buffer.pointer,
601				out_obj->buffer.length - offset);
602
603		if (offset + out_size > out_obj->buffer.length) {
604			dev_dbg(dev, "%s output object underflow cmd: %s field: %d\n",
605					dimm_name, cmd_name, i);
606			break;
607		}
608
609		if (in_buf.buffer.length + offset + out_size > buf_len) {
610			dev_dbg(dev, "%s output overrun cmd: %s field: %d\n",
611					dimm_name, cmd_name, i);
612			rc = -ENXIO;
613			goto out;
614		}
615		memcpy(buf + in_buf.buffer.length + offset,
616				out_obj->buffer.pointer + offset, out_size);
617		offset += out_size;
618	}
619
620	/*
621	 * Set fw_status for all the commands with a known format to be
622	 * later interpreted by xlat_status().
623	 */
624	if (i >= 1 && ((!nvdimm && cmd >= ND_CMD_ARS_CAP
625					&& cmd <= ND_CMD_CLEAR_ERROR)
626				|| (nvdimm && cmd >= ND_CMD_SMART
627					&& cmd <= ND_CMD_VENDOR)))
628		fw_status = *(u32 *) out_obj->buffer.pointer;
629
630	if (offset + in_buf.buffer.length < buf_len) {
631		if (i >= 1) {
632			/*
633			 * status valid, return the number of bytes left
634			 * unfilled in the output buffer
635			 */
636			rc = buf_len - offset - in_buf.buffer.length;
637			if (cmd_rc)
638				*cmd_rc = xlat_status(nvdimm, buf, cmd,
639						fw_status);
640		} else {
641			dev_err(dev, "%s:%s underrun cmd: %s buf_len: %d out_len: %d\n",
642					__func__, dimm_name, cmd_name, buf_len,
643					offset);
644			rc = -ENXIO;
645		}
646	} else {
647		rc = 0;
648		if (cmd_rc)
649			*cmd_rc = xlat_status(nvdimm, buf, cmd, fw_status);
650	}
651
652 out:
653	ACPI_FREE(out_obj);
654
655	return rc;
656}
657EXPORT_SYMBOL_GPL(acpi_nfit_ctl);
658
659static const char *spa_type_name(u16 type)
660{
661	static const char *to_name[] = {
662		[NFIT_SPA_VOLATILE] = "volatile",
663		[NFIT_SPA_PM] = "pmem",
664		[NFIT_SPA_DCR] = "dimm-control-region",
665		[NFIT_SPA_BDW] = "block-data-window",
666		[NFIT_SPA_VDISK] = "volatile-disk",
667		[NFIT_SPA_VCD] = "volatile-cd",
668		[NFIT_SPA_PDISK] = "persistent-disk",
669		[NFIT_SPA_PCD] = "persistent-cd",
670
671	};
672
673	if (type > NFIT_SPA_PCD)
674		return "unknown";
675
676	return to_name[type];
677}
678
679int nfit_spa_type(struct acpi_nfit_system_address *spa)
680{
681	guid_t guid;
682	int i;
683
684	import_guid(&guid, spa->range_guid);
685	for (i = 0; i < NFIT_UUID_MAX; i++)
686		if (guid_equal(to_nfit_uuid(i), &guid))
687			return i;
688	return -1;
689}
690
691static size_t sizeof_spa(struct acpi_nfit_system_address *spa)
692{
693	if (spa->flags & ACPI_NFIT_LOCATION_COOKIE_VALID)
694		return sizeof(*spa);
695	return sizeof(*spa) - 8;
696}
697
698static bool add_spa(struct acpi_nfit_desc *acpi_desc,
699		struct nfit_table_prev *prev,
700		struct acpi_nfit_system_address *spa)
701{
702	struct device *dev = acpi_desc->dev;
703	struct nfit_spa *nfit_spa;
704
705	if (spa->header.length != sizeof_spa(spa))
706		return false;
707
708	list_for_each_entry(nfit_spa, &prev->spas, list) {
709		if (memcmp(nfit_spa->spa, spa, sizeof_spa(spa)) == 0) {
710			list_move_tail(&nfit_spa->list, &acpi_desc->spas);
711			return true;
712		}
713	}
714
715	nfit_spa = devm_kzalloc(dev, sizeof(*nfit_spa) + sizeof_spa(spa),
716			GFP_KERNEL);
717	if (!nfit_spa)
718		return false;
719	INIT_LIST_HEAD(&nfit_spa->list);
720	memcpy(nfit_spa->spa, spa, sizeof_spa(spa));
721	list_add_tail(&nfit_spa->list, &acpi_desc->spas);
722	dev_dbg(dev, "spa index: %d type: %s\n",
723			spa->range_index,
724			spa_type_name(nfit_spa_type(spa)));
725	return true;
726}
727
728static bool add_memdev(struct acpi_nfit_desc *acpi_desc,
729		struct nfit_table_prev *prev,
730		struct acpi_nfit_memory_map *memdev)
731{
732	struct device *dev = acpi_desc->dev;
733	struct nfit_memdev *nfit_memdev;
734
735	if (memdev->header.length != sizeof(*memdev))
736		return false;
737
738	list_for_each_entry(nfit_memdev, &prev->memdevs, list)
739		if (memcmp(nfit_memdev->memdev, memdev, sizeof(*memdev)) == 0) {
740			list_move_tail(&nfit_memdev->list, &acpi_desc->memdevs);
741			return true;
742		}
743
744	nfit_memdev = devm_kzalloc(dev, sizeof(*nfit_memdev) + sizeof(*memdev),
745			GFP_KERNEL);
746	if (!nfit_memdev)
747		return false;
748	INIT_LIST_HEAD(&nfit_memdev->list);
749	memcpy(nfit_memdev->memdev, memdev, sizeof(*memdev));
750	list_add_tail(&nfit_memdev->list, &acpi_desc->memdevs);
751	dev_dbg(dev, "memdev handle: %#x spa: %d dcr: %d flags: %#x\n",
752			memdev->device_handle, memdev->range_index,
753			memdev->region_index, memdev->flags);
754	return true;
755}
756
757int nfit_get_smbios_id(u32 device_handle, u16 *flags)
758{
759	struct acpi_nfit_memory_map *memdev;
760	struct acpi_nfit_desc *acpi_desc;
761	struct nfit_mem *nfit_mem;
762	u16 physical_id;
763
764	mutex_lock(&acpi_desc_lock);
765	list_for_each_entry(acpi_desc, &acpi_descs, list) {
766		mutex_lock(&acpi_desc->init_mutex);
767		list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
768			memdev = __to_nfit_memdev(nfit_mem);
769			if (memdev->device_handle == device_handle) {
770				*flags = memdev->flags;
771				physical_id = memdev->physical_id;
772				mutex_unlock(&acpi_desc->init_mutex);
773				mutex_unlock(&acpi_desc_lock);
774				return physical_id;
775			}
776		}
777		mutex_unlock(&acpi_desc->init_mutex);
778	}
779	mutex_unlock(&acpi_desc_lock);
780
781	return -ENODEV;
782}
783EXPORT_SYMBOL_GPL(nfit_get_smbios_id);
784
785/*
786 * An implementation may provide a truncated control region if no block windows
787 * are defined.
788 */
789static size_t sizeof_dcr(struct acpi_nfit_control_region *dcr)
790{
791	if (dcr->header.length < offsetof(struct acpi_nfit_control_region,
792				window_size))
793		return 0;
794	if (dcr->windows)
795		return sizeof(*dcr);
796	return offsetof(struct acpi_nfit_control_region, window_size);
797}
798
799static bool add_dcr(struct acpi_nfit_desc *acpi_desc,
800		struct nfit_table_prev *prev,
801		struct acpi_nfit_control_region *dcr)
802{
803	struct device *dev = acpi_desc->dev;
804	struct nfit_dcr *nfit_dcr;
805
806	if (!sizeof_dcr(dcr))
807		return false;
808
809	list_for_each_entry(nfit_dcr, &prev->dcrs, list)
810		if (memcmp(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)) == 0) {
811			list_move_tail(&nfit_dcr->list, &acpi_desc->dcrs);
812			return true;
813		}
814
815	nfit_dcr = devm_kzalloc(dev, sizeof(*nfit_dcr) + sizeof(*dcr),
816			GFP_KERNEL);
817	if (!nfit_dcr)
818		return false;
819	INIT_LIST_HEAD(&nfit_dcr->list);
820	memcpy(nfit_dcr->dcr, dcr, sizeof_dcr(dcr));
821	list_add_tail(&nfit_dcr->list, &acpi_desc->dcrs);
822	dev_dbg(dev, "dcr index: %d windows: %d\n",
823			dcr->region_index, dcr->windows);
824	return true;
825}
826
827static bool add_bdw(struct acpi_nfit_desc *acpi_desc,
828		struct nfit_table_prev *prev,
829		struct acpi_nfit_data_region *bdw)
830{
831	struct device *dev = acpi_desc->dev;
832	struct nfit_bdw *nfit_bdw;
833
834	if (bdw->header.length != sizeof(*bdw))
835		return false;
836	list_for_each_entry(nfit_bdw, &prev->bdws, list)
837		if (memcmp(nfit_bdw->bdw, bdw, sizeof(*bdw)) == 0) {
838			list_move_tail(&nfit_bdw->list, &acpi_desc->bdws);
839			return true;
840		}
841
842	nfit_bdw = devm_kzalloc(dev, sizeof(*nfit_bdw) + sizeof(*bdw),
843			GFP_KERNEL);
844	if (!nfit_bdw)
845		return false;
846	INIT_LIST_HEAD(&nfit_bdw->list);
847	memcpy(nfit_bdw->bdw, bdw, sizeof(*bdw));
848	list_add_tail(&nfit_bdw->list, &acpi_desc->bdws);
849	dev_dbg(dev, "bdw dcr: %d windows: %d\n",
850			bdw->region_index, bdw->windows);
851	return true;
852}
853
854static size_t sizeof_idt(struct acpi_nfit_interleave *idt)
855{
856	if (idt->header.length < sizeof(*idt))
857		return 0;
858	return sizeof(*idt) + sizeof(u32) * idt->line_count;
859}
860
861static bool add_idt(struct acpi_nfit_desc *acpi_desc,
862		struct nfit_table_prev *prev,
863		struct acpi_nfit_interleave *idt)
864{
865	struct device *dev = acpi_desc->dev;
866	struct nfit_idt *nfit_idt;
867
868	if (!sizeof_idt(idt))
869		return false;
870
871	list_for_each_entry(nfit_idt, &prev->idts, list) {
872		if (sizeof_idt(nfit_idt->idt) != sizeof_idt(idt))
873			continue;
874
875		if (memcmp(nfit_idt->idt, idt, sizeof_idt(idt)) == 0) {
876			list_move_tail(&nfit_idt->list, &acpi_desc->idts);
877			return true;
878		}
879	}
880
881	nfit_idt = devm_kzalloc(dev, sizeof(*nfit_idt) + sizeof_idt(idt),
882			GFP_KERNEL);
883	if (!nfit_idt)
884		return false;
885	INIT_LIST_HEAD(&nfit_idt->list);
886	memcpy(nfit_idt->idt, idt, sizeof_idt(idt));
887	list_add_tail(&nfit_idt->list, &acpi_desc->idts);
888	dev_dbg(dev, "idt index: %d num_lines: %d\n",
889			idt->interleave_index, idt->line_count);
890	return true;
891}
892
893static size_t sizeof_flush(struct acpi_nfit_flush_address *flush)
894{
895	if (flush->header.length < sizeof(*flush))
896		return 0;
897	return struct_size(flush, hint_address, flush->hint_count);
898}
899
900static bool add_flush(struct acpi_nfit_desc *acpi_desc,
901		struct nfit_table_prev *prev,
902		struct acpi_nfit_flush_address *flush)
903{
904	struct device *dev = acpi_desc->dev;
905	struct nfit_flush *nfit_flush;
906
907	if (!sizeof_flush(flush))
908		return false;
909
910	list_for_each_entry(nfit_flush, &prev->flushes, list) {
911		if (sizeof_flush(nfit_flush->flush) != sizeof_flush(flush))
912			continue;
913
914		if (memcmp(nfit_flush->flush, flush,
915					sizeof_flush(flush)) == 0) {
916			list_move_tail(&nfit_flush->list, &acpi_desc->flushes);
917			return true;
918		}
919	}
920
921	nfit_flush = devm_kzalloc(dev, sizeof(*nfit_flush)
922			+ sizeof_flush(flush), GFP_KERNEL);
923	if (!nfit_flush)
924		return false;
925	INIT_LIST_HEAD(&nfit_flush->list);
926	memcpy(nfit_flush->flush, flush, sizeof_flush(flush));
927	list_add_tail(&nfit_flush->list, &acpi_desc->flushes);
928	dev_dbg(dev, "nfit_flush handle: %d hint_count: %d\n",
929			flush->device_handle, flush->hint_count);
930	return true;
931}
932
933static bool add_platform_cap(struct acpi_nfit_desc *acpi_desc,
934		struct acpi_nfit_capabilities *pcap)
935{
936	struct device *dev = acpi_desc->dev;
937	u32 mask;
938
939	mask = (1 << (pcap->highest_capability + 1)) - 1;
940	acpi_desc->platform_cap = pcap->capabilities & mask;
941	dev_dbg(dev, "cap: %#x\n", acpi_desc->platform_cap);
942	return true;
943}
944
945static void *add_table(struct acpi_nfit_desc *acpi_desc,
946		struct nfit_table_prev *prev, void *table, const void *end)
947{
948	struct device *dev = acpi_desc->dev;
949	struct acpi_nfit_header *hdr;
950	void *err = ERR_PTR(-ENOMEM);
951
952	if (table >= end)
953		return NULL;
954
955	hdr = table;
956	if (!hdr->length) {
957		dev_warn(dev, "found a zero length table '%d' parsing nfit\n",
958			hdr->type);
959		return NULL;
960	}
961
962	switch (hdr->type) {
963	case ACPI_NFIT_TYPE_SYSTEM_ADDRESS:
964		if (!add_spa(acpi_desc, prev, table))
965			return err;
966		break;
967	case ACPI_NFIT_TYPE_MEMORY_MAP:
968		if (!add_memdev(acpi_desc, prev, table))
969			return err;
970		break;
971	case ACPI_NFIT_TYPE_CONTROL_REGION:
972		if (!add_dcr(acpi_desc, prev, table))
973			return err;
974		break;
975	case ACPI_NFIT_TYPE_DATA_REGION:
976		if (!add_bdw(acpi_desc, prev, table))
977			return err;
978		break;
979	case ACPI_NFIT_TYPE_INTERLEAVE:
980		if (!add_idt(acpi_desc, prev, table))
981			return err;
982		break;
983	case ACPI_NFIT_TYPE_FLUSH_ADDRESS:
984		if (!add_flush(acpi_desc, prev, table))
985			return err;
986		break;
987	case ACPI_NFIT_TYPE_SMBIOS:
988		dev_dbg(dev, "smbios\n");
989		break;
990	case ACPI_NFIT_TYPE_CAPABILITIES:
991		if (!add_platform_cap(acpi_desc, table))
992			return err;
993		break;
994	default:
995		dev_err(dev, "unknown table '%d' parsing nfit\n", hdr->type);
996		break;
997	}
998
999	return table + hdr->length;
1000}
1001
1002static int __nfit_mem_init(struct acpi_nfit_desc *acpi_desc,
1003		struct acpi_nfit_system_address *spa)
1004{
1005	struct nfit_mem *nfit_mem, *found;
1006	struct nfit_memdev *nfit_memdev;
1007	int type = spa ? nfit_spa_type(spa) : 0;
1008
1009	switch (type) {
1010	case NFIT_SPA_DCR:
1011	case NFIT_SPA_PM:
1012		break;
1013	default:
1014		if (spa)
1015			return 0;
1016	}
1017
1018	/*
1019	 * This loop runs in two modes, when a dimm is mapped the loop
1020	 * adds memdev associations to an existing dimm, or creates a
1021	 * dimm. In the unmapped dimm case this loop sweeps for memdev
1022	 * instances with an invalid / zero range_index and adds those
1023	 * dimms without spa associations.
1024	 */
1025	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1026		struct nfit_flush *nfit_flush;
1027		struct nfit_dcr *nfit_dcr;
1028		u32 device_handle;
1029		u16 dcr;
1030
1031		if (spa && nfit_memdev->memdev->range_index != spa->range_index)
1032			continue;
1033		if (!spa && nfit_memdev->memdev->range_index)
1034			continue;
1035		found = NULL;
1036		dcr = nfit_memdev->memdev->region_index;
1037		device_handle = nfit_memdev->memdev->device_handle;
1038		list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1039			if (__to_nfit_memdev(nfit_mem)->device_handle
1040					== device_handle) {
1041				found = nfit_mem;
1042				break;
1043			}
1044
1045		if (found)
1046			nfit_mem = found;
1047		else {
1048			nfit_mem = devm_kzalloc(acpi_desc->dev,
1049					sizeof(*nfit_mem), GFP_KERNEL);
1050			if (!nfit_mem)
1051				return -ENOMEM;
1052			INIT_LIST_HEAD(&nfit_mem->list);
1053			nfit_mem->acpi_desc = acpi_desc;
1054			list_add(&nfit_mem->list, &acpi_desc->dimms);
1055		}
1056
1057		list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1058			if (nfit_dcr->dcr->region_index != dcr)
1059				continue;
1060			/*
1061			 * Record the control region for the dimm.  For
1062			 * the ACPI 6.1 case, where there are separate
1063			 * control regions for the pmem vs blk
1064			 * interfaces, be sure to record the extended
1065			 * blk details.
1066			 */
1067			if (!nfit_mem->dcr)
1068				nfit_mem->dcr = nfit_dcr->dcr;
1069			else if (nfit_mem->dcr->windows == 0
1070					&& nfit_dcr->dcr->windows)
1071				nfit_mem->dcr = nfit_dcr->dcr;
1072			break;
1073		}
1074
1075		list_for_each_entry(nfit_flush, &acpi_desc->flushes, list) {
1076			struct acpi_nfit_flush_address *flush;
1077			u16 i;
1078
1079			if (nfit_flush->flush->device_handle != device_handle)
1080				continue;
1081			nfit_mem->nfit_flush = nfit_flush;
1082			flush = nfit_flush->flush;
1083			nfit_mem->flush_wpq = devm_kcalloc(acpi_desc->dev,
1084					flush->hint_count,
1085					sizeof(struct resource),
1086					GFP_KERNEL);
1087			if (!nfit_mem->flush_wpq)
1088				return -ENOMEM;
1089			for (i = 0; i < flush->hint_count; i++) {
1090				struct resource *res = &nfit_mem->flush_wpq[i];
1091
1092				res->start = flush->hint_address[i];
1093				res->end = res->start + 8 - 1;
1094			}
1095			break;
1096		}
1097
1098		if (dcr && !nfit_mem->dcr) {
1099			dev_err(acpi_desc->dev, "SPA %d missing DCR %d\n",
1100					spa->range_index, dcr);
1101			return -ENODEV;
1102		}
1103
1104		if (type == NFIT_SPA_DCR) {
1105			struct nfit_idt *nfit_idt;
1106			u16 idt_idx;
1107
1108			/* multiple dimms may share a SPA when interleaved */
1109			nfit_mem->spa_dcr = spa;
1110			nfit_mem->memdev_dcr = nfit_memdev->memdev;
1111			idt_idx = nfit_memdev->memdev->interleave_index;
1112			list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
1113				if (nfit_idt->idt->interleave_index != idt_idx)
1114					continue;
1115				nfit_mem->idt_dcr = nfit_idt->idt;
1116				break;
1117			}
1118		} else if (type == NFIT_SPA_PM) {
1119			/*
1120			 * A single dimm may belong to multiple SPA-PM
1121			 * ranges, record at least one in addition to
1122			 * any SPA-DCR range.
1123			 */
1124			nfit_mem->memdev_pmem = nfit_memdev->memdev;
1125		} else
1126			nfit_mem->memdev_dcr = nfit_memdev->memdev;
1127	}
1128
1129	return 0;
1130}
1131
1132static int nfit_mem_cmp(void *priv, const struct list_head *_a,
1133		const struct list_head *_b)
1134{
1135	struct nfit_mem *a = container_of(_a, typeof(*a), list);
1136	struct nfit_mem *b = container_of(_b, typeof(*b), list);
1137	u32 handleA, handleB;
1138
1139	handleA = __to_nfit_memdev(a)->device_handle;
1140	handleB = __to_nfit_memdev(b)->device_handle;
1141	if (handleA < handleB)
1142		return -1;
1143	else if (handleA > handleB)
1144		return 1;
1145	return 0;
1146}
1147
1148static int nfit_mem_init(struct acpi_nfit_desc *acpi_desc)
1149{
1150	struct nfit_spa *nfit_spa;
1151	int rc;
1152
1153
1154	/*
1155	 * For each SPA-DCR or SPA-PMEM address range find its
1156	 * corresponding MEMDEV(s).  From each MEMDEV find the
1157	 * corresponding DCR.  Then, if we're operating on a SPA-DCR,
1158	 * try to find a SPA-BDW and a corresponding BDW that references
1159	 * the DCR.  Throw it all into an nfit_mem object.  Note, that
1160	 * BDWs are optional.
1161	 */
1162	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
1163		rc = __nfit_mem_init(acpi_desc, nfit_spa->spa);
1164		if (rc)
1165			return rc;
1166	}
1167
1168	/*
1169	 * If a DIMM has failed to be mapped into SPA there will be no
1170	 * SPA entries above. Find and register all the unmapped DIMMs
1171	 * for reporting and recovery purposes.
1172	 */
1173	rc = __nfit_mem_init(acpi_desc, NULL);
1174	if (rc)
1175		return rc;
1176
1177	list_sort(NULL, &acpi_desc->dimms, nfit_mem_cmp);
1178
1179	return 0;
1180}
1181
1182static ssize_t bus_dsm_mask_show(struct device *dev,
1183		struct device_attribute *attr, char *buf)
1184{
1185	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1186	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1187	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1188
1189	return sprintf(buf, "%#lx\n", acpi_desc->bus_dsm_mask);
1190}
1191static struct device_attribute dev_attr_bus_dsm_mask =
1192		__ATTR(dsm_mask, 0444, bus_dsm_mask_show, NULL);
1193
1194static ssize_t revision_show(struct device *dev,
1195		struct device_attribute *attr, char *buf)
1196{
1197	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1198	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1199	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1200
1201	return sprintf(buf, "%d\n", acpi_desc->acpi_header.revision);
1202}
1203static DEVICE_ATTR_RO(revision);
1204
1205static ssize_t hw_error_scrub_show(struct device *dev,
1206		struct device_attribute *attr, char *buf)
1207{
1208	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1209	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1210	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1211
1212	return sprintf(buf, "%d\n", acpi_desc->scrub_mode);
1213}
1214
1215/*
1216 * The 'hw_error_scrub' attribute can have the following values written to it:
1217 * '0': Switch to the default mode where an exception will only insert
1218 *      the address of the memory error into the poison and badblocks lists.
1219 * '1': Enable a full scrub to happen if an exception for a memory error is
1220 *      received.
1221 */
1222static ssize_t hw_error_scrub_store(struct device *dev,
1223		struct device_attribute *attr, const char *buf, size_t size)
1224{
1225	struct nvdimm_bus_descriptor *nd_desc;
1226	ssize_t rc;
1227	long val;
1228
1229	rc = kstrtol(buf, 0, &val);
1230	if (rc)
1231		return rc;
1232
1233	device_lock(dev);
1234	nd_desc = dev_get_drvdata(dev);
1235	if (nd_desc) {
1236		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1237
1238		switch (val) {
1239		case HW_ERROR_SCRUB_ON:
1240			acpi_desc->scrub_mode = HW_ERROR_SCRUB_ON;
1241			break;
1242		case HW_ERROR_SCRUB_OFF:
1243			acpi_desc->scrub_mode = HW_ERROR_SCRUB_OFF;
1244			break;
1245		default:
1246			rc = -EINVAL;
1247			break;
1248		}
1249	}
1250	device_unlock(dev);
1251	if (rc)
1252		return rc;
1253	return size;
1254}
1255static DEVICE_ATTR_RW(hw_error_scrub);
1256
1257/*
1258 * This shows the number of full Address Range Scrubs that have been
1259 * completed since driver load time. Userspace can wait on this using
1260 * select/poll etc. A '+' at the end indicates an ARS is in progress
1261 */
1262static ssize_t scrub_show(struct device *dev,
1263		struct device_attribute *attr, char *buf)
1264{
1265	struct nvdimm_bus_descriptor *nd_desc;
1266	struct acpi_nfit_desc *acpi_desc;
1267	ssize_t rc = -ENXIO;
1268	bool busy;
1269
1270	device_lock(dev);
1271	nd_desc = dev_get_drvdata(dev);
1272	if (!nd_desc) {
1273		device_unlock(dev);
1274		return rc;
1275	}
1276	acpi_desc = to_acpi_desc(nd_desc);
1277
1278	mutex_lock(&acpi_desc->init_mutex);
1279	busy = test_bit(ARS_BUSY, &acpi_desc->scrub_flags)
1280		&& !test_bit(ARS_CANCEL, &acpi_desc->scrub_flags);
1281	rc = sprintf(buf, "%d%s", acpi_desc->scrub_count, busy ? "+\n" : "\n");
1282	/* Allow an admin to poll the busy state at a higher rate */
1283	if (busy && capable(CAP_SYS_RAWIO) && !test_and_set_bit(ARS_POLL,
1284				&acpi_desc->scrub_flags)) {
1285		acpi_desc->scrub_tmo = 1;
1286		mod_delayed_work(nfit_wq, &acpi_desc->dwork, HZ);
1287	}
1288
1289	mutex_unlock(&acpi_desc->init_mutex);
1290	device_unlock(dev);
1291	return rc;
1292}
1293
1294static ssize_t scrub_store(struct device *dev,
1295		struct device_attribute *attr, const char *buf, size_t size)
1296{
1297	struct nvdimm_bus_descriptor *nd_desc;
1298	ssize_t rc;
1299	long val;
1300
1301	rc = kstrtol(buf, 0, &val);
1302	if (rc)
1303		return rc;
1304	if (val != 1)
1305		return -EINVAL;
1306
1307	device_lock(dev);
1308	nd_desc = dev_get_drvdata(dev);
1309	if (nd_desc) {
1310		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1311
1312		rc = acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG);
1313	}
1314	device_unlock(dev);
1315	if (rc)
1316		return rc;
1317	return size;
1318}
1319static DEVICE_ATTR_RW(scrub);
1320
1321static bool ars_supported(struct nvdimm_bus *nvdimm_bus)
1322{
1323	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1324	const unsigned long mask = 1 << ND_CMD_ARS_CAP | 1 << ND_CMD_ARS_START
1325		| 1 << ND_CMD_ARS_STATUS;
1326
1327	return (nd_desc->cmd_mask & mask) == mask;
1328}
1329
1330static umode_t nfit_visible(struct kobject *kobj, struct attribute *a, int n)
1331{
1332	struct device *dev = kobj_to_dev(kobj);
1333	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1334
1335	if (a == &dev_attr_scrub.attr)
1336		return ars_supported(nvdimm_bus) ? a->mode : 0;
1337
1338	if (a == &dev_attr_firmware_activate_noidle.attr)
1339		return intel_fwa_supported(nvdimm_bus) ? a->mode : 0;
1340
1341	return a->mode;
1342}
1343
1344static struct attribute *acpi_nfit_attributes[] = {
1345	&dev_attr_revision.attr,
1346	&dev_attr_scrub.attr,
1347	&dev_attr_hw_error_scrub.attr,
1348	&dev_attr_bus_dsm_mask.attr,
1349	&dev_attr_firmware_activate_noidle.attr,
1350	NULL,
1351};
1352
1353static const struct attribute_group acpi_nfit_attribute_group = {
1354	.name = "nfit",
1355	.attrs = acpi_nfit_attributes,
1356	.is_visible = nfit_visible,
1357};
1358
1359static const struct attribute_group *acpi_nfit_attribute_groups[] = {
1360	&acpi_nfit_attribute_group,
1361	NULL,
1362};
1363
1364static struct acpi_nfit_memory_map *to_nfit_memdev(struct device *dev)
1365{
1366	struct nvdimm *nvdimm = to_nvdimm(dev);
1367	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1368
1369	return __to_nfit_memdev(nfit_mem);
1370}
1371
1372static struct acpi_nfit_control_region *to_nfit_dcr(struct device *dev)
1373{
1374	struct nvdimm *nvdimm = to_nvdimm(dev);
1375	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1376
1377	return nfit_mem->dcr;
1378}
1379
1380static ssize_t handle_show(struct device *dev,
1381		struct device_attribute *attr, char *buf)
1382{
1383	struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1384
1385	return sprintf(buf, "%#x\n", memdev->device_handle);
1386}
1387static DEVICE_ATTR_RO(handle);
1388
1389static ssize_t phys_id_show(struct device *dev,
1390		struct device_attribute *attr, char *buf)
1391{
1392	struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1393
1394	return sprintf(buf, "%#x\n", memdev->physical_id);
1395}
1396static DEVICE_ATTR_RO(phys_id);
1397
1398static ssize_t vendor_show(struct device *dev,
1399		struct device_attribute *attr, char *buf)
1400{
1401	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1402
1403	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->vendor_id));
1404}
1405static DEVICE_ATTR_RO(vendor);
1406
1407static ssize_t rev_id_show(struct device *dev,
1408		struct device_attribute *attr, char *buf)
1409{
1410	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1411
1412	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->revision_id));
1413}
1414static DEVICE_ATTR_RO(rev_id);
1415
1416static ssize_t device_show(struct device *dev,
1417		struct device_attribute *attr, char *buf)
1418{
1419	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1420
1421	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->device_id));
1422}
1423static DEVICE_ATTR_RO(device);
1424
1425static ssize_t subsystem_vendor_show(struct device *dev,
1426		struct device_attribute *attr, char *buf)
1427{
1428	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1429
1430	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_vendor_id));
1431}
1432static DEVICE_ATTR_RO(subsystem_vendor);
1433
1434static ssize_t subsystem_rev_id_show(struct device *dev,
1435		struct device_attribute *attr, char *buf)
1436{
1437	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1438
1439	return sprintf(buf, "0x%04x\n",
1440			be16_to_cpu(dcr->subsystem_revision_id));
1441}
1442static DEVICE_ATTR_RO(subsystem_rev_id);
1443
1444static ssize_t subsystem_device_show(struct device *dev,
1445		struct device_attribute *attr, char *buf)
1446{
1447	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1448
1449	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_device_id));
1450}
1451static DEVICE_ATTR_RO(subsystem_device);
1452
1453static int num_nvdimm_formats(struct nvdimm *nvdimm)
1454{
1455	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1456	int formats = 0;
1457
1458	if (nfit_mem->memdev_pmem)
1459		formats++;
1460	return formats;
1461}
1462
1463static ssize_t format_show(struct device *dev,
1464		struct device_attribute *attr, char *buf)
1465{
1466	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1467
1468	return sprintf(buf, "0x%04x\n", le16_to_cpu(dcr->code));
1469}
1470static DEVICE_ATTR_RO(format);
1471
1472static ssize_t format1_show(struct device *dev,
1473		struct device_attribute *attr, char *buf)
1474{
1475	u32 handle;
1476	ssize_t rc = -ENXIO;
1477	struct nfit_mem *nfit_mem;
1478	struct nfit_memdev *nfit_memdev;
1479	struct acpi_nfit_desc *acpi_desc;
1480	struct nvdimm *nvdimm = to_nvdimm(dev);
1481	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1482
1483	nfit_mem = nvdimm_provider_data(nvdimm);
1484	acpi_desc = nfit_mem->acpi_desc;
1485	handle = to_nfit_memdev(dev)->device_handle;
1486
1487	/* assumes DIMMs have at most 2 published interface codes */
1488	mutex_lock(&acpi_desc->init_mutex);
1489	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1490		struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
1491		struct nfit_dcr *nfit_dcr;
1492
1493		if (memdev->device_handle != handle)
1494			continue;
1495
1496		list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1497			if (nfit_dcr->dcr->region_index != memdev->region_index)
1498				continue;
1499			if (nfit_dcr->dcr->code == dcr->code)
1500				continue;
1501			rc = sprintf(buf, "0x%04x\n",
1502					le16_to_cpu(nfit_dcr->dcr->code));
1503			break;
1504		}
1505		if (rc != -ENXIO)
1506			break;
1507	}
1508	mutex_unlock(&acpi_desc->init_mutex);
1509	return rc;
1510}
1511static DEVICE_ATTR_RO(format1);
1512
1513static ssize_t formats_show(struct device *dev,
1514		struct device_attribute *attr, char *buf)
1515{
1516	struct nvdimm *nvdimm = to_nvdimm(dev);
1517
1518	return sprintf(buf, "%d\n", num_nvdimm_formats(nvdimm));
1519}
1520static DEVICE_ATTR_RO(formats);
1521
1522static ssize_t serial_show(struct device *dev,
1523		struct device_attribute *attr, char *buf)
1524{
1525	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1526
1527	return sprintf(buf, "0x%08x\n", be32_to_cpu(dcr->serial_number));
1528}
1529static DEVICE_ATTR_RO(serial);
1530
1531static ssize_t family_show(struct device *dev,
1532		struct device_attribute *attr, char *buf)
1533{
1534	struct nvdimm *nvdimm = to_nvdimm(dev);
1535	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1536
1537	if (nfit_mem->family < 0)
1538		return -ENXIO;
1539	return sprintf(buf, "%d\n", nfit_mem->family);
1540}
1541static DEVICE_ATTR_RO(family);
1542
1543static ssize_t dsm_mask_show(struct device *dev,
1544		struct device_attribute *attr, char *buf)
1545{
1546	struct nvdimm *nvdimm = to_nvdimm(dev);
1547	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1548
1549	if (nfit_mem->family < 0)
1550		return -ENXIO;
1551	return sprintf(buf, "%#lx\n", nfit_mem->dsm_mask);
1552}
1553static DEVICE_ATTR_RO(dsm_mask);
1554
1555static ssize_t flags_show(struct device *dev,
1556		struct device_attribute *attr, char *buf)
1557{
1558	struct nvdimm *nvdimm = to_nvdimm(dev);
1559	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1560	u16 flags = __to_nfit_memdev(nfit_mem)->flags;
1561
1562	if (test_bit(NFIT_MEM_DIRTY, &nfit_mem->flags))
1563		flags |= ACPI_NFIT_MEM_FLUSH_FAILED;
1564
1565	return sprintf(buf, "%s%s%s%s%s%s%s\n",
1566		flags & ACPI_NFIT_MEM_SAVE_FAILED ? "save_fail " : "",
1567		flags & ACPI_NFIT_MEM_RESTORE_FAILED ? "restore_fail " : "",
1568		flags & ACPI_NFIT_MEM_FLUSH_FAILED ? "flush_fail " : "",
1569		flags & ACPI_NFIT_MEM_NOT_ARMED ? "not_armed " : "",
1570		flags & ACPI_NFIT_MEM_HEALTH_OBSERVED ? "smart_event " : "",
1571		flags & ACPI_NFIT_MEM_MAP_FAILED ? "map_fail " : "",
1572		flags & ACPI_NFIT_MEM_HEALTH_ENABLED ? "smart_notify " : "");
1573}
1574static DEVICE_ATTR_RO(flags);
1575
1576static ssize_t id_show(struct device *dev,
1577		struct device_attribute *attr, char *buf)
1578{
1579	struct nvdimm *nvdimm = to_nvdimm(dev);
1580	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1581
1582	return sprintf(buf, "%s\n", nfit_mem->id);
1583}
1584static DEVICE_ATTR_RO(id);
1585
1586static ssize_t dirty_shutdown_show(struct device *dev,
1587		struct device_attribute *attr, char *buf)
1588{
1589	struct nvdimm *nvdimm = to_nvdimm(dev);
1590	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1591
1592	return sprintf(buf, "%d\n", nfit_mem->dirty_shutdown);
1593}
1594static DEVICE_ATTR_RO(dirty_shutdown);
1595
1596static struct attribute *acpi_nfit_dimm_attributes[] = {
1597	&dev_attr_handle.attr,
1598	&dev_attr_phys_id.attr,
1599	&dev_attr_vendor.attr,
1600	&dev_attr_device.attr,
1601	&dev_attr_rev_id.attr,
1602	&dev_attr_subsystem_vendor.attr,
1603	&dev_attr_subsystem_device.attr,
1604	&dev_attr_subsystem_rev_id.attr,
1605	&dev_attr_format.attr,
1606	&dev_attr_formats.attr,
1607	&dev_attr_format1.attr,
1608	&dev_attr_serial.attr,
1609	&dev_attr_flags.attr,
1610	&dev_attr_id.attr,
1611	&dev_attr_family.attr,
1612	&dev_attr_dsm_mask.attr,
1613	&dev_attr_dirty_shutdown.attr,
1614	NULL,
1615};
1616
1617static umode_t acpi_nfit_dimm_attr_visible(struct kobject *kobj,
1618		struct attribute *a, int n)
1619{
1620	struct device *dev = kobj_to_dev(kobj);
1621	struct nvdimm *nvdimm = to_nvdimm(dev);
1622	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1623
1624	if (!to_nfit_dcr(dev)) {
1625		/* Without a dcr only the memdev attributes can be surfaced */
1626		if (a == &dev_attr_handle.attr || a == &dev_attr_phys_id.attr
1627				|| a == &dev_attr_flags.attr
1628				|| a == &dev_attr_family.attr
1629				|| a == &dev_attr_dsm_mask.attr)
1630			return a->mode;
1631		return 0;
1632	}
1633
1634	if (a == &dev_attr_format1.attr && num_nvdimm_formats(nvdimm) <= 1)
1635		return 0;
1636
1637	if (!test_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags)
1638			&& a == &dev_attr_dirty_shutdown.attr)
1639		return 0;
1640
1641	return a->mode;
1642}
1643
1644static const struct attribute_group acpi_nfit_dimm_attribute_group = {
1645	.name = "nfit",
1646	.attrs = acpi_nfit_dimm_attributes,
1647	.is_visible = acpi_nfit_dimm_attr_visible,
1648};
1649
1650static const struct attribute_group *acpi_nfit_dimm_attribute_groups[] = {
1651	&acpi_nfit_dimm_attribute_group,
1652	NULL,
1653};
1654
1655static struct nvdimm *acpi_nfit_dimm_by_handle(struct acpi_nfit_desc *acpi_desc,
1656		u32 device_handle)
1657{
1658	struct nfit_mem *nfit_mem;
1659
1660	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1661		if (__to_nfit_memdev(nfit_mem)->device_handle == device_handle)
1662			return nfit_mem->nvdimm;
1663
1664	return NULL;
1665}
1666
1667void __acpi_nvdimm_notify(struct device *dev, u32 event)
1668{
1669	struct nfit_mem *nfit_mem;
1670	struct acpi_nfit_desc *acpi_desc;
1671
1672	dev_dbg(dev->parent, "%s: event: %d\n", dev_name(dev),
1673			event);
1674
1675	if (event != NFIT_NOTIFY_DIMM_HEALTH) {
1676		dev_dbg(dev->parent, "%s: unknown event: %d\n", dev_name(dev),
1677				event);
1678		return;
1679	}
1680
1681	acpi_desc = dev_get_drvdata(dev->parent);
1682	if (!acpi_desc)
1683		return;
1684
1685	/*
1686	 * If we successfully retrieved acpi_desc, then we know nfit_mem data
1687	 * is still valid.
1688	 */
1689	nfit_mem = dev_get_drvdata(dev);
1690	if (nfit_mem && nfit_mem->flags_attr)
1691		sysfs_notify_dirent(nfit_mem->flags_attr);
1692}
1693EXPORT_SYMBOL_GPL(__acpi_nvdimm_notify);
1694
1695static void acpi_nvdimm_notify(acpi_handle handle, u32 event, void *data)
1696{
1697	struct acpi_device *adev = data;
1698	struct device *dev = &adev->dev;
1699
1700	device_lock(dev->parent);
1701	__acpi_nvdimm_notify(dev, event);
1702	device_unlock(dev->parent);
1703}
1704
1705static bool acpi_nvdimm_has_method(struct acpi_device *adev, char *method)
1706{
1707	acpi_handle handle;
1708	acpi_status status;
1709
1710	status = acpi_get_handle(adev->handle, method, &handle);
1711
1712	if (ACPI_SUCCESS(status))
1713		return true;
1714	return false;
1715}
1716
1717__weak void nfit_intel_shutdown_status(struct nfit_mem *nfit_mem)
1718{
1719	struct device *dev = &nfit_mem->adev->dev;
1720	struct nd_intel_smart smart = { 0 };
1721	union acpi_object in_buf = {
1722		.buffer.type = ACPI_TYPE_BUFFER,
1723		.buffer.length = 0,
1724	};
1725	union acpi_object in_obj = {
1726		.package.type = ACPI_TYPE_PACKAGE,
1727		.package.count = 1,
1728		.package.elements = &in_buf,
1729	};
1730	const u8 func = ND_INTEL_SMART;
1731	const guid_t *guid = to_nfit_uuid(nfit_mem->family);
1732	u8 revid = nfit_dsm_revid(nfit_mem->family, func);
1733	struct acpi_device *adev = nfit_mem->adev;
1734	acpi_handle handle = adev->handle;
1735	union acpi_object *out_obj;
1736
1737	if ((nfit_mem->dsm_mask & (1 << func)) == 0)
1738		return;
1739
1740	out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj);
1741	if (!out_obj || out_obj->type != ACPI_TYPE_BUFFER
1742			|| out_obj->buffer.length < sizeof(smart)) {
1743		dev_dbg(dev->parent, "%s: failed to retrieve initial health\n",
1744				dev_name(dev));
1745		ACPI_FREE(out_obj);
1746		return;
1747	}
1748	memcpy(&smart, out_obj->buffer.pointer, sizeof(smart));
1749	ACPI_FREE(out_obj);
1750
1751	if (smart.flags & ND_INTEL_SMART_SHUTDOWN_VALID) {
1752		if (smart.shutdown_state)
1753			set_bit(NFIT_MEM_DIRTY, &nfit_mem->flags);
1754	}
1755
1756	if (smart.flags & ND_INTEL_SMART_SHUTDOWN_COUNT_VALID) {
1757		set_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags);
1758		nfit_mem->dirty_shutdown = smart.shutdown_count;
1759	}
1760}
1761
1762static void populate_shutdown_status(struct nfit_mem *nfit_mem)
1763{
1764	/*
1765	 * For DIMMs that provide a dynamic facility to retrieve a
1766	 * dirty-shutdown status and/or a dirty-shutdown count, cache
1767	 * these values in nfit_mem.
1768	 */
1769	if (nfit_mem->family == NVDIMM_FAMILY_INTEL)
1770		nfit_intel_shutdown_status(nfit_mem);
1771}
1772
1773static int acpi_nfit_add_dimm(struct acpi_nfit_desc *acpi_desc,
1774		struct nfit_mem *nfit_mem, u32 device_handle)
1775{
1776	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
1777	struct acpi_device *adev, *adev_dimm;
1778	struct device *dev = acpi_desc->dev;
1779	unsigned long dsm_mask, label_mask;
1780	const guid_t *guid;
1781	int i;
1782	int family = -1;
1783	struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
1784
1785	/* nfit test assumes 1:1 relationship between commands and dsms */
1786	nfit_mem->dsm_mask = acpi_desc->dimm_cmd_force_en;
1787	nfit_mem->family = NVDIMM_FAMILY_INTEL;
1788	set_bit(NVDIMM_FAMILY_INTEL, &nd_desc->dimm_family_mask);
1789
1790	if (dcr->valid_fields & ACPI_NFIT_CONTROL_MFG_INFO_VALID)
1791		sprintf(nfit_mem->id, "%04x-%02x-%04x-%08x",
1792				be16_to_cpu(dcr->vendor_id),
1793				dcr->manufacturing_location,
1794				be16_to_cpu(dcr->manufacturing_date),
1795				be32_to_cpu(dcr->serial_number));
1796	else
1797		sprintf(nfit_mem->id, "%04x-%08x",
1798				be16_to_cpu(dcr->vendor_id),
1799				be32_to_cpu(dcr->serial_number));
1800
1801	adev = to_acpi_dev(acpi_desc);
1802	if (!adev) {
1803		/* unit test case */
1804		populate_shutdown_status(nfit_mem);
1805		return 0;
1806	}
1807
1808	adev_dimm = acpi_find_child_device(adev, device_handle, false);
1809	nfit_mem->adev = adev_dimm;
1810	if (!adev_dimm) {
1811		dev_err(dev, "no ACPI.NFIT device with _ADR %#x, disabling...\n",
1812				device_handle);
1813		return force_enable_dimms ? 0 : -ENODEV;
1814	}
1815
1816	if (ACPI_FAILURE(acpi_install_notify_handler(adev_dimm->handle,
1817		ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify, adev_dimm))) {
1818		dev_err(dev, "%s: notification registration failed\n",
1819				dev_name(&adev_dimm->dev));
1820		return -ENXIO;
1821	}
1822	/*
1823	 * Record nfit_mem for the notification path to track back to
1824	 * the nfit sysfs attributes for this dimm device object.
1825	 */
1826	dev_set_drvdata(&adev_dimm->dev, nfit_mem);
1827
1828	/*
1829	 * There are 4 "legacy" NVDIMM command sets
1830	 * (NVDIMM_FAMILY_{INTEL,MSFT,HPE1,HPE2}) that were created before
1831	 * an EFI working group was established to constrain this
1832	 * proliferation. The nfit driver probes for the supported command
1833	 * set by GUID. Note, if you're a platform developer looking to add
1834	 * a new command set to this probe, consider using an existing set,
1835	 * or otherwise seek approval to publish the command set at
1836	 * http://www.uefi.org/RFIC_LIST.
1837	 *
1838	 * Note, that checking for function0 (bit0) tells us if any commands
1839	 * are reachable through this GUID.
1840	 */
1841	clear_bit(NVDIMM_FAMILY_INTEL, &nd_desc->dimm_family_mask);
1842	for (i = 0; i <= NVDIMM_FAMILY_MAX; i++)
1843		if (acpi_check_dsm(adev_dimm->handle, to_nfit_uuid(i), 1, 1)) {
1844			set_bit(i, &nd_desc->dimm_family_mask);
1845			if (family < 0 || i == default_dsm_family)
1846				family = i;
1847		}
1848
1849	/* limit the supported commands to those that are publicly documented */
1850	nfit_mem->family = family;
1851	if (override_dsm_mask && !disable_vendor_specific)
1852		dsm_mask = override_dsm_mask;
1853	else if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
1854		dsm_mask = NVDIMM_INTEL_CMDMASK;
1855		if (disable_vendor_specific)
1856			dsm_mask &= ~(1 << ND_CMD_VENDOR);
1857	} else if (nfit_mem->family == NVDIMM_FAMILY_HPE1) {
1858		dsm_mask = 0x1c3c76;
1859	} else if (nfit_mem->family == NVDIMM_FAMILY_HPE2) {
1860		dsm_mask = 0x1fe;
1861		if (disable_vendor_specific)
1862			dsm_mask &= ~(1 << 8);
1863	} else if (nfit_mem->family == NVDIMM_FAMILY_MSFT) {
1864		dsm_mask = 0xffffffff;
1865	} else if (nfit_mem->family == NVDIMM_FAMILY_HYPERV) {
1866		dsm_mask = 0x1f;
1867	} else {
1868		dev_dbg(dev, "unknown dimm command family\n");
1869		nfit_mem->family = -1;
1870		/* DSMs are optional, continue loading the driver... */
1871		return 0;
1872	}
1873
1874	/*
1875	 * Function 0 is the command interrogation function, don't
1876	 * export it to potential userspace use, and enable it to be
1877	 * used as an error value in acpi_nfit_ctl().
1878	 */
1879	dsm_mask &= ~1UL;
1880
1881	guid = to_nfit_uuid(nfit_mem->family);
1882	for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
1883		if (acpi_check_dsm(adev_dimm->handle, guid,
1884					nfit_dsm_revid(nfit_mem->family, i),
1885					1ULL << i))
1886			set_bit(i, &nfit_mem->dsm_mask);
1887
1888	/*
1889	 * Prefer the NVDIMM_FAMILY_INTEL label read commands if present
1890	 * due to their better semantics handling locked capacity.
1891	 */
1892	label_mask = 1 << ND_CMD_GET_CONFIG_SIZE | 1 << ND_CMD_GET_CONFIG_DATA
1893		| 1 << ND_CMD_SET_CONFIG_DATA;
1894	if (family == NVDIMM_FAMILY_INTEL
1895			&& (dsm_mask & label_mask) == label_mask)
1896		/* skip _LS{I,R,W} enabling */;
1897	else {
1898		if (acpi_nvdimm_has_method(adev_dimm, "_LSI")
1899				&& acpi_nvdimm_has_method(adev_dimm, "_LSR")) {
1900			dev_dbg(dev, "%s: has _LSR\n", dev_name(&adev_dimm->dev));
1901			set_bit(NFIT_MEM_LSR, &nfit_mem->flags);
1902		}
1903
1904		if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)
1905				&& acpi_nvdimm_has_method(adev_dimm, "_LSW")) {
1906			dev_dbg(dev, "%s: has _LSW\n", dev_name(&adev_dimm->dev));
1907			set_bit(NFIT_MEM_LSW, &nfit_mem->flags);
1908		}
1909
1910		/*
1911		 * Quirk read-only label configurations to preserve
1912		 * access to label-less namespaces by default.
1913		 */
1914		if (!test_bit(NFIT_MEM_LSW, &nfit_mem->flags)
1915				&& !force_labels) {
1916			dev_dbg(dev, "%s: No _LSW, disable labels\n",
1917					dev_name(&adev_dimm->dev));
1918			clear_bit(NFIT_MEM_LSR, &nfit_mem->flags);
1919		} else
1920			dev_dbg(dev, "%s: Force enable labels\n",
1921					dev_name(&adev_dimm->dev));
1922	}
1923
1924	populate_shutdown_status(nfit_mem);
1925
1926	return 0;
1927}
1928
1929static void shutdown_dimm_notify(void *data)
1930{
1931	struct acpi_nfit_desc *acpi_desc = data;
1932	struct nfit_mem *nfit_mem;
1933
1934	mutex_lock(&acpi_desc->init_mutex);
1935	/*
1936	 * Clear out the nfit_mem->flags_attr and shut down dimm event
1937	 * notifications.
1938	 */
1939	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1940		struct acpi_device *adev_dimm = nfit_mem->adev;
1941
1942		if (nfit_mem->flags_attr) {
1943			sysfs_put(nfit_mem->flags_attr);
1944			nfit_mem->flags_attr = NULL;
1945		}
1946		if (adev_dimm) {
1947			acpi_remove_notify_handler(adev_dimm->handle,
1948					ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify);
1949			dev_set_drvdata(&adev_dimm->dev, NULL);
1950		}
1951	}
1952	mutex_unlock(&acpi_desc->init_mutex);
1953}
1954
1955static const struct nvdimm_security_ops *acpi_nfit_get_security_ops(int family)
1956{
1957	switch (family) {
1958	case NVDIMM_FAMILY_INTEL:
1959		return intel_security_ops;
1960	default:
1961		return NULL;
1962	}
1963}
1964
1965static const struct nvdimm_fw_ops *acpi_nfit_get_fw_ops(
1966		struct nfit_mem *nfit_mem)
1967{
1968	unsigned long mask;
1969	struct acpi_nfit_desc *acpi_desc = nfit_mem->acpi_desc;
1970	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
1971
1972	if (!nd_desc->fw_ops)
1973		return NULL;
1974
1975	if (nfit_mem->family != NVDIMM_FAMILY_INTEL)
1976		return NULL;
1977
1978	mask = nfit_mem->dsm_mask & NVDIMM_INTEL_FW_ACTIVATE_CMDMASK;
1979	if (mask != NVDIMM_INTEL_FW_ACTIVATE_CMDMASK)
1980		return NULL;
1981
1982	return intel_fw_ops;
1983}
1984
1985static int acpi_nfit_register_dimms(struct acpi_nfit_desc *acpi_desc)
1986{
1987	struct nfit_mem *nfit_mem;
1988	int dimm_count = 0, rc;
1989	struct nvdimm *nvdimm;
1990
1991	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1992		struct acpi_nfit_flush_address *flush;
1993		unsigned long flags = 0, cmd_mask;
1994		struct nfit_memdev *nfit_memdev;
1995		u32 device_handle;
1996		u16 mem_flags;
1997
1998		device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
1999		nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, device_handle);
2000		if (nvdimm) {
2001			dimm_count++;
2002			continue;
2003		}
2004
2005		/* collate flags across all memdevs for this dimm */
2006		list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
2007			struct acpi_nfit_memory_map *dimm_memdev;
2008
2009			dimm_memdev = __to_nfit_memdev(nfit_mem);
2010			if (dimm_memdev->device_handle
2011					!= nfit_memdev->memdev->device_handle)
2012				continue;
2013			dimm_memdev->flags |= nfit_memdev->memdev->flags;
2014		}
2015
2016		mem_flags = __to_nfit_memdev(nfit_mem)->flags;
2017		if (mem_flags & ACPI_NFIT_MEM_NOT_ARMED)
2018			set_bit(NDD_UNARMED, &flags);
2019
2020		rc = acpi_nfit_add_dimm(acpi_desc, nfit_mem, device_handle);
2021		if (rc)
2022			continue;
2023
2024		/*
2025		 * TODO: provide translation for non-NVDIMM_FAMILY_INTEL
2026		 * devices (i.e. from nd_cmd to acpi_dsm) to standardize the
2027		 * userspace interface.
2028		 */
2029		cmd_mask = 1UL << ND_CMD_CALL;
2030		if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
2031			/*
2032			 * These commands have a 1:1 correspondence
2033			 * between DSM payload and libnvdimm ioctl
2034			 * payload format.
2035			 */
2036			cmd_mask |= nfit_mem->dsm_mask & NVDIMM_STANDARD_CMDMASK;
2037		}
2038
2039		if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) {
2040			set_bit(ND_CMD_GET_CONFIG_SIZE, &cmd_mask);
2041			set_bit(ND_CMD_GET_CONFIG_DATA, &cmd_mask);
2042		}
2043		if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags))
2044			set_bit(ND_CMD_SET_CONFIG_DATA, &cmd_mask);
2045
2046		flush = nfit_mem->nfit_flush ? nfit_mem->nfit_flush->flush
2047			: NULL;
2048		nvdimm = __nvdimm_create(acpi_desc->nvdimm_bus, nfit_mem,
2049				acpi_nfit_dimm_attribute_groups,
2050				flags, cmd_mask, flush ? flush->hint_count : 0,
2051				nfit_mem->flush_wpq, &nfit_mem->id[0],
2052				acpi_nfit_get_security_ops(nfit_mem->family),
2053				acpi_nfit_get_fw_ops(nfit_mem));
2054		if (!nvdimm)
2055			return -ENOMEM;
2056
2057		nfit_mem->nvdimm = nvdimm;
2058		dimm_count++;
2059
2060		if ((mem_flags & ACPI_NFIT_MEM_FAILED_MASK) == 0)
2061			continue;
2062
2063		dev_err(acpi_desc->dev, "Error found in NVDIMM %s flags:%s%s%s%s%s\n",
2064				nvdimm_name(nvdimm),
2065		  mem_flags & ACPI_NFIT_MEM_SAVE_FAILED ? " save_fail" : "",
2066		  mem_flags & ACPI_NFIT_MEM_RESTORE_FAILED ? " restore_fail":"",
2067		  mem_flags & ACPI_NFIT_MEM_FLUSH_FAILED ? " flush_fail" : "",
2068		  mem_flags & ACPI_NFIT_MEM_NOT_ARMED ? " not_armed" : "",
2069		  mem_flags & ACPI_NFIT_MEM_MAP_FAILED ? " map_fail" : "");
2070
2071	}
2072
2073	rc = nvdimm_bus_check_dimm_count(acpi_desc->nvdimm_bus, dimm_count);
2074	if (rc)
2075		return rc;
2076
2077	/*
2078	 * Now that dimms are successfully registered, and async registration
2079	 * is flushed, attempt to enable event notification.
2080	 */
2081	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
2082		struct kernfs_node *nfit_kernfs;
2083
2084		nvdimm = nfit_mem->nvdimm;
2085		if (!nvdimm)
2086			continue;
2087
2088		nfit_kernfs = sysfs_get_dirent(nvdimm_kobj(nvdimm)->sd, "nfit");
2089		if (nfit_kernfs)
2090			nfit_mem->flags_attr = sysfs_get_dirent(nfit_kernfs,
2091					"flags");
2092		sysfs_put(nfit_kernfs);
2093		if (!nfit_mem->flags_attr)
2094			dev_warn(acpi_desc->dev, "%s: notifications disabled\n",
2095					nvdimm_name(nvdimm));
2096	}
2097
2098	return devm_add_action_or_reset(acpi_desc->dev, shutdown_dimm_notify,
2099			acpi_desc);
2100}
2101
2102/*
2103 * These constants are private because there are no kernel consumers of
2104 * these commands.
2105 */
2106enum nfit_aux_cmds {
2107	NFIT_CMD_TRANSLATE_SPA = 5,
2108	NFIT_CMD_ARS_INJECT_SET = 7,
2109	NFIT_CMD_ARS_INJECT_CLEAR = 8,
2110	NFIT_CMD_ARS_INJECT_GET = 9,
2111};
2112
2113static void acpi_nfit_init_dsms(struct acpi_nfit_desc *acpi_desc)
2114{
2115	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2116	const guid_t *guid = to_nfit_uuid(NFIT_DEV_BUS);
2117	unsigned long dsm_mask, *mask;
2118	struct acpi_device *adev;
2119	int i;
2120
2121	set_bit(ND_CMD_CALL, &nd_desc->cmd_mask);
2122	set_bit(NVDIMM_BUS_FAMILY_NFIT, &nd_desc->bus_family_mask);
2123
2124	/* enable nfit_test to inject bus command emulation */
2125	if (acpi_desc->bus_cmd_force_en) {
2126		nd_desc->cmd_mask = acpi_desc->bus_cmd_force_en;
2127		mask = &nd_desc->bus_family_mask;
2128		if (acpi_desc->family_dsm_mask[NVDIMM_BUS_FAMILY_INTEL]) {
2129			set_bit(NVDIMM_BUS_FAMILY_INTEL, mask);
2130			nd_desc->fw_ops = intel_bus_fw_ops;
2131		}
2132	}
2133
2134	adev = to_acpi_dev(acpi_desc);
2135	if (!adev)
2136		return;
2137
2138	for (i = ND_CMD_ARS_CAP; i <= ND_CMD_CLEAR_ERROR; i++)
2139		if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
2140			set_bit(i, &nd_desc->cmd_mask);
2141
2142	dsm_mask =
2143		(1 << ND_CMD_ARS_CAP) |
2144		(1 << ND_CMD_ARS_START) |
2145		(1 << ND_CMD_ARS_STATUS) |
2146		(1 << ND_CMD_CLEAR_ERROR) |
2147		(1 << NFIT_CMD_TRANSLATE_SPA) |
2148		(1 << NFIT_CMD_ARS_INJECT_SET) |
2149		(1 << NFIT_CMD_ARS_INJECT_CLEAR) |
2150		(1 << NFIT_CMD_ARS_INJECT_GET);
2151	for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
2152		if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
2153			set_bit(i, &acpi_desc->bus_dsm_mask);
2154
2155	/* Enumerate allowed NVDIMM_BUS_FAMILY_INTEL commands */
2156	dsm_mask = NVDIMM_BUS_INTEL_FW_ACTIVATE_CMDMASK;
2157	guid = to_nfit_bus_uuid(NVDIMM_BUS_FAMILY_INTEL);
2158	mask = &acpi_desc->family_dsm_mask[NVDIMM_BUS_FAMILY_INTEL];
2159	for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
2160		if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
2161			set_bit(i, mask);
2162
2163	if (*mask == dsm_mask) {
2164		set_bit(NVDIMM_BUS_FAMILY_INTEL, &nd_desc->bus_family_mask);
2165		nd_desc->fw_ops = intel_bus_fw_ops;
2166	}
2167}
2168
2169static ssize_t range_index_show(struct device *dev,
2170		struct device_attribute *attr, char *buf)
2171{
2172	struct nd_region *nd_region = to_nd_region(dev);
2173	struct nfit_spa *nfit_spa = nd_region_provider_data(nd_region);
2174
2175	return sprintf(buf, "%d\n", nfit_spa->spa->range_index);
2176}
2177static DEVICE_ATTR_RO(range_index);
2178
2179static struct attribute *acpi_nfit_region_attributes[] = {
2180	&dev_attr_range_index.attr,
2181	NULL,
2182};
2183
2184static const struct attribute_group acpi_nfit_region_attribute_group = {
2185	.name = "nfit",
2186	.attrs = acpi_nfit_region_attributes,
2187};
2188
2189static const struct attribute_group *acpi_nfit_region_attribute_groups[] = {
2190	&acpi_nfit_region_attribute_group,
2191	NULL,
2192};
2193
2194/* enough info to uniquely specify an interleave set */
2195struct nfit_set_info {
2196	u64 region_offset;
2197	u32 serial_number;
2198	u32 pad;
2199};
2200
2201struct nfit_set_info2 {
2202	u64 region_offset;
2203	u32 serial_number;
2204	u16 vendor_id;
2205	u16 manufacturing_date;
2206	u8 manufacturing_location;
2207	u8 reserved[31];
2208};
2209
2210static int cmp_map_compat(const void *m0, const void *m1)
2211{
2212	const struct nfit_set_info *map0 = m0;
2213	const struct nfit_set_info *map1 = m1;
2214
2215	return memcmp(&map0->region_offset, &map1->region_offset,
2216			sizeof(u64));
2217}
2218
2219static int cmp_map(const void *m0, const void *m1)
2220{
2221	const struct nfit_set_info *map0 = m0;
2222	const struct nfit_set_info *map1 = m1;
2223
2224	if (map0->region_offset < map1->region_offset)
2225		return -1;
2226	else if (map0->region_offset > map1->region_offset)
2227		return 1;
2228	return 0;
2229}
2230
2231static int cmp_map2(const void *m0, const void *m1)
2232{
2233	const struct nfit_set_info2 *map0 = m0;
2234	const struct nfit_set_info2 *map1 = m1;
2235
2236	if (map0->region_offset < map1->region_offset)
2237		return -1;
2238	else if (map0->region_offset > map1->region_offset)
2239		return 1;
2240	return 0;
2241}
2242
2243/* Retrieve the nth entry referencing this spa */
2244static struct acpi_nfit_memory_map *memdev_from_spa(
2245		struct acpi_nfit_desc *acpi_desc, u16 range_index, int n)
2246{
2247	struct nfit_memdev *nfit_memdev;
2248
2249	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list)
2250		if (nfit_memdev->memdev->range_index == range_index)
2251			if (n-- == 0)
2252				return nfit_memdev->memdev;
2253	return NULL;
2254}
2255
2256static int acpi_nfit_init_interleave_set(struct acpi_nfit_desc *acpi_desc,
2257		struct nd_region_desc *ndr_desc,
2258		struct acpi_nfit_system_address *spa)
2259{
2260	struct device *dev = acpi_desc->dev;
2261	struct nd_interleave_set *nd_set;
2262	u16 nr = ndr_desc->num_mappings;
2263	struct nfit_set_info2 *info2;
2264	struct nfit_set_info *info;
2265	int i;
2266
2267	nd_set = devm_kzalloc(dev, sizeof(*nd_set), GFP_KERNEL);
2268	if (!nd_set)
2269		return -ENOMEM;
2270	import_guid(&nd_set->type_guid, spa->range_guid);
2271
2272	info = devm_kcalloc(dev, nr, sizeof(*info), GFP_KERNEL);
2273	if (!info)
2274		return -ENOMEM;
2275
2276	info2 = devm_kcalloc(dev, nr, sizeof(*info2), GFP_KERNEL);
2277	if (!info2)
2278		return -ENOMEM;
2279
2280	for (i = 0; i < nr; i++) {
2281		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
2282		struct nvdimm *nvdimm = mapping->nvdimm;
2283		struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
2284		struct nfit_set_info *map = &info[i];
2285		struct nfit_set_info2 *map2 = &info2[i];
2286		struct acpi_nfit_memory_map *memdev =
2287			memdev_from_spa(acpi_desc, spa->range_index, i);
2288		struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
2289
2290		if (!memdev || !nfit_mem->dcr) {
2291			dev_err(dev, "%s: failed to find DCR\n", __func__);
2292			return -ENODEV;
2293		}
2294
2295		map->region_offset = memdev->region_offset;
2296		map->serial_number = dcr->serial_number;
2297
2298		map2->region_offset = memdev->region_offset;
2299		map2->serial_number = dcr->serial_number;
2300		map2->vendor_id = dcr->vendor_id;
2301		map2->manufacturing_date = dcr->manufacturing_date;
2302		map2->manufacturing_location = dcr->manufacturing_location;
2303	}
2304
2305	/* v1.1 namespaces */
2306	sort(info, nr, sizeof(*info), cmp_map, NULL);
2307	nd_set->cookie1 = nd_fletcher64(info, sizeof(*info) * nr, 0);
2308
2309	/* v1.2 namespaces */
2310	sort(info2, nr, sizeof(*info2), cmp_map2, NULL);
2311	nd_set->cookie2 = nd_fletcher64(info2, sizeof(*info2) * nr, 0);
2312
2313	/* support v1.1 namespaces created with the wrong sort order */
2314	sort(info, nr, sizeof(*info), cmp_map_compat, NULL);
2315	nd_set->altcookie = nd_fletcher64(info, sizeof(*info) * nr, 0);
2316
2317	/* record the result of the sort for the mapping position */
2318	for (i = 0; i < nr; i++) {
2319		struct nfit_set_info2 *map2 = &info2[i];
2320		int j;
2321
2322		for (j = 0; j < nr; j++) {
2323			struct nd_mapping_desc *mapping = &ndr_desc->mapping[j];
2324			struct nvdimm *nvdimm = mapping->nvdimm;
2325			struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
2326			struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
2327
2328			if (map2->serial_number == dcr->serial_number &&
2329			    map2->vendor_id == dcr->vendor_id &&
2330			    map2->manufacturing_date == dcr->manufacturing_date &&
2331			    map2->manufacturing_location
2332				    == dcr->manufacturing_location) {
2333				mapping->position = i;
2334				break;
2335			}
2336		}
2337	}
2338
2339	ndr_desc->nd_set = nd_set;
2340	devm_kfree(dev, info);
2341	devm_kfree(dev, info2);
2342
2343	return 0;
2344}
2345
2346static int ars_get_cap(struct acpi_nfit_desc *acpi_desc,
2347		struct nd_cmd_ars_cap *cmd, struct nfit_spa *nfit_spa)
2348{
2349	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2350	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2351	int cmd_rc, rc;
2352
2353	cmd->address = spa->address;
2354	cmd->length = spa->length;
2355	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_CAP, cmd,
2356			sizeof(*cmd), &cmd_rc);
2357	if (rc < 0)
2358		return rc;
2359	return cmd_rc;
2360}
2361
2362static int ars_start(struct acpi_nfit_desc *acpi_desc,
2363		struct nfit_spa *nfit_spa, enum nfit_ars_state req_type)
2364{
2365	int rc;
2366	int cmd_rc;
2367	struct nd_cmd_ars_start ars_start;
2368	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2369	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2370
2371	memset(&ars_start, 0, sizeof(ars_start));
2372	ars_start.address = spa->address;
2373	ars_start.length = spa->length;
2374	if (req_type == ARS_REQ_SHORT)
2375		ars_start.flags = ND_ARS_RETURN_PREV_DATA;
2376	if (nfit_spa_type(spa) == NFIT_SPA_PM)
2377		ars_start.type = ND_ARS_PERSISTENT;
2378	else if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE)
2379		ars_start.type = ND_ARS_VOLATILE;
2380	else
2381		return -ENOTTY;
2382
2383	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2384			sizeof(ars_start), &cmd_rc);
2385
2386	if (rc < 0)
2387		return rc;
2388	if (cmd_rc < 0)
2389		return cmd_rc;
2390	set_bit(ARS_VALID, &acpi_desc->scrub_flags);
2391	return 0;
2392}
2393
2394static int ars_continue(struct acpi_nfit_desc *acpi_desc)
2395{
2396	int rc, cmd_rc;
2397	struct nd_cmd_ars_start ars_start;
2398	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2399	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2400
2401	ars_start = (struct nd_cmd_ars_start) {
2402		.address = ars_status->restart_address,
2403		.length = ars_status->restart_length,
2404		.type = ars_status->type,
2405	};
2406	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2407			sizeof(ars_start), &cmd_rc);
2408	if (rc < 0)
2409		return rc;
2410	return cmd_rc;
2411}
2412
2413static int ars_get_status(struct acpi_nfit_desc *acpi_desc)
2414{
2415	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2416	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2417	int rc, cmd_rc;
2418
2419	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_STATUS, ars_status,
2420			acpi_desc->max_ars, &cmd_rc);
2421	if (rc < 0)
2422		return rc;
2423	return cmd_rc;
2424}
2425
2426static void ars_complete(struct acpi_nfit_desc *acpi_desc,
2427		struct nfit_spa *nfit_spa)
2428{
2429	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2430	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2431	struct nd_region *nd_region = nfit_spa->nd_region;
2432	struct device *dev;
2433
2434	lockdep_assert_held(&acpi_desc->init_mutex);
2435	/*
2436	 * Only advance the ARS state for ARS runs initiated by the
2437	 * kernel, ignore ARS results from BIOS initiated runs for scrub
2438	 * completion tracking.
2439	 */
2440	if (acpi_desc->scrub_spa != nfit_spa)
2441		return;
2442
2443	if ((ars_status->address >= spa->address && ars_status->address
2444				< spa->address + spa->length)
2445			|| (ars_status->address < spa->address)) {
2446		/*
2447		 * Assume that if a scrub starts at an offset from the
2448		 * start of nfit_spa that we are in the continuation
2449		 * case.
2450		 *
2451		 * Otherwise, if the scrub covers the spa range, mark
2452		 * any pending request complete.
2453		 */
2454		if (ars_status->address + ars_status->length
2455				>= spa->address + spa->length)
2456				/* complete */;
2457		else
2458			return;
2459	} else
2460		return;
2461
2462	acpi_desc->scrub_spa = NULL;
2463	if (nd_region) {
2464		dev = nd_region_dev(nd_region);
2465		nvdimm_region_notify(nd_region, NVDIMM_REVALIDATE_POISON);
2466	} else
2467		dev = acpi_desc->dev;
2468	dev_dbg(dev, "ARS: range %d complete\n", spa->range_index);
2469}
2470
2471static int ars_status_process_records(struct acpi_nfit_desc *acpi_desc)
2472{
2473	struct nvdimm_bus *nvdimm_bus = acpi_desc->nvdimm_bus;
2474	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2475	int rc;
2476	u32 i;
2477
2478	/*
2479	 * First record starts at 44 byte offset from the start of the
2480	 * payload.
2481	 */
2482	if (ars_status->out_length < 44)
2483		return 0;
2484
2485	/*
2486	 * Ignore potentially stale results that are only refreshed
2487	 * after a start-ARS event.
2488	 */
2489	if (!test_and_clear_bit(ARS_VALID, &acpi_desc->scrub_flags)) {
2490		dev_dbg(acpi_desc->dev, "skip %d stale records\n",
2491				ars_status->num_records);
2492		return 0;
2493	}
2494
2495	for (i = 0; i < ars_status->num_records; i++) {
2496		/* only process full records */
2497		if (ars_status->out_length
2498				< 44 + sizeof(struct nd_ars_record) * (i + 1))
2499			break;
2500		rc = nvdimm_bus_add_badrange(nvdimm_bus,
2501				ars_status->records[i].err_address,
2502				ars_status->records[i].length);
2503		if (rc)
2504			return rc;
2505	}
2506	if (i < ars_status->num_records)
2507		dev_warn(acpi_desc->dev, "detected truncated ars results\n");
2508
2509	return 0;
2510}
2511
2512static void acpi_nfit_remove_resource(void *data)
2513{
2514	struct resource *res = data;
2515
2516	remove_resource(res);
2517}
2518
2519static int acpi_nfit_insert_resource(struct acpi_nfit_desc *acpi_desc,
2520		struct nd_region_desc *ndr_desc)
2521{
2522	struct resource *res, *nd_res = ndr_desc->res;
2523	int is_pmem, ret;
2524
2525	/* No operation if the region is already registered as PMEM */
2526	is_pmem = region_intersects(nd_res->start, resource_size(nd_res),
2527				IORESOURCE_MEM, IORES_DESC_PERSISTENT_MEMORY);
2528	if (is_pmem == REGION_INTERSECTS)
2529		return 0;
2530
2531	res = devm_kzalloc(acpi_desc->dev, sizeof(*res), GFP_KERNEL);
2532	if (!res)
2533		return -ENOMEM;
2534
2535	res->name = "Persistent Memory";
2536	res->start = nd_res->start;
2537	res->end = nd_res->end;
2538	res->flags = IORESOURCE_MEM;
2539	res->desc = IORES_DESC_PERSISTENT_MEMORY;
2540
2541	ret = insert_resource(&iomem_resource, res);
2542	if (ret)
2543		return ret;
2544
2545	ret = devm_add_action_or_reset(acpi_desc->dev,
2546					acpi_nfit_remove_resource,
2547					res);
2548	if (ret)
2549		return ret;
2550
2551	return 0;
2552}
2553
2554static int acpi_nfit_init_mapping(struct acpi_nfit_desc *acpi_desc,
2555		struct nd_mapping_desc *mapping, struct nd_region_desc *ndr_desc,
2556		struct acpi_nfit_memory_map *memdev,
2557		struct nfit_spa *nfit_spa)
2558{
2559	struct nvdimm *nvdimm = acpi_nfit_dimm_by_handle(acpi_desc,
2560			memdev->device_handle);
2561	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2562
2563	if (!nvdimm) {
2564		dev_err(acpi_desc->dev, "spa%d dimm: %#x not found\n",
2565				spa->range_index, memdev->device_handle);
2566		return -ENODEV;
2567	}
2568
2569	mapping->nvdimm = nvdimm;
2570	switch (nfit_spa_type(spa)) {
2571	case NFIT_SPA_PM:
2572	case NFIT_SPA_VOLATILE:
2573		mapping->start = memdev->address;
2574		mapping->size = memdev->region_size;
2575		break;
2576	}
2577
2578	return 0;
2579}
2580
2581static bool nfit_spa_is_virtual(struct acpi_nfit_system_address *spa)
2582{
2583	return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2584		nfit_spa_type(spa) == NFIT_SPA_VCD   ||
2585		nfit_spa_type(spa) == NFIT_SPA_PDISK ||
2586		nfit_spa_type(spa) == NFIT_SPA_PCD);
2587}
2588
2589static bool nfit_spa_is_volatile(struct acpi_nfit_system_address *spa)
2590{
2591	return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2592		nfit_spa_type(spa) == NFIT_SPA_VCD   ||
2593		nfit_spa_type(spa) == NFIT_SPA_VOLATILE);
2594}
2595
2596static int acpi_nfit_register_region(struct acpi_nfit_desc *acpi_desc,
2597		struct nfit_spa *nfit_spa)
2598{
2599	static struct nd_mapping_desc mappings[ND_MAX_MAPPINGS];
2600	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2601	struct nd_region_desc *ndr_desc, _ndr_desc;
2602	struct nfit_memdev *nfit_memdev;
2603	struct nvdimm_bus *nvdimm_bus;
2604	struct resource res;
2605	int count = 0, rc;
2606
2607	if (nfit_spa->nd_region)
2608		return 0;
2609
2610	if (spa->range_index == 0 && !nfit_spa_is_virtual(spa)) {
2611		dev_dbg(acpi_desc->dev, "detected invalid spa index\n");
2612		return 0;
2613	}
2614
2615	memset(&res, 0, sizeof(res));
2616	memset(&mappings, 0, sizeof(mappings));
2617	memset(&_ndr_desc, 0, sizeof(_ndr_desc));
2618	res.start = spa->address;
2619	res.end = res.start + spa->length - 1;
2620	ndr_desc = &_ndr_desc;
2621	ndr_desc->res = &res;
2622	ndr_desc->provider_data = nfit_spa;
2623	ndr_desc->attr_groups = acpi_nfit_region_attribute_groups;
2624	if (spa->flags & ACPI_NFIT_PROXIMITY_VALID) {
2625		ndr_desc->numa_node = pxm_to_online_node(spa->proximity_domain);
2626		ndr_desc->target_node = pxm_to_node(spa->proximity_domain);
2627	} else {
2628		ndr_desc->numa_node = NUMA_NO_NODE;
2629		ndr_desc->target_node = NUMA_NO_NODE;
2630	}
2631
2632	/* Fallback to address based numa information if node lookup failed */
2633	if (ndr_desc->numa_node == NUMA_NO_NODE) {
2634		ndr_desc->numa_node = memory_add_physaddr_to_nid(spa->address);
2635		dev_info(acpi_desc->dev, "changing numa node from %d to %d for nfit region [%pa-%pa]",
2636			NUMA_NO_NODE, ndr_desc->numa_node, &res.start, &res.end);
2637	}
2638	if (ndr_desc->target_node == NUMA_NO_NODE) {
2639		ndr_desc->target_node = phys_to_target_node(spa->address);
2640		dev_info(acpi_desc->dev, "changing target node from %d to %d for nfit region [%pa-%pa]",
2641			NUMA_NO_NODE, ndr_desc->numa_node, &res.start, &res.end);
2642	}
2643
2644	/*
2645	 * Persistence domain bits are hierarchical, if
2646	 * ACPI_NFIT_CAPABILITY_CACHE_FLUSH is set then
2647	 * ACPI_NFIT_CAPABILITY_MEM_FLUSH is implied.
2648	 */
2649	if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_CACHE_FLUSH)
2650		set_bit(ND_REGION_PERSIST_CACHE, &ndr_desc->flags);
2651	else if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_MEM_FLUSH)
2652		set_bit(ND_REGION_PERSIST_MEMCTRL, &ndr_desc->flags);
2653
2654	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
2655		struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
2656		struct nd_mapping_desc *mapping;
2657
2658		/* range index 0 == unmapped in SPA or invalid-SPA */
2659		if (memdev->range_index == 0 || spa->range_index == 0)
2660			continue;
2661		if (memdev->range_index != spa->range_index)
2662			continue;
2663		if (count >= ND_MAX_MAPPINGS) {
2664			dev_err(acpi_desc->dev, "spa%d exceeds max mappings %d\n",
2665					spa->range_index, ND_MAX_MAPPINGS);
2666			return -ENXIO;
2667		}
2668		mapping = &mappings[count++];
2669		rc = acpi_nfit_init_mapping(acpi_desc, mapping, ndr_desc,
2670				memdev, nfit_spa);
2671		if (rc)
2672			goto out;
2673	}
2674
2675	ndr_desc->mapping = mappings;
2676	ndr_desc->num_mappings = count;
2677	rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa);
2678	if (rc)
2679		goto out;
2680
2681	nvdimm_bus = acpi_desc->nvdimm_bus;
2682	if (nfit_spa_type(spa) == NFIT_SPA_PM) {
2683		rc = acpi_nfit_insert_resource(acpi_desc, ndr_desc);
2684		if (rc) {
2685			dev_warn(acpi_desc->dev,
2686				"failed to insert pmem resource to iomem: %d\n",
2687				rc);
2688			goto out;
2689		}
2690
2691		nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
2692				ndr_desc);
2693		if (!nfit_spa->nd_region)
2694			rc = -ENOMEM;
2695	} else if (nfit_spa_is_volatile(spa)) {
2696		nfit_spa->nd_region = nvdimm_volatile_region_create(nvdimm_bus,
2697				ndr_desc);
2698		if (!nfit_spa->nd_region)
2699			rc = -ENOMEM;
2700	} else if (nfit_spa_is_virtual(spa)) {
2701		nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
2702				ndr_desc);
2703		if (!nfit_spa->nd_region)
2704			rc = -ENOMEM;
2705	}
2706
2707 out:
2708	if (rc)
2709		dev_err(acpi_desc->dev, "failed to register spa range %d\n",
2710				nfit_spa->spa->range_index);
2711	return rc;
2712}
2713
2714static int ars_status_alloc(struct acpi_nfit_desc *acpi_desc)
2715{
2716	struct device *dev = acpi_desc->dev;
2717	struct nd_cmd_ars_status *ars_status;
2718
2719	if (acpi_desc->ars_status) {
2720		memset(acpi_desc->ars_status, 0, acpi_desc->max_ars);
2721		return 0;
2722	}
2723
2724	ars_status = devm_kzalloc(dev, acpi_desc->max_ars, GFP_KERNEL);
2725	if (!ars_status)
2726		return -ENOMEM;
2727	acpi_desc->ars_status = ars_status;
2728	return 0;
2729}
2730
2731static int acpi_nfit_query_poison(struct acpi_nfit_desc *acpi_desc)
2732{
2733	int rc;
2734
2735	if (ars_status_alloc(acpi_desc))
2736		return -ENOMEM;
2737
2738	rc = ars_get_status(acpi_desc);
2739
2740	if (rc < 0 && rc != -ENOSPC)
2741		return rc;
2742
2743	if (ars_status_process_records(acpi_desc))
2744		dev_err(acpi_desc->dev, "Failed to process ARS records\n");
2745
2746	return rc;
2747}
2748
2749static int ars_register(struct acpi_nfit_desc *acpi_desc,
2750		struct nfit_spa *nfit_spa)
2751{
2752	int rc;
2753
2754	if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
2755		return acpi_nfit_register_region(acpi_desc, nfit_spa);
2756
2757	set_bit(ARS_REQ_SHORT, &nfit_spa->ars_state);
2758	if (!no_init_ars)
2759		set_bit(ARS_REQ_LONG, &nfit_spa->ars_state);
2760
2761	switch (acpi_nfit_query_poison(acpi_desc)) {
2762	case 0:
2763	case -ENOSPC:
2764	case -EAGAIN:
2765		rc = ars_start(acpi_desc, nfit_spa, ARS_REQ_SHORT);
2766		/* shouldn't happen, try again later */
2767		if (rc == -EBUSY)
2768			break;
2769		if (rc) {
2770			set_bit(ARS_FAILED, &nfit_spa->ars_state);
2771			break;
2772		}
2773		clear_bit(ARS_REQ_SHORT, &nfit_spa->ars_state);
2774		rc = acpi_nfit_query_poison(acpi_desc);
2775		if (rc)
2776			break;
2777		acpi_desc->scrub_spa = nfit_spa;
2778		ars_complete(acpi_desc, nfit_spa);
2779		/*
2780		 * If ars_complete() says we didn't complete the
2781		 * short scrub, we'll try again with a long
2782		 * request.
2783		 */
2784		acpi_desc->scrub_spa = NULL;
2785		break;
2786	case -EBUSY:
2787	case -ENOMEM:
2788		/*
2789		 * BIOS was using ARS, wait for it to complete (or
2790		 * resources to become available) and then perform our
2791		 * own scrubs.
2792		 */
2793		break;
2794	default:
2795		set_bit(ARS_FAILED, &nfit_spa->ars_state);
2796		break;
2797	}
2798
2799	return acpi_nfit_register_region(acpi_desc, nfit_spa);
2800}
2801
2802static void ars_complete_all(struct acpi_nfit_desc *acpi_desc)
2803{
2804	struct nfit_spa *nfit_spa;
2805
2806	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2807		if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
2808			continue;
2809		ars_complete(acpi_desc, nfit_spa);
2810	}
2811}
2812
2813static unsigned int __acpi_nfit_scrub(struct acpi_nfit_desc *acpi_desc,
2814		int query_rc)
2815{
2816	unsigned int tmo = acpi_desc->scrub_tmo;
2817	struct device *dev = acpi_desc->dev;
2818	struct nfit_spa *nfit_spa;
2819
2820	lockdep_assert_held(&acpi_desc->init_mutex);
2821
2822	if (test_bit(ARS_CANCEL, &acpi_desc->scrub_flags))
2823		return 0;
2824
2825	if (query_rc == -EBUSY) {
2826		dev_dbg(dev, "ARS: ARS busy\n");
2827		return min(30U * 60U, tmo * 2);
2828	}
2829	if (query_rc == -ENOSPC) {
2830		dev_dbg(dev, "ARS: ARS continue\n");
2831		ars_continue(acpi_desc);
2832		return 1;
2833	}
2834	if (query_rc && query_rc != -EAGAIN) {
2835		unsigned long long addr, end;
2836
2837		addr = acpi_desc->ars_status->address;
2838		end = addr + acpi_desc->ars_status->length;
2839		dev_dbg(dev, "ARS: %llx-%llx failed (%d)\n", addr, end,
2840				query_rc);
2841	}
2842
2843	ars_complete_all(acpi_desc);
2844	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2845		enum nfit_ars_state req_type;
2846		int rc;
2847
2848		if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
2849			continue;
2850
2851		/* prefer short ARS requests first */
2852		if (test_bit(ARS_REQ_SHORT, &nfit_spa->ars_state))
2853			req_type = ARS_REQ_SHORT;
2854		else if (test_bit(ARS_REQ_LONG, &nfit_spa->ars_state))
2855			req_type = ARS_REQ_LONG;
2856		else
2857			continue;
2858		rc = ars_start(acpi_desc, nfit_spa, req_type);
2859
2860		dev = nd_region_dev(nfit_spa->nd_region);
2861		dev_dbg(dev, "ARS: range %d ARS start %s (%d)\n",
2862				nfit_spa->spa->range_index,
2863				req_type == ARS_REQ_SHORT ? "short" : "long",
2864				rc);
2865		/*
2866		 * Hmm, we raced someone else starting ARS? Try again in
2867		 * a bit.
2868		 */
2869		if (rc == -EBUSY)
2870			return 1;
2871		if (rc == 0) {
2872			dev_WARN_ONCE(dev, acpi_desc->scrub_spa,
2873					"scrub start while range %d active\n",
2874					acpi_desc->scrub_spa->spa->range_index);
2875			clear_bit(req_type, &nfit_spa->ars_state);
2876			acpi_desc->scrub_spa = nfit_spa;
2877			/*
2878			 * Consider this spa last for future scrub
2879			 * requests
2880			 */
2881			list_move_tail(&nfit_spa->list, &acpi_desc->spas);
2882			return 1;
2883		}
2884
2885		dev_err(dev, "ARS: range %d ARS failed (%d)\n",
2886				nfit_spa->spa->range_index, rc);
2887		set_bit(ARS_FAILED, &nfit_spa->ars_state);
2888	}
2889	return 0;
2890}
2891
2892static void __sched_ars(struct acpi_nfit_desc *acpi_desc, unsigned int tmo)
2893{
2894	lockdep_assert_held(&acpi_desc->init_mutex);
2895
2896	set_bit(ARS_BUSY, &acpi_desc->scrub_flags);
2897	/* note this should only be set from within the workqueue */
2898	if (tmo)
2899		acpi_desc->scrub_tmo = tmo;
2900	queue_delayed_work(nfit_wq, &acpi_desc->dwork, tmo * HZ);
2901}
2902
2903static void sched_ars(struct acpi_nfit_desc *acpi_desc)
2904{
2905	__sched_ars(acpi_desc, 0);
2906}
2907
2908static void notify_ars_done(struct acpi_nfit_desc *acpi_desc)
2909{
2910	lockdep_assert_held(&acpi_desc->init_mutex);
2911
2912	clear_bit(ARS_BUSY, &acpi_desc->scrub_flags);
2913	acpi_desc->scrub_count++;
2914	if (acpi_desc->scrub_count_state)
2915		sysfs_notify_dirent(acpi_desc->scrub_count_state);
2916}
2917
2918static void acpi_nfit_scrub(struct work_struct *work)
2919{
2920	struct acpi_nfit_desc *acpi_desc;
2921	unsigned int tmo;
2922	int query_rc;
2923
2924	acpi_desc = container_of(work, typeof(*acpi_desc), dwork.work);
2925	mutex_lock(&acpi_desc->init_mutex);
2926	query_rc = acpi_nfit_query_poison(acpi_desc);
2927	tmo = __acpi_nfit_scrub(acpi_desc, query_rc);
2928	if (tmo)
2929		__sched_ars(acpi_desc, tmo);
2930	else
2931		notify_ars_done(acpi_desc);
2932	memset(acpi_desc->ars_status, 0, acpi_desc->max_ars);
2933	clear_bit(ARS_POLL, &acpi_desc->scrub_flags);
2934	mutex_unlock(&acpi_desc->init_mutex);
2935}
2936
2937static void acpi_nfit_init_ars(struct acpi_nfit_desc *acpi_desc,
2938		struct nfit_spa *nfit_spa)
2939{
2940	int type = nfit_spa_type(nfit_spa->spa);
2941	struct nd_cmd_ars_cap ars_cap;
2942	int rc;
2943
2944	set_bit(ARS_FAILED, &nfit_spa->ars_state);
2945	memset(&ars_cap, 0, sizeof(ars_cap));
2946	rc = ars_get_cap(acpi_desc, &ars_cap, nfit_spa);
2947	if (rc < 0)
2948		return;
2949	/* check that the supported scrub types match the spa type */
2950	if (type == NFIT_SPA_VOLATILE && ((ars_cap.status >> 16)
2951				& ND_ARS_VOLATILE) == 0)
2952		return;
2953	if (type == NFIT_SPA_PM && ((ars_cap.status >> 16)
2954				& ND_ARS_PERSISTENT) == 0)
2955		return;
2956
2957	nfit_spa->max_ars = ars_cap.max_ars_out;
2958	nfit_spa->clear_err_unit = ars_cap.clear_err_unit;
2959	acpi_desc->max_ars = max(nfit_spa->max_ars, acpi_desc->max_ars);
2960	clear_bit(ARS_FAILED, &nfit_spa->ars_state);
2961}
2962
2963static int acpi_nfit_register_regions(struct acpi_nfit_desc *acpi_desc)
2964{
2965	struct nfit_spa *nfit_spa;
2966	int rc, do_sched_ars = 0;
2967
2968	set_bit(ARS_VALID, &acpi_desc->scrub_flags);
2969	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2970		switch (nfit_spa_type(nfit_spa->spa)) {
2971		case NFIT_SPA_VOLATILE:
2972		case NFIT_SPA_PM:
2973			acpi_nfit_init_ars(acpi_desc, nfit_spa);
2974			break;
2975		}
2976	}
2977
2978	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2979		switch (nfit_spa_type(nfit_spa->spa)) {
2980		case NFIT_SPA_VOLATILE:
2981		case NFIT_SPA_PM:
2982			/* register regions and kick off initial ARS run */
2983			rc = ars_register(acpi_desc, nfit_spa);
2984			if (rc)
2985				return rc;
2986
2987			/*
2988			 * Kick off background ARS if at least one
2989			 * region successfully registered ARS
2990			 */
2991			if (!test_bit(ARS_FAILED, &nfit_spa->ars_state))
2992				do_sched_ars++;
2993			break;
2994		case NFIT_SPA_BDW:
2995			/* nothing to register */
2996			break;
2997		case NFIT_SPA_DCR:
2998		case NFIT_SPA_VDISK:
2999		case NFIT_SPA_VCD:
3000		case NFIT_SPA_PDISK:
3001		case NFIT_SPA_PCD:
3002			/* register known regions that don't support ARS */
3003			rc = acpi_nfit_register_region(acpi_desc, nfit_spa);
3004			if (rc)
3005				return rc;
3006			break;
3007		default:
3008			/* don't register unknown regions */
3009			break;
3010		}
3011	}
3012
3013	if (do_sched_ars)
3014		sched_ars(acpi_desc);
3015	return 0;
3016}
3017
3018static int acpi_nfit_check_deletions(struct acpi_nfit_desc *acpi_desc,
3019		struct nfit_table_prev *prev)
3020{
3021	struct device *dev = acpi_desc->dev;
3022
3023	if (!list_empty(&prev->spas) ||
3024			!list_empty(&prev->memdevs) ||
3025			!list_empty(&prev->dcrs) ||
3026			!list_empty(&prev->bdws) ||
3027			!list_empty(&prev->idts) ||
3028			!list_empty(&prev->flushes)) {
3029		dev_err(dev, "new nfit deletes entries (unsupported)\n");
3030		return -ENXIO;
3031	}
3032	return 0;
3033}
3034
3035static int acpi_nfit_desc_init_scrub_attr(struct acpi_nfit_desc *acpi_desc)
3036{
3037	struct device *dev = acpi_desc->dev;
3038	struct kernfs_node *nfit;
3039	struct device *bus_dev;
3040
3041	if (!ars_supported(acpi_desc->nvdimm_bus))
3042		return 0;
3043
3044	bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
3045	nfit = sysfs_get_dirent(bus_dev->kobj.sd, "nfit");
3046	if (!nfit) {
3047		dev_err(dev, "sysfs_get_dirent 'nfit' failed\n");
3048		return -ENODEV;
3049	}
3050	acpi_desc->scrub_count_state = sysfs_get_dirent(nfit, "scrub");
3051	sysfs_put(nfit);
3052	if (!acpi_desc->scrub_count_state) {
3053		dev_err(dev, "sysfs_get_dirent 'scrub' failed\n");
3054		return -ENODEV;
3055	}
3056
3057	return 0;
3058}
3059
3060static void acpi_nfit_unregister(void *data)
3061{
3062	struct acpi_nfit_desc *acpi_desc = data;
3063
3064	nvdimm_bus_unregister(acpi_desc->nvdimm_bus);
3065}
3066
3067int acpi_nfit_init(struct acpi_nfit_desc *acpi_desc, void *data, acpi_size sz)
3068{
3069	struct device *dev = acpi_desc->dev;
3070	struct nfit_table_prev prev;
3071	const void *end;
3072	int rc;
3073
3074	if (!acpi_desc->nvdimm_bus) {
3075		acpi_nfit_init_dsms(acpi_desc);
3076
3077		acpi_desc->nvdimm_bus = nvdimm_bus_register(dev,
3078				&acpi_desc->nd_desc);
3079		if (!acpi_desc->nvdimm_bus)
3080			return -ENOMEM;
3081
3082		rc = devm_add_action_or_reset(dev, acpi_nfit_unregister,
3083				acpi_desc);
3084		if (rc)
3085			return rc;
3086
3087		rc = acpi_nfit_desc_init_scrub_attr(acpi_desc);
3088		if (rc)
3089			return rc;
3090
3091		/* register this acpi_desc for mce notifications */
3092		mutex_lock(&acpi_desc_lock);
3093		list_add_tail(&acpi_desc->list, &acpi_descs);
3094		mutex_unlock(&acpi_desc_lock);
3095	}
3096
3097	mutex_lock(&acpi_desc->init_mutex);
3098
3099	INIT_LIST_HEAD(&prev.spas);
3100	INIT_LIST_HEAD(&prev.memdevs);
3101	INIT_LIST_HEAD(&prev.dcrs);
3102	INIT_LIST_HEAD(&prev.bdws);
3103	INIT_LIST_HEAD(&prev.idts);
3104	INIT_LIST_HEAD(&prev.flushes);
3105
3106	list_cut_position(&prev.spas, &acpi_desc->spas,
3107				acpi_desc->spas.prev);
3108	list_cut_position(&prev.memdevs, &acpi_desc->memdevs,
3109				acpi_desc->memdevs.prev);
3110	list_cut_position(&prev.dcrs, &acpi_desc->dcrs,
3111				acpi_desc->dcrs.prev);
3112	list_cut_position(&prev.bdws, &acpi_desc->bdws,
3113				acpi_desc->bdws.prev);
3114	list_cut_position(&prev.idts, &acpi_desc->idts,
3115				acpi_desc->idts.prev);
3116	list_cut_position(&prev.flushes, &acpi_desc->flushes,
3117				acpi_desc->flushes.prev);
3118
3119	end = data + sz;
3120	while (!IS_ERR_OR_NULL(data))
3121		data = add_table(acpi_desc, &prev, data, end);
3122
3123	if (IS_ERR(data)) {
3124		dev_dbg(dev, "nfit table parsing error: %ld\n",	PTR_ERR(data));
3125		rc = PTR_ERR(data);
3126		goto out_unlock;
3127	}
3128
3129	rc = acpi_nfit_check_deletions(acpi_desc, &prev);
3130	if (rc)
3131		goto out_unlock;
3132
3133	rc = nfit_mem_init(acpi_desc);
3134	if (rc)
3135		goto out_unlock;
3136
3137	rc = acpi_nfit_register_dimms(acpi_desc);
3138	if (rc)
3139		goto out_unlock;
3140
3141	rc = acpi_nfit_register_regions(acpi_desc);
3142
3143 out_unlock:
3144	mutex_unlock(&acpi_desc->init_mutex);
3145	return rc;
3146}
3147EXPORT_SYMBOL_GPL(acpi_nfit_init);
3148
3149static int acpi_nfit_flush_probe(struct nvdimm_bus_descriptor *nd_desc)
3150{
3151	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
3152	struct device *dev = acpi_desc->dev;
3153
3154	/* Bounce the device lock to flush acpi_nfit_add / acpi_nfit_notify */
3155	device_lock(dev);
3156	device_unlock(dev);
3157
3158	/* Bounce the init_mutex to complete initial registration */
3159	mutex_lock(&acpi_desc->init_mutex);
3160	mutex_unlock(&acpi_desc->init_mutex);
3161
3162	return 0;
3163}
3164
3165static int __acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc,
3166		struct nvdimm *nvdimm, unsigned int cmd)
3167{
3168	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
3169
3170	if (nvdimm)
3171		return 0;
3172	if (cmd != ND_CMD_ARS_START)
3173		return 0;
3174
3175	/*
3176	 * The kernel and userspace may race to initiate a scrub, but
3177	 * the scrub thread is prepared to lose that initial race.  It
3178	 * just needs guarantees that any ARS it initiates are not
3179	 * interrupted by any intervening start requests from userspace.
3180	 */
3181	if (work_busy(&acpi_desc->dwork.work))
3182		return -EBUSY;
3183
3184	return 0;
3185}
3186
3187/*
3188 * Prevent security and firmware activate commands from being issued via
3189 * ioctl.
3190 */
3191static int acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc,
3192		struct nvdimm *nvdimm, unsigned int cmd, void *buf)
3193{
3194	struct nd_cmd_pkg *call_pkg = buf;
3195	unsigned int func;
3196
3197	if (nvdimm && cmd == ND_CMD_CALL &&
3198			call_pkg->nd_family == NVDIMM_FAMILY_INTEL) {
3199		func = call_pkg->nd_command;
3200		if (func > NVDIMM_CMD_MAX ||
3201		    (1 << func) & NVDIMM_INTEL_DENY_CMDMASK)
3202			return -EOPNOTSUPP;
3203	}
3204
3205	/* block all non-nfit bus commands */
3206	if (!nvdimm && cmd == ND_CMD_CALL &&
3207			call_pkg->nd_family != NVDIMM_BUS_FAMILY_NFIT)
3208		return -EOPNOTSUPP;
3209
3210	return __acpi_nfit_clear_to_send(nd_desc, nvdimm, cmd);
3211}
3212
3213int acpi_nfit_ars_rescan(struct acpi_nfit_desc *acpi_desc,
3214		enum nfit_ars_state req_type)
3215{
3216	struct device *dev = acpi_desc->dev;
3217	int scheduled = 0, busy = 0;
3218	struct nfit_spa *nfit_spa;
3219
3220	mutex_lock(&acpi_desc->init_mutex);
3221	if (test_bit(ARS_CANCEL, &acpi_desc->scrub_flags)) {
3222		mutex_unlock(&acpi_desc->init_mutex);
3223		return 0;
3224	}
3225
3226	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3227		int type = nfit_spa_type(nfit_spa->spa);
3228
3229		if (type != NFIT_SPA_PM && type != NFIT_SPA_VOLATILE)
3230			continue;
3231		if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
3232			continue;
3233
3234		if (test_and_set_bit(req_type, &nfit_spa->ars_state))
3235			busy++;
3236		else
3237			scheduled++;
3238	}
3239	if (scheduled) {
3240		sched_ars(acpi_desc);
3241		dev_dbg(dev, "ars_scan triggered\n");
3242	}
3243	mutex_unlock(&acpi_desc->init_mutex);
3244
3245	if (scheduled)
3246		return 0;
3247	if (busy)
3248		return -EBUSY;
3249	return -ENOTTY;
3250}
3251
3252void acpi_nfit_desc_init(struct acpi_nfit_desc *acpi_desc, struct device *dev)
3253{
3254	struct nvdimm_bus_descriptor *nd_desc;
3255
3256	dev_set_drvdata(dev, acpi_desc);
3257	acpi_desc->dev = dev;
3258	nd_desc = &acpi_desc->nd_desc;
3259	nd_desc->provider_name = "ACPI.NFIT";
3260	nd_desc->module = THIS_MODULE;
3261	nd_desc->ndctl = acpi_nfit_ctl;
3262	nd_desc->flush_probe = acpi_nfit_flush_probe;
3263	nd_desc->clear_to_send = acpi_nfit_clear_to_send;
3264	nd_desc->attr_groups = acpi_nfit_attribute_groups;
3265
3266	INIT_LIST_HEAD(&acpi_desc->spas);
3267	INIT_LIST_HEAD(&acpi_desc->dcrs);
3268	INIT_LIST_HEAD(&acpi_desc->bdws);
3269	INIT_LIST_HEAD(&acpi_desc->idts);
3270	INIT_LIST_HEAD(&acpi_desc->flushes);
3271	INIT_LIST_HEAD(&acpi_desc->memdevs);
3272	INIT_LIST_HEAD(&acpi_desc->dimms);
3273	INIT_LIST_HEAD(&acpi_desc->list);
3274	mutex_init(&acpi_desc->init_mutex);
3275	acpi_desc->scrub_tmo = 1;
3276	INIT_DELAYED_WORK(&acpi_desc->dwork, acpi_nfit_scrub);
3277}
3278EXPORT_SYMBOL_GPL(acpi_nfit_desc_init);
3279
3280static void acpi_nfit_put_table(void *table)
3281{
3282	acpi_put_table(table);
3283}
3284
3285static void acpi_nfit_notify(acpi_handle handle, u32 event, void *data)
3286{
3287	struct acpi_device *adev = data;
3288
3289	device_lock(&adev->dev);
3290	__acpi_nfit_notify(&adev->dev, handle, event);
3291	device_unlock(&adev->dev);
3292}
3293
3294static void acpi_nfit_remove_notify_handler(void *data)
3295{
3296	struct acpi_device *adev = data;
3297
3298	acpi_dev_remove_notify_handler(adev, ACPI_DEVICE_NOTIFY,
3299				       acpi_nfit_notify);
3300}
3301
3302void acpi_nfit_shutdown(void *data)
3303{
3304	struct acpi_nfit_desc *acpi_desc = data;
3305	struct device *bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
3306
3307	/*
3308	 * Destruct under acpi_desc_lock so that nfit_handle_mce does not
3309	 * race teardown
3310	 */
3311	mutex_lock(&acpi_desc_lock);
3312	list_del(&acpi_desc->list);
3313	mutex_unlock(&acpi_desc_lock);
3314
3315	mutex_lock(&acpi_desc->init_mutex);
3316	set_bit(ARS_CANCEL, &acpi_desc->scrub_flags);
3317	mutex_unlock(&acpi_desc->init_mutex);
3318	cancel_delayed_work_sync(&acpi_desc->dwork);
3319
3320	/*
3321	 * Bounce the nvdimm bus lock to make sure any in-flight
3322	 * acpi_nfit_ars_rescan() submissions have had a chance to
3323	 * either submit or see ->cancel set.
3324	 */
3325	device_lock(bus_dev);
3326	device_unlock(bus_dev);
3327
3328	flush_workqueue(nfit_wq);
3329}
3330EXPORT_SYMBOL_GPL(acpi_nfit_shutdown);
3331
3332static int acpi_nfit_add(struct acpi_device *adev)
3333{
3334	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
3335	struct acpi_nfit_desc *acpi_desc;
3336	struct device *dev = &adev->dev;
3337	struct acpi_table_header *tbl;
3338	acpi_status status = AE_OK;
3339	acpi_size sz;
3340	int rc = 0;
3341
3342	rc = acpi_dev_install_notify_handler(adev, ACPI_DEVICE_NOTIFY,
3343					     acpi_nfit_notify);
3344	if (rc)
3345		return rc;
3346
3347	rc = devm_add_action_or_reset(dev, acpi_nfit_remove_notify_handler,
3348					adev);
3349	if (rc)
3350		return rc;
3351
3352	status = acpi_get_table(ACPI_SIG_NFIT, 0, &tbl);
3353	if (ACPI_FAILURE(status)) {
3354		/* The NVDIMM root device allows OS to trigger enumeration of
3355		 * NVDIMMs through NFIT at boot time and re-enumeration at
3356		 * root level via the _FIT method during runtime.
3357		 * This is ok to return 0 here, we could have an nvdimm
3358		 * hotplugged later and evaluate _FIT method which returns
3359		 * data in the format of a series of NFIT Structures.
3360		 */
3361		dev_dbg(dev, "failed to find NFIT at startup\n");
3362		return 0;
3363	}
3364
3365	rc = devm_add_action_or_reset(dev, acpi_nfit_put_table, tbl);
3366	if (rc)
3367		return rc;
3368	sz = tbl->length;
3369
3370	acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
3371	if (!acpi_desc)
3372		return -ENOMEM;
3373	acpi_nfit_desc_init(acpi_desc, &adev->dev);
3374
3375	/* Save the acpi header for exporting the revision via sysfs */
3376	acpi_desc->acpi_header = *tbl;
3377
3378	/* Evaluate _FIT and override with that if present */
3379	status = acpi_evaluate_object(adev->handle, "_FIT", NULL, &buf);
3380	if (ACPI_SUCCESS(status) && buf.length > 0) {
3381		union acpi_object *obj = buf.pointer;
3382
3383		if (obj->type == ACPI_TYPE_BUFFER)
3384			rc = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
3385					obj->buffer.length);
3386		else
3387			dev_dbg(dev, "invalid type %d, ignoring _FIT\n",
3388				(int) obj->type);
3389		kfree(buf.pointer);
3390	} else
3391		/* skip over the lead-in header table */
3392		rc = acpi_nfit_init(acpi_desc, (void *) tbl
3393				+ sizeof(struct acpi_table_nfit),
3394				sz - sizeof(struct acpi_table_nfit));
3395
3396	if (rc)
3397		return rc;
3398
3399	return devm_add_action_or_reset(dev, acpi_nfit_shutdown, acpi_desc);
3400}
3401
3402static void acpi_nfit_update_notify(struct device *dev, acpi_handle handle)
3403{
3404	struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
3405	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
3406	union acpi_object *obj;
3407	acpi_status status;
3408	int ret;
3409
3410	if (!dev->driver) {
3411		/* dev->driver may be null if we're being removed */
3412		dev_dbg(dev, "no driver found for dev\n");
3413		return;
3414	}
3415
3416	if (!acpi_desc) {
3417		acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
3418		if (!acpi_desc)
3419			return;
3420		acpi_nfit_desc_init(acpi_desc, dev);
3421	} else {
3422		/*
3423		 * Finish previous registration before considering new
3424		 * regions.
3425		 */
3426		flush_workqueue(nfit_wq);
3427	}
3428
3429	/* Evaluate _FIT */
3430	status = acpi_evaluate_object(handle, "_FIT", NULL, &buf);
3431	if (ACPI_FAILURE(status)) {
3432		dev_err(dev, "failed to evaluate _FIT\n");
3433		return;
3434	}
3435
3436	obj = buf.pointer;
3437	if (obj->type == ACPI_TYPE_BUFFER) {
3438		ret = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
3439				obj->buffer.length);
3440		if (ret)
3441			dev_err(dev, "failed to merge updated NFIT\n");
3442	} else
3443		dev_err(dev, "Invalid _FIT\n");
3444	kfree(buf.pointer);
3445}
3446
3447static void acpi_nfit_uc_error_notify(struct device *dev, acpi_handle handle)
3448{
3449	struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
3450
3451	if (acpi_desc->scrub_mode == HW_ERROR_SCRUB_ON)
3452		acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG);
3453	else
3454		acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_SHORT);
3455}
3456
3457void __acpi_nfit_notify(struct device *dev, acpi_handle handle, u32 event)
3458{
3459	dev_dbg(dev, "event: 0x%x\n", event);
3460
3461	switch (event) {
3462	case NFIT_NOTIFY_UPDATE:
3463		return acpi_nfit_update_notify(dev, handle);
3464	case NFIT_NOTIFY_UC_MEMORY_ERROR:
3465		return acpi_nfit_uc_error_notify(dev, handle);
3466	default:
3467		return;
3468	}
3469}
3470EXPORT_SYMBOL_GPL(__acpi_nfit_notify);
3471
3472static const struct acpi_device_id acpi_nfit_ids[] = {
3473	{ "ACPI0012", 0 },
3474	{ "", 0 },
3475};
3476MODULE_DEVICE_TABLE(acpi, acpi_nfit_ids);
3477
3478static struct acpi_driver acpi_nfit_driver = {
3479	.name = KBUILD_MODNAME,
3480	.ids = acpi_nfit_ids,
3481	.ops = {
3482		.add = acpi_nfit_add,
3483	},
3484};
3485
3486static __init int nfit_init(void)
3487{
3488	int ret;
3489
3490	BUILD_BUG_ON(sizeof(struct acpi_table_nfit) != 40);
3491	BUILD_BUG_ON(sizeof(struct acpi_nfit_system_address) != 64);
3492	BUILD_BUG_ON(sizeof(struct acpi_nfit_memory_map) != 48);
3493	BUILD_BUG_ON(sizeof(struct acpi_nfit_interleave) != 16);
3494	BUILD_BUG_ON(sizeof(struct acpi_nfit_smbios) != 8);
3495	BUILD_BUG_ON(sizeof(struct acpi_nfit_control_region) != 80);
3496	BUILD_BUG_ON(sizeof(struct acpi_nfit_data_region) != 40);
3497	BUILD_BUG_ON(sizeof(struct acpi_nfit_capabilities) != 16);
3498
3499	guid_parse(UUID_VOLATILE_MEMORY, &nfit_uuid[NFIT_SPA_VOLATILE]);
3500	guid_parse(UUID_PERSISTENT_MEMORY, &nfit_uuid[NFIT_SPA_PM]);
3501	guid_parse(UUID_CONTROL_REGION, &nfit_uuid[NFIT_SPA_DCR]);
3502	guid_parse(UUID_DATA_REGION, &nfit_uuid[NFIT_SPA_BDW]);
3503	guid_parse(UUID_VOLATILE_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_VDISK]);
3504	guid_parse(UUID_VOLATILE_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_VCD]);
3505	guid_parse(UUID_PERSISTENT_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_PDISK]);
3506	guid_parse(UUID_PERSISTENT_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_PCD]);
3507	guid_parse(UUID_NFIT_BUS, &nfit_uuid[NFIT_DEV_BUS]);
3508	guid_parse(UUID_NFIT_DIMM, &nfit_uuid[NFIT_DEV_DIMM]);
3509	guid_parse(UUID_NFIT_DIMM_N_HPE1, &nfit_uuid[NFIT_DEV_DIMM_N_HPE1]);
3510	guid_parse(UUID_NFIT_DIMM_N_HPE2, &nfit_uuid[NFIT_DEV_DIMM_N_HPE2]);
3511	guid_parse(UUID_NFIT_DIMM_N_MSFT, &nfit_uuid[NFIT_DEV_DIMM_N_MSFT]);
3512	guid_parse(UUID_NFIT_DIMM_N_HYPERV, &nfit_uuid[NFIT_DEV_DIMM_N_HYPERV]);
3513	guid_parse(UUID_INTEL_BUS, &nfit_uuid[NFIT_BUS_INTEL]);
3514
3515	nfit_wq = create_singlethread_workqueue("nfit");
3516	if (!nfit_wq)
3517		return -ENOMEM;
3518
3519	nfit_mce_register();
3520	ret = acpi_bus_register_driver(&acpi_nfit_driver);
3521	if (ret) {
3522		nfit_mce_unregister();
3523		destroy_workqueue(nfit_wq);
3524	}
3525
3526	return ret;
3527
3528}
3529
3530static __exit void nfit_exit(void)
3531{
3532	nfit_mce_unregister();
3533	acpi_bus_unregister_driver(&acpi_nfit_driver);
3534	destroy_workqueue(nfit_wq);
3535	WARN_ON(!list_empty(&acpi_descs));
3536}
3537
3538module_init(nfit_init);
3539module_exit(nfit_exit);
3540MODULE_LICENSE("GPL v2");
3541MODULE_AUTHOR("Intel Corporation");
3542