xref: /kernel/linux/linux-6.6/drivers/acpi/acpi_pad.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * acpi_pad.c ACPI Processor Aggregator Driver
4 *
5 * Copyright (c) 2009, Intel Corporation.
6 */
7
8#include <linux/kernel.h>
9#include <linux/cpumask.h>
10#include <linux/module.h>
11#include <linux/init.h>
12#include <linux/types.h>
13#include <linux/kthread.h>
14#include <uapi/linux/sched/types.h>
15#include <linux/freezer.h>
16#include <linux/cpu.h>
17#include <linux/tick.h>
18#include <linux/slab.h>
19#include <linux/acpi.h>
20#include <linux/perf_event.h>
21#include <asm/mwait.h>
22#include <xen/xen.h>
23
24#define ACPI_PROCESSOR_AGGREGATOR_CLASS	"acpi_pad"
25#define ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME "Processor Aggregator"
26#define ACPI_PROCESSOR_AGGREGATOR_NOTIFY 0x80
27static DEFINE_MUTEX(isolated_cpus_lock);
28static DEFINE_MUTEX(round_robin_lock);
29
30static unsigned long power_saving_mwait_eax;
31
32static unsigned char tsc_detected_unstable;
33static unsigned char tsc_marked_unstable;
34
35static void power_saving_mwait_init(void)
36{
37	unsigned int eax, ebx, ecx, edx;
38	unsigned int highest_cstate = 0;
39	unsigned int highest_subcstate = 0;
40	int i;
41
42	if (!boot_cpu_has(X86_FEATURE_MWAIT))
43		return;
44	if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
45		return;
46
47	cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
48
49	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
50	    !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
51		return;
52
53	edx >>= MWAIT_SUBSTATE_SIZE;
54	for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
55		if (edx & MWAIT_SUBSTATE_MASK) {
56			highest_cstate = i;
57			highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
58		}
59	}
60	power_saving_mwait_eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
61		(highest_subcstate - 1);
62
63#if defined(CONFIG_X86)
64	switch (boot_cpu_data.x86_vendor) {
65	case X86_VENDOR_HYGON:
66	case X86_VENDOR_AMD:
67	case X86_VENDOR_INTEL:
68	case X86_VENDOR_ZHAOXIN:
69	case X86_VENDOR_CENTAUR:
70		/*
71		 * AMD Fam10h TSC will tick in all
72		 * C/P/S0/S1 states when this bit is set.
73		 */
74		if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
75			tsc_detected_unstable = 1;
76		break;
77	default:
78		/* TSC could halt in idle */
79		tsc_detected_unstable = 1;
80	}
81#endif
82}
83
84static unsigned long cpu_weight[NR_CPUS];
85static int tsk_in_cpu[NR_CPUS] = {[0 ... NR_CPUS-1] = -1};
86static DECLARE_BITMAP(pad_busy_cpus_bits, NR_CPUS);
87static void round_robin_cpu(unsigned int tsk_index)
88{
89	struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
90	cpumask_var_t tmp;
91	int cpu;
92	unsigned long min_weight = -1;
93	unsigned long preferred_cpu;
94
95	if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
96		return;
97
98	mutex_lock(&round_robin_lock);
99	cpumask_clear(tmp);
100	for_each_cpu(cpu, pad_busy_cpus)
101		cpumask_or(tmp, tmp, topology_sibling_cpumask(cpu));
102	cpumask_andnot(tmp, cpu_online_mask, tmp);
103	/* avoid HT sibilings if possible */
104	if (cpumask_empty(tmp))
105		cpumask_andnot(tmp, cpu_online_mask, pad_busy_cpus);
106	if (cpumask_empty(tmp)) {
107		mutex_unlock(&round_robin_lock);
108		free_cpumask_var(tmp);
109		return;
110	}
111	for_each_cpu(cpu, tmp) {
112		if (cpu_weight[cpu] < min_weight) {
113			min_weight = cpu_weight[cpu];
114			preferred_cpu = cpu;
115		}
116	}
117
118	if (tsk_in_cpu[tsk_index] != -1)
119		cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
120	tsk_in_cpu[tsk_index] = preferred_cpu;
121	cpumask_set_cpu(preferred_cpu, pad_busy_cpus);
122	cpu_weight[preferred_cpu]++;
123	mutex_unlock(&round_robin_lock);
124
125	set_cpus_allowed_ptr(current, cpumask_of(preferred_cpu));
126
127	free_cpumask_var(tmp);
128}
129
130static void exit_round_robin(unsigned int tsk_index)
131{
132	struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
133
134	cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
135	tsk_in_cpu[tsk_index] = -1;
136}
137
138static unsigned int idle_pct = 5; /* percentage */
139static unsigned int round_robin_time = 1; /* second */
140static int power_saving_thread(void *data)
141{
142	int do_sleep;
143	unsigned int tsk_index = (unsigned long)data;
144	u64 last_jiffies = 0;
145
146	sched_set_fifo_low(current);
147
148	while (!kthread_should_stop()) {
149		unsigned long expire_time;
150
151		/* round robin to cpus */
152		expire_time = last_jiffies + round_robin_time * HZ;
153		if (time_before(expire_time, jiffies)) {
154			last_jiffies = jiffies;
155			round_robin_cpu(tsk_index);
156		}
157
158		do_sleep = 0;
159
160		expire_time = jiffies + HZ * (100 - idle_pct) / 100;
161
162		while (!need_resched()) {
163			if (tsc_detected_unstable && !tsc_marked_unstable) {
164				/* TSC could halt in idle, so notify users */
165				mark_tsc_unstable("TSC halts in idle");
166				tsc_marked_unstable = 1;
167			}
168			local_irq_disable();
169
170			perf_lopwr_cb(true);
171
172			tick_broadcast_enable();
173			tick_broadcast_enter();
174			stop_critical_timings();
175
176			mwait_idle_with_hints(power_saving_mwait_eax, 1);
177
178			start_critical_timings();
179			tick_broadcast_exit();
180
181			perf_lopwr_cb(false);
182
183			local_irq_enable();
184
185			if (time_before(expire_time, jiffies)) {
186				do_sleep = 1;
187				break;
188			}
189		}
190
191		/*
192		 * current sched_rt has threshold for rt task running time.
193		 * When a rt task uses 95% CPU time, the rt thread will be
194		 * scheduled out for 5% CPU time to not starve other tasks. But
195		 * the mechanism only works when all CPUs have RT task running,
196		 * as if one CPU hasn't RT task, RT task from other CPUs will
197		 * borrow CPU time from this CPU and cause RT task use > 95%
198		 * CPU time. To make 'avoid starvation' work, takes a nap here.
199		 */
200		if (unlikely(do_sleep))
201			schedule_timeout_killable(HZ * idle_pct / 100);
202
203		/* If an external event has set the need_resched flag, then
204		 * we need to deal with it, or this loop will continue to
205		 * spin without calling __mwait().
206		 */
207		if (unlikely(need_resched()))
208			schedule();
209	}
210
211	exit_round_robin(tsk_index);
212	return 0;
213}
214
215static struct task_struct *ps_tsks[NR_CPUS];
216static unsigned int ps_tsk_num;
217static int create_power_saving_task(void)
218{
219	int rc;
220
221	ps_tsks[ps_tsk_num] = kthread_run(power_saving_thread,
222		(void *)(unsigned long)ps_tsk_num,
223		"acpi_pad/%d", ps_tsk_num);
224
225	if (IS_ERR(ps_tsks[ps_tsk_num])) {
226		rc = PTR_ERR(ps_tsks[ps_tsk_num]);
227		ps_tsks[ps_tsk_num] = NULL;
228	} else {
229		rc = 0;
230		ps_tsk_num++;
231	}
232
233	return rc;
234}
235
236static void destroy_power_saving_task(void)
237{
238	if (ps_tsk_num > 0) {
239		ps_tsk_num--;
240		kthread_stop(ps_tsks[ps_tsk_num]);
241		ps_tsks[ps_tsk_num] = NULL;
242	}
243}
244
245static void set_power_saving_task_num(unsigned int num)
246{
247	if (num > ps_tsk_num) {
248		while (ps_tsk_num < num) {
249			if (create_power_saving_task())
250				return;
251		}
252	} else if (num < ps_tsk_num) {
253		while (ps_tsk_num > num)
254			destroy_power_saving_task();
255	}
256}
257
258static void acpi_pad_idle_cpus(unsigned int num_cpus)
259{
260	cpus_read_lock();
261
262	num_cpus = min_t(unsigned int, num_cpus, num_online_cpus());
263	set_power_saving_task_num(num_cpus);
264
265	cpus_read_unlock();
266}
267
268static uint32_t acpi_pad_idle_cpus_num(void)
269{
270	return ps_tsk_num;
271}
272
273static ssize_t rrtime_store(struct device *dev,
274	struct device_attribute *attr, const char *buf, size_t count)
275{
276	unsigned long num;
277
278	if (kstrtoul(buf, 0, &num))
279		return -EINVAL;
280	if (num < 1 || num >= 100)
281		return -EINVAL;
282	mutex_lock(&isolated_cpus_lock);
283	round_robin_time = num;
284	mutex_unlock(&isolated_cpus_lock);
285	return count;
286}
287
288static ssize_t rrtime_show(struct device *dev,
289	struct device_attribute *attr, char *buf)
290{
291	return sysfs_emit(buf, "%d\n", round_robin_time);
292}
293static DEVICE_ATTR_RW(rrtime);
294
295static ssize_t idlepct_store(struct device *dev,
296	struct device_attribute *attr, const char *buf, size_t count)
297{
298	unsigned long num;
299
300	if (kstrtoul(buf, 0, &num))
301		return -EINVAL;
302	if (num < 1 || num >= 100)
303		return -EINVAL;
304	mutex_lock(&isolated_cpus_lock);
305	idle_pct = num;
306	mutex_unlock(&isolated_cpus_lock);
307	return count;
308}
309
310static ssize_t idlepct_show(struct device *dev,
311	struct device_attribute *attr, char *buf)
312{
313	return sysfs_emit(buf, "%d\n", idle_pct);
314}
315static DEVICE_ATTR_RW(idlepct);
316
317static ssize_t idlecpus_store(struct device *dev,
318	struct device_attribute *attr, const char *buf, size_t count)
319{
320	unsigned long num;
321
322	if (kstrtoul(buf, 0, &num))
323		return -EINVAL;
324	mutex_lock(&isolated_cpus_lock);
325	acpi_pad_idle_cpus(num);
326	mutex_unlock(&isolated_cpus_lock);
327	return count;
328}
329
330static ssize_t idlecpus_show(struct device *dev,
331	struct device_attribute *attr, char *buf)
332{
333	return cpumap_print_to_pagebuf(false, buf,
334				       to_cpumask(pad_busy_cpus_bits));
335}
336
337static DEVICE_ATTR_RW(idlecpus);
338
339static int acpi_pad_add_sysfs(struct acpi_device *device)
340{
341	int result;
342
343	result = device_create_file(&device->dev, &dev_attr_idlecpus);
344	if (result)
345		return -ENODEV;
346	result = device_create_file(&device->dev, &dev_attr_idlepct);
347	if (result) {
348		device_remove_file(&device->dev, &dev_attr_idlecpus);
349		return -ENODEV;
350	}
351	result = device_create_file(&device->dev, &dev_attr_rrtime);
352	if (result) {
353		device_remove_file(&device->dev, &dev_attr_idlecpus);
354		device_remove_file(&device->dev, &dev_attr_idlepct);
355		return -ENODEV;
356	}
357	return 0;
358}
359
360static void acpi_pad_remove_sysfs(struct acpi_device *device)
361{
362	device_remove_file(&device->dev, &dev_attr_idlecpus);
363	device_remove_file(&device->dev, &dev_attr_idlepct);
364	device_remove_file(&device->dev, &dev_attr_rrtime);
365}
366
367/*
368 * Query firmware how many CPUs should be idle
369 * return -1 on failure
370 */
371static int acpi_pad_pur(acpi_handle handle)
372{
373	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
374	union acpi_object *package;
375	int num = -1;
376
377	if (ACPI_FAILURE(acpi_evaluate_object(handle, "_PUR", NULL, &buffer)))
378		return num;
379
380	if (!buffer.length || !buffer.pointer)
381		return num;
382
383	package = buffer.pointer;
384
385	if (package->type == ACPI_TYPE_PACKAGE &&
386		package->package.count == 2 &&
387		package->package.elements[0].integer.value == 1) /* rev 1 */
388
389		num = package->package.elements[1].integer.value;
390
391	kfree(buffer.pointer);
392	return num;
393}
394
395static void acpi_pad_handle_notify(acpi_handle handle)
396{
397	int num_cpus;
398	uint32_t idle_cpus;
399	struct acpi_buffer param = {
400		.length = 4,
401		.pointer = (void *)&idle_cpus,
402	};
403
404	mutex_lock(&isolated_cpus_lock);
405	num_cpus = acpi_pad_pur(handle);
406	if (num_cpus < 0) {
407		mutex_unlock(&isolated_cpus_lock);
408		return;
409	}
410	acpi_pad_idle_cpus(num_cpus);
411	idle_cpus = acpi_pad_idle_cpus_num();
412	acpi_evaluate_ost(handle, ACPI_PROCESSOR_AGGREGATOR_NOTIFY, 0, &param);
413	mutex_unlock(&isolated_cpus_lock);
414}
415
416static void acpi_pad_notify(acpi_handle handle, u32 event,
417	void *data)
418{
419	struct acpi_device *device = data;
420
421	switch (event) {
422	case ACPI_PROCESSOR_AGGREGATOR_NOTIFY:
423		acpi_pad_handle_notify(handle);
424		acpi_bus_generate_netlink_event(device->pnp.device_class,
425			dev_name(&device->dev), event, 0);
426		break;
427	default:
428		pr_warn("Unsupported event [0x%x]\n", event);
429		break;
430	}
431}
432
433static int acpi_pad_add(struct acpi_device *device)
434{
435	acpi_status status;
436
437	strcpy(acpi_device_name(device), ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME);
438	strcpy(acpi_device_class(device), ACPI_PROCESSOR_AGGREGATOR_CLASS);
439
440	if (acpi_pad_add_sysfs(device))
441		return -ENODEV;
442
443	status = acpi_install_notify_handler(device->handle,
444		ACPI_DEVICE_NOTIFY, acpi_pad_notify, device);
445	if (ACPI_FAILURE(status)) {
446		acpi_pad_remove_sysfs(device);
447		return -ENODEV;
448	}
449
450	return 0;
451}
452
453static void acpi_pad_remove(struct acpi_device *device)
454{
455	mutex_lock(&isolated_cpus_lock);
456	acpi_pad_idle_cpus(0);
457	mutex_unlock(&isolated_cpus_lock);
458
459	acpi_remove_notify_handler(device->handle,
460		ACPI_DEVICE_NOTIFY, acpi_pad_notify);
461	acpi_pad_remove_sysfs(device);
462}
463
464static const struct acpi_device_id pad_device_ids[] = {
465	{"ACPI000C", 0},
466	{"", 0},
467};
468MODULE_DEVICE_TABLE(acpi, pad_device_ids);
469
470static struct acpi_driver acpi_pad_driver = {
471	.name = "processor_aggregator",
472	.class = ACPI_PROCESSOR_AGGREGATOR_CLASS,
473	.ids = pad_device_ids,
474	.ops = {
475		.add = acpi_pad_add,
476		.remove = acpi_pad_remove,
477	},
478};
479
480static int __init acpi_pad_init(void)
481{
482	/* Xen ACPI PAD is used when running as Xen Dom0. */
483	if (xen_initial_domain())
484		return -ENODEV;
485
486	power_saving_mwait_init();
487	if (power_saving_mwait_eax == 0)
488		return -EINVAL;
489
490	return acpi_bus_register_driver(&acpi_pad_driver);
491}
492
493static void __exit acpi_pad_exit(void)
494{
495	acpi_bus_unregister_driver(&acpi_pad_driver);
496}
497
498module_init(acpi_pad_init);
499module_exit(acpi_pad_exit);
500MODULE_AUTHOR("Shaohua Li<shaohua.li@intel.com>");
501MODULE_DESCRIPTION("ACPI Processor Aggregator Driver");
502MODULE_LICENSE("GPL");
503