1// SPDX-License-Identifier: GPL-2.0-only
2
3/* Copyright (c) 2019-2021, The Linux Foundation. All rights reserved. */
4/* Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved. */
5
6#include <linux/bitfield.h>
7#include <linux/bits.h>
8#include <linux/completion.h>
9#include <linux/delay.h>
10#include <linux/dma-buf.h>
11#include <linux/dma-mapping.h>
12#include <linux/interrupt.h>
13#include <linux/kref.h>
14#include <linux/list.h>
15#include <linux/math64.h>
16#include <linux/mm.h>
17#include <linux/moduleparam.h>
18#include <linux/scatterlist.h>
19#include <linux/spinlock.h>
20#include <linux/srcu.h>
21#include <linux/types.h>
22#include <linux/uaccess.h>
23#include <linux/wait.h>
24#include <drm/drm_file.h>
25#include <drm/drm_gem.h>
26#include <drm/drm_prime.h>
27#include <drm/drm_print.h>
28#include <uapi/drm/qaic_accel.h>
29
30#include "qaic.h"
31
32#define SEM_VAL_MASK	GENMASK_ULL(11, 0)
33#define SEM_INDEX_MASK	GENMASK_ULL(4, 0)
34#define BULK_XFER	BIT(3)
35#define GEN_COMPLETION	BIT(4)
36#define INBOUND_XFER	1
37#define OUTBOUND_XFER	2
38#define REQHP_OFF	0x0 /* we read this */
39#define REQTP_OFF	0x4 /* we write this */
40#define RSPHP_OFF	0x8 /* we write this */
41#define RSPTP_OFF	0xc /* we read this */
42
43#define ENCODE_SEM(val, index, sync, cmd, flags)			\
44		({							\
45			FIELD_PREP(GENMASK(11, 0), (val)) |		\
46			FIELD_PREP(GENMASK(20, 16), (index)) |		\
47			FIELD_PREP(BIT(22), (sync)) |			\
48			FIELD_PREP(GENMASK(26, 24), (cmd)) |		\
49			FIELD_PREP(GENMASK(30, 29), (flags)) |		\
50			FIELD_PREP(BIT(31), (cmd) ? 1 : 0);		\
51		})
52#define NUM_EVENTS	128
53#define NUM_DELAYS	10
54
55static unsigned int wait_exec_default_timeout_ms = 5000; /* 5 sec default */
56module_param(wait_exec_default_timeout_ms, uint, 0600);
57MODULE_PARM_DESC(wait_exec_default_timeout_ms, "Default timeout for DRM_IOCTL_QAIC_WAIT_BO");
58
59static unsigned int datapath_poll_interval_us = 100; /* 100 usec default */
60module_param(datapath_poll_interval_us, uint, 0600);
61MODULE_PARM_DESC(datapath_poll_interval_us,
62		 "Amount of time to sleep between activity when datapath polling is enabled");
63
64struct dbc_req {
65	/*
66	 * A request ID is assigned to each memory handle going in DMA queue.
67	 * As a single memory handle can enqueue multiple elements in DMA queue
68	 * all of them will have the same request ID.
69	 */
70	__le16	req_id;
71	/* Future use */
72	__u8	seq_id;
73	/*
74	 * Special encoded variable
75	 * 7	0 - Do not force to generate MSI after DMA is completed
76	 *	1 - Force to generate MSI after DMA is completed
77	 * 6:5	Reserved
78	 * 4	1 - Generate completion element in the response queue
79	 *	0 - No Completion Code
80	 * 3	0 - DMA request is a Link list transfer
81	 *	1 - DMA request is a Bulk transfer
82	 * 2	Reserved
83	 * 1:0	00 - No DMA transfer involved
84	 *	01 - DMA transfer is part of inbound transfer
85	 *	10 - DMA transfer has outbound transfer
86	 *	11 - NA
87	 */
88	__u8	cmd;
89	__le32	resv;
90	/* Source address for the transfer */
91	__le64	src_addr;
92	/* Destination address for the transfer */
93	__le64	dest_addr;
94	/* Length of transfer request */
95	__le32	len;
96	__le32	resv2;
97	/* Doorbell address */
98	__le64	db_addr;
99	/*
100	 * Special encoded variable
101	 * 7	1 - Doorbell(db) write
102	 *	0 - No doorbell write
103	 * 6:2	Reserved
104	 * 1:0	00 - 32 bit access, db address must be aligned to 32bit-boundary
105	 *	01 - 16 bit access, db address must be aligned to 16bit-boundary
106	 *	10 - 8 bit access, db address must be aligned to 8bit-boundary
107	 *	11 - Reserved
108	 */
109	__u8	db_len;
110	__u8	resv3;
111	__le16	resv4;
112	/* 32 bit data written to doorbell address */
113	__le32	db_data;
114	/*
115	 * Special encoded variable
116	 * All the fields of sem_cmdX are passed from user and all are ORed
117	 * together to form sem_cmd.
118	 * 0:11		Semaphore value
119	 * 15:12	Reserved
120	 * 20:16	Semaphore index
121	 * 21		Reserved
122	 * 22		Semaphore Sync
123	 * 23		Reserved
124	 * 26:24	Semaphore command
125	 * 28:27	Reserved
126	 * 29		Semaphore DMA out bound sync fence
127	 * 30		Semaphore DMA in bound sync fence
128	 * 31		Enable semaphore command
129	 */
130	__le32	sem_cmd0;
131	__le32	sem_cmd1;
132	__le32	sem_cmd2;
133	__le32	sem_cmd3;
134} __packed;
135
136struct dbc_rsp {
137	/* Request ID of the memory handle whose DMA transaction is completed */
138	__le16	req_id;
139	/* Status of the DMA transaction. 0 : Success otherwise failure */
140	__le16	status;
141} __packed;
142
143inline int get_dbc_req_elem_size(void)
144{
145	return sizeof(struct dbc_req);
146}
147
148inline int get_dbc_rsp_elem_size(void)
149{
150	return sizeof(struct dbc_rsp);
151}
152
153static void free_slice(struct kref *kref)
154{
155	struct bo_slice *slice = container_of(kref, struct bo_slice, ref_count);
156
157	list_del(&slice->slice);
158	drm_gem_object_put(&slice->bo->base);
159	sg_free_table(slice->sgt);
160	kfree(slice->sgt);
161	kfree(slice->reqs);
162	kfree(slice);
163}
164
165static int clone_range_of_sgt_for_slice(struct qaic_device *qdev, struct sg_table **sgt_out,
166					struct sg_table *sgt_in, u64 size, u64 offset)
167{
168	int total_len, len, nents, offf = 0, offl = 0;
169	struct scatterlist *sg, *sgn, *sgf, *sgl;
170	struct sg_table *sgt;
171	int ret, j;
172
173	/* find out number of relevant nents needed for this mem */
174	total_len = 0;
175	sgf = NULL;
176	sgl = NULL;
177	nents = 0;
178
179	size = size ? size : PAGE_SIZE;
180	for (sg = sgt_in->sgl; sg; sg = sg_next(sg)) {
181		len = sg_dma_len(sg);
182
183		if (!len)
184			continue;
185		if (offset >= total_len && offset < total_len + len) {
186			sgf = sg;
187			offf = offset - total_len;
188		}
189		if (sgf)
190			nents++;
191		if (offset + size >= total_len &&
192		    offset + size <= total_len + len) {
193			sgl = sg;
194			offl = offset + size - total_len;
195			break;
196		}
197		total_len += len;
198	}
199
200	if (!sgf || !sgl) {
201		ret = -EINVAL;
202		goto out;
203	}
204
205	sgt = kzalloc(sizeof(*sgt), GFP_KERNEL);
206	if (!sgt) {
207		ret = -ENOMEM;
208		goto out;
209	}
210
211	ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
212	if (ret)
213		goto free_sgt;
214
215	/* copy relevant sg node and fix page and length */
216	sgn = sgf;
217	for_each_sgtable_sg(sgt, sg, j) {
218		memcpy(sg, sgn, sizeof(*sg));
219		if (sgn == sgf) {
220			sg_dma_address(sg) += offf;
221			sg_dma_len(sg) -= offf;
222			sg_set_page(sg, sg_page(sgn), sg_dma_len(sg), offf);
223		} else {
224			offf = 0;
225		}
226		if (sgn == sgl) {
227			sg_dma_len(sg) = offl - offf;
228			sg_set_page(sg, sg_page(sgn), offl - offf, offf);
229			sg_mark_end(sg);
230			break;
231		}
232		sgn = sg_next(sgn);
233	}
234
235	*sgt_out = sgt;
236	return ret;
237
238free_sgt:
239	kfree(sgt);
240out:
241	*sgt_out = NULL;
242	return ret;
243}
244
245static int encode_reqs(struct qaic_device *qdev, struct bo_slice *slice,
246		       struct qaic_attach_slice_entry *req)
247{
248	__le64 db_addr = cpu_to_le64(req->db_addr);
249	__le32 db_data = cpu_to_le32(req->db_data);
250	struct scatterlist *sg;
251	__u8 cmd = BULK_XFER;
252	int presync_sem;
253	u64 dev_addr;
254	__u8 db_len;
255	int i;
256
257	if (!slice->no_xfer)
258		cmd |= (slice->dir == DMA_TO_DEVICE ? INBOUND_XFER : OUTBOUND_XFER);
259
260	if (req->db_len && !IS_ALIGNED(req->db_addr, req->db_len / 8))
261		return -EINVAL;
262
263	presync_sem = req->sem0.presync + req->sem1.presync + req->sem2.presync + req->sem3.presync;
264	if (presync_sem > 1)
265		return -EINVAL;
266
267	presync_sem = req->sem0.presync << 0 | req->sem1.presync << 1 |
268		      req->sem2.presync << 2 | req->sem3.presync << 3;
269
270	switch (req->db_len) {
271	case 32:
272		db_len = BIT(7);
273		break;
274	case 16:
275		db_len = BIT(7) | 1;
276		break;
277	case 8:
278		db_len = BIT(7) | 2;
279		break;
280	case 0:
281		db_len = 0; /* doorbell is not active for this command */
282		break;
283	default:
284		return -EINVAL; /* should never hit this */
285	}
286
287	/*
288	 * When we end up splitting up a single request (ie a buf slice) into
289	 * multiple DMA requests, we have to manage the sync data carefully.
290	 * There can only be one presync sem. That needs to be on every xfer
291	 * so that the DMA engine doesn't transfer data before the receiver is
292	 * ready. We only do the doorbell and postsync sems after the xfer.
293	 * To guarantee previous xfers for the request are complete, we use a
294	 * fence.
295	 */
296	dev_addr = req->dev_addr;
297	for_each_sgtable_sg(slice->sgt, sg, i) {
298		slice->reqs[i].cmd = cmd;
299		slice->reqs[i].src_addr = cpu_to_le64(slice->dir == DMA_TO_DEVICE ?
300						      sg_dma_address(sg) : dev_addr);
301		slice->reqs[i].dest_addr = cpu_to_le64(slice->dir == DMA_TO_DEVICE ?
302						       dev_addr : sg_dma_address(sg));
303		/*
304		 * sg_dma_len(sg) returns size of a DMA segment, maximum DMA
305		 * segment size is set to UINT_MAX by qaic and hence return
306		 * values of sg_dma_len(sg) can never exceed u32 range. So,
307		 * by down sizing we are not corrupting the value.
308		 */
309		slice->reqs[i].len = cpu_to_le32((u32)sg_dma_len(sg));
310		switch (presync_sem) {
311		case BIT(0):
312			slice->reqs[i].sem_cmd0 = cpu_to_le32(ENCODE_SEM(req->sem0.val,
313									 req->sem0.index,
314									 req->sem0.presync,
315									 req->sem0.cmd,
316									 req->sem0.flags));
317			break;
318		case BIT(1):
319			slice->reqs[i].sem_cmd1 = cpu_to_le32(ENCODE_SEM(req->sem1.val,
320									 req->sem1.index,
321									 req->sem1.presync,
322									 req->sem1.cmd,
323									 req->sem1.flags));
324			break;
325		case BIT(2):
326			slice->reqs[i].sem_cmd2 = cpu_to_le32(ENCODE_SEM(req->sem2.val,
327									 req->sem2.index,
328									 req->sem2.presync,
329									 req->sem2.cmd,
330									 req->sem2.flags));
331			break;
332		case BIT(3):
333			slice->reqs[i].sem_cmd3 = cpu_to_le32(ENCODE_SEM(req->sem3.val,
334									 req->sem3.index,
335									 req->sem3.presync,
336									 req->sem3.cmd,
337									 req->sem3.flags));
338			break;
339		}
340		dev_addr += sg_dma_len(sg);
341	}
342	/* add post transfer stuff to last segment */
343	i--;
344	slice->reqs[i].cmd |= GEN_COMPLETION;
345	slice->reqs[i].db_addr = db_addr;
346	slice->reqs[i].db_len = db_len;
347	slice->reqs[i].db_data = db_data;
348	/*
349	 * Add a fence if we have more than one request going to the hardware
350	 * representing the entirety of the user request, and the user request
351	 * has no presync condition.
352	 * Fences are expensive, so we try to avoid them. We rely on the
353	 * hardware behavior to avoid needing one when there is a presync
354	 * condition. When a presync exists, all requests for that same
355	 * presync will be queued into a fifo. Thus, since we queue the
356	 * post xfer activity only on the last request we queue, the hardware
357	 * will ensure that the last queued request is processed last, thus
358	 * making sure the post xfer activity happens at the right time without
359	 * a fence.
360	 */
361	if (i && !presync_sem)
362		req->sem0.flags |= (slice->dir == DMA_TO_DEVICE ?
363				    QAIC_SEM_INSYNCFENCE : QAIC_SEM_OUTSYNCFENCE);
364	slice->reqs[i].sem_cmd0 = cpu_to_le32(ENCODE_SEM(req->sem0.val, req->sem0.index,
365							 req->sem0.presync, req->sem0.cmd,
366							 req->sem0.flags));
367	slice->reqs[i].sem_cmd1 = cpu_to_le32(ENCODE_SEM(req->sem1.val, req->sem1.index,
368							 req->sem1.presync, req->sem1.cmd,
369							 req->sem1.flags));
370	slice->reqs[i].sem_cmd2 = cpu_to_le32(ENCODE_SEM(req->sem2.val, req->sem2.index,
371							 req->sem2.presync, req->sem2.cmd,
372							 req->sem2.flags));
373	slice->reqs[i].sem_cmd3 = cpu_to_le32(ENCODE_SEM(req->sem3.val, req->sem3.index,
374							 req->sem3.presync, req->sem3.cmd,
375							 req->sem3.flags));
376
377	return 0;
378}
379
380static int qaic_map_one_slice(struct qaic_device *qdev, struct qaic_bo *bo,
381			      struct qaic_attach_slice_entry *slice_ent)
382{
383	struct sg_table *sgt = NULL;
384	struct bo_slice *slice;
385	int ret;
386
387	ret = clone_range_of_sgt_for_slice(qdev, &sgt, bo->sgt, slice_ent->size, slice_ent->offset);
388	if (ret)
389		goto out;
390
391	slice = kmalloc(sizeof(*slice), GFP_KERNEL);
392	if (!slice) {
393		ret = -ENOMEM;
394		goto free_sgt;
395	}
396
397	slice->reqs = kcalloc(sgt->nents, sizeof(*slice->reqs), GFP_KERNEL);
398	if (!slice->reqs) {
399		ret = -ENOMEM;
400		goto free_slice;
401	}
402
403	slice->no_xfer = !slice_ent->size;
404	slice->sgt = sgt;
405	slice->nents = sgt->nents;
406	slice->dir = bo->dir;
407	slice->bo = bo;
408	slice->size = slice_ent->size;
409	slice->offset = slice_ent->offset;
410
411	ret = encode_reqs(qdev, slice, slice_ent);
412	if (ret)
413		goto free_req;
414
415	bo->total_slice_nents += sgt->nents;
416	kref_init(&slice->ref_count);
417	drm_gem_object_get(&bo->base);
418	list_add_tail(&slice->slice, &bo->slices);
419
420	return 0;
421
422free_req:
423	kfree(slice->reqs);
424free_slice:
425	kfree(slice);
426free_sgt:
427	sg_free_table(sgt);
428	kfree(sgt);
429out:
430	return ret;
431}
432
433static int create_sgt(struct qaic_device *qdev, struct sg_table **sgt_out, u64 size)
434{
435	struct scatterlist *sg;
436	struct sg_table *sgt;
437	struct page **pages;
438	int *pages_order;
439	int buf_extra;
440	int max_order;
441	int nr_pages;
442	int ret = 0;
443	int i, j, k;
444	int order;
445
446	if (size) {
447		nr_pages = DIV_ROUND_UP(size, PAGE_SIZE);
448		/*
449		 * calculate how much extra we are going to allocate, to remove
450		 * later
451		 */
452		buf_extra = (PAGE_SIZE - size % PAGE_SIZE) % PAGE_SIZE;
453		max_order = min(MAX_ORDER - 1, get_order(size));
454	} else {
455		/* allocate a single page for book keeping */
456		nr_pages = 1;
457		buf_extra = 0;
458		max_order = 0;
459	}
460
461	pages = kvmalloc_array(nr_pages, sizeof(*pages) + sizeof(*pages_order), GFP_KERNEL);
462	if (!pages) {
463		ret = -ENOMEM;
464		goto out;
465	}
466	pages_order = (void *)pages + sizeof(*pages) * nr_pages;
467
468	/*
469	 * Allocate requested memory using alloc_pages. It is possible to allocate
470	 * the requested memory in multiple chunks by calling alloc_pages
471	 * multiple times. Use SG table to handle multiple allocated pages.
472	 */
473	i = 0;
474	while (nr_pages > 0) {
475		order = min(get_order(nr_pages * PAGE_SIZE), max_order);
476		while (1) {
477			pages[i] = alloc_pages(GFP_KERNEL | GFP_HIGHUSER |
478					       __GFP_NOWARN | __GFP_ZERO |
479					       (order ? __GFP_NORETRY : __GFP_RETRY_MAYFAIL),
480					       order);
481			if (pages[i])
482				break;
483			if (!order--) {
484				ret = -ENOMEM;
485				goto free_partial_alloc;
486			}
487		}
488
489		max_order = order;
490		pages_order[i] = order;
491
492		nr_pages -= 1 << order;
493		if (nr_pages <= 0)
494			/* account for over allocation */
495			buf_extra += abs(nr_pages) * PAGE_SIZE;
496		i++;
497	}
498
499	sgt = kmalloc(sizeof(*sgt), GFP_KERNEL);
500	if (!sgt) {
501		ret = -ENOMEM;
502		goto free_partial_alloc;
503	}
504
505	if (sg_alloc_table(sgt, i, GFP_KERNEL)) {
506		ret = -ENOMEM;
507		goto free_sgt;
508	}
509
510	/* Populate the SG table with the allocated memory pages */
511	sg = sgt->sgl;
512	for (k = 0; k < i; k++, sg = sg_next(sg)) {
513		/* Last entry requires special handling */
514		if (k < i - 1) {
515			sg_set_page(sg, pages[k], PAGE_SIZE << pages_order[k], 0);
516		} else {
517			sg_set_page(sg, pages[k], (PAGE_SIZE << pages_order[k]) - buf_extra, 0);
518			sg_mark_end(sg);
519		}
520	}
521
522	kvfree(pages);
523	*sgt_out = sgt;
524	return ret;
525
526free_sgt:
527	kfree(sgt);
528free_partial_alloc:
529	for (j = 0; j < i; j++)
530		__free_pages(pages[j], pages_order[j]);
531	kvfree(pages);
532out:
533	*sgt_out = NULL;
534	return ret;
535}
536
537static bool invalid_sem(struct qaic_sem *sem)
538{
539	if (sem->val & ~SEM_VAL_MASK || sem->index & ~SEM_INDEX_MASK ||
540	    !(sem->presync == 0 || sem->presync == 1) || sem->pad ||
541	    sem->flags & ~(QAIC_SEM_INSYNCFENCE | QAIC_SEM_OUTSYNCFENCE) ||
542	    sem->cmd > QAIC_SEM_WAIT_GT_0)
543		return true;
544	return false;
545}
546
547static int qaic_validate_req(struct qaic_device *qdev, struct qaic_attach_slice_entry *slice_ent,
548			     u32 count, u64 total_size)
549{
550	int i;
551
552	for (i = 0; i < count; i++) {
553		if (!(slice_ent[i].db_len == 32 || slice_ent[i].db_len == 16 ||
554		      slice_ent[i].db_len == 8 || slice_ent[i].db_len == 0) ||
555		      invalid_sem(&slice_ent[i].sem0) || invalid_sem(&slice_ent[i].sem1) ||
556		      invalid_sem(&slice_ent[i].sem2) || invalid_sem(&slice_ent[i].sem3))
557			return -EINVAL;
558
559		if (slice_ent[i].offset + slice_ent[i].size > total_size)
560			return -EINVAL;
561	}
562
563	return 0;
564}
565
566static void qaic_free_sgt(struct sg_table *sgt)
567{
568	struct scatterlist *sg;
569
570	for (sg = sgt->sgl; sg; sg = sg_next(sg))
571		if (sg_page(sg))
572			__free_pages(sg_page(sg), get_order(sg->length));
573	sg_free_table(sgt);
574	kfree(sgt);
575}
576
577static void qaic_gem_print_info(struct drm_printer *p, unsigned int indent,
578				const struct drm_gem_object *obj)
579{
580	struct qaic_bo *bo = to_qaic_bo(obj);
581
582	drm_printf_indent(p, indent, "user requested size=%llu\n", bo->size);
583}
584
585static const struct vm_operations_struct drm_vm_ops = {
586	.open = drm_gem_vm_open,
587	.close = drm_gem_vm_close,
588};
589
590static int qaic_gem_object_mmap(struct drm_gem_object *obj, struct vm_area_struct *vma)
591{
592	struct qaic_bo *bo = to_qaic_bo(obj);
593	unsigned long offset = 0;
594	struct scatterlist *sg;
595	int ret = 0;
596
597	if (obj->import_attach)
598		return -EINVAL;
599
600	for (sg = bo->sgt->sgl; sg; sg = sg_next(sg)) {
601		if (sg_page(sg)) {
602			ret = remap_pfn_range(vma, vma->vm_start + offset, page_to_pfn(sg_page(sg)),
603					      sg->length, vma->vm_page_prot);
604			if (ret)
605				goto out;
606			offset += sg->length;
607		}
608	}
609
610out:
611	return ret;
612}
613
614static void qaic_free_object(struct drm_gem_object *obj)
615{
616	struct qaic_bo *bo = to_qaic_bo(obj);
617
618	if (obj->import_attach) {
619		/* DMABUF/PRIME Path */
620		drm_prime_gem_destroy(obj, NULL);
621	} else {
622		/* Private buffer allocation path */
623		qaic_free_sgt(bo->sgt);
624	}
625
626	drm_gem_object_release(obj);
627	kfree(bo);
628}
629
630static const struct drm_gem_object_funcs qaic_gem_funcs = {
631	.free = qaic_free_object,
632	.print_info = qaic_gem_print_info,
633	.mmap = qaic_gem_object_mmap,
634	.vm_ops = &drm_vm_ops,
635};
636
637static struct qaic_bo *qaic_alloc_init_bo(void)
638{
639	struct qaic_bo *bo;
640
641	bo = kzalloc(sizeof(*bo), GFP_KERNEL);
642	if (!bo)
643		return ERR_PTR(-ENOMEM);
644
645	INIT_LIST_HEAD(&bo->slices);
646	init_completion(&bo->xfer_done);
647	complete_all(&bo->xfer_done);
648
649	return bo;
650}
651
652int qaic_create_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
653{
654	struct qaic_create_bo *args = data;
655	int usr_rcu_id, qdev_rcu_id;
656	struct drm_gem_object *obj;
657	struct qaic_device *qdev;
658	struct qaic_user *usr;
659	struct qaic_bo *bo;
660	size_t size;
661	int ret;
662
663	if (args->pad)
664		return -EINVAL;
665
666	size = PAGE_ALIGN(args->size);
667	if (size == 0)
668		return -EINVAL;
669
670	usr = file_priv->driver_priv;
671	usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
672	if (!usr->qddev) {
673		ret = -ENODEV;
674		goto unlock_usr_srcu;
675	}
676
677	qdev = usr->qddev->qdev;
678	qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
679	if (qdev->in_reset) {
680		ret = -ENODEV;
681		goto unlock_dev_srcu;
682	}
683
684	bo = qaic_alloc_init_bo();
685	if (IS_ERR(bo)) {
686		ret = PTR_ERR(bo);
687		goto unlock_dev_srcu;
688	}
689	obj = &bo->base;
690
691	drm_gem_private_object_init(dev, obj, size);
692
693	obj->funcs = &qaic_gem_funcs;
694	ret = create_sgt(qdev, &bo->sgt, size);
695	if (ret)
696		goto free_bo;
697
698	bo->size = args->size;
699
700	ret = drm_gem_handle_create(file_priv, obj, &args->handle);
701	if (ret)
702		goto free_sgt;
703
704	bo->handle = args->handle;
705	drm_gem_object_put(obj);
706	srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
707	srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
708
709	return 0;
710
711free_sgt:
712	qaic_free_sgt(bo->sgt);
713free_bo:
714	kfree(bo);
715unlock_dev_srcu:
716	srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
717unlock_usr_srcu:
718	srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
719	return ret;
720}
721
722int qaic_mmap_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
723{
724	struct qaic_mmap_bo *args = data;
725	int usr_rcu_id, qdev_rcu_id;
726	struct drm_gem_object *obj;
727	struct qaic_device *qdev;
728	struct qaic_user *usr;
729	int ret;
730
731	usr = file_priv->driver_priv;
732	usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
733	if (!usr->qddev) {
734		ret = -ENODEV;
735		goto unlock_usr_srcu;
736	}
737
738	qdev = usr->qddev->qdev;
739	qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
740	if (qdev->in_reset) {
741		ret = -ENODEV;
742		goto unlock_dev_srcu;
743	}
744
745	obj = drm_gem_object_lookup(file_priv, args->handle);
746	if (!obj) {
747		ret = -ENOENT;
748		goto unlock_dev_srcu;
749	}
750
751	ret = drm_gem_create_mmap_offset(obj);
752	if (ret == 0)
753		args->offset = drm_vma_node_offset_addr(&obj->vma_node);
754
755	drm_gem_object_put(obj);
756
757unlock_dev_srcu:
758	srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
759unlock_usr_srcu:
760	srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
761	return ret;
762}
763
764struct drm_gem_object *qaic_gem_prime_import(struct drm_device *dev, struct dma_buf *dma_buf)
765{
766	struct dma_buf_attachment *attach;
767	struct drm_gem_object *obj;
768	struct qaic_bo *bo;
769	int ret;
770
771	bo = qaic_alloc_init_bo();
772	if (IS_ERR(bo)) {
773		ret = PTR_ERR(bo);
774		goto out;
775	}
776
777	obj = &bo->base;
778	get_dma_buf(dma_buf);
779
780	attach = dma_buf_attach(dma_buf, dev->dev);
781	if (IS_ERR(attach)) {
782		ret = PTR_ERR(attach);
783		goto attach_fail;
784	}
785
786	if (!attach->dmabuf->size) {
787		ret = -EINVAL;
788		goto size_align_fail;
789	}
790
791	drm_gem_private_object_init(dev, obj, attach->dmabuf->size);
792	/*
793	 * skipping dma_buf_map_attachment() as we do not know the direction
794	 * just yet. Once the direction is known in the subsequent IOCTL to
795	 * attach slicing, we can do it then.
796	 */
797
798	obj->funcs = &qaic_gem_funcs;
799	obj->import_attach = attach;
800	obj->resv = dma_buf->resv;
801
802	return obj;
803
804size_align_fail:
805	dma_buf_detach(dma_buf, attach);
806attach_fail:
807	dma_buf_put(dma_buf);
808	kfree(bo);
809out:
810	return ERR_PTR(ret);
811}
812
813static int qaic_prepare_import_bo(struct qaic_bo *bo, struct qaic_attach_slice_hdr *hdr)
814{
815	struct drm_gem_object *obj = &bo->base;
816	struct sg_table *sgt;
817	int ret;
818
819	if (obj->import_attach->dmabuf->size < hdr->size)
820		return -EINVAL;
821
822	sgt = dma_buf_map_attachment(obj->import_attach, hdr->dir);
823	if (IS_ERR(sgt)) {
824		ret = PTR_ERR(sgt);
825		return ret;
826	}
827
828	bo->sgt = sgt;
829	bo->size = hdr->size;
830
831	return 0;
832}
833
834static int qaic_prepare_export_bo(struct qaic_device *qdev, struct qaic_bo *bo,
835				  struct qaic_attach_slice_hdr *hdr)
836{
837	int ret;
838
839	if (bo->size != hdr->size)
840		return -EINVAL;
841
842	ret = dma_map_sgtable(&qdev->pdev->dev, bo->sgt, hdr->dir, 0);
843	if (ret)
844		return -EFAULT;
845
846	return 0;
847}
848
849static int qaic_prepare_bo(struct qaic_device *qdev, struct qaic_bo *bo,
850			   struct qaic_attach_slice_hdr *hdr)
851{
852	int ret;
853
854	if (bo->base.import_attach)
855		ret = qaic_prepare_import_bo(bo, hdr);
856	else
857		ret = qaic_prepare_export_bo(qdev, bo, hdr);
858
859	if (ret == 0)
860		bo->dir = hdr->dir;
861
862	return ret;
863}
864
865static void qaic_unprepare_import_bo(struct qaic_bo *bo)
866{
867	dma_buf_unmap_attachment(bo->base.import_attach, bo->sgt, bo->dir);
868	bo->sgt = NULL;
869	bo->size = 0;
870}
871
872static void qaic_unprepare_export_bo(struct qaic_device *qdev, struct qaic_bo *bo)
873{
874	dma_unmap_sgtable(&qdev->pdev->dev, bo->sgt, bo->dir, 0);
875}
876
877static void qaic_unprepare_bo(struct qaic_device *qdev, struct qaic_bo *bo)
878{
879	if (bo->base.import_attach)
880		qaic_unprepare_import_bo(bo);
881	else
882		qaic_unprepare_export_bo(qdev, bo);
883
884	bo->dir = 0;
885}
886
887static void qaic_free_slices_bo(struct qaic_bo *bo)
888{
889	struct bo_slice *slice, *temp;
890
891	list_for_each_entry_safe(slice, temp, &bo->slices, slice)
892		kref_put(&slice->ref_count, free_slice);
893}
894
895static int qaic_attach_slicing_bo(struct qaic_device *qdev, struct qaic_bo *bo,
896				  struct qaic_attach_slice_hdr *hdr,
897				  struct qaic_attach_slice_entry *slice_ent)
898{
899	int ret, i;
900
901	for (i = 0; i < hdr->count; i++) {
902		ret = qaic_map_one_slice(qdev, bo, &slice_ent[i]);
903		if (ret) {
904			qaic_free_slices_bo(bo);
905			return ret;
906		}
907	}
908
909	if (bo->total_slice_nents > qdev->dbc[hdr->dbc_id].nelem) {
910		qaic_free_slices_bo(bo);
911		return -ENOSPC;
912	}
913
914	bo->sliced = true;
915	bo->nr_slice = hdr->count;
916	list_add_tail(&bo->bo_list, &qdev->dbc[hdr->dbc_id].bo_lists);
917
918	return 0;
919}
920
921int qaic_attach_slice_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
922{
923	struct qaic_attach_slice_entry *slice_ent;
924	struct qaic_attach_slice *args = data;
925	int rcu_id, usr_rcu_id, qdev_rcu_id;
926	struct dma_bridge_chan	*dbc;
927	struct drm_gem_object *obj;
928	struct qaic_device *qdev;
929	unsigned long arg_size;
930	struct qaic_user *usr;
931	u8 __user *user_data;
932	struct qaic_bo *bo;
933	int ret;
934
935	if (args->hdr.count == 0)
936		return -EINVAL;
937
938	arg_size = args->hdr.count * sizeof(*slice_ent);
939	if (arg_size / args->hdr.count != sizeof(*slice_ent))
940		return -EINVAL;
941
942	if (args->hdr.size == 0)
943		return -EINVAL;
944
945	if (!(args->hdr.dir == DMA_TO_DEVICE || args->hdr.dir == DMA_FROM_DEVICE))
946		return -EINVAL;
947
948	if (args->data == 0)
949		return -EINVAL;
950
951	usr = file_priv->driver_priv;
952	usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
953	if (!usr->qddev) {
954		ret = -ENODEV;
955		goto unlock_usr_srcu;
956	}
957
958	qdev = usr->qddev->qdev;
959	qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
960	if (qdev->in_reset) {
961		ret = -ENODEV;
962		goto unlock_dev_srcu;
963	}
964
965	if (args->hdr.dbc_id >= qdev->num_dbc) {
966		ret = -EINVAL;
967		goto unlock_dev_srcu;
968	}
969
970	user_data = u64_to_user_ptr(args->data);
971
972	slice_ent = kzalloc(arg_size, GFP_KERNEL);
973	if (!slice_ent) {
974		ret = -EINVAL;
975		goto unlock_dev_srcu;
976	}
977
978	ret = copy_from_user(slice_ent, user_data, arg_size);
979	if (ret) {
980		ret = -EFAULT;
981		goto free_slice_ent;
982	}
983
984	ret = qaic_validate_req(qdev, slice_ent, args->hdr.count, args->hdr.size);
985	if (ret)
986		goto free_slice_ent;
987
988	obj = drm_gem_object_lookup(file_priv, args->hdr.handle);
989	if (!obj) {
990		ret = -ENOENT;
991		goto free_slice_ent;
992	}
993
994	bo = to_qaic_bo(obj);
995
996	if (bo->sliced) {
997		ret = -EINVAL;
998		goto put_bo;
999	}
1000
1001	dbc = &qdev->dbc[args->hdr.dbc_id];
1002	rcu_id = srcu_read_lock(&dbc->ch_lock);
1003	if (dbc->usr != usr) {
1004		ret = -EINVAL;
1005		goto unlock_ch_srcu;
1006	}
1007
1008	ret = qaic_prepare_bo(qdev, bo, &args->hdr);
1009	if (ret)
1010		goto unlock_ch_srcu;
1011
1012	ret = qaic_attach_slicing_bo(qdev, bo, &args->hdr, slice_ent);
1013	if (ret)
1014		goto unprepare_bo;
1015
1016	if (args->hdr.dir == DMA_TO_DEVICE)
1017		dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, args->hdr.dir);
1018
1019	bo->dbc = dbc;
1020	srcu_read_unlock(&dbc->ch_lock, rcu_id);
1021	drm_gem_object_put(obj);
1022	kfree(slice_ent);
1023	srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1024	srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1025
1026	return 0;
1027
1028unprepare_bo:
1029	qaic_unprepare_bo(qdev, bo);
1030unlock_ch_srcu:
1031	srcu_read_unlock(&dbc->ch_lock, rcu_id);
1032put_bo:
1033	drm_gem_object_put(obj);
1034free_slice_ent:
1035	kfree(slice_ent);
1036unlock_dev_srcu:
1037	srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1038unlock_usr_srcu:
1039	srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1040	return ret;
1041}
1042
1043static inline int copy_exec_reqs(struct qaic_device *qdev, struct bo_slice *slice, u32 dbc_id,
1044				 u32 head, u32 *ptail)
1045{
1046	struct dma_bridge_chan *dbc = &qdev->dbc[dbc_id];
1047	struct dbc_req *reqs = slice->reqs;
1048	u32 tail = *ptail;
1049	u32 avail;
1050
1051	avail = head - tail;
1052	if (head <= tail)
1053		avail += dbc->nelem;
1054
1055	--avail;
1056
1057	if (avail < slice->nents)
1058		return -EAGAIN;
1059
1060	if (tail + slice->nents > dbc->nelem) {
1061		avail = dbc->nelem - tail;
1062		avail = min_t(u32, avail, slice->nents);
1063		memcpy(dbc->req_q_base + tail * get_dbc_req_elem_size(), reqs,
1064		       sizeof(*reqs) * avail);
1065		reqs += avail;
1066		avail = slice->nents - avail;
1067		if (avail)
1068			memcpy(dbc->req_q_base, reqs, sizeof(*reqs) * avail);
1069	} else {
1070		memcpy(dbc->req_q_base + tail * get_dbc_req_elem_size(), reqs,
1071		       sizeof(*reqs) * slice->nents);
1072	}
1073
1074	*ptail = (tail + slice->nents) % dbc->nelem;
1075
1076	return 0;
1077}
1078
1079/*
1080 * Based on the value of resize we may only need to transmit first_n
1081 * entries and the last entry, with last_bytes to send from the last entry.
1082 * Note that first_n could be 0.
1083 */
1084static inline int copy_partial_exec_reqs(struct qaic_device *qdev, struct bo_slice *slice,
1085					 u64 resize, u32 dbc_id, u32 head, u32 *ptail)
1086{
1087	struct dma_bridge_chan *dbc = &qdev->dbc[dbc_id];
1088	struct dbc_req *reqs = slice->reqs;
1089	struct dbc_req *last_req;
1090	u32 tail = *ptail;
1091	u64 total_bytes;
1092	u64 last_bytes;
1093	u32 first_n;
1094	u32 avail;
1095	int ret;
1096	int i;
1097
1098	avail = head - tail;
1099	if (head <= tail)
1100		avail += dbc->nelem;
1101
1102	--avail;
1103
1104	total_bytes = 0;
1105	for (i = 0; i < slice->nents; i++) {
1106		total_bytes += le32_to_cpu(reqs[i].len);
1107		if (total_bytes >= resize)
1108			break;
1109	}
1110
1111	if (total_bytes < resize) {
1112		/* User space should have used the full buffer path. */
1113		ret = -EINVAL;
1114		return ret;
1115	}
1116
1117	first_n = i;
1118	last_bytes = i ? resize + le32_to_cpu(reqs[i].len) - total_bytes : resize;
1119
1120	if (avail < (first_n + 1))
1121		return -EAGAIN;
1122
1123	if (first_n) {
1124		if (tail + first_n > dbc->nelem) {
1125			avail = dbc->nelem - tail;
1126			avail = min_t(u32, avail, first_n);
1127			memcpy(dbc->req_q_base + tail * get_dbc_req_elem_size(), reqs,
1128			       sizeof(*reqs) * avail);
1129			last_req = reqs + avail;
1130			avail = first_n - avail;
1131			if (avail)
1132				memcpy(dbc->req_q_base, last_req, sizeof(*reqs) * avail);
1133		} else {
1134			memcpy(dbc->req_q_base + tail * get_dbc_req_elem_size(), reqs,
1135			       sizeof(*reqs) * first_n);
1136		}
1137	}
1138
1139	/* Copy over the last entry. Here we need to adjust len to the left over
1140	 * size, and set src and dst to the entry it is copied to.
1141	 */
1142	last_req = dbc->req_q_base + (tail + first_n) % dbc->nelem * get_dbc_req_elem_size();
1143	memcpy(last_req, reqs + slice->nents - 1, sizeof(*reqs));
1144
1145	/*
1146	 * last_bytes holds size of a DMA segment, maximum DMA segment size is
1147	 * set to UINT_MAX by qaic and hence last_bytes can never exceed u32
1148	 * range. So, by down sizing we are not corrupting the value.
1149	 */
1150	last_req->len = cpu_to_le32((u32)last_bytes);
1151	last_req->src_addr = reqs[first_n].src_addr;
1152	last_req->dest_addr = reqs[first_n].dest_addr;
1153
1154	*ptail = (tail + first_n + 1) % dbc->nelem;
1155
1156	return 0;
1157}
1158
1159static int send_bo_list_to_device(struct qaic_device *qdev, struct drm_file *file_priv,
1160				  struct qaic_execute_entry *exec, unsigned int count,
1161				  bool is_partial, struct dma_bridge_chan *dbc, u32 head,
1162				  u32 *tail)
1163{
1164	struct qaic_partial_execute_entry *pexec = (struct qaic_partial_execute_entry *)exec;
1165	struct drm_gem_object *obj;
1166	struct bo_slice *slice;
1167	unsigned long flags;
1168	struct qaic_bo *bo;
1169	bool queued;
1170	int i, j;
1171	int ret;
1172
1173	for (i = 0; i < count; i++) {
1174		/*
1175		 * ref count will be decremented when the transfer of this
1176		 * buffer is complete. It is inside dbc_irq_threaded_fn().
1177		 */
1178		obj = drm_gem_object_lookup(file_priv,
1179					    is_partial ? pexec[i].handle : exec[i].handle);
1180		if (!obj) {
1181			ret = -ENOENT;
1182			goto failed_to_send_bo;
1183		}
1184
1185		bo = to_qaic_bo(obj);
1186
1187		if (!bo->sliced) {
1188			ret = -EINVAL;
1189			goto failed_to_send_bo;
1190		}
1191
1192		if (is_partial && pexec[i].resize > bo->size) {
1193			ret = -EINVAL;
1194			goto failed_to_send_bo;
1195		}
1196
1197		spin_lock_irqsave(&dbc->xfer_lock, flags);
1198		queued = bo->queued;
1199		bo->queued = true;
1200		if (queued) {
1201			spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1202			ret = -EINVAL;
1203			goto failed_to_send_bo;
1204		}
1205
1206		bo->req_id = dbc->next_req_id++;
1207
1208		list_for_each_entry(slice, &bo->slices, slice) {
1209			/*
1210			 * If this slice does not fall under the given
1211			 * resize then skip this slice and continue the loop
1212			 */
1213			if (is_partial && pexec[i].resize && pexec[i].resize <= slice->offset)
1214				continue;
1215
1216			for (j = 0; j < slice->nents; j++)
1217				slice->reqs[j].req_id = cpu_to_le16(bo->req_id);
1218
1219			/*
1220			 * If it is a partial execute ioctl call then check if
1221			 * resize has cut this slice short then do a partial copy
1222			 * else do complete copy
1223			 */
1224			if (is_partial && pexec[i].resize &&
1225			    pexec[i].resize < slice->offset + slice->size)
1226				ret = copy_partial_exec_reqs(qdev, slice,
1227							     pexec[i].resize - slice->offset,
1228							     dbc->id, head, tail);
1229			else
1230				ret = copy_exec_reqs(qdev, slice, dbc->id, head, tail);
1231			if (ret) {
1232				bo->queued = false;
1233				spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1234				goto failed_to_send_bo;
1235			}
1236		}
1237		reinit_completion(&bo->xfer_done);
1238		list_add_tail(&bo->xfer_list, &dbc->xfer_list);
1239		spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1240		dma_sync_sgtable_for_device(&qdev->pdev->dev, bo->sgt, bo->dir);
1241	}
1242
1243	return 0;
1244
1245failed_to_send_bo:
1246	if (likely(obj))
1247		drm_gem_object_put(obj);
1248	for (j = 0; j < i; j++) {
1249		spin_lock_irqsave(&dbc->xfer_lock, flags);
1250		bo = list_last_entry(&dbc->xfer_list, struct qaic_bo, xfer_list);
1251		obj = &bo->base;
1252		bo->queued = false;
1253		list_del(&bo->xfer_list);
1254		spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1255		dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir);
1256		drm_gem_object_put(obj);
1257	}
1258	return ret;
1259}
1260
1261static void update_profiling_data(struct drm_file *file_priv,
1262				  struct qaic_execute_entry *exec, unsigned int count,
1263				  bool is_partial, u64 received_ts, u64 submit_ts, u32 queue_level)
1264{
1265	struct qaic_partial_execute_entry *pexec = (struct qaic_partial_execute_entry *)exec;
1266	struct drm_gem_object *obj;
1267	struct qaic_bo *bo;
1268	int i;
1269
1270	for (i = 0; i < count; i++) {
1271		/*
1272		 * Since we already committed the BO to hardware, the only way
1273		 * this should fail is a pending signal. We can't cancel the
1274		 * submit to hardware, so we have to just skip the profiling
1275		 * data. In case the signal is not fatal to the process, we
1276		 * return success so that the user doesn't try to resubmit.
1277		 */
1278		obj = drm_gem_object_lookup(file_priv,
1279					    is_partial ? pexec[i].handle : exec[i].handle);
1280		if (!obj)
1281			break;
1282		bo = to_qaic_bo(obj);
1283		bo->perf_stats.req_received_ts = received_ts;
1284		bo->perf_stats.req_submit_ts = submit_ts;
1285		bo->perf_stats.queue_level_before = queue_level;
1286		queue_level += bo->total_slice_nents;
1287		drm_gem_object_put(obj);
1288	}
1289}
1290
1291static int __qaic_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv,
1292				   bool is_partial)
1293{
1294	struct qaic_execute *args = data;
1295	struct qaic_execute_entry *exec;
1296	struct dma_bridge_chan *dbc;
1297	int usr_rcu_id, qdev_rcu_id;
1298	struct qaic_device *qdev;
1299	struct qaic_user *usr;
1300	u8 __user *user_data;
1301	unsigned long n;
1302	u64 received_ts;
1303	u32 queue_level;
1304	u64 submit_ts;
1305	int rcu_id;
1306	u32 head;
1307	u32 tail;
1308	u64 size;
1309	int ret;
1310
1311	received_ts = ktime_get_ns();
1312
1313	size = is_partial ? sizeof(struct qaic_partial_execute_entry) : sizeof(*exec);
1314	n = (unsigned long)size * args->hdr.count;
1315	if (args->hdr.count == 0 || n / args->hdr.count != size)
1316		return -EINVAL;
1317
1318	user_data = u64_to_user_ptr(args->data);
1319
1320	exec = kcalloc(args->hdr.count, size, GFP_KERNEL);
1321	if (!exec)
1322		return -ENOMEM;
1323
1324	if (copy_from_user(exec, user_data, n)) {
1325		ret = -EFAULT;
1326		goto free_exec;
1327	}
1328
1329	usr = file_priv->driver_priv;
1330	usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
1331	if (!usr->qddev) {
1332		ret = -ENODEV;
1333		goto unlock_usr_srcu;
1334	}
1335
1336	qdev = usr->qddev->qdev;
1337	qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
1338	if (qdev->in_reset) {
1339		ret = -ENODEV;
1340		goto unlock_dev_srcu;
1341	}
1342
1343	if (args->hdr.dbc_id >= qdev->num_dbc) {
1344		ret = -EINVAL;
1345		goto unlock_dev_srcu;
1346	}
1347
1348	dbc = &qdev->dbc[args->hdr.dbc_id];
1349
1350	rcu_id = srcu_read_lock(&dbc->ch_lock);
1351	if (!dbc->usr || dbc->usr->handle != usr->handle) {
1352		ret = -EPERM;
1353		goto release_ch_rcu;
1354	}
1355
1356	head = readl(dbc->dbc_base + REQHP_OFF);
1357	tail = readl(dbc->dbc_base + REQTP_OFF);
1358
1359	if (head == U32_MAX || tail == U32_MAX) {
1360		/* PCI link error */
1361		ret = -ENODEV;
1362		goto release_ch_rcu;
1363	}
1364
1365	queue_level = head <= tail ? tail - head : dbc->nelem - (head - tail);
1366
1367	ret = send_bo_list_to_device(qdev, file_priv, exec, args->hdr.count, is_partial, dbc,
1368				     head, &tail);
1369	if (ret)
1370		goto release_ch_rcu;
1371
1372	/* Finalize commit to hardware */
1373	submit_ts = ktime_get_ns();
1374	writel(tail, dbc->dbc_base + REQTP_OFF);
1375
1376	update_profiling_data(file_priv, exec, args->hdr.count, is_partial, received_ts,
1377			      submit_ts, queue_level);
1378
1379	if (datapath_polling)
1380		schedule_work(&dbc->poll_work);
1381
1382release_ch_rcu:
1383	srcu_read_unlock(&dbc->ch_lock, rcu_id);
1384unlock_dev_srcu:
1385	srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1386unlock_usr_srcu:
1387	srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1388free_exec:
1389	kfree(exec);
1390	return ret;
1391}
1392
1393int qaic_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
1394{
1395	return __qaic_execute_bo_ioctl(dev, data, file_priv, false);
1396}
1397
1398int qaic_partial_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
1399{
1400	return __qaic_execute_bo_ioctl(dev, data, file_priv, true);
1401}
1402
1403/*
1404 * Our interrupt handling is a bit more complicated than a simple ideal, but
1405 * sadly necessary.
1406 *
1407 * Each dbc has a completion queue. Entries in the queue correspond to DMA
1408 * requests which the device has processed. The hardware already has a built
1409 * in irq mitigation. When the device puts an entry into the queue, it will
1410 * only trigger an interrupt if the queue was empty. Therefore, when adding
1411 * the Nth event to a non-empty queue, the hardware doesn't trigger an
1412 * interrupt. This means the host doesn't get additional interrupts signaling
1413 * the same thing - the queue has something to process.
1414 * This behavior can be overridden in the DMA request.
1415 * This means that when the host receives an interrupt, it is required to
1416 * drain the queue.
1417 *
1418 * This behavior is what NAPI attempts to accomplish, although we can't use
1419 * NAPI as we don't have a netdev. We use threaded irqs instead.
1420 *
1421 * However, there is a situation where the host drains the queue fast enough
1422 * that every event causes an interrupt. Typically this is not a problem as
1423 * the rate of events would be low. However, that is not the case with
1424 * lprnet for example. On an Intel Xeon D-2191 where we run 8 instances of
1425 * lprnet, the host receives roughly 80k interrupts per second from the device
1426 * (per /proc/interrupts). While NAPI documentation indicates the host should
1427 * just chug along, sadly that behavior causes instability in some hosts.
1428 *
1429 * Therefore, we implement an interrupt disable scheme similar to NAPI. The
1430 * key difference is that we will delay after draining the queue for a small
1431 * time to allow additional events to come in via polling. Using the above
1432 * lprnet workload, this reduces the number of interrupts processed from
1433 * ~80k/sec to about 64 in 5 minutes and appears to solve the system
1434 * instability.
1435 */
1436irqreturn_t dbc_irq_handler(int irq, void *data)
1437{
1438	struct dma_bridge_chan *dbc = data;
1439	int rcu_id;
1440	u32 head;
1441	u32 tail;
1442
1443	rcu_id = srcu_read_lock(&dbc->ch_lock);
1444
1445	if (!dbc->usr) {
1446		srcu_read_unlock(&dbc->ch_lock, rcu_id);
1447		return IRQ_HANDLED;
1448	}
1449
1450	head = readl(dbc->dbc_base + RSPHP_OFF);
1451	if (head == U32_MAX) { /* PCI link error */
1452		srcu_read_unlock(&dbc->ch_lock, rcu_id);
1453		return IRQ_NONE;
1454	}
1455
1456	tail = readl(dbc->dbc_base + RSPTP_OFF);
1457	if (tail == U32_MAX) { /* PCI link error */
1458		srcu_read_unlock(&dbc->ch_lock, rcu_id);
1459		return IRQ_NONE;
1460	}
1461
1462	if (head == tail) { /* queue empty */
1463		srcu_read_unlock(&dbc->ch_lock, rcu_id);
1464		return IRQ_NONE;
1465	}
1466
1467	disable_irq_nosync(irq);
1468	srcu_read_unlock(&dbc->ch_lock, rcu_id);
1469	return IRQ_WAKE_THREAD;
1470}
1471
1472void irq_polling_work(struct work_struct *work)
1473{
1474	struct dma_bridge_chan *dbc = container_of(work, struct dma_bridge_chan,  poll_work);
1475	unsigned long flags;
1476	int rcu_id;
1477	u32 head;
1478	u32 tail;
1479
1480	rcu_id = srcu_read_lock(&dbc->ch_lock);
1481
1482	while (1) {
1483		if (dbc->qdev->in_reset) {
1484			srcu_read_unlock(&dbc->ch_lock, rcu_id);
1485			return;
1486		}
1487		if (!dbc->usr) {
1488			srcu_read_unlock(&dbc->ch_lock, rcu_id);
1489			return;
1490		}
1491		spin_lock_irqsave(&dbc->xfer_lock, flags);
1492		if (list_empty(&dbc->xfer_list)) {
1493			spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1494			srcu_read_unlock(&dbc->ch_lock, rcu_id);
1495			return;
1496		}
1497		spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1498
1499		head = readl(dbc->dbc_base + RSPHP_OFF);
1500		if (head == U32_MAX) { /* PCI link error */
1501			srcu_read_unlock(&dbc->ch_lock, rcu_id);
1502			return;
1503		}
1504
1505		tail = readl(dbc->dbc_base + RSPTP_OFF);
1506		if (tail == U32_MAX) { /* PCI link error */
1507			srcu_read_unlock(&dbc->ch_lock, rcu_id);
1508			return;
1509		}
1510
1511		if (head != tail) {
1512			irq_wake_thread(dbc->irq, dbc);
1513			srcu_read_unlock(&dbc->ch_lock, rcu_id);
1514			return;
1515		}
1516
1517		cond_resched();
1518		usleep_range(datapath_poll_interval_us, 2 * datapath_poll_interval_us);
1519	}
1520}
1521
1522irqreturn_t dbc_irq_threaded_fn(int irq, void *data)
1523{
1524	struct dma_bridge_chan *dbc = data;
1525	int event_count = NUM_EVENTS;
1526	int delay_count = NUM_DELAYS;
1527	struct qaic_device *qdev;
1528	struct qaic_bo *bo, *i;
1529	struct dbc_rsp *rsp;
1530	unsigned long flags;
1531	int rcu_id;
1532	u16 status;
1533	u16 req_id;
1534	u32 head;
1535	u32 tail;
1536
1537	rcu_id = srcu_read_lock(&dbc->ch_lock);
1538
1539	head = readl(dbc->dbc_base + RSPHP_OFF);
1540	if (head == U32_MAX) /* PCI link error */
1541		goto error_out;
1542
1543	qdev = dbc->qdev;
1544read_fifo:
1545
1546	if (!event_count) {
1547		event_count = NUM_EVENTS;
1548		cond_resched();
1549	}
1550
1551	/*
1552	 * if this channel isn't assigned or gets unassigned during processing
1553	 * we have nothing further to do
1554	 */
1555	if (!dbc->usr)
1556		goto error_out;
1557
1558	tail = readl(dbc->dbc_base + RSPTP_OFF);
1559	if (tail == U32_MAX) /* PCI link error */
1560		goto error_out;
1561
1562	if (head == tail) { /* queue empty */
1563		if (delay_count) {
1564			--delay_count;
1565			usleep_range(100, 200);
1566			goto read_fifo; /* check for a new event */
1567		}
1568		goto normal_out;
1569	}
1570
1571	delay_count = NUM_DELAYS;
1572	while (head != tail) {
1573		if (!event_count)
1574			break;
1575		--event_count;
1576		rsp = dbc->rsp_q_base + head * sizeof(*rsp);
1577		req_id = le16_to_cpu(rsp->req_id);
1578		status = le16_to_cpu(rsp->status);
1579		if (status)
1580			pci_dbg(qdev->pdev, "req_id %d failed with status %d\n", req_id, status);
1581		spin_lock_irqsave(&dbc->xfer_lock, flags);
1582		/*
1583		 * A BO can receive multiple interrupts, since a BO can be
1584		 * divided into multiple slices and a buffer receives as many
1585		 * interrupts as slices. So until it receives interrupts for
1586		 * all the slices we cannot mark that buffer complete.
1587		 */
1588		list_for_each_entry_safe(bo, i, &dbc->xfer_list, xfer_list) {
1589			if (bo->req_id == req_id)
1590				bo->nr_slice_xfer_done++;
1591			else
1592				continue;
1593
1594			if (bo->nr_slice_xfer_done < bo->nr_slice)
1595				break;
1596
1597			/*
1598			 * At this point we have received all the interrupts for
1599			 * BO, which means BO execution is complete.
1600			 */
1601			dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir);
1602			bo->nr_slice_xfer_done = 0;
1603			bo->queued = false;
1604			list_del(&bo->xfer_list);
1605			bo->perf_stats.req_processed_ts = ktime_get_ns();
1606			complete_all(&bo->xfer_done);
1607			drm_gem_object_put(&bo->base);
1608			break;
1609		}
1610		spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1611		head = (head + 1) % dbc->nelem;
1612	}
1613
1614	/*
1615	 * Update the head pointer of response queue and let the device know
1616	 * that we have consumed elements from the queue.
1617	 */
1618	writel(head, dbc->dbc_base + RSPHP_OFF);
1619
1620	/* elements might have been put in the queue while we were processing */
1621	goto read_fifo;
1622
1623normal_out:
1624	if (likely(!datapath_polling))
1625		enable_irq(irq);
1626	else
1627		schedule_work(&dbc->poll_work);
1628	/* checking the fifo and enabling irqs is a race, missed event check */
1629	tail = readl(dbc->dbc_base + RSPTP_OFF);
1630	if (tail != U32_MAX && head != tail) {
1631		if (likely(!datapath_polling))
1632			disable_irq_nosync(irq);
1633		goto read_fifo;
1634	}
1635	srcu_read_unlock(&dbc->ch_lock, rcu_id);
1636	return IRQ_HANDLED;
1637
1638error_out:
1639	srcu_read_unlock(&dbc->ch_lock, rcu_id);
1640	if (likely(!datapath_polling))
1641		enable_irq(irq);
1642	else
1643		schedule_work(&dbc->poll_work);
1644
1645	return IRQ_HANDLED;
1646}
1647
1648int qaic_wait_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
1649{
1650	struct qaic_wait *args = data;
1651	int usr_rcu_id, qdev_rcu_id;
1652	struct dma_bridge_chan *dbc;
1653	struct drm_gem_object *obj;
1654	struct qaic_device *qdev;
1655	unsigned long timeout;
1656	struct qaic_user *usr;
1657	struct qaic_bo *bo;
1658	int rcu_id;
1659	int ret;
1660
1661	if (args->pad != 0)
1662		return -EINVAL;
1663
1664	usr = file_priv->driver_priv;
1665	usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
1666	if (!usr->qddev) {
1667		ret = -ENODEV;
1668		goto unlock_usr_srcu;
1669	}
1670
1671	qdev = usr->qddev->qdev;
1672	qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
1673	if (qdev->in_reset) {
1674		ret = -ENODEV;
1675		goto unlock_dev_srcu;
1676	}
1677
1678	if (args->dbc_id >= qdev->num_dbc) {
1679		ret = -EINVAL;
1680		goto unlock_dev_srcu;
1681	}
1682
1683	dbc = &qdev->dbc[args->dbc_id];
1684
1685	rcu_id = srcu_read_lock(&dbc->ch_lock);
1686	if (dbc->usr != usr) {
1687		ret = -EPERM;
1688		goto unlock_ch_srcu;
1689	}
1690
1691	obj = drm_gem_object_lookup(file_priv, args->handle);
1692	if (!obj) {
1693		ret = -ENOENT;
1694		goto unlock_ch_srcu;
1695	}
1696
1697	bo = to_qaic_bo(obj);
1698	timeout = args->timeout ? args->timeout : wait_exec_default_timeout_ms;
1699	timeout = msecs_to_jiffies(timeout);
1700	ret = wait_for_completion_interruptible_timeout(&bo->xfer_done, timeout);
1701	if (!ret) {
1702		ret = -ETIMEDOUT;
1703		goto put_obj;
1704	}
1705	if (ret > 0)
1706		ret = 0;
1707
1708	if (!dbc->usr)
1709		ret = -EPERM;
1710
1711put_obj:
1712	drm_gem_object_put(obj);
1713unlock_ch_srcu:
1714	srcu_read_unlock(&dbc->ch_lock, rcu_id);
1715unlock_dev_srcu:
1716	srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1717unlock_usr_srcu:
1718	srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1719	return ret;
1720}
1721
1722int qaic_perf_stats_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
1723{
1724	struct qaic_perf_stats_entry *ent = NULL;
1725	struct qaic_perf_stats *args = data;
1726	int usr_rcu_id, qdev_rcu_id;
1727	struct drm_gem_object *obj;
1728	struct qaic_device *qdev;
1729	struct qaic_user *usr;
1730	struct qaic_bo *bo;
1731	int ret, i;
1732
1733	usr = file_priv->driver_priv;
1734	usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
1735	if (!usr->qddev) {
1736		ret = -ENODEV;
1737		goto unlock_usr_srcu;
1738	}
1739
1740	qdev = usr->qddev->qdev;
1741	qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
1742	if (qdev->in_reset) {
1743		ret = -ENODEV;
1744		goto unlock_dev_srcu;
1745	}
1746
1747	if (args->hdr.dbc_id >= qdev->num_dbc) {
1748		ret = -EINVAL;
1749		goto unlock_dev_srcu;
1750	}
1751
1752	ent = kcalloc(args->hdr.count, sizeof(*ent), GFP_KERNEL);
1753	if (!ent) {
1754		ret = -EINVAL;
1755		goto unlock_dev_srcu;
1756	}
1757
1758	ret = copy_from_user(ent, u64_to_user_ptr(args->data), args->hdr.count * sizeof(*ent));
1759	if (ret) {
1760		ret = -EFAULT;
1761		goto free_ent;
1762	}
1763
1764	for (i = 0; i < args->hdr.count; i++) {
1765		obj = drm_gem_object_lookup(file_priv, ent[i].handle);
1766		if (!obj) {
1767			ret = -ENOENT;
1768			goto free_ent;
1769		}
1770		bo = to_qaic_bo(obj);
1771		/*
1772		 * perf stats ioctl is called before wait ioctl is complete then
1773		 * the latency information is invalid.
1774		 */
1775		if (bo->perf_stats.req_processed_ts < bo->perf_stats.req_submit_ts) {
1776			ent[i].device_latency_us = 0;
1777		} else {
1778			ent[i].device_latency_us = div_u64((bo->perf_stats.req_processed_ts -
1779							    bo->perf_stats.req_submit_ts), 1000);
1780		}
1781		ent[i].submit_latency_us = div_u64((bo->perf_stats.req_submit_ts -
1782						    bo->perf_stats.req_received_ts), 1000);
1783		ent[i].queue_level_before = bo->perf_stats.queue_level_before;
1784		ent[i].num_queue_element = bo->total_slice_nents;
1785		drm_gem_object_put(obj);
1786	}
1787
1788	if (copy_to_user(u64_to_user_ptr(args->data), ent, args->hdr.count * sizeof(*ent)))
1789		ret = -EFAULT;
1790
1791free_ent:
1792	kfree(ent);
1793unlock_dev_srcu:
1794	srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1795unlock_usr_srcu:
1796	srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1797	return ret;
1798}
1799
1800static void empty_xfer_list(struct qaic_device *qdev, struct dma_bridge_chan *dbc)
1801{
1802	unsigned long flags;
1803	struct qaic_bo *bo;
1804
1805	spin_lock_irqsave(&dbc->xfer_lock, flags);
1806	while (!list_empty(&dbc->xfer_list)) {
1807		bo = list_first_entry(&dbc->xfer_list, typeof(*bo), xfer_list);
1808		bo->queued = false;
1809		list_del(&bo->xfer_list);
1810		spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1811		dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir);
1812		complete_all(&bo->xfer_done);
1813		drm_gem_object_put(&bo->base);
1814		spin_lock_irqsave(&dbc->xfer_lock, flags);
1815	}
1816	spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1817}
1818
1819int disable_dbc(struct qaic_device *qdev, u32 dbc_id, struct qaic_user *usr)
1820{
1821	if (!qdev->dbc[dbc_id].usr || qdev->dbc[dbc_id].usr->handle != usr->handle)
1822		return -EPERM;
1823
1824	qdev->dbc[dbc_id].usr = NULL;
1825	synchronize_srcu(&qdev->dbc[dbc_id].ch_lock);
1826	return 0;
1827}
1828
1829/**
1830 * enable_dbc - Enable the DBC. DBCs are disabled by removing the context of
1831 * user. Add user context back to DBC to enable it. This function trusts the
1832 * DBC ID passed and expects the DBC to be disabled.
1833 * @qdev: Qranium device handle
1834 * @dbc_id: ID of the DBC
1835 * @usr: User context
1836 */
1837void enable_dbc(struct qaic_device *qdev, u32 dbc_id, struct qaic_user *usr)
1838{
1839	qdev->dbc[dbc_id].usr = usr;
1840}
1841
1842void wakeup_dbc(struct qaic_device *qdev, u32 dbc_id)
1843{
1844	struct dma_bridge_chan *dbc = &qdev->dbc[dbc_id];
1845
1846	dbc->usr = NULL;
1847	empty_xfer_list(qdev, dbc);
1848	synchronize_srcu(&dbc->ch_lock);
1849	/*
1850	 * Threads holding channel lock, may add more elements in the xfer_list.
1851	 * Flush out these elements from xfer_list.
1852	 */
1853	empty_xfer_list(qdev, dbc);
1854}
1855
1856void release_dbc(struct qaic_device *qdev, u32 dbc_id)
1857{
1858	struct bo_slice *slice, *slice_temp;
1859	struct qaic_bo *bo, *bo_temp;
1860	struct dma_bridge_chan *dbc;
1861
1862	dbc = &qdev->dbc[dbc_id];
1863	if (!dbc->in_use)
1864		return;
1865
1866	wakeup_dbc(qdev, dbc_id);
1867
1868	dma_free_coherent(&qdev->pdev->dev, dbc->total_size, dbc->req_q_base, dbc->dma_addr);
1869	dbc->total_size = 0;
1870	dbc->req_q_base = NULL;
1871	dbc->dma_addr = 0;
1872	dbc->nelem = 0;
1873	dbc->usr = NULL;
1874
1875	list_for_each_entry_safe(bo, bo_temp, &dbc->bo_lists, bo_list) {
1876		list_for_each_entry_safe(slice, slice_temp, &bo->slices, slice)
1877			kref_put(&slice->ref_count, free_slice);
1878		bo->sliced = false;
1879		INIT_LIST_HEAD(&bo->slices);
1880		bo->total_slice_nents = 0;
1881		bo->dir = 0;
1882		bo->dbc = NULL;
1883		bo->nr_slice = 0;
1884		bo->nr_slice_xfer_done = 0;
1885		bo->queued = false;
1886		bo->req_id = 0;
1887		init_completion(&bo->xfer_done);
1888		complete_all(&bo->xfer_done);
1889		list_del(&bo->bo_list);
1890		bo->perf_stats.req_received_ts = 0;
1891		bo->perf_stats.req_submit_ts = 0;
1892		bo->perf_stats.req_processed_ts = 0;
1893		bo->perf_stats.queue_level_before = 0;
1894	}
1895
1896	dbc->in_use = false;
1897	wake_up(&dbc->dbc_release);
1898}
1899